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Maximal monotonicity and cyclic monotonicity arising

in nonsmooth Lur’e dynamical systems ✩

Samir Adly a,∗, Abderrahim Hantoute b, Ba Khiet Le b
a XLIM UMR-CNRS 7252, Université de Limoges, 87060 Limoges, France
b Centro de Modelamiento Matemático (CMM), Universidad de Chile, Santiago, Chile

We study a precomposition of a maximal monotone operator with linear mappings, 
which preserves the maximal monotonicity in the setting of reflexive Banach spaces. 
Instead of using the adjoint of such linear operators, as in the usual precomposition, 
we consider a more general situation involving operators which satisfy the so-called 
passivity condition. We also provide similar analysis for the preservation of the 
maximal cyclic monotonicity. These results are applied to derive existence results 
for nonsmooth Lur’e dynamical systems.

1. Introduction

In this paper, we investigate the preservation problem of maximal monotonicity and maximal cyclic
monotonicity for the following precomposition, in the setting of reflexive Banach spaces,

H := −A + B(F−1 + D)−1C,

where F is a maximal (cyclically) monotone operator and A, B, C, D are continuous linear mappings. We 
show that the resulting operator H will remain maximal monotone provided that the classical Rockafellar 
qualification condition holds and the involved linear mappings are related through the so-called passivity 
condition; that is, for all x and y,

〈Ax, x〉 + 〈(B − CT )y, x〉 − 〈Dy, y〉 ≤ 0.

✩ Research partially supported by CONICYT project Nos. 1151003, 3150332 and 150040.
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This condition may hold if B is not necessarily the adjoint of C, as it is the case of the passive system 
(−id, −id, id, id), with id being the identity mapping in a Hilbert space. In this sense, our analysis provides 
a suitable and strict extension of the classical precomposition with linear operators corresponding to the 
particular case when B = CT and A, D are the zero operators. Thus, the passivity condition allows one 
to go beyond the case B = CT whenever the difference B − CT remains under some control of mapping A
and D; in other words,

| 〈(B − CT )y, x〉 |≤ 〈Dy, y〉 − 〈Ax, x〉.

The problem of the maximal cyclic monotonicity preservation follows the same way but with the use of 
a modified passivity condition, which will be referred to as the cyclic passivity condition.

The motivation in considering such an extension of the classical precomposition comes from the frequent 
use of passive systems in control theory and issues related to feedback systems; we refer to [10] for more 
details, namely in linear time-invariant systems connected to static (nonlinear) relations, also called Lur’e 
dynamical systems [1,7–9,12]. To explain this fact, let us consider the following set-valued Lur’e systems, 
given in the setting of Hilbert spaces,

{
ẋ(t) = Ax(t) + Bλ(t) a.e. t ∈ [0,+∞); x(0) = x0,

y(t) = Cx(t) + Dλ(t), λ(t) ∈ −F (y(t)), t ≥ 0,
(1)

where A : X → X, B : Y → X, C : X → Y, D : Y → Y are given linear bounded mappings, F : Y ⇒ Y is
a given maximal monotone operator and λ, y : R+ → Y are two unknown connected mappings. It is easy
to see that system (1) can be rewritten into the form of a first order differential inclusion involving our 
operator H:

ẋ(t) ∈ Ax(t) −B(F−1 + D)−1(Cx(t)) = −Hx(t). (2)

As a result of this translation, the persistence of the maximal monotonicity of H will allow us to use the rich 
theory of maximal monotone operators to get existence of (weak and strong) solutions, and different related 
properties. As well, the preservation of the maximal cyclic monotonicity of H will ensure the existence of 
strong solutions in the infinite dimensional Hilbert spaces rather than only weak ones.

To the best of our knowledge, set-valued Lur’e systems were firstly introduced and analyzed in a special 
case in [7], while the maximal monotonicity of H under the passivity condition was firstly studied in [12] in 
finite dimensional spaces, where the existence and uniqueness of solutions are considered for these set-valued 
Lur’e systems.

The question of whether the maximal (and the maximal cyclic) monotonicity is preserved under a given 
algebraic operation has been a central problem in the theory of maximal monotone operators. The main 
issue is to find explicitly sufficient conditions for the maximality of operations like the sum of two maximal 
monotone operators or the precomposition of maximal monotone operators with linear continuous mappings. 
This relatively old topic of research is still active as long as the famous open question of whether the sum 
F1 + F2 of two maximal monotone operators F1, F2 : X ⇒ X∗, defined on a general Banach space X with
values in its dual space X∗, and satisfying the Rockafellar condition,

int
(
dom(F1)

)
∩ dom(F2) 
= ∅, (3)

remains maximal monotone, is still unsolved. However, the answer to this problem is positive in the reflexive 
case (see, e.g., [18] and also [11]), as well as in some particular situations (see, e.g., [21–23]).

The same situation concerns the maximality problem of the precomposition ATFA of a maximal mono-
tone operator F : X ⇒ X∗ by a linear continuous mapping A : Y ⇒ X with adjoint AT : X∗ ⇒ Y ∗, where
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Y is another Banach space. Indeed, these two problems are equivalent in some sense and one can go forth 
and back from each problem to the other one: given F1 and F2 as above, we define the (continuous) linear
mapping A : X → X ×X and the monotone operator F : X ×X ⇒ X∗ ×X∗ as

Ax := (x, x), F (x1, x2) := F1(x1) × F2(x2).

Then F1 + F2 = ATFA. Conversely, given a maximal monotone operator F : X ⇒ X∗ and a linear
continuous mapping A : Y → X, one defines the maximal monotone operators F1 := NA, the normal cone
mapping to the graph of A, and F2 : Y ×X ⇒ Y ∗ ×X∗ as

F2(y, x) := {0} × Tx.

Then, one obtains y∗ ∈ ATFAy ⇔ (y∗, 0) ∈ (F1 + F2)(y, Ay) (see, e.g., [20,14] for more details). Conse-
quently, one easily deduces the maximality of the precomposition under Rockafellar’s type condition in the 
reflexive setting, as well as under other weaker conditions like the Attouch–Brézis condition [2],

R+

(
co
(
dom(F1)

)
− co

(
dom(F2)

))
= X, (4)

where co(S) denotes the convex hull of S.
To deal with our problem of the preservation of the maximal (and maximal cyclic) monotonicity of 

operator H, we shall follow a regularized approach based on the Moreau–Yoshida approximation of the 
initial operator F , and then the appeal to Minty’s Theorem for both the approximated and the original 
systems will be the appropriate tool to get the desired result. On another hand, one could also make use 
of analysis based on Fitzpatrick functions to tackle this preservation problem. Such an approach would 
necessarily require a useful comparison between the Fitzpatrick functions associated to the operators F
and H, or at least a relation between the (Fenchel) subdifferential of these two functions (see, e.g., [4,5,16,
24] for the case of classical precomposition). However, we do not follow this root since it will involve a deep
analysis, that we let for a future research.

The paper is organized as follows. In Section 2, we recall some definitions and useful results about 
maximal monotone operators in reflexive Banach spaces as well as the definition of linear passive systems. 
The main result about the maximal monotonicity (maximal cyclic monotonicity) of H is stated and proved 
in Section 3 under the passivity (cyclic passivity, respectively) assumption and some interiority condition. 
Some conclusions and perspectives end the paper in Section 4.

2. Notations and mathematical background

In the sequel, X is a real reflexive Banach space with dual X∗; we write 〈x∗, x〉 = x∗(x) for x ∈ X,
x∗ ∈ X∗ and denote both norms in X and X∗ by ‖ · ‖ (if there is no confusion). We denote by BX the unit
ball in X and by int(S) the interior of a set S. The strong and weak convergence in X and X∗ are denoted 
by → and ⇀, respectively. The set of all proper, convex and lower semi-continuous functions from X to 
R ∪ {+∞} is denoted by Γ0(X).

Let J be the duality mapping of X defined as

J(x) := {x∗ ∈ X∗ : ‖x∗‖2 = ‖x‖2 = 〈x, x∗〉};

equivalently, J is the Fenchel subdifferential operator of the function 1
2‖ · ‖2, i.e.,

〈Jx, y − x〉 ≤ 1‖y‖2 − 1‖x‖2, for all x, y ∈ X. (5)
2 2
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The mapping J is a set-valued monotone operator. Using a renorming result [15], we may suppose that X is 
equipped with a norm for which X and X∗ are locally uniformly convex. Then J is single-valued continuous, 
bijective, J−1 is the duality mapping of X∗ and X satisfies the Kadec–Klee property [13], i.e.,

if xn ⇀ x and ‖xn‖ → ‖x‖, then xn → x, as n → +∞.

The domain, the range and the graph of a set-valued mapping F : X ⇒ X∗ are defined respectively by

dom(F ) = {x ∈ X : F (x) 
= ∅}, rge(F ) =
⋃
x∈X

F (x),

and

gph(F ) = {(x, y) : x ∈ X, y ∈ F (x)}.

The inverse operator F−1 is defined by

x ∈ F−1(y) ⇔ y ∈ F (x) for all x, y ∈ X;

hence, dom(F−1) = rge(F ) and rge(F−1) = dom(F ).
The operator F is called n-cyclically monotone if for all (xi, x∗

i ) ∈ gph(F ), i = 1, . . . , n, one has that

n∑
i=1

〈x∗
i , xi+1 − xi〉 ≤ 0, where xn+1 := x1. (6)

We say that F is cyclically monotone if it is n-cyclically monotone for every positive integer n. If, in addition, 
there is no cyclically monotone G such that gph(F ) is strictly contained in gph(G), then F is called maximal 
cyclically monotone. In particular, we say that F is monotone if it is 2-cyclically monotone, and maximal 
monotone if in addition there is no monotone set-valued mapping G such that gph(F ) is contained strictly 
in gph(G). It is well-known [17] that a maximal cyclically monotone operator is necessarily the graph of the 
(Fenchel) subdifferential of a function ϕ ∈ Γ0(X). The converse of this statement is obviously true.

Let us remind some fundamental properties of maximal monotone operators (see, e.g., [3] for more 
details).

Proposition 1. Let F : X ⇒ X∗ be a maximal monotone operator. Then:

(i) F−1 : X∗ ⇒ X is maximal monotone.
(ii) F is weakly-strongly closed; i.e., if yn ∈ F (xn), xn ⇀ x and yn → y as n → +∞, then y ∈ F (x).
(iii) F is locally bounded in int(dom(F )).

Next, we recall in the setting of reflexive Banach spaces Minty’s Theorem (see [11,18]) and Yosida 
approximation; see, also, [3].

Proposition 2. Let X be a reflexive Banach space, equipped with a norm for which X and X∗ are locally 
uniformly convex. Let F : X ⇒ X∗ be a monotone operator. Then F is maximal monotone if and only if
rge(F + J) = X∗.

Let F : X ⇒ X∗ be a maximal monotone operator and let λ > 0. For each x ∈ X, let xλ be the unique
solution of the inclusion

0 ∈ J(xλ − x) + λF (xλ). (7)
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Define

Jλ(x) := xλ and Fλx := λ−1J(x− xλ).

Then the single-valued mappings Jλ, Fλ : X → X∗ are called resolvent and Yosida approximation of F ,
respectively. It is known that Fλ = (F−1 + λJ−1)−1 and

Fλ(x) ∈ F (Jλx), J(x− Jλx) = λFλ(x), for all x ∈ X. (8)

Proposition 3. Let F : X ⇒ X∗ be a maximal monotone operator and λ > 0. Then:

(i) Fλ is single-valued, monotone, bounded, and demicontinuous (i.e., continuous from X to X∗
w).

(ii) ‖Fλ(x)‖ ≤ ‖F 0(x)‖ for all x ∈ dom(F ), where F 0(x) is the element of minimum norm in F (x).

Next, we introduce the concept of passive systems in infinite dimensional reflexive Banach spaces. This 
notion is well-used in control theory [8–10]. Given two reflexive Banach spaces X and Y , let A : X → X∗, 
B : Y ∗ → X∗, C : X → Y and D : Y ∗ → Y be given linear bounded operators.

Definition 1. The system (A, B, C, D) is said to be passive if for all x ∈ X and y ∈ Y ∗, we have

〈Ax, x〉 + 〈(B − CT )y, x〉 − 〈Dy, y〉 ≤ 0, (9)

where CT : Y ∗ → X∗ is the adjoint of C.

Remark 1. The standard definition of passivity in systems theory is based on the trajectories of the system 
via the so-called dissipation inequality ([10,12], see, also, [1]); i.e., there exists a function V : X → R+,
called a storage function, such that

V (x(t1)) +
t2∫

t1

〈λ(τ), y(τ)〉dτ ≤ V (x(t2)), 0 ≤ t1 ≤ t2,

where x(·), y(·) and λ(·) satisfy system (1), when stated in a Hilbert setting. Definition 1 gives an equivalent 
condition to that conceptual definition when the storage function is x �→ 1

2x
Tx.

We have the following lemma.

Lemma 1. If (A, B, C, D) is passive, then:

(i) D is monotone.
(ii) For all y ∈ Y ∗, one has ‖(B − CT )y‖2 ≤ 4‖A‖〈Dy, y〉.
(iii) For all x ∈ X, one has ‖(BT − C)x‖2 ≤ 4‖D‖〈−Ax, x〉.

Proof. (i) This assertion follows by taking x = 0 in (9).
(ii) Fix y ∈ Y ∗. If (B − CT )y = 0, then the conclusion holds trivially. If (B − CT )y 
= 0, then for 

x := kJ−1 (B−CT )y
‖(B−CT )y‖ with k ∈ R, property (9) gives us

‖A‖k2 − ‖(B − CT )y‖k + 〈Dy, y〉 ≥ 0, ∀k ∈ R. (10)

Thus, we must have
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‖(B − CT )y‖2 − 4‖A‖〈Dy, y〉 ≤ 0,

and the conclusion follows.
(iii) The proof of this assertion is similar to (ii). �

Remark 2. From Lemma 1, we obtain the following relation

‖B − CT ‖ ≤ 2
√

‖A‖‖D‖, (11)

for every passive system (A, B, C, D). Thus, operators A and D measure via the passivity condition (9) the 
gap between B and the adjoint of C.

3. Main results

In this section, we consider full domain linear continuous mappings A : X → X∗, B : Y ∗ → X∗,
C : X → Y , and D : Y ∗ → Y , together with a maximal monotone operator F : Y ⇒ Y ∗, where X
and Y are reflexive Banach spaces with the renorming assumption. In what follows, we shall suppose for 
consistency purposes that

C−1(rge(F−1 + D)) 
= ∅. (12)

We give the first main theorem.

Theorem 1. Assume that (A, B, C, D) is a passive system. If rge(C) ∩ int(rge(F−1 + D)) 
= ∅ or if B is
bijective, then the operator H : X ⇒ X∗ defined by

H(x) := −Ax + B(F−1 + D)−1(Cx),

is maximal monotone.

Proof. Let us first observe that, thanks to (12), the domain of H is not empty. To show that H is monotone, 
we consider xi ∈ X and yi ∈ (F−1 + D)−1(Cxi) (i = 1, 2) such that Cxi − Dyi ∈ F−1(yi). Using the
monotonicity of F−1, we have

〈C(x1 − x2) −D(y1 − y2), y1 − y2〉 ≥ 0.

Hence, invoking the passivity of (A, B, C, D), we get

〈−A(x1 − x2), x1 − x2〉 + 〈B(y1 − y2), x1 − x2〉 ≥ 〈C(x1 − x2) −D(y1 − y2), y1 − y2〉 ≥ 0,

and the monotonicity of H follows.
In order to establish that H is maximal, according to Minty’s Theorem we need to show that for every 

given x∗ ∈ X∗, there exists x ∈ X such that

x∗ ∈ H(x) + J(x), (13)

where J is the duality mapping of X. Note that D is maximal monotone because it is single-valued, monotone 
and continuous with full domain (see, e.g., [3] for more details). Hence, according to [18, Theorem 1], the 
6



sum operator F−1 +D is maximal monotone, and so is its inverse S := (F−1 +D)−1. For λ > 0, we consider 
the Yosida approximation of S,

Sλ = (S−1 + λJ−1)−1 = (F−1 + D + λJ−1)−1,

and define the operator Hλ : X → X∗ as follows

Hλ(x) := −Ax + BSλ(Cx), x ∈ X.

We can easily prove, thanks to the passivity condition, that Hλ is a monotone operator. Moreover, like Sλ

the operator Hλ is a single-valued demicontinuous operator with full domain. Thus, again by [3], it follows 
that Hλ is maximal monotone. By Minty’s Theorem, there exists a unique xλ ∈ X such that

x∗ = Hλ(xλ) + Jxλ. (14)

We fix x0 ∈ X such that (recall (12))

Cx0 ∈ rge(F−1 + D) = dom(F−1 + D)−1 = dom(S),

and set

x∗
λ := −Ax0 + BSλ(Cx0) + Jx0 = Hλ(x0) + Jx0. (15)

Then we have

‖x∗
λ‖ ≤ ‖Ax0‖ + ‖B‖‖Sλ(Cx0)‖ + ‖x0‖ ≤ ‖Ax0‖ + ‖B‖‖S0(Cx0)‖ + ‖x0‖, (16)

which shows that the net (x∗
λ)λ is bounded. Moreover, since Hλ is monotone, from (14) and (15) we obtain

〈x∗ − x∗
λ, xλ − x0〉 ≥ 〈Jxλ − Jx0, xλ − x0〉 ≥ (‖xλ‖ − ‖x0‖)2 ≥ ‖xλ‖2 − 2‖xλ‖‖x0‖.

Consequently

‖xλ‖2 ≤ (2‖x0‖ + ‖x∗‖ + ‖x∗
λ‖)‖xλ‖ + ‖x0‖(‖x∗‖ + ‖x∗

λ‖). (17)

Using the fact that (x∗
λ)λ>0 is bounded, we deduce from (17) that (xλ)λ>0 is bounded. Moreover, since

x∗ = −Axλ +BSλ(Cxλ) + J(xλ), the net 
(
BSλ(Cxλ)

)
λ>0 is bounded. Consequently, if B is bijective, then

we conclude that 
(
Sλ(Cxλ)

)
λ>0 is bounded. Let us show that this net is also bounded under the condition

rge(C) ∩ int(rge(F−1 + D)) 
= ∅.

Proceeding by contradiction, if this was not the case, then there would exist λn > 0 and yn = Sλn
(Cxλn

)
such that ‖yn‖ → +∞ as n → +∞. Take u in rge(C) ∩ int(rge(D + F−1)) and let r > 0 be such that

u + rBY ⊂ rge(F−1 + D) = dom(F−1 + D)−1, (18)

and (F−1 + D)−1 is bounded on u + rBY (recall Proposition 1). Set

wn = u + rJ−1ξn,
7



where ξn := yn/‖yn‖, so that wn ∈ u +rBY . By (18) we pick some zn in (F−1+D)−1(wn) ⊂ (F−1+D)−1(u +
rBY ). Therefore the sequence (zn) is also bounded due to the choice of r above. Since wn −Dzn ∈ F−1(zn)
and yn = Sλn

(Cxλn
); that is, Cxλn

−Dyn − λnJ
−1yn ∈ F−1(yn), from the monotonicity of F−1, we get

〈Cxλn
− wn −D(yn − zn) − λnJ

−1yn, yn − zn〉 ≥ 0, (19)

which, by the relation J−1 = ∂(1
2‖ · ‖2), implies that

〈Cxλn
− wn −D(yn − zn), yn − zn〉 ≥ 〈λnJ

−1yn, yn − zn〉 ≥
λn

2 (‖yn‖2 − ‖zn‖2). (20)

Dividing both sides of (20) by ‖yn‖2, one has

〈Cxλn
− wn −D(yn − zn), yn − zn〉

‖yn‖2 ≥ λn

2 (1 − ‖zn‖2

‖yn‖2 ). (21)

Thus for n large enough, we obtain

〈Cxλn
− wn −D(yn − zn), yn − zn〉

‖yn‖2 ≥ 0. (22)

Since (xλn
), (wn), and (zn) are bounded, by passing the limit as n → +∞ in (22), one gets (taking into

account that D is monotone by Lemma 1)

lim
n→+∞

〈Dξn, ξn〉 = 0.

Hence, thanks to Lemma 1, and the fact that lim
n→+∞

Bξn = 0 due to the boundedness of the sequence
(Byn)n = (BSλn

(Cxλn
))n, we conclude that

lim
n→+∞

CT ξn = lim
n→+∞

(B − CT )(ξn) = 0. (23)

Therefore

lim
n→+∞

〈Cxλn
, ξn〉 = lim

n→+∞
〈xλn

, CT ξn〉 = 0.

Using the monotonicity of D and J−1, we deduce from (19) that

〈Cxλn
− wn, yn − zn〉 ≥ λn〈J−1(yn), yn − zn〉 ≥

λn

2 (‖yn‖2 − ‖zn‖2). (24)

By dividing both sides of (24) by ‖yn‖ and for n large enough, one has

〈Cxλn
− wn, yn − zn〉
‖yn‖

≥ 0. (25)

Taking the lower limit as n → +∞ in (25), we get

lim inf
n→+∞

〈−wn, ξn〉 ≥ 0.

Thus, recalling that u ∈ rge(C), (23) leads us to the contradiction
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0 < r = lim
n→+∞

〈rJ−1ξn, ξn〉 = lim
n→+∞

〈u + rJ−1ξn, ξn〉 = lim sup
n→+∞

〈wn, ξn〉 ≤ 0.

Consequently, the net 
(
Sλ(Cxλ)

)
λ>0 is bounded.

We now show that (xλ) has a convergent subnet. Given λ, μ > 0 we write

x∗ = −Axλ + BSλ(Cxλ) + J(xλ) = −Axμ + BSμ(Cxμ) + J(xμ), (26)

yλ := Sλ(Cxλ) = (F−1 + D + λJ−1)−1(Cxλ),

and

yμ := Sμ(Cxμ) = (F−1 + D + μJ−1)−1(Cxμ),

so that

J(xλ) − J(xμ) = A(xλ − xμ) −B(yλ − yμ).

By multiplying both sides of this last equality by xλ − xμ, the passivity of (A, B, C, D) gives us

〈J(xλ) − J(xμ), xλ − xμ〉 = 〈A(xλ − xμ) −B(yλ − yμ), xλ − xμ〉
≤ 〈−C(xλ − xμ) + D(yλ − yμ), yλ − yμ〉. (27)

Since Cxλ −Dyλ − λJ−1(yλ) ∈ F−1(yλ) and Cxμ −Dyμ − μJ−1(yμ) ∈ F−1(yμ), the monotonicity of F−1

and J−1 gives us

〈−C(xλ − xμ) + D(yλ − yμ), yλ − yμ〉
≤ −〈λJ−1(yλ) − μJ−1(yμ), yλ − yμ〉
= −λ〈J−1(yλ) − J−1(yμ), yλ − yμ〉 − (λ− μ)〈J−1(yμ), yλ − yμ〉
≤ −(λ− μ)〈J−1(yμ), yλ − yμ〉 ≤ |λ− μ|‖yμ‖‖yλ − yμ‖. (28)

Thus, as yλ and yμ are bounded, we conclude from (27) that for some constant c > 0 it holds

〈J(xλ) − J(xμ), xλ − xμ〉 ≤ c|λ− μ|, ∀ λ, μ > 0, (29)

which implies, again by the monotonicity of J , that

lim sup
λ,μ→0

〈J(xλ) − J(xμ), xλ − xμ〉 = 0. (30)

Furthermore, since (xλ)λ>0 and (J(xλ))λ>0 are bounded as we showed above, we may suppose that (xλ)λ>0
and (J(xλ))λ>0 weakly converge to some x ∈ X and y ∈ X∗, respectively. Thus, according to [3, Lemma 2.3],
(30) ensures that y = J(x) and

〈J(xλ), xλ〉 → 〈y, x〉 = 〈J(x), x〉 as λ → 0+,

that is, limλ→0+ ‖xλ‖ = ‖x‖. Then the Kadec–Klee property guarantees that (xλ) strongly converges to x.
To complete the proof, we need only to show that x satisfies (13). Indeed, since (yλ) = (Sλ(Cxλ)) is

bounded, we may suppose that it weakly converges to some η ∈ Y ∗. Then by taking the limit as λ → 0+

in (26), we obtain

9



x∗ = −Ax + Bη + J(x).

Moreover, recalling (8), we have that yλ = Sλ(Cxλ) ∈ S(Jλ(Cxλ)) and

‖Jλ(Cxλ) − Cx‖ ≤ ‖Jλ(Cxλ) − Cxλ‖ + ‖Cxλ − Cx‖ ≤ λ‖Sλ(Cxλ)‖ + ‖C‖‖xλ − x‖,

which shows that Jλ(Cxλ) converges strongly to Cx. Consequently, by Proposition 1 it follows that η ∈
S(Cx); that is,

x∗ ∈ −Ax + B(F−1 + D)−1(Cx) + J(x).

The proof is completed. �
Remark 3. (i) The conclusion of Theorem 1 is also true if the operators A and D used there are Lipchitz 
continuous with A(0) = 0 instead of just being linear and bounded. The proof of this fact is exactly the 
same as the one of Theorem 1.

(ii) Operators B and C play a symmetric role within the passivity condition. Indeed, it is easily seen 
that Definition 1 is equivalent to, for all x ∈ X and y ∈ Y ∗

〈Ax, x〉 + 〈(CT −B)y, x〉 − 〈Dy, y〉 ≤ 0;

that is, the system (A, CT , BT , D) is passive. Consequently, applying Theorem 1 to this new system, the 
operator

−A + CT (F−1 + D)−1BT

is maximal monotone, provided that either C is bijective or rge(BT ) ∩ int(rge(F−1 + D)) 
= ∅.
(iii) The following corollary shows that in order to obtain the maximal monotonicity of H = −A +

B(F−1 + D)−1C, one can check the passivity of (A, kB, C, D) for some k ≥ 1 instead of the passivity of 
(A, B, C, D).

Corollary 1. Assume that the system (A, kB, C, D) is passive for some k ≥ 1. If B is bijective or

rge(C) ∩ int(rge(F−1 + D)) 
= ∅,

for a maximal monotone operator F : Y ⇒ Y ∗, then H = −A + B(F−1 + D)−1C is maximal monotone.

Proof. Theorem 1 implies the maximal monotonicity of the operator

Hk = −A + kB(F−1 + D)−1C.

Then the operator

H = k−1Hk − (1 − k−1)A

is also maximal monotone, since the mapping −A is maximal monotone and 1 − k−1 ≥ 0. �
The statement of Corollary 1 is not true for k < 1, as we show in the following example.
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Example 1. In R2 we take F−1 ≡ 0 and −A = −kB = C = D = I2 for 0 < k < 1. Then (A, kB, C, D) is
passive, but the operator

H = −A + B(F−1 + D)−1C = (1 − k−1)I2

is not monotone. For the case k = 0, the counterexample is −A = −B = 1
2C = D = I2, while for k < 0 it

suffices to take A = 0 and kB = C = D = I2.

Next, we analyze the preservation of the maximal cyclic monotonicity of the operator H = −A +B(F−1+
D)−1C. More precisely if F is maximal cyclically monotone, then, according to [17], there exists a proper 
lower semi-continuous convex function ϕ : X → R ∪ {+∞} such that

F = ∂ϕ.

Hence, if A and D are the zero operators, and B = CT , so that the passivity condition obviously holds, the 
operator H is written as

H = CT ∂ϕ C.

Consequently, under the interiority assumption of Theorem 1, for instance, we obtain ([18])

H = ∂(ϕ ◦ C),

which again by [18] shows that H is a maximal cyclically monotone operator.
Our aim here is to enforce the passivity condition given in (9) in order to guarantee the preservation of 

the maximal cyclic monotonicity of the operator H. In some situations, the passivity condition alone could 
ensure this preservation, as it is the case when B = kCT for some constant k > 0 and the linear operators 
−A and D are symmetric and monotone. However, it is not true in general as the following example shows.

Example 2. Let us consider in R2 the system (A, B, C, D) and the operator F , where F−1 ≡ 0 and

A =
(

0 0
0 −1

4

)
, B =

(
0 −1
1 1

)
, C =

(
0 1

−1 0

)
, D =

(
1 0
0 1

)
.

Then we can easily verify that (A, B, C, D) is passive and that B is bijective, so that the hypothesis of 
Theorem 1 holds and the operator H = −A + B(F−1 + D)−1C is maximal monotone. However,

H = −A + BC =
(

1 0
−1 5/4

)

is not maximal cyclically monotone.

Definition 2. The system (A, B, C, D) is said to be cyclically passive if it is passive and for each positive 
integer n ≥ 3, given xi ∈ X, and yi ∈ Y ∗ (i = 1, 2, . . . , n) satisfying that {(Cxi −Dyi, yi) : i = 1, . . . , n} is
n-cyclically monotone, we have (with xn+1 := x1, yn+1 := y1)

n∑
〈−Axi, xi+1 − xi〉 +

n∑
〈(B − CT )yi, xi+1 − xi〉 + 〈yi, D(yi+1 − yi)〉 ≤ 0, (31)
i=1 i=1
11



or equivalently,

n∑
i=1

〈−Axi + Byi, xi+1 − xi〉 ≤
n∑

i=1
〈yi, C(xi+1 − xi) −D(yi+1 − yi)〉. (32)

Definition 2 covers the classical setting when B = CT and −A, D are monotone symmetric operators. It 
is easy to see that the cyclic passivity implies the passivity, but in general the two notions are not equivalent 
(see Example 2). We have the following theorem.

Theorem 2. Let F : Y ⇒ Y ∗ be a maximal cyclically monotone operator. Assume that (A, B, C, D) is
a cyclically passive system such that either rge(C) ∩ int(rge(F−1 + D)) 
= ∅ or B is bijective. Then the
operator H = −A + B(F−1 + D)−1C is maximal cyclically monotone.

Proof. Theorem 1 ensures that H is maximal monotone, and so it remains to check that H is cyclically 
monotone. Given n ≥ 3, x1, x2, . . . , xn ∈ X and y1, y2, . . . , yn ∈ Y ∗ such that yi ∈ (F−1 + D)−1Cxi

(i = 1, 2, . . . , n), we have yi ∈ F (Cxi − Dyi). By the cyclic monotonicity of F , one obtains that {(Cxi −
Dyi, yi) : i = 1, . . . , n} is n-cyclically monotone, i.e.,

n∑
i=1

〈yi, C(xi+1 − xi) −D(yi+1 − yi)〉 ≤ 0.

Then the cyclic passivity of the system (A, B, C, D) ensures that

n∑
i=1

〈−Axi + Byi, xi+1 − xi〉 ≤
n∑

i=1
〈yi, C(xi+1 − xi) −D(yi+1 − yi)〉 ≤ 0.

The arbitrariness of n allows us to conclude that H is cyclically monotone. �
We give an example to illustrate Theorem 2.

Example 3. We consider the case where X = Y = L2(0, 1). We fix an integer m ≥ 1 and denote by
{e1, e2, . . . , em, . . .} the orthonormal basis of L2(0, 1). We define the operators A, B, C, D : L2(0, 1) →
L2(0, 1) as follows

Dej = ej for 1 ≤ j ≤ m, Dej = 0 for j ≥ m + 1,

and

A = 2B = −2C = −D.

Let F : L2(0, 1) ⇒ L2(0, 1) be a maximal cyclically monotone operator such that rge(C) ∩ int(rge(F−1 +
D)) 
= ∅. According to Theorem 2, in order to conclude that the operator H = −A + B(F−1 + D)−1C

is maximal cyclically monotone, we only need to show that the system (A, B, C, D) is cyclically passive. 
Clearly (A, B, C, D) is passive. Next, we consider any integer n ≥ 3 and pick in L2(0, 1) the vectors xi =
(xi1, xi2, . . . , xim, . . .) and yi = (yi1, yi2, . . . , yim, . . .), i = 1, . . . , n such that the set

{(Cxi −Dyi, yi) : i = 1, . . . , n} is n-cyclically monotone.

12



It is sufficient to prove that

n∑
i=1

{〈−Axi, xi+1 − xi〉 − 2〈yi, C(xi+1 − xi)〉 + 〈D(yi+1 − yi), yi〉} ≤ 0.

Since {(Cxi −Dyi, yi) : i = 1, . . . , n} is n-cyclically monotone, one has

n∑
i=1

〈yi+1, C(xi+1 − xi) −D(yi+1 − yi)〉 ≥ 0,

which implies that

n∑
i=1

〈yi+1, C(xi+1 − xi)〉 ≥
n∑

i=1
〈yi+1, D(yi+1 − yi)〉 ≥ 0,

where the last inequality comes from the fact that D is monotone and symmetric. Therefore,

n∑
i=1

{〈−Axi, xi+1 − xi〉 − 2〈yi, C(xi+1 − xi)〉 + 〈D(yi+1 − yi), yi〉}

≤
n∑

i=1
{〈−Axi, xi+1 − xi〉 − 2〈yi − yi+1, C(xi+1 − xi)〉 + 〈D(yi+1 − yi), yi〉}

=
m∑
j=1

n∑
i=1

{
xij(x(i+1)j − xij) + (y(i+1)j − yij)(x(i+1)j − xij) + yij(y(i+1)j − yij)

}

= −1
2

m∑
j=1

n∑
i=1

{
(x(i+1)j − xij)2 − 2(y(i+1)j − yij)(x(i+1)j − xij) + (y(i+1)j − yij)2

}

≤ 0.

If F : Y ⇒ Y ∗ is a maximal cyclically monotone operator, then F = ∂ϕ for some ϕ ∈ Γ0(Y ). Under the
assumptions of Theorem 2, the operator H is also maximal cyclically monotone operator, i.e., H = ∂Φ for 
some Φ ∈ Γ0(X). According to [17], Φ is given by the following formula

Φ(x) = sup{〈x− xn, x
∗
n〉 + . . . + 〈x1 − x0, x

∗
0〉}, (33)

where x∗
i ∈ −Axi + B(∂ϕ−1 + D)−1Cxi, i = 1, . . . , n, and the supremum is taken over all possible finite

sets of such pairs (xi, x∗
i ).

In some particular cases, it is possible to find a function Φ explicitly in terms of the data ϕ, A, B, C
and D.

Proposition 4. Assume that X = Y = R
n and F = ∂ϕ, where ϕ(x) := ϕ1(x1) + . . . + ϕn(xn), x =

(x1, . . . , xn)T , ϕi ∈ Γ0(R), i = 1, . . . , n. Let B = [b1, . . . , bn], C = [c1, . . . , cn], D = [d1, . . . , dn] be diagonal
matrices (bi, ci, di ∈ R, ci 
= 0, i = 1, . . . , n) and A be symmetric such that (A, B, C, D) is passive. Then
H = ∂Φ with

Φ(x) = 1
2 〈−Ax, x〉 + b1

c1
ϕ1,d1(cixi) + . . . + bn

cn
ϕn,dn

(cnxn),

where ϕi,di
(xi) := inf(ϕi(·) + 1 |xi − ·|2) for di > 0, and ϕi,0 := ϕi.
2di
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Proof. If we set

ωA(x) := 1
2 〈−Ax, x〉, ωD(x) := 1

2 〈Dx, x〉, x ∈ R
n,

then we get, using [19, Theorem 23.9], together with the interior condition (rge(C) = R
n),

H = ∇ωA(x) + B(∂ϕ∗ + ∇ωD)−1Cx

= ∇ωA(x) + B∂(ϕ∗ + ωD)∗Cx

= ∇ωA(x) + BC−1C∂(ϕ � ω∗
D)Cx

= ∇ωA(x) + BC−1∂((ϕ � ω∗
D) ◦ C)x,

where � denotes the inf-convolution. Note that due to the passivity condition we have di ≥ 0 and bi = ci
whenever di = 0. Thus simple computations show that

BC−1∂((ϕ � ω∗
D) ◦ C)x = ∂(b1

c1
ϕ1,d1(cixi) + . . . + bn

cn
ϕn,dn

(cnxn)), (34)

and the conclusion follows by using again [19, Theorem 23.9]. �
In this last part, we give an application of Theorem 2 to the existence problem of solutions of Lur’e 

systems in infinite dimensional Hilbert space [1,8–10]. The originality of this work with respect to the 
previous ones, namely, the result of [1], resides in the fact that here the initial condition may be given by 
any point of the boundary of the domain of H, possibly not in the domain.

We suppose that X and Y are two Hilbert spaces, and consider the following set-valued Lur’e dynamical 
system,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) + Bλ(t) a.e. t ∈ [0,+∞);
y(t) = Cx(t) + Dλ(t),
λ(t) ∈ −F (y(t)), t ≥ 0;
x(0) = x0,

(35)

where A : X → X, B : Y → X, C : X → Y, D : Y → Y are as above, and λ, y : R+ → Y are two connected
(unknown) mappings. It is not difficult to see that (35) can be recasted to the first-order differential inclusion

ẋ(t) ∈ Ax(t) −B(F−1 + D)−1(Cx(t)) = −Hx(t). (36)

Theorem 3. Let X and Y be two Hilbert spaces, and let F : Y ⇒ Y be a maximal cyclically monotone
operator. Suppose that (A, B, C, D) is a cyclically passive system such that B is bijective or

rge(C) ∩ int(rge(F−1 + D)) 
= ∅.

Then, for each x0 ∈ cl(C−1(rge(F−1 + D))), Lur’e system (35) has a unique strong solution.

Proof. By Theorem 2 the operator H is maximal cyclically monotone. Hence, H = ∂Φ for some Φ ∈ Γ0(X),
and, consequently, differential inclusion (36) has a unique absolutely continuous solution x(·), defined on 
[0, +∞), such that x(0) = x0 (see, e.g., [6]). �
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Example 4. Consider first the diode bridge circuit in [12, Example 1] with resistors R1 > 0, R2 > 0, one
capacitor C > 0, one inductor L > 0, one voltage source u and four ideal diodes Di, i = 1, 2, 3, 4. Let
x = (x1 x2)T where x1 is the current through the inductor and x2 is the voltage across the capacitor. Let
(vDi

iDi
) be the voltage–current of diode Di. We obtain the governing circuit equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) + Bλ(t) + ( 1
L 0)Tu,

y(t) = Cx(t) + Dλ(t),
λ(t) ∈ −F (y(t)), t ≥ 0;
x(0) = x0,

(37)

where y(·), λ(·), A, B, C, D are defined in [12, Example 1]. Here F = ∂ϕ, where ϕ : R4 → R is defined as 
follows

ϕ(x1, x2, x3, x4) = δR+(x1) + δR+(x2) + δR+(x3) + δR+(x4), (38)

and δS(·) denotes the indicator function of S. By using change of variables if necessary (see, e.g., [1,12]),
one observes that (A, B, C, D) is passive (also cyclically passive) and rge(C) ∩ int(rge(∂ϕ−1 + D)) 
= ∅.

Now let us consider the non-constant voltage source u(·) which depends on the temperature s ∈ [0, 50]
such that u ∈ L2(0, 50). For each s, one has

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋt(s, t) = Ax(s, t) + Bλ(s, t) + ( 1
L 0)Tu(s),

y(s, t) = Cx(s, t) + Dλ(s, t),
λ(s, t) ∈ −∂ϕ(y(s, t)), t ≥ 0;
x(s, 0) = x0(s).

(39)

Let X = L2(0, 50) and x̃(t) = x(·, t), ỹ(t) = y(·, t), ̃λ(t) = λ(·, t), ̃u = u(·). The linear bounded operator
Ã : X → X is defined as Ãx(s) := Ax(s) and similar definitions for B̃, C̃, D̃, ϕ̃. Then we obtain

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̃x(t) = Ãx̃(t) + B̃λ̃(t) + ( 1
L 0)T ũ,

ỹ(t) = C̃x̃(t) + D̃λ̃(t),
λ̃(t) ∈ −∂ϕ̃(y(t)), t ≥ 0;
x̃(0) = x̃0.

(40)

Clearly (Ã, B̃, C̃, D̃) is cyclically passive and rge(C̃) ∩ int(rge(∂ϕ̃−1 + D̃)) 
= ∅. By using Theorem 3, one
obtains that for each x̃0 ∈ cl(C̃−1(rge(∂ϕ̃−1 + D̃))) ⊂ L2(0, 50), problem (40) has a unique solution x̃(·) in
L2(0, 50). It means that the current through the inductor and the voltage across the capacitor are consistent 
in some sense with respect to the initial condition and the voltage source.

Remark 4. We may also consider the set-valued Lur’e dynamical systems in reflexive Banach spaces. In this 
case, the systems still have the form (35) but with linear continuous mappings A : X → X, B : Y → X, 
C : X → Y , D : Y → Y and a m-accretive operator F : Y ⇒ Y (see, e.g., [3] for the definition). Let us note
that the notions of m-accretion and maximal monotonicity coincide in Hilbert spaces.

4. Conclusion

In this paper, the maximal monotonicity and maximal cyclic monotonicity for the precomposition with
a linear passive system are analyzed in the setting of reflexive Banach spaces. It can be considered as 
15



a generalization of the classical precomposition with a linear operator. This result is used to provide an 
existence theorem for set-valued Lur’e dynamical systems. It is also interesting to use the Fitzpatrick function 
to study the maximal monotonicity of this precomposition, which is out of scope of the current paper.
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