
HAL Id: hal-01655951
https://hal.science/hal-01655951

Submitted on 5 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Qubit Allocation
Marcos Yukio Siraichi, Vinicius Fernandes Dos Santos, Caroline Collange,

Fernando Magno Quintão Pereira

To cite this version:
Marcos Yukio Siraichi, Vinicius Fernandes Dos Santos, Caroline Collange, Fernando Magno Quintão
Pereira. Qubit Allocation. CGO 2018 - International Symposium on Code Generation and Optimiza-
tion, Feb 2018, Vienna, Austria. pp.1-12, �10.1145/3168822�. �hal-01655951�

https://hal.science/hal-01655951
https://hal.archives-ouvertes.fr

HAL Id: hal-01655951
https://hal.archives-ouvertes.fr/hal-01655951v2

Submitted on 7 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Qubit Allocation
Marcos Siraichi, Vinicius Fernandes Dos Santos, Caroline Collange, Fernando

Magno Quintão Pereira

To cite this version:
Marcos Siraichi, Vinicius Fernandes Dos Santos, Caroline Collange, Fernando Magno Quintão Pereira.
Qubit Allocation. CGO 2018 - International Symposium on Code Generation and Optimization, Feb
2018, Vienna, Austria. pp.1-12, �10.1145/3168822�. �hal-01655951v2�

https://hal.archives-ouvertes.fr/hal-01655951v2
https://hal.archives-ouvertes.fr

Qubit Allocation
Marcos Yukio Siraichi

Universidade Federal de Minas Gerais
Brazil

yukio.siraichi@dcc.ufmg.br

Vinícius Fernandes dos Santos
Universidade Federal de Minas Gerais

Brazil
viniciussantos@dcc.ufmg.br

Caroline Collange
Inria, Univ Rennes, CNRS, IRISA

France
caroline.collange@inria.fr

Fernando Magno Quintão Pereira
Universidade Federal de Minas Gerais

Brazil
fernando@dcc.ufmg.br

Abstract
In May of 2016, IBM Research has made a quantum processor
available in the cloud to the general public. The possibility
of programming an actual quantum device has elicited much
enthusiasm. Yet, quantum programming still lacks the com-
piler support that modern programming languages enjoy
today. To use universal quantum computers like IBM’s, pro-
grammers must design low-level circuits. In particular, they
must map logical qubits into physical qubits that need to
obey connectivity constraints. This task resembles the early
days of programming, in which software was built in ma-
chine languages. In this paper, we formally introduce the
qubit allocation problem and provide an exact solution to
it. This optimal algorithm deals with the simple quantum
machinery available today; however, it cannot scale up to the
more complex architectures scheduled to appear. Thus, we
also provide a heuristic solution to qubit allocation, which
is faster than the current solutions already implemented to
deal with this problem.

CCS Concepts • Computer systems organization →
Quantum computing; • Hardware → Quantum tech-
nologies; • Theory of computation→ Algorithm design
techniques;

ACM Reference Format:
Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Caroline
Collange, and Fernando Magno Quintão Pereira. 2018. Qubit Allo-
cation. In Proceedings of 2018 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO’18). ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3168822

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
CGO’18, February 24–28, 2018, Vienna, Austria
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5617-6/18/02.
https://doi.org/10.1145/3168822

1 Introduction
The recent introduction of cloud access to quantum computer
prototypes has made experimental quantum computing (QC)
available to a wide community [11]. For instance, the IBM
Quantum Experience program1 lets users build experiments
based on either a visual circuit representation or a gate-
level language based on the Quantum Assembler (QASM)
syntax [9, 40]. However, the level of abstraction offered by
quantum circuits is low, and circuits need to obey machine-
specific constraints [19]. Today’s quantum computer pro-
totypes have tight resource constraints. For instance, the
IBM qx2 computer supports 5 qubits, connected by a partial
network. A 16-qubit computer qx3 is also under beta test-
ing by IBM, while 20-qubit and 50-qubit versions have been
announced [16]; however, the connectivity between qubits
of these computers remains very restrictive. Consequently,
manual mapping and tuning of QC algorithms is difficult.
In addition, decoherence and noise effects severely con-

strain the execution time. Unlike classical digital gates that
are inherently self-stabilizing, quantum gates accumulate
noise. Although quantum error-correcting codes (QEC) hold
the promise to address decoherence issues [25], current hard-
ware do not provide nearly enough resources to implement
realistic QEC [9, 30]. The longer a quantum program runs
and the more operations it performs, the more it is suscepti-
ble to noise. Therefore, minimizing runtime and complexity
is crucial, as it does not just affect the time-to-solution, but
also the accuracy of the solution itself. For these reasons,
compilation of quantum circuits demands extremely accurate
compiler optimization.
Quantum circuits manipulate qubits – the quantum ana-

logue of the classical bit. These qubits, which exist as ab-
stractions within a quantum circuit, shall be called pseudo or
logical. In this paper, we are interested in mapping pseudo
qubits into physical qubits, which denote the actual hardware
units that store quantum bits. This problem henceforth shall
be called qubit allocation. Just like registers in a classical
computer architecture, quantum computers have a limited
number of qubits. Furthermore, these units are not always

1http://research.ibm.com/ibm-q/

https://doi.org/10.1145/3168822
https://doi.org/10.1145/3168822
http://research.ibm.com/ibm-q/

CGO’18, February 24–28, 2018, Vienna, Austria Siraichi M., Santos V., Collange S., Pereira F.

fully connected, meaning that not every subset of physical
qubits can participate as inputs and outputs to the same
quantum gates. As we explain in Section 2, solving qubit al-
location involves dealing with hard combinatorial problems.
In this paper, we formally describe the qubit allocation

problem in Section 3, and introduce an exact solution to solve
it in Section 4.1. The exact solution is exponential. Although
it works well for the small quantum systems available today,
it cannot scale up to the more complex architectures that are
likely to emerge in the future. Nevertheless, it sets a mark
against which we can test different heuristics. To support
this statement, we show how state-of-the-art implementa-
tions of qubit allocators fare against this exact baseline. This
comparison has motivated us to go beyond these implemen-
tations; a task that we accomplish with a novel allocator of
our own craft, which we introduce in Section 4.2.
Section 5 provides a thorough evaluation of the differ-

ent algorithms that exist today to perform qubit allocation.
Not many classes of quantum algorithms are known; and
even fewer accommodate the constraints of early quantum
computers [31]. Thus, we have assembled a small collec-
tion of microbenchmarks that are part of known quantum
algorithms, and have implemented a generator of random
programs. Together, the actual and synthetic benchmarks
give us a number of samples that is comprehensive enough
to test our ideas, and demonstrate their effectiveness.

2 Overview
This section introduces the qubit allocation problem. Qubit
allocation involves modifying quantum circuits with specific
combinations of quantum gates, which we call transforms.
Although familiarity with qubits and quantum gates might
be helpful to understand the problem, we shall try to keep
our discussion on a level that suits the reader unversed with
quantum computing. For a more thorough discussion, we
refer the interested reader to [31].

Qubits andQuantumGates. Quantumprograms aremade
of qubits and reversible quantum gates, which receive qubits
as inputs, and produce qubits as outputs. Figure 1 shows a
quantum circuit, which implements two boolean functions.
This circuit has four pseudo qubits: 𝑎0, 𝑎1, 𝑏0 and 𝑏1, which
are represented as horizontal lines. It uses four different
types of gates to operate on these qubits:𝐻 ,𝑇 ,𝑇 † and CNOT,
where CNOT𝑎𝑏 is depicted with a dot on qubit 𝑎 and ⊕ on
qubit 𝑏. Gates change the state of qubits. The state of a single
qubit is represented as a two dimensional complex vector:

𝛼 |0⟩ + 𝛽 |1⟩ = 𝛼
(
1
0

)
+ 𝛽

(
0
1

)
=

(
𝛼

𝛽

)
In this case, |0⟩ and |1⟩ are the basis states of a 2D complex
vector space, and 𝛼 and 𝛽 are complex numbers. Under this
terminology, quantum gates can be understood as unitary

matrix operations applied on vectors that describe quantum
states. Example 2.1 illustrates this view.

Example 2.1. The Hadamard-Walsh gate 𝐻 maps the basis
state |0⟩ to (|0⟩ + |1⟩)/

√
2, and |1⟩ to (|0⟩ − |1⟩)/

√
2. Thus, it

is equivalent to multiplying the quantum state by the matrix:

𝐻 =
1
√
2

(
1 1
1 −1

)
Like the 𝐻 and other single-qubit gates, the 𝑇 gate is rep-

resented as a 2 × 2 matrix that multiplies a quantum state.
Its adjoint 𝑇 † is its inverse, so that 𝑇𝑇 † is the identity ma-
trix. The CNOT (short for Controlled Not) gate applies on
two qubits. CNOT𝑎𝑏 indicates that 𝑎 controls 𝑏. Informally,
it negates 𝑏, the second qubit, when 𝑎, the first qubit, is |1⟩.
When 𝑎 is |0⟩, the gate leaves 𝑏 unchanged.

Architectural Constraints. The exact semantics of quan-
tum gates will be immaterial for the rest of this paper. The
only important aspect of these gates in our work is their
arity: how many qubits they read, and how many they write.
Indeed, it has been shown that all single-qubit gates and the
CNOT gate form a universal set of gates that can implement
arbitrary circuits [2]. Even though single-qubit gates may
affect the resulting circuit through optimizations, we shall
focus only on the CNOT gates in this paper.
The placement of CNOT gates matters due to architec-

tural constraints. Actual quantum computers might not allow
CNOTs to be performed between arbitrary pairs of qubits.
In particular, quantum computers based on superconducting
qubit technology are made of solid-state circuits that only
allow local interactions between qubits that are physically
connected [12, 23]. Technological reasons restrict the num-
ber of possible couplings and their organization [14]. As an
example, Figure 2 (a) shows the coupling graph of the IBM
qx2 computer [11]. The coupling graph determines which
qubits can communicate, typically through CNOT gates. We
define the coupling graph in terms of CNOT gates as follows:

H T†T

T

T†

T†

T

T H

a0

a1

b0

b1

r0

r1

Figure 1. This quantum circuit implements the boolean func-
tions 𝑏0 = 𝑎0 ⊕ 𝑏0 ⊕ 𝑎1, and 𝑏1 = (𝑎0 ∧ 𝑏0) ⊕ 𝑎1 ⊕ 𝑏0 ⊕ 𝑏1.
CNOT𝑎1𝑏0 represents 𝑎1⊕𝑏0, and the rest represents a Toffoli
gate which is equivalent to (𝑎0 ∧ 𝑏0) ⊕ 𝑏1. There should be
a final CNOT𝑎0𝑏0 to complete the Toffoli gate, however as
there is a CNOT𝑎0𝑏0 right after this gate, they cancel each
other.

Qubit Allocation CGO’18, February 24–28, 2018, Vienna, Austria

q0

q1

q2

q4

q3 a1

b1

b0

a0

(a) (b) (c)

(a1, b0)
(b0, b1)
(a0, b1)
(b0, b1)
(a0, b1)
(a0, b0)

Ψ =

Figure 2. (a) The coupling graph of the IBM qx2 computer.
(b) Interactions between qubits of the circuit seen in Figure 1.
(c) Dependences that have created these interactions.

Definition 2.2 (Coupling Graph). Given a quantum archi-
tecture 𝐴 with a set 𝑄 of qubits, its coupling graph is a
directed graph 𝐺𝑞 = (𝑄, 𝐸𝑞), 𝐸𝑞 ⊆ 𝑄 × 𝑄 . The edge 𝑞1 →
𝑞2 ∈ 𝐸𝑞 if, and only if, CNOT𝑞1𝑞2 is valid in 𝐴.

Qubit Allocation – An Informal Overview. The connec-
tivity relations in a quantum circuit need to be mapped to
the coupling graph. For instance, in Figure 1, we have that
the pseudo qubit 𝑎0 controls pseudos 𝑏0 and 𝑏1. When allo-
cating pseudo qubits onto the coupling graph, we would like
to enable such control relations. However, perfect mappings
that enable all the control relations in a quantum circuit are
not always possible, as Example 2.3 illustrates.

Example 2.3. It is not possible to map the control circuit
of Figure 1 directly onto the coupling graph of Figure 2 (a).
The graph in Figure 2 (b) represents the control relations in
that circuit. This graph contains two nodes of in-degree two,
which have no equivalent in Figure 2 (a).

In its simplest version, the qubit allocation problem re-
ceives an ordered list of pairs, describing control relations
in the quantum circuit, plus a coupling graph. This prob-
lem, which Definition 2.4 states, asks for a mapping between
pseudos and physical qubits that respects the control rela-
tions. Because Definition 2.4 does not ask for ways to adapt
a circuit to fit into a coupling graph, we call this version of
qubit allocation the Assignment Problem.

Definition 2.4 (The Qubit Assignment Problem). Input: a
coupling graph 𝐺𝑞 = (𝑄, 𝐸𝑞), plus a list Ψ = (𝑃 × 𝑃)𝑛, 𝑛 ≥ 1
of 𝑛 control relations between pseudo qubits. Output: yes,
if there is a mapping between pseudo and physical qubits
that respects the control relations in Ψ.

Perfect mappings might not exist, as seen in Example 2.3.
In other words, the instance of qubit allocation in Figure 2 (a
& c) does not have a positive answer. In this case, we must
resort to circuit transformations to solve qubit allocation. This
is a notion that we discuss in the rest of this section.

Circuit Transformations. A transformation is a combina-
tion of gates that we can insert into a quantum circuit to
emulate the semantics of non-existing CNOT relations or

switch the state of physical qubits. We call the first category
of transformations virtual CNOTs, and the latter state changes.
Example 2.5 describes some of these transformations.

Example 2.5. Below we list three kinds of transformations:
Reversal: Emulation of a virtual CNOT between 𝑝𝑎
and 𝑝𝑏 controlled by 𝑝𝑎 using a CNOT from 𝑝𝑏 to 𝑝𝑎
(controlled by 𝑝𝑏) and 2 extra levels of Hadamard gates,
as shown in Figure 3 (a).
Bridge: Emulation of a virtual CNOT between 𝑝𝑎 and
𝑝𝑐 controlled by 𝑝𝑎 using two CNOTs from 𝑝𝑎 to 𝑝𝑏
(controlled by 𝑝𝑎), plus two CNOTs from 𝑝𝑏 to 𝑝𝑐 (con-
trolled by 𝑝𝑏), as shown in Figure 3 (b).
Swap: exchanges two pseudo qubits 𝑝𝑎 and 𝑝𝑏 , as
shown in Figure 3 (c), at the expense of three CNOT
and two levels of Hadamard gates.

As Figure 3 shows, a CNOT reversal allows the mapping
of “backward" edges on the coupling graph, at the cost of
extra gates. A bridge uses four CNOTs to implement a virtual
gate at distance 2 in the coupling graph. Finally, a CNOT
swap allows the migration of pseudo qubits across physical
qubits. Whereas reversals and bridges are gate transforma-
tions, swaps transform states. That is to say: a reversal inverts
the meaning of a CNOT gate, and a swap exchanges the po-
sition of two pseudo qubits. These transformations can be
combined to map a quantum circuit onto a given architecture.
Example 2.6 shows that.

Example 2.6. Figure 4 outlines a solution to qubit alloca-
tion for the program in Figure 1 using two CNOT reversals.
Reversals add further complexity to the target circuit; how-
ever, some gates can be simplified away, given well-known
quantum identities [27].

A particular instance of qubit allocation might have sev-
eral different solutions. As an example, Figure 5 shows an al-
location for our running example, this time using one CNOT
swap, instead of two reversals. The quality of a solution is
given by its cost, which we measure as the number of gates
necessary to implement it. In Section 3, we show that finding

H

H H

H

pa

pb
=

H

H

H

H pa���pb

pa

pb
= =

pb

pa

a)

c)

=

b)

pa

pb

pc pa���pc

Figure 3. (a) Reversal. (b) Bridge. (c) Swap.

CGO’18, February 24–28, 2018, Vienna, Austria Siraichi M., Santos V., Collange S., Pereira F.

H T†T

T

T†

T†

T

T H

a0

a1

b0

b1

r0

r1

H T†T

T

T†

T†

T

T H

a0

a1

b0

b1

r0

r1H H

H H

H

H H

H

(a)

(b)

q0

q1

q2

q4

q3 a1

b1b0

a0

+ =

q0(a1)

q1

q2(b0)

q4(b1)

q3(a0)

(c)

Figure 4. (a) CNOT reversals, marked as grey boxes, invert
the direction of CNOT𝑏0𝑏1 . (b) The four black Hadamard
gates can be simplified away, given the identity 𝐻𝐻 = 𝐼 .
(c) Solution to qubit allocation showing embedding of the
control graph onto the coupling graph.

T† T

(a0)

(a1)

(b0)

(b1)

r0

r1

q0(a0)

q1

q2(b1)

q4(b0)

q3(a1)

T T†

T

H

T†

T

H

q0(a0)

q1

q2(b0)

q4(b1)

q3(a1) q0

q1

q2(r0)

q4(r1)

q3

q0

q3

q4

q2

Figure 5. Solution of qubit allocation for the circuit in Fig-
ure 1, using a CNOT swap. Grey lines represent physical
qubits. We show the different mappings that we have at
three points of the circuit.

the best solution for several variations of qubit allocation
involves solving NP-complete problems.

3 Problem Definition
Definition 2.4 states the Qubit Allocation Problem in its most
basic form: given a quantum circuit and an architecture, we
want to know if it is possible to map the pseudo qubits in the
former to the physical qubits in the latter. Making an analogy
with classic register allocation, the problem in Definition 2.4
is equivalent to knowing if we can map program variables
(pseudo registers) onto the physical registers available in the

target architecture. Like classic register allocation2, Qubit
Assignment is NP-complete, as Theorem 3.1 states.

Theorem 3.1. Qubit Assignment (Def. 2.4) is NP-complete.

Proof (Sketch): We make a reduction from sub-
graph isomorphism, which is known to be NP-
hard [8]. First, note that finding isomorphisms
between directed graphs is also NP-hard, since
replacing every edge by two directed edges
doesn’t change the answer of any input. Given
an instance of subgraph isomorphism, where
we wish to find a subgraph of 𝐺 that is isomor-
phich to 𝐻 , we can map a graph 𝐺 to the cou-
pling graph and the edges of subgraph 𝐻 to Ψ.
Clearly, any solution of Qubit Allocation would
find an embedding of𝐻 in𝐺 , which shows that
Qubit Assignment is NP-hard. To complete the
proof it is enough to notice that checking in any
solution if all pairs of Ψ are properly mapped
can be done in polynomial time.

Theorem 3.1 sets our expectations about having an exact
solution to solve Qubit Allocation. However, from a practi-
cal standpoint, Qubit Assignment is not very useful: most
of the instances of Qubit Allocation will require quantum
transformations to be effectively solved. Going back to our
analogy with register allocation, most instances of register
allocation lead to spilling; hence, forcing the insertion of
load and store instructions in the program: program changes
equivalent to our transformations. Thus, in the rest of this
section we extend Definition 2.4 to encompass more prag-
matic descriptions of the Qubit Allocation problem. We start
with the subproblem that asks for the minimization of swaps.

Definition 3.2 (The Swap Minimization Problem). Input:
a coupling graph 𝐺𝑞 = (𝑄, 𝐸𝑞), a list Ψ = (𝑃 × 𝑃)𝑛, 𝑛 ≥ 1 of
𝑛 control relations between pseudo qubits, and an integer
𝐾𝑠 ≥ 0.Output: yes, if we can use up to𝐾𝑠 swaps to produce
a version of Ψ that complies with 𝐺𝑞 .

Swap Minimization is also NP-complete, because it in-
volves solving a classic optimization problem know as the
Token Swapping Problem [44]. Quoting Kawahara et al.,
“For a given graph where each vertex has a unique token
on it, token swapping requires to find a shortest way to
modify a token placement into another by swapping tokens
on adjacent vertices." Token Swapping has been shown to
be NP-Hard [5, 22]. Swap Minimization is a special case of
Qubit Allocation. In the most general problem, we can use
quantum transformations other than swaps, and each one of
them might have a different cost. We define this problem as
follows:

Definition 3.3 (The Qubit Allocation Problem). Input: a
coupling graph 𝐺𝑞 = (𝑄, 𝐸𝑞), a list Ψ = (𝑃 × 𝑃)𝑛, 𝑛 ≥ 1
2See hardness results for different aspects of the register allocation problem,
due to Chaitin [6], Farach [13], Lee [24] and Pereira [34].

Qubit Allocation CGO’18, February 24–28, 2018, Vienna, Austria

of 𝑛 control relations between pseudo qubits, an integer
𝐾𝑐 ≥ 0, a list of allowed quantum transformations Θ, and a
function 𝐶 : Θ ↦→ N that gives the cost to implement each
transformation. Output: yes, if we can produce a version of
Ψ that complies with 𝐺𝑞 with transformations whose total
cost does not exceed 𝐾𝑐 .

Definition 3.3 subsumes the two simpler problems, stated
in Definitions 2.4 and 3.2; therefore, it is unlikely that it can
be solved exactly via a polynomial time algorithm. Defini-
tion 3.3 states the version of qubit allocation that we solve in
Section 4 In Section 4.1, we provide an optimal – exponential
time – solution to that problem; in Section 4.2, we provide a
heuristic solution to it.

4 Solution
This section presents our solution to qubit allocation, as
stated inDefinition 3.3. For the reader’s convenience, Figure 6
summarizes terms and notation adopted henceforth.

4.1 Exact Solution
We solve the Qubit Allocation problem, as given in Defini-
tion 3.3, using a dynamic programming algorithm. Our ap-
proach finds solutions gradually per index in the list of depen-
dences Ψ. That is, given a collection of control dependences
Ψ = (𝑝1, 𝑝2), (𝑝3, 𝑝4), . . . , (𝑝2𝑛−1, 𝑝2𝑛) between pseudo qubits
that must be obeyed, we find the optimal cost of allocat-
ing qubits up to dependence 𝑖 . This algorithm is based on a
function 𝑆 (ℓ, 𝑖), which we define below.

Definition 4.1 (Exact Solution). Function 𝑆 (ℓ, 𝑖) : 𝐿 ×N ↦→
N is a solution to the qubit allocation problem if it gives the
minimum cost of satisfying all the dependences in Ψ, up to
index 𝑖 , terminating with mapping ℓ ∈ 𝐿.

[𝑃] Pseudo-qubits: the set of qubits in Ψ.
[𝑄] Physical Qubits: the set of qubits present in the archi-
tecture. i.e. the vertices of the coupling graph.
[𝐺𝑞] Coupling Graph: a directed graph 𝐺𝑞 = (𝑄, 𝐸𝑞).
[Θ] Quantum Transformations: in our implementation,
we consider Θ = {𝜃𝑠 , 𝜃𝑐 , 𝜃𝑟 , 𝜃𝑏 }, representing swap, CNOTs,
reversals and bridges, respectively.
[𝐶] Cost Function: the cost of transformations 𝐶 : Θ → N.
[Ψ] Input Control Relations: the sequence Ψ : (𝑃 × 𝑃)𝑛
of 𝑛 control relations between pseudo qubits. These are the
dependences that qubit allocation must satisfy.
[Γ] Output: a function Γ : L × N → Θ∗ that gives the
minimum-cost sequence of transformations necessary to sat-
isfy the 𝑖-th CNOT relation, assuming an initial mapping ℓ ∈ 𝐿
from pseudos to physicals.
[𝐿] Labeling: We let 𝐿 be the set of every mapping ℓ from 𝑃

to 𝑄 , and 𝐿−1 be the set of every mapping ℓ−1 from 𝑄 to 𝑃 .

Figure 6. Notation used in this paper.

We implement 𝑆 (ℓ, 𝑖) in terms of three auxiliary functions,
𝜁 : Θ × 𝐿 × N ↦→ N, 𝜙 : 𝐿 × N ↦→ N and 𝛿 : 𝐿 × 𝐿 ↦→ N.
Function 𝜁 , gives the cost of satisfying a dependence Ψ(𝑖)
with a transformation 𝜃 , given a current mapping ℓ . Function
𝜙 yields the minimum cost to satisfy a given dependence.
Finally, function 𝛿 gives the minimum cost of swaps neces-
sary to transform a mapping ℓ1 into another mapping ℓ2. We
define 𝛿 at the end of this section.

𝜁 (𝜃, ℓ, 𝑖) = if (ℓ, 𝜃) ⊨ 𝑖 then 𝐶 (𝜃) else ∞

𝜙 (ℓ, 𝑖) = min 𝜁 (𝜃, ℓ, 𝑖)

𝛿 (ℓ1, ℓ2) = Transforms to convert ℓ1 into ℓ2
From 𝜁 , 𝜙 and 𝛿 , we solve 𝑆 (ℓ, 𝑖) as follows:

𝑆 (ℓ, 𝑖) =


0, if 𝑖 = 0
∞, if 𝜁 (𝜃, ℓ, 𝑖) = ∞
min
∀ℓ′∈𝐿

𝑆 (ℓ ′, 𝑖 − 1) + 𝛿 (ℓ ′, ℓ) + 𝜙 (ℓ, 𝑖), otherwise

Theorem 4.2. The problem of computing 𝑆 (ℓ, 𝑖) has optimal
substructure.

Proof: To compute 𝑆 (ℓ, 𝑖), we compute (ℓ ′, 𝑖 −
1) independently, for each labeling ℓ ′. The im-
plication of this fact is that the recurrence rela-
tion that produces 𝑆 is a Bellman Equation [3],
a necessary enabler of a dynamic programming
algorithm.

Implementing 𝑆 (ℓ, 𝑖): The function 𝑆 (ℓ, 𝑖) gives the mini-
mum cost to build a quantum circuit that satisfies 𝑖 control
relations created by the CNOT gates originally placed in the
circuit. To generate code that represents 𝑆 (ℓ, 𝑖), the compiler
must insert transformations into the original quantum cir-
cuit to satisfy all the control relations. To keep track of these
dependences, we define a function Γ, which describes all the
transformations inserted between dependences. Thus, Γ(ℓ, 𝑖)
is a list of transformations necessary to implement the 𝑖-th
CNOT gate, given an initial mapping ℓ . Example 4.3 shows
how Γ is used.

Example 4.3. Figure 7 shows different concretizations of
Γ, assuming that Ψ(𝑖) = CNOT(𝑝4, 𝑝1), the coupling graph
is the path 𝑞1 → 𝑞2 → 𝑞3 → 𝑞4, and the initial mapping is
𝐿(𝑝1) = 𝑞1, 𝐿(𝑝2) = 𝑞2, 𝐿(𝑝3) = 𝑞3 and 𝐿(𝑝4) = 𝑞4. Addition-
ally, we assume that 𝐶 (𝜃𝑐) = 0, 𝐶 (𝜃𝑟) = 4, 𝐶 (𝜃𝑠) = 7 and
𝐶 (𝜃𝑏) = 10.

After computing 𝑆 (ℓ, 𝑖), we build Γ(ℓ ′, 𝑖). The best cost of
𝑆 (ℓ, 𝑖) uses 𝑆 (ℓ ′, 𝑖 − 1), according to the recurrence relation
that defines 𝑆 . This means that Γ(ℓ ′, 𝑖) equals the minimum
sequence of swaps necessary to take ℓ ′ to ℓ , e.g., 𝛿 (ℓ ′, ℓ), plus
– possibly – the cost of some state-preserving transformation
such as 𝜃𝑐 , 𝜃𝑟 or 𝜃𝑏 , e.g., 𝜙 (ℓ, 𝑖). In what follows, we discuss
how we keep track of 𝛿 .

CGO’18, February 24–28, 2018, Vienna, Austria Siraichi M., Santos V., Collange S., Pereira F.

q1 q2 q3 q4

p1 p2 p3 p4

q2 q1 q3 q4

q2 q1 q4 q3

q2 q1 q4 q3

θs(q1, q2)

θs(q3, q4)

θr(q1, q4)

!(l, CNOTp4p1
) = 18

q1 q2 q3 q4

p1 p2 p3 p4

q2 q1 q3 q4

q2 q1 q4 q3

q2 q4 q1 q3

θs(q1, q2)

θs(q3, q4)

θs(q4, q1)

(a) (b) !(l, CNOTp4p1
) = 21

l =

Figure 7. The Γ function reports the sequence of transfor-
mations of minimum cost necessary to satisfy a CNOT de-
pendence, given an initial mapping 𝐿.

Memoizing the State Space Memoization is an optimiza-
tion technique that stores the results of function calls and
returns the cached result when the same inputs occur again.
In our case, memoization is useful to avoid searching repeat-
edly for optimal sequences of transformations that change
a given labeling ℓ onto another labeling ℓ ′. We memoize all
these paths in a table 𝛿 , already mentioned in the defini-
tion of 𝑆 (ℓ, 𝑖). We compute 𝛿 by brute-force, performing a
breadth-first search on the space of possible mappings be-
tween pseudo and physical qubits. Figure 8 illustrates this
search for the coupling graph earlier seen in Example 4.3.

(p1, q1)

(p2, q2)

(p4, q4)

(p3, q3)

(p2, q1)

(p1, q2)

(p4, q4)

(p3, q3)

(p2, q1)

(p3, q2)

(p4, q4)

(p1, q3)

(p3, q1)

(p2, q2)

(p4, q4)

(p1, q3)

(p1, q1)

(p2, q2)

(p3, q4)

(p4, q3)

(p1, q1)

(p4, q2)

(p3, q4)

(p2, q3)

(p1, q1)

(p3, q2)

(p4, q4)

(p2, q3)

(p2, q1)

(p1, q2)

(p3, q4)

(p4, q3)

θs(q3, q4)

θs(q2, q3)θs(q2, q1)

θs(q1, q3)

θs(q2, q3)

θs(q1, q2)

θs(q2, q4)

Figure 8. Eight states reachable from the initial mapping
discussed in Example 4.3. In total, we have sixteen states.

The exhaustive search of all the possible labeling gives us
a graph 𝐺𝐿 = (𝐿, 𝐸𝐿), whose vertices are elements ℓ ∈ 𝐿. We
have an edge from ℓ1 to ℓ2 if it is possible to convert ℓ1 into
ℓ2 with one swap transformation. The minimum sequence of
swaps necessary to map a given labeling ℓ onto another label-
ing ℓ ′ is given by the shortest path between ℓ and ℓ ′ in this
graph. The function 𝛿 that produces the minimum sequence
of swaps transforming one state into another emerges natu-
rally from this graph. 𝛿 (ℓ, ℓ ′) is the shortest path between
vertices ℓ and ℓ ′ in 𝐺𝐿 . As an artifact of implementation,
whenever we compute 𝛿 (ℓ, ℓ ′), for any pair of labelings, we

save this result, to avoid further computations, in case the
same pair of labelings need to be connected posteriorly.

On the Complexity of the Exact Solution. The preprocess-
ing described in the last section enables us to calculate 𝛿𝑙𝑙 ′
and Δ(𝑙, 𝑙 ′) for every 𝑙, 𝑙 ′ ∈ 𝐿 by preprocessing the coupling
graph only one time. The time complexity of this part of the
algorithm is𝑂 (|𝑄 |!+ |𝑄 |! · |𝐸𝑞 |), since we will apply a BFS in
|𝑄 |! different permutations (labelings), each one with up to
|𝐸𝑞 | edges. Given the set of edges 𝐸𝑞 , the space complexity
is𝑂 (|𝑄 |! · |𝐸𝑞 |), since we will visit |𝑄 |! vertices and for each
vertex there are up to |𝐸𝑞 | edges.

After preprocessing, there is the dynamic programming
algorithm. As we can see, it iterates all possible mappings for
all dependences. Since we know that: 𝑂 (|𝑄 |!) is the number
of possible mappings; |Ψ| is the number of dependences; and
𝛿 takes linear time to execute, the time complexity of this
algorithm is 𝑂 (|𝑄 |!2 · |𝑄 | · |Ψ|) and its space complexity is
𝑂 (|𝑄 |! · |𝑄 | · |Ψ|). Finally, merging the preprocessing with
the main algorithm, the time complexity becomes 𝑂 (|𝑄 |!2 ·
|𝑄 | · |Ψ| + |𝑄 |! + |𝑄 |! · |𝐸𝑞 |). Thus, 𝑂 (|𝑄 |!2 · |𝑄 | · |Ψ|).

4.2 Heuristics
The algorithm of Section 4.1 provides an exact solution to
qubit allocation; however, its exponential runtime renders
its application impossible in large coupling graphs. To cir-
cumvent this problem, in this section we discuss a heuristic
solution to qubit allocation. Later, in Section 5 we will show
that this faster algorithm leads to results that are close to
those found by the exponential time implementation. Our
heuristic consists of two stages. The goal of the first stage is
to find an initial mapping ℓ0 ∈ 𝐿 that attempts to maximize
the number of satisfied control dependences. In the ensuing
stage, we build a solution that satisfies all the dependence
relations in the list of constraints Ψ, starting from ℓ0.

4.2.1 Finding the Initial Mapping
Classic register allocation algorithms tend to keep in regis-
ters variables that are likely to be more used, such as those
that appear in loops, or that appear in a larger number of
instructions. Following this insight, in order to find an initial
mapping ℓ0 to some instance of the qubit allocation problem,
we try to satisfy the dependences involving pseudo qubits
that appear more times in the list of constraints Ψ.

WeightedDependenceGraph. FromΨ, we construct aweigh-
ted directed graph 𝐺𝑝 = (𝑃, 𝐸𝑝 ,𝑤𝑝 ,𝑤𝑒), whose vertices are
the pseudos that appear in Ψ. We have an edge 𝑝1 → 𝑝2
whenever (𝑝1, 𝑝2) ∈ Ψ. The weight function𝑤𝑒 : 𝑃 × 𝑃 ↦→ N
counts the occurrences of dependences in Ψ. If𝑤𝑒 (𝑝1, 𝑝2) =
𝑛, then the dependence (𝑝1, 𝑝2) appears 𝑛 times in Ψ. From
𝑤𝑒 we define a function𝑤𝑝 : 𝑃 ↦→ N as follows:

𝑤𝑝 (𝑎) =
∑

𝑤𝑒 (𝑎, 𝑏),∀(𝑎, 𝑏) ∈ 𝐸𝑑

Qubit Allocation CGO’18, February 24–28, 2018, Vienna, Austria

Given a dependence graph 𝐺𝑝 = (𝑃, 𝐸𝑝 ,𝑤𝑝 ,𝑤𝑒):
1. we sort the list of pseudos 𝑃 in descending order

given by 𝑤𝑝 , thus producing a list 𝑃𝑠 of sorted
pseudo qubits;

2. for each element 𝑝 ∈ 𝑃𝑠 in order:
a. we allocate 𝑝 to a physical qubit 𝑞 that has the
nearest out-degree;

b. for every (𝑝, 𝑝 ′) ∈ Ψ, if possible, we allocate
𝑝 ′ to 𝑞′, such that (𝑞, 𝑞′) ∈ 𝐸𝑞 and 𝑝 ′ and 𝑞′
have the closest out-degree;

c. then, repeat for the children of 𝑝 in the depen-
dence graph.

3. if there are any unallocated pseudo qubits, we
assign a free physical qubit to it.

Figure 9. Finding an initial mapping to qubit allocation.

From Weighted Graphs to ℓ0. To find the initial allocation
ℓ0, we process 𝐺𝑝 = (𝑃, 𝐸𝑝 ,𝑤𝑝 ,𝑤𝑒) according to the algo-
rithm in Figure 9. We use the out-degree criterion as a tie-
breaker as a stimulus to allocate pseudos to physicals that
will be able to satisfy dependences. If pseudo 𝑝 has out-
degree 𝑘 , then there exist 𝑘 other qubits that must, ideally,
be allocated to physicals adjacent to the qubit that receives 𝑝 .
We settle for the closest out-degree to maximize the change
that other pseudo qubits can still benefit from the physical
qubits of large degree still available in the coupling graph.
Example 4.4 illustrates these issues.

Example 4.4. Figure 10 shows how we find the initial map-
ping for the circuit earlier seen in Figure 1. We shall allocate
pseudos in the sequence 𝑎0, 𝑏0, 𝑎1, 𝑏1. The first pseudo, 𝑎0,
is mapped to 𝑞0, as they have the same out-degree. In this
case, the choice between 𝑞0 and 𝑞3 is arbitrary. From 𝑎0, we
allocate, recursively, 𝑏0 and 𝑏1, in a BFS-fashion.

4.2.2 Extending the Initial Mapping to handle Ψ

On the second stage of our heuristic, we extend ℓ0, found in
the previous step, so that it satisfies all the dependences in Ψ.
The sequence of steps that we perform to achieve this end is
enumerated in Figure 11. That algorithm traverses the list Ψ
of dependences that must be satisfied. For each one of them,
it might insert transformations in the quantum circuits, if the
dependence is not already fulfilled by the current mapping
from pseudos to physical qubits.

OnHowWe Implement Swaps. AdependenceΨ(𝑖) = (𝑝0, 𝑝1)
cannot be satisfied by a mapping ℓ , if the edge (ℓ (𝑝0), ℓ (𝑝1))
is not present in the coupling graph 𝐺𝑞 , i.e., (ℓ (𝑝0), ℓ (𝑝1)) ∉
𝐸𝑞 . Under such circumstances, according to Figure 11, there
are four possible actions that can follow. The first takes place
when there are further dependences (𝑝0, 𝑝1) in Ψ. In this
case, we swap the state of qubits, so as to satisfy the first

q0

q1

q2

q4

q3
a1

b1

b0

a0

(c)(b)

1

2

2

2

a0

q0

q1

q2

q4

q3

(d)

a0

b0

1 3

2

0

q0

q1

q2

q4

q3

(e)

a0

b0

q0

q1

q2

q4

q3

(f)

a0

b0

b1

a1

(a1, b0)
(b0, b1)
(a0, b1)
(b0, b1)
(a0, b1)
(a0, b0)

Ψ =

(a)

b1

Figure 10. (a) List of control dependences from the quantum
circuit seen in Figure 1. (b)Weighted dependence graph. Grey
boxes represent 𝑤𝑝 . (c-f) Step-by-step construction of the
initial mapping.

Given a coupling graph 𝐺𝑞 = (𝑄, 𝐸𝑞), an initial map-
ping ℓ0, and the dependences Ψ, for each 𝑖 in the domain
of Ψ, let (𝑝0, 𝑝1) = Ψ(𝑖). If (ℓ0 (𝑝0), ℓ0 (𝑝1)) ∉ 𝐸𝑞 , then:

1. if (𝑝0, 𝑝1) appears in Ψ two or more times, then
we use a swap to move 𝑝1 closer to 𝑝0 in the
coupling graph, update ℓ0, and re-evaluate the
four cases in this algorithm;

2. else if the edge (ℓ0 (𝑝1), ℓ0 (𝑝0)) ∈ 𝐸𝑞 , then we use
a reversal between ℓ0 (𝑝1) and ℓ0 (𝑝0);

3. else if ∃𝑞 ∈ 𝑄 , such that (ℓ0 (𝑝0), 𝑞) ∈ 𝐸𝑞 , and
(𝑞, ℓ0 (𝑝1)) ∈ 𝐸𝑞 , then we use a bridge between
(ℓ0 (𝑝0), ℓ0 (𝑝1)) ∈ 𝐸𝑞 ;

4. else we create swaps, i.e., apply step (1) onto
(ℓ0 (𝑝0), ℓ0 (𝑝1)).

Figure 11. Extending the initial mapping to satisfy Ψ.

occurrence of (𝑝0, 𝑝1), and possibly others. Else, if Ψ contains
only one dependence (𝑝0, 𝑝1), then we use either a reversal
or a bridge to create the missing CNOT gate in the coupling
graph, if such is possible. Otherwise, we are in a situation
in which there exists only one dependence (𝑝0, 𝑝1) ∈ Ψ, and
we cannot simulate the missing CNOT gate. If that is the
case, then we resort to swaps, like in the first case.

To implement the dependence (𝑝0, 𝑝1) with swaps, we try
to move 𝑝1 to some qubit 𝑞 that is the successor of ℓ (𝑝0).
When performing this movement, we choose always the
shortest path from ℓ (𝑝1) to 𝑞. Sometimes, it is possible to
avoid inserting a swap by changing ℓ0, the initial mapping
built in Section 4.2.1. This happens when this swap refers
only to physical qubits that have not yet been visited by the
loop in Figure 11. Example 4.5 clarifies this possibility.

CGO’18, February 24–28, 2018, Vienna, Austria Siraichi M., Santos V., Collange S., Pereira F.

(a0, b1)
(b0, b1)
(a0, b1)
(a0, b0)

q0

q1

q2

q4

q3

a0

b0

b1

a1

(a1, b0)
change l0

q0

q1

q2

q4

q3

a0

b1

b0

a1

(b0, b1)
swap

q0

q1

q2

q4

q3

a0

b0

b1

a1

(a) (b) (c)

Figure 12. How the algorithm in Figure 11 works. (a) We
change the original mapping to satisfy dependence Ψ(1) =
(𝑎1, 𝑏0). No transformation is created during this action. (b)
We swap 𝑏1 and 𝑏0, to satisfy dependence Ψ(2) = (𝑏0, 𝑏1).
We used a swap because there are two occurrences of (𝑏0, 𝑏1)
in Ψ. (c) The other dependences are now satisfied.

Example 4.5. The first dependence in Fig. 10 that must be
satisfied is (𝑎1, 𝑏0). There is no edge (ℓ0 (𝑎1), ℓ0 (𝑏0)) ∈ 𝐺𝑞 .
To handle this dependence, the algorithm in Fig. 11 would
swap 𝑞1 and 𝑞2. However, 𝑞1 and 𝑞2 have not been used as
target or destination of any transformation thus far. Hence,
we update ℓ0, so that ℓ (𝑏0) becomes 𝑞2, and ℓ (𝑏1) becomes
𝑞1.

To support the optimization discussed in Example 4.5, we
introduce the notion of freezing. A qubit is frozen the first
time it is used in the loop of Figure 11. Frozen qubits cannot
be modified in the original mapping. In contrast, qubits yet
untouched are swapped “virtually" by changing their original
allocation in ℓ0. Figure 12 provides a final illustration on how
our algorithmworkswhen applied onto our original example,
seen in Figure 1. In this case, our heuristic finds a solution
to qubit allocation involving one swap. This result is similar
to that seen in Figure 5, except that the swap appears earlier
in the circuit.

Time Complexity. Wefind an initial mapping (Section 4.2.1)
in𝑂 (|𝑄 | ·𝑙𝑔 |𝑄 |+|𝐸𝑞 |+|Ψ|), since we have to order the vertices,
and update precedences. The second phase of the heuristic
(Section 4.2.2) is𝑂 (|Ψ| · (|𝑄 | + |𝐸𝑞 |)). The worst case scenario
happens when we have to run a BFS for each dependence
due to the need to implement swaps.

5 Evaluation
In this section we evaluate the performance, in terms of
time and effectiveness, of our algorithms. We use the exact
dynamic programming algorithm as the reference implemen-
tation, and compare it against heuristic solutions to qubit
allocation, including the algorithm that we have discussed
in Section 4.2, and implementations currently available in
the IBM Quantum Experience repository. Throughout this
section, we shall try to provide answers to the following
research questions:

• [RQ1]: what is the effectiveness of the different ap-
proaches to solve qubit allocation, when they are ap-
plied on actual quantum circuits;

• [RQ2]: what is the runtime behavior of the different
solutions to qubit allocation.

• [RQ3]: what is the impact of the coupling graph on
the different algorithms that solve qubit allocation.

Before we analyze each of these questions, we describe our
experimental setup, in terms of benchmarks, competing ap-
proaches and runtime environment.
Benchmarks: There is no established standard benchmark
suite for quantum compilers, as this is a relatively new re-
search field. Therefore, we have gathered a small collection
of benchmarks, made of the QASM programs that IBM has re-
leased. To complement this set of microbenchmarks, we have
also generated synthetic QASM programs. These programs
are randomly generated quantum circuits with uniformly
distributed dependences. This suite of random benchmarks
consists of 10 sets of 33 programs each. Each set contains
programs with Ψ = 10, 20, 40, . . . , 620 and 640 dependences.
Figure 13 list the actual programs that we use as benchmarks.
The Competing Approaches: we compare six different
solutions of qubit allocation. Two of them subsume the ideas
discussed in this paper: wpm, our heuristic (Section 4.2);
and dynprog, the optimal algorithm (Section 4.1). Two other
implementations have been taken from open source projects:
ibmmapper, implemented in the IBM Quantum Experience
SDK, and qubiter, present in the Qubiter project 3. Finally,
the two implementations left: random, and wqubiter, result
from small tweaks that we have performed onto our heuristic
and in one of the IBM algorithms. Below we provide a short
description of each of these four competitors:

• random: this algorithm uses the same idea as the second
stage of our heuristic (Section 4.2.2), but it randomizes the
initial mapping; hence, it does not use our pre-allocation
phase (Section 4.2.1). We implemented this algorithm to
check the impact of the initial mapping onto the overall
solution that our heuristic delivers to qubit allocation.

• qubiter: this algorithm is the existing implementation of
qubit allocation from the Qubiter compiler project that tar-
gets the IBM qx2 computer. The algorithm relies solely on
reversal and bridge operations, without using any swap oper-
ation. In other words, it never changes the mapping from the
logical qubits to the physical qubits. This implementation
assumes that the target quantum computer is the IBM qx2,
whose coupling graph appers in Figure 2 (a).

• wqubiter: this algorithm is an improvement of qubiter, which
uses our initial pseudo-qubit placement algorithm (Section 4.2.1).
Notice that qubiter’s original implementation would use a
kind of random placement as the initial mapping: pseudos
are sorted according to their ID, and then assigned, in order,
to the physical qubits.

• ibmmapper: This qubit allocator is part of IBM’s compiler
and runtime infrastructure. The algorithm has been imple-
mented as a Python library called qiskit-sdk-py. Like qubiter,

3https://github.com/artiste-qb-net/qubiter

https://github.com/artiste-qb-net/qubiter

Qubit Allocation CGO’18, February 24–28, 2018, Vienna, Austria

Id Name |Ψ| Description
rb rb 2 Example of a single instance of two-qubits randomized benchmarking

qec qec 4 Repetition code to correct quantum errors.
w W-state 9 Generating a 3-qubit W-state using Toffoli gates.

grv qubit_grover_50 25 Grover’s search algorithm over three qubits.
pea pea_3_pi_8 42 4-bit Phase Estimation algorithm for a phase 3pi/8 using 5 qubits.
tel teleport 2 Quantum Teleportation example.

mod 7x1mod15 9 Implementation of U7 (7xN mod 15) - gate used in Shor’s Algorithm.
qft qft 12 Quantum Fourier Transform on 4 qubits.

ipea ipea_3_pi_8 30 4-bit Iterative Phase Estimation algorithm for phase 3pi/8 using two qubits.

Figure 13. Quantum programs available in the IBM repository, with the IDs that we use to identify them in this paper, the
number of dependences they contain (|Ψ|), and a short description of the algorithm.

ibmmapper targets the IBM qx2 computer. This allocator
solves the connectivity constraints by dividing the quan-
tum program into a sequence of layers, such that each layer
corresponds to a set of independent operations (operations
that do not use the same qubit). To map the qubits in each
layer, they try to minimize the sum of a distance function
between the vertices inside the dependences in this layer,
while applying up to 2 ∗ |𝑄 | − 1 swaps. If, after these swaps,
the mapping does not satisfy all dependences from the layer,
the algorithm fallbacks onto layers with one operation each.
The distance function that ibmmapper tries to minimize is
given by 𝑑𝑖𝑠𝑡𝑞0𝑞1 = (1 + 𝑟) · 𝑑 (𝑞0, 𝑞1)2, where 0 ≤ 𝑟 ≤ 1
is a random number and 𝑑 (𝑞0, 𝑞1) is the number of control
dependences between 𝑞0 and 𝑞1: The complete code of ib-
mmapper contains more components than just the solution
of qubit allocation. In particular, ibmmapper contains opti-
mizations to simplify quantum circuits, which are orthogonal
to qubit allocation. In this paper, we only use the module of
ibmmaper that solves qubit allocation (Definition 3.3).

We shall compare the different algorithms along two dimen-
sions: the cost of the final circuit they produce – a metric
that approximates the number of operations executed by the
quantum computer; and the time necessary to solve qubit
allocation. Notice that we have not implemented ibmmapper
in our compiler; hence, its runtime serves only as a reference.
Runtime Environment: We have created a front-end com-
piler in C++ for the QASM language. All competing algo-
rithms, except ibmmapper’s allocator, have been implemented
in this compilation infrastructure. Ibmmapper runs within
the program qiskit-sdk-py r0.3, that IBM makes available on
Github (downloaded on September, 1𝑠𝑡 2017). The machine
in which we run all the allocators is an Intel Core i7-4700MQ
computer with 8GB of RAM and a clock of 2.4GHz.

5.1 RQ1 – Effectiveness
An allocator 𝐴1 is more effective than an allocator 𝐴2, if,
given the same inputs (coupling graph and dependences),
𝐴1 produces a circuit that costs less than 𝐴2. We define this
cost as the sum of the costs of all transformations used by
such allocator. Our cost function for each transformation 𝜃
is determined by the number of quantum gates necessary to
implement 𝜃 . We use the following cost function: 𝐶 (𝜃𝑐) = 0

●

●
● ●●

●
● ● ●0

100

200

300

rb tel qec mod w qft grv ipea pea

● dynprog
ibmmapper
qubiter
random
wpm
wqubiter

Figure 14. Cost (y-axis) of qubit allocation using each algo-
rithm on each quantum program seen in Figure 13.

for CNOT gate; 𝐶 (𝜃𝑟) = 4 for Reversal; 𝐶 (𝜃𝑠) = 7 for Swap;
and 𝐶 (𝜃𝑏) = 10 for Bridge.
Figure 14 shows the costs produced by each algorithm

for our actual quantum circuits. Our heuristic (wpm) has
found the exact solution in 7, out of 9, cases. The other two
cases (mod and pea) were within an 1.92 and a 2.64 factor
of the exact solution. On these two benchmarks, the cost
obtained by starting with a random configuration (random)
was slightly worse than when we use wpm. Thus, the initial
placement is useful to reduce allocation costs.
IBM’s ibmmapper was, in general, outperformed by the

other algorithms, even though it managed to find the best
solution for 5 benchmarks. For mod, pea, qec and qft, the
cost found by ibmmapper was 2.42, 9.42, 2.72 and 3.13 times
worse than the exact solution. Qubiter and its variation,
wqubiter, have obtained similar results, although wqubiter
achieved small gains on qubiter. Their worst results happen
in the same benchmarks where ibmmapper did not fare well.
However, for pea, qubiter and wqubiter did more than three
times worse than ibmmapper.Wqubiter did 3.4 and 1.6 times

CGO’18, February 24–28, 2018, Vienna, Austria Siraichi M., Santos V., Collange S., Pereira F.

●

●

●

● ● ●
●

● ●
● ●

● ●

1.0

1.5

2.0

2.5

3.0

80 180 280 380 480 580

● ibmmapper
qubiter
random
wpm
wqubiter

Figure 15. Relative cost of the solution compared to the
optimal on synthetic circuits, as a function of the number of
dependences. From left to right we have programs from 10
dependences to 640 dependences on the extreme right.

Algo. Mean 𝜎 Algo. Mean 𝜎

ibmmapper 1.99 0.08 qubiter 1.87 0.09
random 1.44 0.026 wpm 1.44 0.03
wqubiter 1.87 0.08

Figure 16. Cost found for circuits with 640 dependences,
compared against the optimal algorithm. The lower themean,
the closer to the optimum.

better than qubiter on qec and qft, which indicates that our
initial mapping can improve other algorithms.
Figure 15 compares the allocators on synthetic circuits,

showing how the heuristics fare in circuits of increasing
complexity. The first stage of our heuristic is more bene-
ficial when the number of dependences is low. As circuit
complexity grows, the second phase of our heuristic starts
to have more impact. Our heuristic, wpm, outperforms the
other heuristic methods for the IBM qx2 architecture. Fig-
ure 16 shows the mean and standard deviation of the results
obtained when executing each algorithm with quantum pro-
grams of 640 dependences. These are the largest programs
we have, and the ones that give us the lowest standard devi-
ation. Numbers compare each heuristic against the optimal
algorithm. For these programs, our solution is 27% better
than ibmmapper’s and 22% better than qubiter’s.

5.2 RQ2 – Runtime
Figure 17 compares the time spent by each of the algorithms
when compiling the benchmarks in the IBM repository. Al-
though the performance of dynprog is competitive with the
Python-based ibmmapper, on the 5-qubit computer, its expo-
nential complexity restricts it to configurations with fewer
than a dozen qubits. The four heuristics implemented in

●
●

●

●

●

●

● ●

●

10−4s

10−2s

100s

rb tel qec mod w qft grv ipea pea

● dynprog
ibmmapper
qubiter
random
wpm
wqubiter

Figure 17. Time, in seconds scaled in log10 (y-axis), spent by
the algorithms, when executed with each quantum program.

C++ presented similar running times. With 640 dependences,
the difference between the fastest heuristic, qubiter, and the
slowest, wpm, was less than 1.6ms.

5.3 RQ3 – The qx3 Computer
At the time of writing this paper, IBM released a new quan-
tum architecture: the qx3, with 16 qubits. We have tested our
heuristic (wpm) and ibmmapper on this architecture4. Fig-
ure 18 shows the result of this comparison. Usually, ibmmap-
per yields better results than wpm in the larger coupling
graph, with an allocation cost on average 11% better. How-
ever, it runs very slowly in this setup. Some of this slowdown
is an artifact of implementation: we are comparing Python
against C++. However, the asymptotic growth of ibmmap-
per’s runtime shows also worse behavior. For the smallest
program, it is 15,730x slower; for the largest, it is 27,559x
slower thanwpm. The large graph benefits ibmmapper’s abil-
ity to consider multiple dependences at the same time. After
its initial placement phase, wpm takes decisions greedily,
based on the current labeling, and the next dependence that
must be satisfied. In qx2, physical qubits are so constrained
that this simple approach outperforms ibmmapper’s more
holistic view.

6 Related Work
Quantum computing [4], and the notion of universal quan-
tum computers [10] date back to the eighties. In the late
nineties we saw the first quantum algorithms with practi-
cal purpose, such as integer factorization [38] and database
search [18]. Programming languages that let developers in-
teract with quantum machines came later [1, 15, 36, 39].

4We did not run qubiter or wqubiter on the qx3 computer, because they
only work on qx2; and wpm consistently outperforms random.

Qubit Allocation CGO’18, February 24–28, 2018, Vienna, Austria

●● ●●
●●

●●
●●

●●
●●

●●
●
● ●

● ●
● ●

● ●
●

●
● ●

● ●
● ●

●
●
● ●

● ●

● ●

● ●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

0

5000

10000

80 180 280 380 480 580

●
●
ibmmapper
wpm

Figure 18.Costs of circuits produced for the qx3 architecture.
X-axis shows random programs, varying from 10 to 640
dependences.

Because quantum computers are so recent, so is the inter-
est on quantum compilers. Except for some early work [41],
compiler frameworks that translate high-level languages to
quantum gates have only been proposed in recent years [17,
19, 21, 28, 42]. Most of them involve solving the qubit alloca-
tion problem as part of the compilation flow when targeting
partially-connected qubit machines like superconducting
quantum computers. Therefore, the algorithms presented
here are applicable to all these frameworks. We evaluated the
qubit allocators of open-source projects in Section 5. Among
classical architectures, clustered VLIW processors also have
connectivity constraints between registers. However, the
clustered VLIW register allocation problem is very differ-
ent than the qubit allocation problem. The former is tightly
linked with instruction scheduling [7], whereas this degree
of freedom is not available in reversible circuits.

On Prior Solutions to Qubit Allocation. There has been
previous attempts to solve qubit allocation [20, 26, 29, 32, 37].
The main difference between them and our work is the fact
that they focus on particular topologies of coupling graphs,
and use only swaps to implement the transitions between
different logical-to-physical qubit mappings. In what follows,
we shall discuss some earlier work, starting with Maslov et
al. [29]. In 2008, they have formalized an instance of the
problem similar to our Definition 3.2, and have presented an
exponential-time heuristic to solve it. Similar to ibmmapper,
this heuristic partitions CNOT gates into sets that can be
solved without swaps. Maslov et al. find these partial solu-
tions via graph isomorphism (between the coupling graph
and a subset of dependences). They use a heuristic to insert
swaps connecting different partitions of the quantum circuit.
In 2014, Shafaei et al. [37] have proposed a methodology

to map logical into physical qubits based on Mixed Integer

Programming (MIP) [43]. They focus on coupling graphs
having a grid architecture, and rely on this assumption to
provide a simple and elegant algorithm. In this paper, we
assume a general topology for the coupling graph. Further-
more, likeMaslov et al, Shafaei et al. restrict the set of allowed
transformations to swaps. Finally, whereas we use dynamic
programming to find an exact solution to qubit allocation,
they employ MIP, a different method. Both these exact so-
lutions are exponential in their worst case. Along similar
lines, Pedram et al [32] use Minimum Linear Arrangement
(MINLA)5 to solve qubit allocation on 1D grid architectures,
again, using only swaps to ensure the correct semantics of
the implementation of the quantum circuit.
Like Shafaei et al., Lin et al. [26] also present a solution

to qubit allocation in 2D architectures. However, contrary
to them, Lin et al. rely on heuristics to find said solution.
Similar to the algorithm that we have discussed in Section 4.2,
they split allocation into two phases, which they have called
placement and routing. Placement fills a role similar to the
algorithm in Figure 9. Routing, in turn, would have a purpose
similar to the algorithm in 11. Nevertheless, our heuristics
use different techniques, given that we deal with general
coupling graphs, and resort to operations other than swaps,
when transforming quantum circuits.

7 Conclusion
This paper has presented exact and heuristic solutions to
the qubit allocation problem. Along this discussion, we have
defined the problem, and presented complexity results for
it. Our algorithms, including the exact solution, compare
favourably against the implementations of qubit allocators
that we were aware of. This paper is one more step in the
path towards more mature compilers for quantum programs;
however, much work is still left to do in the field. We leave
as future work the design and implementation of qubit allo-
cators that attempt to maximize the kind of gate sequence
simplifications seen in Figure 4. Qubit allocation could also
be improved in future work by taking advantage of static
knowledge of quantum state and entanglement. For instance,
some qubits used as ancillae are periodically reset to a known
non-entangled state, and are thus interchangeable at these
points. This information could be obtained either from high-
level language constructs [19] or by static analysis [21, 33].

Acknowledgment
This research is part of the Prospiel Associate Team project,
which is supported by a joint grant from Inria and FAPEMIG.
Fernando Pereira and Vinícius Santos are supported by the
Brazilian Research Council (CNPq). Marcos Siraichi is spon-
sored by the BrazilianMinistry of Education (throughCAPES).

5For further details on MINLA, we recommend the introduction written by
Jordi Petit [35]

CGO’18, February 24–28, 2018, Vienna, Austria Siraichi M., Santos V., Collange S., Pereira F.

References
[1] Steven Balensiefer, Lucas Kregor-Stickles, and Mark Oskin. 2005. An

Evaluation Framework and Instruction Set Architecture for Ion-Trap
Based Quantum Micro-Architectures. In ISCA. IEEE, Washington, DC,
USA, 186–196.

[2] Adriano Barenco, Charles H Bennett, Richard Cleve, David P DiVin-
cenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A Smolin,
and Harald Weinfurter. 1995. Elementary gates for quantum computa-
tion. Physical review A 52, 5 (1995), 3457.

[3] Richard Bellman. 1958. On a Routing Problem. Quart. Appl. Math. 16
(1958), 87–90.

[4] Paul Benioff. 1980. The computer as a physical system: A microscopic
quantum mechanical Hamiltonian model of computers as represented
by Turing machines. Journal of Statistical Physics 22, 5 (1980), 563–591.

[5] Édouard Bonnet, Tillmann Miltzow, and Pawel Rzazewski. 2016. Com-
plexity of Token Swapping and its Variants. CoRR arXiv:1607.07676,
Article 2 (2016), 23 pages.

[6] Gregory J. Chaitin, Mark A. Auslander, Ashok K. Chandra, John Cocke,
Martin E. Hopkins, and Peter W. Markstein. 1981. Register allocation
via coloring. Computer Languages 6 (1981), 47–57.

[7] Josep M Codina, Jesús Sánchez, and Antonio González. 2001. A unified
modulo scheduling and register allocation technique for clustered
processors. In Parallel Architectures and Compilation Techniques. IEEE,
Los Alamitos, CA, USA, 175–184.

[8] Stephen A. Cook. 1971. The Complexity of Theorem-proving Proce-
dures. In STOC. ACM, New York, NY, USA, 151–158.

[9] AndrewW. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta.
2017. Open Quantum Assembly Language. IBM, Armonk, NY, USA.

[10] D. Deutsch. 1985. Quantum Theory, the Church-Turing Principle and
the Universal Quantum Computer. Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences 400, 1818
(1985), 97–117.

[11] Simon J. Devitt. 2016. Performing quantum computing experiments
in the cloud. Phys. Rev. A 94, 3 (2016), 032329.

[12] Michel H Devoret, Andreas Wallraff, and John M Martinis. 2004. Su-
perconducting qubits: A short review. arXiv cond-mat/0411174 (2004),
1–41.

[13] Martin Farach and Vincenzo Liberatore. 1998. On local register alloca-
tion. In SODA. ACM, New York, NY, USA, 564–573.

[14] Jay M Gambetta, Jerry M Chow, and Matthias Steffen. 2017. Building
logical qubits in a superconducting quantum computing system. NPJ
Quantum Mechanics 3, Article 2 (2017), 7 pages.

[15] Simon J Gay. 2006. Quantum programming languages: Survey and
bibliography. Mathematical Structures in Computer Science 16, 4 (2006),
581–600.

[16] Dario Gil. 2017. The Future of Computing: AI and Quantum. Online
video.

[17] Alexander S Green, Peter LeFanu Lumsdaine, Neil J Ross, Peter Selinger,
and Benoît Valiron. 2013. Quipper: a scalable quantum programming
language. In SIGPLAN Notices, Vol. 48. ACM, New York, NY, USA,
333–342.

[18] Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for
Database Search. In STOC. ACM, New York, NY, USA, 212–219.

[19] Thomas Häner, Damian S. Steiger, Krysta M. Svore, and Matthias
Troyer. 2016. A Software Methodology for Compiling Quantum Pro-
grams. CoRR abs/1604.01401 (2016), 1–14.

[20] Ali Javadi-Abhari, Pranav Gokhale, Adam Holmes, Diana Franklin,
Kenneth R. Brown, Margaret Martonosi, and Frederic T. Chong. 2017.
Optimized Surface Code Communication in Superconducting Quan-
tum Computers. In MICRO. ACM, New York, NY, USA, 692–705.

[21] Ali Javadi-Abhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey
Lvov, Frederic T Chong, and Margaret Martonosi. 2014. ScaffCC:
a framework for compilation and analysis of quantum computing
programs. In Computing Frontiers. ACM, New York, NY, USA, 1.

[22] Jun Kawahara, Toshiki Saitoh, and Ryo Yoshinaka. 2017. The Time
Complexity of the Token Swapping Problem and Its Parallel Variants.
In WALCOM. Springer, Heidelberg, Germany, 448–459.

[23] Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J.
Majer, Alexandre Blais, M. H. Devoret, S.M. Girvin, and R. J. Schoelkopf.
2007. Charge-insensitive qubit design derived from the Cooper pair
box. Phys. Rev. A 76, 1 (2007), 04319.

[24] Jonathan K. Lee, Jens Palsberg, and Fernando M. Q. Pereira. 2007.
Aliased Register Allocation for Straight-Line Programs Is NP-Complete.
In ICALP. Springer, Heidelberg, Germany, 258–273.

[25] Daniel A Lidar and Todd A Brun. 2013. Quantum error correction.
Cambridge University Press, Cambridge, UK.

[26] C. C. Lin, S. Sur-Kolay, and N. K. Jha. 2015. PAQCS: Physical Design-
Aware Fault-Tolerant Quantum Circuit Synthesis. Transactions on Very
Large Scale Integration (VLSI) Systems 23, 7 (2015), 1221–1234.

[27] Chris Lomont. 2003. Quantum Circuit Identities. CoRR arXiv:quant-
ph/0307111 (2003), 1–6.

[28] Dmitri Maslov. 2017. Basic circuit compilation techniques for an ion-
trap quantum machine. New Journal of Physics 19, 2 (2017), 023035.

[29] D. Maslov, S. M. Falconer, and M. Mosca. 2008. Quantum Circuit Place-
ment. Transactions on Computer-Aided Design of Integrated Circuits
and Systems 27, 4 (2008), 752–763.

[30] M Mohseni, P Read, H Neven, S Boixo, V Denchev, R Babbush, A
Fowler, V Smelyanskiy, and J Martinis. 2017. Commercialize early
quantum technologies. Nature 543, 7644 (2017), 171.

[31] Michael A Nielsen and Isaac Chuang. 2000. Quantum computation and
quantum information. Cambridge University Press, Cambridge, UK.

[32] M. Pedram and A. Shafaei. 2016. Layout Optimization for Quantum
Circuits with Linear Nearest Neighbor Architectures. Circuits and
Systems Magazine 16, 2 (2016), 62–74.

[33] Simon Perdrix. 2008. Quantum entanglement analysis based on ab-
stract interpretation. In SAS. Springer, Heidelberg, Germany, 270–282.

[34] Fernando Magno Quintao Pereira and Jens Palsberg. 2006. Register
Allocation after Classic SSA elimination is NP-complete. In FOSSACS.
Springer, Heidelberg, Germany, 79–93.

[35] Jordi Petit. 2003. Experiments on the Minimum Linear Arrangement
Problem. J. Exp. Algorithmics 8 (2003), 1–33.

[36] Peter Selinger. 2004. A brief survey of quantum programming lan-
guages. In Functional and Logic Programming. Springer, Heidelberg,
Germany, 61–69.

[37] A. Shafaei, M. Saeedi, and M. Pedram. 2014. Qubit placement to
minimize communication overhead in 2D quantum architectures. In
ASP-DAC. IEEE, Washington, DC, USA, 495–500.

[38] Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factor-
ization and Discrete Logarithms on a Quantum Computer. Journal on
Computing 26, 5 (1997), 1484–1509.

[39] Robert S. Smith, Michael J. Curtis, and William J. Zeng. 2017. A Prac-
tical Quantum Instruction Set Architecture. arXiv arXiv:1608.03355
(2017), 1–15.

[40] Krysta M. Svore, Alfred V. Aho, Andrew W. Cross, Isaac Chuang, and
Igor L. Markov. 2006. A Layered Software Architecture for Quantum
Computing Design Tools. Computer 39, 1 (2006), 74–83.

[41] Robert R Tucci. 1999. A Rudimentary Quantum Compiler (2nd Ed.).
arXiv quant-ph/9902062 (1999), 1–25.

[42] Dave Wecker and Krysta M Svore. 2014. LIQUi | ⟩: A software design
architecture and domain-specific language for quantum computing.
arXiv quant-ph:1402.4467 (2014), 1–14.

[43] Laurence A. Wolsey. 2008. Mixed Integer Programming. Encyclopedia
of Computer Science and Engineering Online, ecse244 (2008), –.

[44] Katsuhisa Yamanaka, Erik D. Demaine, Takehiro Ito, Jun Kawahara,
Masashi Kiyomi, Yoshio Okamoto, Toshiki Saitoh, Akira Suzuki, Kei
Uchizawa, and Takeaki Uno. 2014. Swapping Labeled Tokens on Graphs.
Springer, Heidelberg, Germany, 364–375.

	Abstract
	1 Introduction
	2 Overview
	3 Problem Definition
	4 Solution
	4.1 Exact Solution
	4.2 Heuristics

	5 Evaluation
	5.1 RQ1 – Effectiveness
	5.2 RQ2 – Runtime
	5.3 RQ3 – The qx3 Computer

	6 Related Work
	7 Conclusion
	References

