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Abstract

In the Single-Program Multiple-Data (SPMD) programming model, threads of an ap-
plication exhibit very similar control flows and often execute the same instructions, but
on different data. In this paper, we propose the Dynamic Inter-thread Vectorization
Architecture (DITVA) to leverage the implicit Data Level Parallelism that exists across
threads on SPMD applications.

By assembling dynamic vector instructions at runtime, DITVA extends an in-order
SMT processor with a dynamic inter-thread vector execution mode akin to the Single-
Instruction, Multiple-Thread model of Graphics Processing Units. In this mode, multi-
ple scalar threads running in lockstep share a single instruction stream and their respec-
tive instruction instances are aggregated into SIMD instructions. DITVA can leverage
existing SIMD units and maintains binary compatibility with existing CPU architec-
tures. To balance thread- and data-level parallelism, threads are statically grouped into
fixed-size independently scheduled warps. Additionally, to maximize dynamic vector-
ization opportunities, we adapt the fetch steering policy to favor thread synchronization
within warps and thus improve lockstep execution.

Our experimental evaluation of the DITVA architecture on the SPMD applications
from the PARSEC and Rodinia OpenMP benchmarks show that a 4-warp × 4-lane
4-issue DITVA architecture with a realistic bank-interleaved cache achieves 1.55×
higher performance compared to a 4-thread 4-issue SMT architecture with AVX in-
structions, while fetching and issuing 51% fewer instructions, and achieving an overall
24% energy reduction. DITVA also enables applications limited by memory to scale
with higher bandwidth architectures. For instance, when the bandwidth is increased
from 2GB/s to 16GB/s, we find that memory bound applications show an improve-
ment in performance by 3× in comparison with the baseline SMT. Therefore, DITVA
appears as a cost-effective design for achieving very high single-core performance on
SPMD parallel sections.

Keywords: Simultaneous Multi-Threading, Single instruction multiple data, Single
programmultiple data, Vectorization

1. Introduction

Single-Program Multiple-Data (SPMD) applications express parallelism by creat-
ing multiple instruction streams executed by scalar threads running the same program
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but operating on different data. The underlying execution model for SPMD programs
is the Multiple Instruction, Multiple Data execution model, i.e., threads execute inde-
pendently between two synchronization points. The SPMD programming model often
leads threads to execute very similar control flows: they often execute the same instruc-
tions on different data. The implicit data level parallelism (DLP) that exists across the
threads of an SPMD program is neither captured by the programming model – threads
execute asynchronously – nor leveraged by current processors.

Simultaneous Multi-Threaded (SMT) processors were introduced to leverage multi-
issue superscalar processors on parallel or multi-program workloads to achieve high
single-core throughput whenever the workload features parallelism or concurrency
[2, 3]. SMT cores are the building bricks of many commercial multi-cores includ-
ing all the recent Intel and IBM high-end multi-cores. While SMT cores often exploit
explicit DLP through Single Instruction, Multiple Data (SIMD) instructions, they do
not leverage the implicit DLP present in SPMD applications.

In this paper, we propose the Dynamic Inter-Thread Vectorization Architecture
(DITVA) to exploit the implicit DLP in SPMD applications dynamically at a moderate
hardware cost. DITVA extends an in-order SMT architecture by dynamically aggregat-
ing instruction instances from different threads and steering them to SIMD units. To
maximize dynamic vectorization opportunities, DITVA uses a fetch steering policy that
favors lockstep execution of threads, while maintaining fairness guarantees to allow ar-
bitrary thread interactions. In order to maintain the latency hiding abilities of SMT
architectures, scalar threads are grouped statically into independent so-called warps.
We borrow the warp concept from the Graphics Processing Unit (GPU) literature, as
a group of threads that are expected to share similar control and data flows. Dynamic
vectorization does not require additional programmer effort or algorithm changes to
the existing SPMD applications. DITVA preserves binary compatibility with existing
general purpose CPU architectures as it does not require any modification in the ISA.
It even supports efficiently explicit SIMD instruction sets such as SSE and AVX on the
same physical execution units, allowing programmers and compilers to freely combine
explicitly-vectorized SIMD code and implicitly-vectorized SPMD code.

Our experiments on SPMD applications from the PARSEC and Rodinia benchmark
suites [4, 5] show that the number of instructions fetched and decoded can be reduced,
on average, by 51% on a 4-warp × 4-thread DITVA architecture compared with a 4-
thread SMT. Coupled with a realistic memory hierarchy, this translates into a speed-up
of 1.55× over 4-thread in-order SMT, a very significant performance gain. For memory
bound applications, DITVA achieves a speed-up of upto 3× for higher bandwidth archi-
tectures, in comparison to a baseline SMT with the same bandwidth. DITVA provides
these benefits at a limited hardware complexity since it relies essentially on the same
control hardware as the SMT processor and the replication of the functional units by
using SIMD units in place of scalar units. Since DITVA can leverage preexisting SIMD
execution units, this benefit is achieved with 24% average energy reduction. Therefore,
DITVA appears as a very energy-effective design to execute SPMD applications.

We motivate the DITVA proposition for a high throughput SPMD oriented proces-
sor architecture in Section 2, and describe the DITVA architecture in Section 4. Section
5 evaluates performance and design tradeoffs, while Section 6 examines hardware com-
plexity implications and evaluates power consumption. Section 3 reviews some related
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works.

2. Motivation

In this section, we first motivate our choice of building an SPMD oriented through-
put processor on top of an in-order SMT processor. Then we argue that SPMD pro-
grams offer tremendous opportunities to share a significant part of the instruction exe-
cution of the different scalar threads.

2.1. SMT architectures

SMT architectures were introduced to exploit thread-level and/or multi-program
level parallelism to optimize the throughput of a superscalar core [2]. Typically, on
an SMT processor, instructions from different hardware threads progress concurrently
in all stages of the pipeline. Depending on the precise implementation, some pipeline
stages only handle instructions from a single thread at a given cycle. For instance, the
instruction fetch pipeline stage may be time-multiplexed [6], while the execution stage
may mix instructions from all threads.

SMT architectures aim at delivering throughput for any mix of threads without
differentiating threads of a single parallel application from threads of a multi-program
workload. Therefore, when threads from an SPMD application exhibit very similar
control flows, SMT architectures only benefit from these similarities by side-effects of
sharing structures such as caches or branch predictors [7].

SMT architectures often target both high single-thread performance and highly par-
allel or multi-program performance. As a consequence, most commercial designs have
been implemented with out-of-order execution. However in the context of parallel ap-
plications, out-of-order execution may not be cost effective. An in-order 4-thread SMT
4-issue processor has been shown to reach 85% of the performance of an out-of-order
4-thread SMT 4-issue processor [8]. Therefore, in-order SMT appears as a good archi-
tecture tradeoff for implementing the cores of an SPMD oriented throughput processor.

2.2. Instruction redundancy across SPMD threads

In SPMD applications, threads usually execute very similar flows of instructions.
They exhibit some control flow divergence due to branches, but generally a rapid con-
vergence of the control flows occur. To illustrate this convergence/divergence scenario
among the parallel sections, we display a control flow diagram from the Blackscholes
workload [4] in figure 1. All the threads execute the convergent blocks while only some
threads execute the divergent blocks. Moreover, in the case of divergent blocks, more
than one thread often executes the divergent block.

Also, SPMD applications typically resort to explicit synchronization barriers at cer-
tain execution points to enforce dependencies between tasks. Such barriers are natural
control flow convergence points.

On a multi-threaded machine, e.g. an SMT processor, threads execute indepen-
dently between barriers without any instruction level synchronization favoring latency
hiding and avoiding starvation. On an SMT processor, each thread manages its own
control flow. In the example illustrated above, for each convergent block, instructions
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Figure 1: Control flow graph of blackscholes benchmark

are fetched, decoded, etc. by each of the threads without any sharing of this redundant
effort. The same applies to the divergent blocks that are executed by more than one
thread. This may cause a large waste of resources.

We study how running threads in lockstep may favor instruction sharing between
threads. We synchronize threads in SPMD applications by groups of 4 whenever they
follow the same control flow. We use the Min(SP:PC) scheduling policy that we will
describe further in Section 4.3 to favor thread synchronization after control flow diver-
gence. Figure 2 shows the number of instructions that can be shared among groups
of 4 threads. This figure represents the DLP that could be extracted from the SPMD
program.
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Figure 2: Breakdown of average combined instructions among groups of 4 threads

These results are in line with prior studies that have shown that the instruction fetch
of 10 threads out of 16 on average could be mutualized if the threads were synchronized
to progress in lockstep, on the PARSEC benchmarks [9]. We leverage this instruction
redundancy to mutualize the front-end pipeline of an in-order SMT processor, as a
resource-efficient way to improve throughput on SPMD applications.
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3. Related work

DITVA aims at exploiting data-level parallelism in SPMD applications by extend-
ing an in-order SMT processor. Therefore, DITVA is strongly related to the three
domains, SIMD/vector architecture, SIMT also known as GPU architectures and SMT
architectures.

3.1. SIMD and/or vectors

Static DLP, detected on the source code, has been exploited by hardware and com-
pilers for decades. SIMD and/or vector execution have been considered as early as the
1970s in vector supercomputers [10]. Short-vector SIMD instruction-set extensions are
commonplace in general-purpose processors.

Recent work enables the compilation of SPMD applications to SIMD or vector
instruction sets [11, 12]. However, the data parallelism is constrained by the width
of vector or SIMD instructions. A change in the vector length of SIMD instructions
requires recompiling or even rewriting programs. In contrast, SPMD applications typi-
cally spawn a runtime-configurable number of worker threads and can scale on different
platforms without recompilation. Vector processors typically support variable-size vec-
tors, but they require advanced prefetching or memory decoupling in order to overlap
memory latency with computations [13]. DITVA runs multiple independent warps that
cover each-other’s long-latency operations. By translating TLP into DLP dynamically,
DITVA offers the flexibility to select the vector length (warp size) that best suits each
micro-architecture while exploiting the remaining parallelism as TLP, without compiler
or programmer involvement.

3.2. The SIMT execution model

Like DITVA, SIMT architectures can vectorize the execution of multi-threaded
applications at warp granularity, but they require a specific instruction set to convey
branch divergence and convergence information to the hardware [14]. GPU compil-
ers emit explicit instructions to mark convergence points in the binary program. The
SIMT stack-based divergence tracking mechanisms handle user-level code with a lim-
ited range of control-flow constructs. They do not support exceptions or interruptions,
which prevents their use with a general-purpose system software stack. SIMT architec-
tures are highly sensitive to divergence as they serialize divergent branch paths. DITVA
maintains SMT-level performance on divergent code by leveraging the TLP between
multiple divergent threads in the same warp. Various works extend the SIMT model to
support more generic code [15, 16] or more flexible execution [17, 18, 19]. However,
they all target applications specifically written for GPUs, rather than general-purpose
parallel applications.

3.3. Instruction redundancy in SMT

SMT improves the throughput of a superscalar core by enabling independent threads
to share CPU resources dynamically. Resource sharing policies have huge impact on
execution throughput [2, 20, 21, 22, 23, 24]. Many studies have focused on optimiz-
ing the instruction fetch policy and leaving the instruction core unchanged while other
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studies have pointed out the ability to benefit from memory level parallelism through
resource sharing policies. However, these resource sharing heuristics essentially ad-
dress multi-program workloads.

3.4. Thread reconvergence for SPMD applications

Similarity exploitation in SPMD applications requires the threads to execute similar
instructions at around the same time. Thread synchronization is not difficult to achieve
in a regular application when the threads are on a convergent path. With divergence,
threads start to follow different execution paths. Divergence is the source of perfor-
mance degradation in SIMD and SIMT architectures. An optimal solution to maxi-
mize thread synchronization should support early reconvergence. It should perfectly
identify the best reconvergence point. For certain programs, identifying reconvergence
point is difficult. An example of such a progam is shown in listing 1. When the pro-
gram is executed, the threads may execute either function A() or function B(). After
the divergence, it is difficult to know the point at which the threads will reconverge.

Listing 1: A program with divergence

f o r ( i = 0 t o n )
i f ( ( i + t i d ) % c ) )

A ( ) ;
e l s e

B ( ) ;

Thread reconvergence is a challenging task because of its dynamic nature. In general,
there are two classes of reconvergence mechanisms. The first one is stack-based and
the second one is stack-less. A bulk of SIMT architectures uses an explicit reconver-
gence mechanism based on explicit annotations from ISA and a hardware stack. A
stack-based approach uses a stack to keep track of divergences within a thread group
(warp). There are several proposals for implicit reconvergence in SIMT architectures
that are still stack-based. DITVA uses a stack-less implicit mechanism, which pri-
oritizes threads, to maximize convergent execution of an SPMD application. In this
section, we will discuss some of the methods used for thread synchronization.

A simple stack-less heuristics prioritizes the threads based on textually earliest pro-
gram point in the source code [25]. Reconvergence happens when the threads share the
same PC. It builds on the idea that compilers typically lay out basic blocks in mem-
ory in a way that preserves dominance relations: reconvergence points have a higher
address than the matching divergence points. The earliest-first policy can be applied di-
rectly to the binary using instruction addresses to determine instruction order. We name
this heuristic MinPC. However, MinPC may fail if the compiler heavily re-orders the
basic blocks. As the MinPC heuristic may rely on program counters only, it does not
require compiler hints.

MinSP-PC [26] heuristic improved MinPC by giving priority to the block with
minimum relative stack pointer (SP) value. On a match, the priority is given for MinPC.
The underlying assumption is that the stack size increases with the function call depth,
resulting in a lower value of stack pointer in a downward growing stack. Therefore, the
threads with highest call depth are given top priority. MinSP-PC was shown to double
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Figure 3: Call graph example

the number of instruction combining opportunities on average compared to MinPC, on
HPC-oriented SPMD applications [9].

Let us consider threads T0 and T1 executing the code blocks shown in figure 3. In
the example, T0 and T1 starts at Func a and diverges at the end of the function call.
T0 proceeds to execute Func b and Func d. Later T0 start the execution of Func e.
Similarly, after divergence, T1 executes Func c and later execute Func e. Figure 4
shows the growth of stack with MinSP-PC heuristics. Initially, both threads start at
Func a, and a stack entry is created as shown in 4(a). T0 and T1 share the same stack
offset and hence the heuristic uses MinPC policy, which keeps them in lockstep mode
until the end of the function call. After divergence, an entry for Func b and Func c
is created in the stack of T0 and T1 respectively. After divergence, the threads are
prioritized with MinSP-PC policy. Assuming that T0 had the highest priority, T0 will
start the execution of Func d. After the execution of Func b, Func d and Func c by T0
and T1 the stack entries are popped out. The next synchronization point for T0 and T1
is at the beginning of the function call Func e, where both the threads have same SP
offset and MinPC policy will ensure lockstep execution in Func e. A drawback of the
heuristic is its inability to synchronize the same functions arrived through a different
path. Figure 5 shows a control flow of a program with synchronization point at Func d.
Since T0 and T1 were in a divergent path after Func a, MinSP-PC heuristic will miss
the synchronization point at Func d and will synchronize on Func e instead.

3.5. General purpose architectures exploiting inter-thread redundancy

In the past, several attempts were made to leverage this redundancy to optimize the
performance of SPMD applications. Most of the previous work focuses on instruction
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(a) Initial call at func a() (b) Divergence - T0 takes
Func b() and Func c() path

(c) T0 calls Func d() (d) T0 and T1 calls Func e()

Figure 4: Growth of stack in time for threads T0 and T1

Figure 5: Call graph with synchronization point at Func d

redundancy. Some works propose to re-use the result from a previous execution of
instruction with identical data to eliminate data/value redundancy.
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Kumar et al [27] proposed Fetch combining for their Conjoined-core Chip Multi-
processing. A Conjoined-core shares resources between adjacent cores. Fetch com-
bining improves the fetch bandwidth when two threads running on conjoined-core pair
have the same PC. In this case, a fetch is consumed by both the cores.

Thread Fusion [28] fuses instructions across threads in a 2-way SMT when both
threads are executing identical instructions. A fused instruction only has one instance
in the pipeline front-end. Within the pipeline back-end, the fused instruction is split
back into two separate instructions that execute independently. Thread fusion require
both threads to run in lock-step (i.e. Threads execute the same instruction at the same
time). When the threads are not in lock-step, they are executed in Normal mode. Thread
fusion switches to Fused mode with the help of synchronization points inserted by the
compiler. Synchronization points are defined as the first PC (Program Counter) of an
instruction that is frequently visited by the threads executing a parallel section. Thread
fusion is an optimization technique focused on reducing the energy consumption (it
does not focus on improving the performance).

Minimal Multi-threading [29] improves it further by achieving this without com-
piler support. MMT does this by using a Fetch History Buffer(FHB), which keeps track
of the fetch history(PC) at a branch for each thread. For a branch instruction, it also
checks if a PC is found in other thread’s history then the thread will be transitioning to
the CATCHUP mode, and it is given higher priority until it is re-synchronized. MMT
tries to favor thread synchronization in the front-end (instruction fetch and decode) of
an SMT core. It further tries to eliminate redundant computation on the threads. How-
ever, MMT assumes a conventional out-of-order execution superscalar core and does
not attempt to synchronize instructions within the backend.

Multi-threaded Instruction Sharing(MIS) [30] uses the instruction similarity and
retires identical instructions without executing them. MIS uses a match table, which
holds the results of a previous instruction. MIS performs match test on other threads
in parallel. If there is a hit in the match table, the instruction from the current thread is
retired without execution.

Execution Drafting [31] focuses on the energy efficiency of an in-order core pro-
cessor by drafting duplicate instructions. Drafting is a technique in which subsequent
duplicate instructions follow the first instruction in the pipeline. Execution drafting
support instructions from multiple programs as well, unlike other techniques which
mostly focus on a multi-threaded program. A duplicate instruction can be either par-
tial or full duplicate. A partial duplicate instruction is one which has the same opcode
but has different machine code. Execution drafting uses a Hybrid Thread Synchro-
nization Method(HTSM) which is a combination of MinPC [25] and random thread
synchronization method. The use of heuristics may result in increased latency. Execu-
tion drafting primarily focuses on applications in data centres, which are often multiple
instances of the same program or the applications that have latency tolerance. Execu-
tion Drafting [31] seeks to synchronize threads running the same code and shares the
instruction control logic to improve energy efficiency. It targets both multi-thread and
multi-process applications by allowing lockstep execution at arbitrary addresses.

Both MMT and Execution Drafting attempt to run all threads together in lockstep
as much as possible. However, full lockstep execution is not always desirable as it
defeats the latency tolerance purpose of SMT. The threads running in lockstep will all
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stall at the same time upon encountering a pipeline hazard like a cache miss, causing
inefficient resource utilization.

3.6. GPU architectures to exploit inter-thread redundancies
SIMT architectures can vectorize the execution of multi-threaded applications at

warp granularity, but they require a specific instruction set to convey branch divergence
and reconvergence information to the hardware. GPU compilers have to emit explicit
instructions to mark reconvergence points in the binary program. These mechanisms
are designed to handle user-level code with a limited range of control-flow constructs.
The stack-based divergence tracking mechanism does not support exceptions or inter-
ruptions, which prevents its use with a general-purpose system software stack. Various
works extend the SIMT model to support more generic code [15, 16] or more flexible
execution [17, 18, 19]. However, they all target applications specifically written for
GPUs, rather than general-purpose parallel applications.

4. The Dynamic Inter-Thread Vectorization Architecture

In this section, we present the Dynamic Inter-Thread Vectorization Architecture
(DITVA).

The classic Flynn’s taxonomy classifies parallel architectures among Single In-
struction stream, Single Data stream (SISD), Single Instruction steam, Multiple Data
streams (SIMD) and Multiple Instruction streams, Multiple Data streams (MIMD) [32].
Transposed in modern terms, an instruction stream is generally assumed to be a hard-
ware thread. However, such strict 1-to-1 mapping between threads and instruction
streams is not necessary, and we can decouple the notion of instruction stream from the
notion of thread. In particular, multiple threads can share a single instruction stream,
as long as they have the same program counter (PC) and belong to the same process.

Figure 6: Logical organization of hardware threads on 2-warp× 4-thread DITVA. Scalar threads are grouped
into 2 warps of 4 threads. Scalar threads sharing the same PC within a warp form an Instruction Stream (IS).

Logical thread organization. DITVA supports a number of hardware thread contexts,
that we will refer to as (scalar) threads. Scalar threads are partitioned statically into
n warps of m threads each, borrowing NVIDIA GPU terminology. In Figure 6, scalar
threads T0 through T3 form Warp 0, while T4 to T7 form Warp 1.

Inside each warp, threads that have the same PC and process identifier share an
Instruction Stream (IS). The concept of IS corresponds to warp-split [33] in the GPU
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architecture literature. While thread-to-warp assignment is static, thread-to-IS assign-
ment is dynamic: the number of IS per warp may vary from 1 to m during execution, as
does the number of threads per IS. In Figure 6, scalar threads T0, T2 and T3 in Warp 0
have the same PC PC0 and share Instruction Stream 0.0, while thread T1 with PC PC1
follow IS 0.1.

The state of one Instruction Stream consists of one process identifier, one PC and
an m-bit inclusion mask that tracks which threads of the warp belong to the IS. Bit i of
the inclusion mask is set when thread i within the warp is part of the IS. Also, each IS
has data used by the fetch steering policy, such as the call-return nesting level (Section
4.3).

Figure 7: Thread mapping to the physical organization.

Mapping to physical resources. DITVA consists in a front-end that processes Instruc-
tion Streams and a SIMD back-end (Figure 7).

An instruction is fetched only once for all the threads of a given IS, and a single
copy of the instruction flows through the pipeline. That is, decode, dependency check,
issue and validation are executed only once.

Each of the m lanes of the back-end replicates the register file and the functional
units. A given thread is assigned to a fixed lane, e.g. T5 executes on Lane 1 in our
example. Execution, including operand read, operation execution and register result
write-back is performed in parallel on the m lanes. A notable exception are instructions
that already operate on vectors, such as SSE and AVX, that are executed in multiple
waves over the whole SIMD width.

Notations. We use the notation nW × mT to represent a DITVA configuration with n
Warps and m Threads per warp. An nW × 1T DITVA has 1 thread and 1 IS per warp,
and is equivalent to an n-thread SMT. At the other end of the spectrum, a 1W × mT
DITVA has all threads share a single pool of IS without restriction.

A vector of instruction instances from different threads of the same IS is referred
to as a DV-instruction. We will refer to the group of registers Ri from the set of hard-
ware contexts in a DITVA warp as the DV-register DRi, and the group of a replicated
functional unit as a DV functional unit.

In the remainder of the section, we first describe the modifications required in the
pipeline of an in-order SMT processor to implement DITVA and particularly in the
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Figure 8: Overview of a 2W × 2T , 4-issue DITVA pipeline. Main changes from SMT are highlighted.

front-end engine to group instructions of the same IS. Then we address the specific
issue of data memory accesses. Finally, as maintaining/acquiring lockstep execution
mode is the key enabler to DITVA efficiency, we describe the fetch policies that could
favor such acquisition after a control flow divergence.

4.1. Pipeline architecture

We describe the stages of the DITVA pipeline, as illustrated in Figure 8.

4.1.1. Front-end
The DITVA front-end is essentially similar to an SMT front-end, except it operates

at the granularity of Instruction Streams rather than scalar threads.

Branch prediction and reconvergence detection. Within the front-end, both the PC and
inclusion mask of each IS are speculative. An instruction address generator initially
produces a PC prediction for one IS based on the branch history of the first active scalar
thread of the IS. After instruction address generation, the PC and process identifier of
the predicted ISi, are compared with the ones of the other ISs of the same warp. A

12



Fetch Commit

Convergence

Divergence

Instruction flow

T2

T0,1,3

0

1

2

3

DVIQ
a

b

c

d

Figure 9: Instruction stream tracking in DITVA. Instruction Streams (a, b, c, d) are illustrated as trains,
DVIQs as tracks, DV-instructions as train cars, and scalar instructions as passengers.

match between ISi and IS j indicates they have reached a point of convergence and
may be merged. In such case, the mask of ISi is updated to the logical OR of its
former mask and the mask of IS j, while IS j is aborted. Figure 9 illustrates convergence
happening between threads 0 and 1 in IS b with thread 3 in IS a. IS b contains threads
0, 1 and 3 after convergence, so its inclusion mask is now 1101. IS a is aborted.
Earlier in time, convergence is also shown between threads 0 and 2 in IS c and thread
1 in IS b. All the threads of an IS share the same instruction address generation, by
speculating that they will all follow the same branch direction. Unlike convergence,
thread divergence within an IS is handled at instruction retirement time by leveraging
branch misprediction mechanisms. Figure 9 illustrates IS c diverging at commit time
to spawn the new IS d containing thread 2. As divergence is only detected late in the
pipeline, thread 2 initially follows speculatively the IS c in DVIQ 2. After divergence
is detected and thread 2 is determined to belong to IS d, the speculative operations
corresponding to thread 2 in IS c are masked out so they have no architectural effect.
Divergence will be described in further details in Section 4.1.5.

Fetch and decode. Reflecting the two-level organization in warps and ISs, instruction
fetch obeys a mixed fetch steering policy. First, a warp is selected following a similar
policy as in SMT [2, 24]. Then, an intra-warp instruction fetch steering policy selects
one IS within the selected warp. The specific policy will be described in Section 4.3.
From the selected IS PC, a block of instructions is fetched.

Instructions are decoded and turned into DV-instructions by assigning them an m-
bit speculative mask. The DV-instruction then progresses in the pipeline as a single
unit. The DV-instruction mask indicates which threads are expected to execute the
instruction. Initially, the mask is set to the IS mask. However, as the DV-instruction
flows through the pipeline, its mask can be narrowed by having some bits set to zero
whenever an older branch is mispredicted or an exception is encountered for one of its
active threads.

After the decode stage, the DV-instructions are pushed in a DV-instruction queue
(DVIQ) associated with the IS. In a conventional SMT, instruction queues are typically
associated with individual threads. DITVA applies this approach at the IS granularity:
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each DVIQ tail is associated with one IS. Unlike in SMT, instructions that are further
ahead in the DVIQ may not necessarily belong to the IS currently associated with the
DVIQ, due to potential IS divergence and convergence. For instance in Figure 9, DVIQ
2 contains instructions of threads T0 and T2, while IS 2 has no active threads. The DV-
instruction mask avoids this ambiguity.

4.1.2. In-order issue enforcement and dependency check
On a 4-issue superscalar SMT processor, up to 4 instructions are picked from the

head of the instruction queues on each cycle. In each queue, the instructions are picked
in-order. In a conventional in-order superscalar microprocessor, the issue queue en-
sures that the instructions are issued in-order. In DITVA, instructions from a given
thread T may exist in one or more DVIQs. To ensure in-order issue in DITVA, we
maintain a sequence number for each thread. Sequence numbers track the progress of
each thread. On each instruction fetch, the sequence numbers of the affected threads are
incremented. Each DV-instruction is assigned an m-wide vector of sequence numbers
upon fetch, that corresponds to the progress of each thread fetching the instruction. The
instruction issue logic checks that sequence numbers are consecutive for successively
issued instructions of the same warp. As DVIQs maintain the order, there will always
be one such instruction at the head of one queue for each warp.

The length of sequence numbers should be dimensioned in such a way that there is
no possible ambiguity in comparing two sequence numbers. The ambiguity is avoided
by using more sequence numbers than the maximum number of instructions belonging
to a given thread in all DVIQs, which are bounded by the total number of DVIQ entries
assigned to a warp. For instance, if the size of DVIQs is 16 and m = 4, 6-bit sequence
numbers are sufficient, and each DV-instruction receives a 24-bit sequence vector.

A DV-instruction cannot be launched before all its operands are available. A score-
board tracks instruction dependencies. In an SMT having n threads with r architectural
registers each, the scoreboard consists of a nr data dependency table with 8 ports in-
dexed by the source register IDs of the 4 pre-issued 2-input instructions. In DITVA,
unlike in SMT, an operand may be produced by several DV-instructions from different
ISs, if the consumer instruction lies after a convergence point. Therefore, the DITVA
scoreboard mechanism must take into account all older in-flight DV-instructions of the
warp to ensure operand availability, including instructions from other DVIQs. As se-
quence numbers ensure that each thread issues at most 4 instructions per cycle, the
scoreboard can be partitioned between threads as m tables of nr entries with 8 ports.

4.1.3. Execution: register file and functional units
On an in-order SMT processor, the register file features n instances of each archi-

tectural register, one per thread. The functional units are not strictly associated with a
particular group of registers and an instruction can read its operands or write its result
to a single monolithic register file.

In contrast, DITVA implements a partitioned register file; each of the m sub-files
implements a register context for one thread of each warp. DITVA also replicates the
scalar functional units m times and leverages the existing SIMD units of a superscalar
processor for the execution of statically vectorized SIMD instructions.
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Figure 10(a) shows the execution of a scalar DV-instruction (i.e. dynamically vec-
torized instruction from multi-thread scalar code) in a 4W×4T DITVA. A scalar DV-
instruction reads different thread instances of the same registers in each of the the m
register files. It executes on m similar functional units and writes the m results to the
same register in the m register files, in a typical SIMD fashion. All these actions are
conditioned by the mask of the DV-instruction. Thus, the DITVA back-end is equiva-
lent to an SIMD processor with per-lane predication.

4.1.4. Leveraging explicit SIMD instructions
Instruction sets with SIMD extensions often support operations with different vec-

tor lengths on the same registers. Taking the x86 64 instruction set as an example, AVX
instructions operate on 256-wide registers, while packed SSE instructions support 128-
bit operations on the lower halves of AVX architectural registers. Scalar floating-point
operations are performed on the low-order 64 or 32 bits of SSE/AVX registers. We
assume AVX registers may be split into four 64-bit slices.

Whenever possible, DITVA keeps explicit vector instructions as contiguous vectors
when executing them on SIMD units. This maintains the contiguous memory access
patterns of vector loads and stores. In order to support both explicit SIMD instructions
and dynamically vectorized DV-instructions on the same units without cross-lane com-
munication, the vector register file of DITVA is banked using a hash function. Rather
than making each execution lane responsible for a fixed slice of vectors, slices are dis-
tributed across lanes in a different order for each thread. For a given thread i, the lane j
is responsible for the slice i ⊕ j, ⊕ being the exclusive or operator. All registers within
a given lane of a given thread are allocated on the same bank, so the bank index does
not depend on the register index.

This essentially free banking enables contiguous execution of full 256-bit AVX in-
structions, as well as partial dynamic vectorization of 128-bit vector and 64-bit scalar
SSE instructions to fill the 256-bit datapath. Figure 10(b) shows the execution of a
scalar floating-point DV-instruction operating on the low-order 64-bit of AVX registers.
The DV-instruction can be issued to all lanes in parallel, each lane reading a different
instance of the vector register low-order bits. For a 128-bit SSE DV-instruction, lanes
0,2 or 1,3 can be executed in the same cycle. Figure 10(c) shows the pipelined execu-
tion of a SSE DV-instruction with mask 1011 in a 4W×4T DITVA. In figure 10(c), T0
and T2 are issued in the first cycle and T1 is issued in the subsequent cycle. Finally, the
full-width AVX instructions within a DV-instructions are issued in up to m successive
waves to the pipelined functional units. Time-compaction skips over SIMD instruc-
tions of inactive threads, as in vector processors. Figure 10(d) shows the execution of
a AVX DV-instruction with mask 1101 in a 4W × 4T DITVA.

4.1.5. Handling misprediction, exception or divergence
Branch mispredictions or exceptions require repairing the pipeline. On an in-order

SMT architecture, the pipeline can be repaired through simply flushing the subsequent
thread instructions from the pipeline and resetting the speculative PC to the effective
PC.

In DITVA, we generalize branch divergence, misprediction and exception handling
through a unified mechanism. Branch divergence is detected at branch resolution time,
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when some threads of the current IS, ISi, actually follow a different control flow direc-
tion than the direction the front-end predicted. ISi is split into two instruction streams:
ISi continues with the scalar threads that were correctly predicted, and a new stream
IS j is spawned in the front-end for the scalar threads that do not follow the predicted
path. The inclusion masks of both IS are adjusted accordingly: bits corresponding to
non-following threads are cleared in ISi mask and set in IS j mask. For instance, in
Figure 9, ISc with threads T0 and T2 is split to form the new ISd with thread T2. In-
structions of thread T2 are invalidated within the older DV-instructions of ISc as well
as ISb. Handling a scalar exception would be similar to handling a divergence. The
bits corresponding to the mispredicted scalar threads are also cleared in all the masks
of the DV-instructions in progress in the pipeline and in the DVIQs. In Figure 9, they
correspond to disabling thread T2 in the DV-instructions from IS2 and IS1.

In addition, some bookkeeping is needed. In the case of a true branch mispredic-
tion, the masks of some DV-instructions become null, i.e. no valid thread remains in
IS1. These DV-instructions have to be flushed out from the pipeline to avoid consuming
bandwidth at execution time. This bookkeeping is kept simple as null DV-instructions
are at the head of the DVIQ. Likewise, an IS with an empty mask is aborted.

As DITVA provisions m IS slots and DVIQs per warp, and the masks of ISs do
not overlap, resources are always available to spawn the new ISs upon a misprediction.
The only case when all ISs slots are occupied is when each IS has only one thread.
In that case, a misprediction can only be a full misprediction, and the new IS can be
spawned in the slot left by the former one.

True branch mispredictions in DITVA have the same performance impact as a mis-
prediction in SMT, i.e. the overall pipeline must be flushed for the considered DV-warp.
On the other hand, simple divergence has no significant performance impact as it does
not involve any “wrong path”: both branch paths are eventually taken.

4.2. Data memory accesses

A data access operation in a DV-instruction may have to access up to m data words
in the cache. These m words may belong to m distinct cache lines and/or to m distinct
virtual pages. Servicing these m data accesses on the same cycle would require a
fully multiported data cache and a fully multiported data TLB. The hardware cost of
a multiported cache is prohibitively high. Truly shared data demands implementing
multiple effective ports, rather than simply replicating the data cache. Instead, DITVA
relies on a banked data cache. Banking is performed at cache line granularity. The
load data path supports concurrent access to different banks, as well as the special case
of several threads accessing the same element, for both regular and atomic memory
operations. In case of conflicts, the execution of a DV-load or a DV-store stays atomic
and spans over several cycles, thus stalling the pipeline for all its participating threads.

We use a fully hashed set index to reduce bank conflicts, assuming a virtually in-
dexed L1 data cache. Our experiments in Section 5 illustrate the reduction in the num-
ber of data access conflicts due to the alignment of the bottom of thread stacks on page
boundaries.

Maintaining equal contents for the m copies of the TLB is not as important as it is
for the data cache: there are no write operations on the TLB. Hence, the data TLB could
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be implemented just as m copies of a single-ported data TLB. However, all threads do
not systematically use the same data pages. That is, a given thread only references the
pages it directly accesses in its own data TLB. Our simulations in Section 5 show that
this optimization significantly decreases the total number of TLB misses or allows to
use smaller TLBs.

A DV-load (resp. DV-store) of a full 256-bit AVX DV-instruction is pipelined. Each
data access request corresponding to the participant thread is serviced in the successive
cycles. For a 128-bit SSE DV-instruction, data access operation from lane 0,2 or 1,3
are serviced in the same cycle. Any other combination of two or more threads are
pipelined. For example, a DV-load with threads 0,1 or 0,1,2 would be serviced in 2
cycles.

DITVA executes DV-instructions in-order. Hence, a cache miss on one of the active
threads in a DV-load stalls the instruction issue of all the threads in the DV instruction.

4.3. Maintaining lockstep execution

DITVA has the potential to provide high execution bandwidth on SPMD applica-
tions when the threads execute very similar control flows on different data sets. Un-
fortunately, threads lose synchronization as soon as their control flow diverges. Apart
from the synchronization points inserted by the application developer or the compiler,
the instruction fetch policy and the execution priority policy are two possible vehicles
to restore lockstep execution.

One of the most simple yet fairly efficient fetch policies to reinitiate lockstep exe-
cution is MinSP-PC [26]. The highest priority is given to the thread with the deepest
call stack, based on the relative stack pointer address or call/return count. On a tie,
the thread that has the minimum PC is selected. Assuming a downward growing stack,
MinSP gives priority for the deepest function call nesting level. When there is a tie the
priority is based on the minimum value of PC which gives a more fine grained syn-
chronization. However, while experience shows that MinSP-PC tends to synchronize
SPMD threads in many cases, there is no guarantee that each thread will make con-
tinuous forward progress. MinSP-PC could even lead to deadlocks, e.g. in the event
of an active waiting loop. Besides, when going through non-SPMD code sections in-
volving independent threads, applying the MinSP-PC policy would essentially result
in executing a single thread, while stalling all other threads.

Therefore, for this study on DITVA, we use a hybrid Round-Robin/MinSP-PC in-
struction fetch policy. The MinSP-PC policy helps restore lockstep execution and
Round-Robin guarantees forward progress for each thread. To guarantee that any
thread T will get the instruction fetch priority periodically1, the RR/MinSP-PC pol-
icy acts as follows. Among all the ISs with free DVIQ slots, if any IS has not got the
instruction fetch priority for (m + 1) × n cycles, then it gets the priority. Otherwise, the
MinSP-PC IS is scheduled.

This hybrid fetch policy is biased toward the IS with minimum stack pointer or
minimum PC to favor thread synchronization, but still guarantees that each thread will

1RR/MinSP-PC is not completely fair among independent threads, e.g. multiple program workloads as it
may favor some threads. However, fairness on this type of workloads is out of the scope of this paper.
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Table 1: Simulator parameters
L1 data cache 32 KB, 16 ways LRU, 16 banks, 2 cycles
L2 cache 4MB, 16 ways LRU, 15 cycles
L2 miss latency 215 cycles
Branch predictor 64-Kbit TAGE [35]
DVIQs n × m 16-entry queues
IS select MinSP-PC + RR every n(m + 1) cycles
Fetch and decode 4 instructions per cycle
Issue width 4 DV-instructions per cycle
Functional units
(SMT)

4 64-bit ALUs, 2 256-bit AVX/FPUs, 1 mul/-
div, 1 256-bit load/store, 1 branch

Functional units
(DITVA)

2 m × 64-bit ALUs, 2 256-bit AVX/FPUs, 1
m × 64-bit mul/div, 1 256-bit load/store

make progress. In particular, when all threads within a warp are divergent, the MinSP-
PC thread will be scheduled twice every m + 1 scheduling cycles for the warp, while
each other thread will be scheduled once every m + 1 cycles.

Since warps are static, convergent execution does not depend on the prioritization
heuristics of the warps. The warp selection is done with round robin priority to ensure
fairness for each of the independent thread groups.

5. Evaluation

We simulate DITVA to evaluate its performance and design tradeoffs.

5.1. Experimental Framework

Simulating DITVA involves a few technical challenges. First, we need to compare
application performance for different thread counts. Second, the efficiency of DITVA
is crucially dependent on the relative execution order of threads. Consequently, in-
structions per cycle cannot be used as a proxy for performance, and common sampling
techniques are inapplicable. Instead, we simulate full application kernels, which de-
mands a fast simulator.

We model DITVA using an in-house trace-driven x86 64 simulator. A Pin tool
[34] records one execution trace per thread of one SPMD application. The trace-driven
DITVA simulator consumes the traces of all threads concurrently, scheduling their in-
structions in the order dictated by the fetch steering and resource arbitration policies.

Thread synchronization primitives such as locks need a special handling in this
multi-thread trace-driven approach since they affect thread scheduling. We record all
calls to synchronization primitives and enforce their behavior in the simulator to guar-
antee that the order in which traces are replayed results in a valid scheduling. In other
words, the simulation of synchronization instructions is execution-driven, while it is
trace-driven for all other instructions.

Just like SMT, DITVA can be used as a building block in a multi-core processor.
However, to prevent multi-core scalability issues from affecting the analysis, we fo-
cus on the micro-architecture comparison of a single core in this study. To account
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Table 2: Rodinia Applications
Application Problem size

B+tree 1 million keys
Hotspot 4096 × 4096 data points
Kmeans 10000 datapoints, 34 features

Pathfinder 100000 width, 100 steps
SRAD 2048 × 2048 datapoints

Streamcluster 4096 points, 32 dimensions

for memory bandwidth contention effects in a multi-core environment, we simulate a
throughput-limited memory with 2 GB/s of DRAM bandwidth per core. This corre-
sponds to a compute/bandwidth ratio of 32 Flops per byte in the 4W × 4T DITVA
configuration, which is representative of current multi-core architectures. We compare
two DITVA core configurations against a baseline SMT processor core with AVX units.
Table 1 lists the simulation parameters of both micro-architectures. DITVA leverages
the 256-bit AVX/FPU unit to execute scalar DV-instructions in addition to the two
m × 64-bit ALUs, achieving the equivalent of four m × 64-bit ALUs.

We evaluate DITVA on SPMD benchmarks from the PARSEC [4] and Rodinia [5]
suites. We use PARSEC benchmark applications that have been parallelized with
pthread library. We considered the OpenMP version of the Rodinia benchmarks. All
are compiled with AVX vectorization enabled. We simulate the following benchmarks:
Barnes, Blackscholes, Fluidanimate, FFT, Fmm, Swaptions, Radix, Volrend, Ocean
CP, Ocean NCP, B+tree, Hotspot, Kmeans, Pathfinder, Srad and Streamcluster. PAR-
SEC benchmarks use the simsmall input dataset. The simulation parameters that we
used for Rodinia benchmarks are shown in Table 2.

Figure 11 shows the speedup of SMT configurations with 4, 8 and 16 threads over
single threaded applications. Applications exhibit diverse scaling behavior with thread
count. FFT, Ocean, Radix, B+tree and and Srad tend to be bound by memory band-
width, and their performance plateaus or decreases after 8 threads. Volrend and Flu-
idanimate also have a notable parallelization overhead due to thread state management
and synchronization. In the rest of the evaluation, we will consider the 4-thread SMT
configuration (4W ×1T ) with AVX as our baseline. We will consider 4W ×2T DITVA,
i.e., 4-way SMT with two dynamic vector lanes, 2W × 8T DITVA, i.e., 2-way SMT
with eight dynamic vector lanes and 4W × 4T DITVA, i.e., 4-way SMT with 4 lanes.

5.2. Throughput

Figure 12 shows the speed-up achieved for 4W × 2T DITVA, 4W × 4T DITVA and
2W×8T DITVA over 4-thread SMT with AVX instructions. For reference, we illustrate
the performance of SMT configurations with the same scalar thread count (16W × 1T
and 8W × 1T ). On average, 4W × 2T DITVA achieves 37% higher performance than
4-thread SMT and 4W × 4T DITVA achieves 55% performance improvement. The
4W×4T DITVA also achieves 34% speedup over 16-thread SMT. The 2W×8T DITVA
achieves 46% speedup over 4-thread SMT. Widened datapaths and efficient utilization
of AVX units to execute dynamically vectorized instructions enable these performance
improvements. Although 2W × 8T DITVA has twice the SIMD width of 4W × 4T
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DITVA, it has half as many independent warps. This TLP reduction aggravates stalls
during long latency operations. We find that the best performance-cost tradeoffs are
obtained by balancing homogeneous DLP and heterogeneous TLP.

Due to memory hierarchy related factors, the actual speed-up is not proportional to
DV-instruction occupancy. For instance, the performance of Radix drops with higher
thread counts due to reduced cache locality. The speedup of DITVA over SMT just
compensates this performance loss. The scaling of Hotspot and Srad is likewise lim-
ited by the memory related factors. The performance of DITVA on applications with
low DLP, like Fluidanimate, is on par with 16-thread SMT. Fluidanimate, Ocean CP,
Ocean NCP and Volrend show sub-linear parallel scaling: the total instruction count
increases with thread count, due to extra initialization, bookkeeping and control logic.
Still, DITVA enables extra performance gains for a given thread count.

5.3. Divergence and mispredictions

Figure 13 illustrates the divergence and misprediction rates for respectively single-
lane (i.e. SMT), two-lane and four-lane DITVA configurations. Mispredictions in
DITVA have the same performance impact as mispredictions in SMT. Divergences
can impact time to re-convergence, but have no significant performance impact as both
branch paths are eventually taken. As expected, we observe the highest mispredic-
tion rate on divergent applications. Indeed, we found that most mispredictions happen
within the IS that are less populated, typically with one or two threads only.

5.4. Impact of split data TLB

However, as pointed out in Section 4.2, there is no need to maintain equal contents
for the TLBs of the distinct lanes. Assuming a 4KB page size, Figure 14 illustrates the
TLB miss rates for different configurations: 4-lanes DITVA, i.e., a total of 16 threads,
with 128-entry unified TLB, 256-entry unified TLB and 64-entry split TLB, and a 64-
entry TLB for the SMT configuration.

On our set of benchmarks, the miss rate of the 64-entry split TLB for four lanes
DITVA is in the same range as the one of the 64-entry for SMT. If the TLB is unified,
256-entry is needed to reach the same level of performance. Thus, using split TLBs
appears as a sensible option to avoid the implementation complexity of a unified TLB.

5.5. L1 cache bank conflict reduction

Straightforward bank interleaving using the low order bits on the L1 data cache
leads to mild to severe bank conflicts, as illustrated in Figure 15. We find that many
conflicts are caused by concurrent accesses to the call stacks of different threads. When
the stack base addresses are aligned on page boundaries, concurrent accesses at the
same offset in different stacks result in bank conflicts. Our observation confirms the
findings of prior studies [36, 9].

To reduce such bank conflicts for DV-loads and DV-stores, we use a hashed set
index as introduced in Section 4.2. For a 16-bank cache interleaved at 32-bit word
granularity, we use lower bits from 12 to 15 and higher bits from 24 to 27 and hash
them for banking. Figure 15 illustrates that such a hashing mechanism is effective
in reducing bank conflicts on applications where threads make independent sequential
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memory accesses, such as Blackscholes and FFT. Most other applications also benefit
from hashing. Bank conflicts increase with hashing on B+tree and Kmeans. However,
these applications have few conflicts in either configuration. In the remainder of the
evaluation section, this hashed set index is used.

5.6. Impact of memory bandwidth on memory intensive applications

In the multi-core era, memory bandwidth is a bottleneck for the overall core per-
formance. Our simulations assume 2 GB/s DRAM bandwidth per core. To analyze
the impact of DRAM bandwidth on memory intensive applications running on DITVA,
we simulate configurations with 16 GB/s DRAM bandwidth per core which is a feasi-
ble alternative using high-end memory technologies like HBM [37]. The performance
scaling of 16 GB/s relative to 4-thread SMT with 2 GB/s DRAM bandwidth is illus-
trated in Figure 16.

For many benchmarks, 2 GB/s bandwidth is sufficient. However, as discussed in
Section 5.1, the performance of Srad, Hotspot, Ocean, Radix and FFT is bound by
memory throughput. DITVA enables these applications to benefit from the extra mem-
ory bandwidth to scale further, widening the gap with the baseline SMT configuration.

6. Hardware Overhead, Power and Energy

DITVA induces extra hardware complexity and area as well as extra power supply
demand over an in-order SMT core. On the other hand, DITVA achieves higher per-
formance on SPMD code. This can lead to reduced total energy consumption on such
code.

We analyze qualitatively and quantitatively the sources of hardware complexity,
power demand and energy consumption throughout the DITVA pipeline compared with
the ones of the corresponding in-order SMT core.

6.1. Qualitative evaluation

Pipeline Front End. The modifications in the pipeline front-end induce essentially ex-
tra logic, e.g. comparators and logic to detect IS convergence, the logic to select the
IS within the warp, and the DVIQ mask unsetting logic for managing branch mispre-
dictions and exceptions. The extra complexity and power consumption should remain
relatively limited. The most power hungry logic piece introduced by the DITVA archi-
tecture is the scoreboard that must track the dependencies among registers of up to m
ISs per warp. However, this scoreboard is also banked since there are no inter-thread
register dependencies.

On the other hand, DITVA significantly cuts down dynamic energy consumption
in the front-end. Our experiments show a reduction of 51% of instruction fetches for
4W × 4T DITVA.
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Memory unit. The DITVA memory unit requires extra hardware. First, bank conflict
handling logic is needed, as we consider an interleaved cache. Then, replicated data
TLBs add an overhead in area and static energy. Moreover as DITVA executes more
threads in parallel than an SMT core, the overall capacity of the TLB must be increased
to support these threads. However, as TLB contents do not have to be maintained equal,
we have shown that lane TLBs with the same number of entries as a conventional 4-
way SMT core would be performance effective. Therefore, on DITVA, the TLB silicon
area as well as its static energy consumption is proportional to the number of lanes.

Register file. An in-order n-thread SMT core features n × NbISA scalar registers of
width B bits while a nW ×mT DITVA features n×NbISA DV-registers of width m× B
bits. Estimations using CACTI [38] and McPAT [39] indicate that the access time and
the dynamic energy per accessed word are in the same range for DITVA and the SMT.
The register file silicon area is nearly proportional to m, the number of lanes, and so is
its static leakage.

Execution units. The widening of the two scalar functional units into DV-units consti-
tutes the most significant hardware area overhead. The SIMD DV-units have a higher
leakage and require higher instantaneous power supply than their scalar counterparts.
However, DITVA also leverages the existing AVX SIMD units by reusing them as DV-
units. Additionally, since DV-units are activated through the DV-instruction mask, the
number of dynamic activations of each functional type is about the same for DITVA
and the in-order SMT core on a given workload, and so is the dynamic energy.

Non-SPMD workloads. DITVA only benefits shared memory SPMD applications that
have intrinsic DLP. On single-threaded workloads or highly divergent SPMD work-
loads, DITVA performs on par with the baseline 4-way in-order SMT processor. Work-
loads that do not benefit from DITVA will mostly suffer from the static power overhead
of unused units. Moreover, on single-thread workloads or on multiprogrammed work-
loads, a smart runtime system could be used to power down the extra execution lanes
thus bringing the energy consumption close to the one of the baseline SMT processor.

Non-SPMD multi-threaded workloads may suffer scheduling unbalance (unfair-
ness) due to the RR/MinSP-PC fetch policy. However, this unbalance is limited by the
hybrid fetch policy design. When all threads run independently, a single thread will
get a priority boost and progress twice as fast as each of the other threads. e.g. with 4
threads, the MinSP-PC thread gets 2/5th of the fetch bandwidth, each other thread gets
1/5th.

6.2. Quantitative evaluation

Dynamic vectorization reduces the number of DV-instructions over original instruc-
tions. Figure 17 shows the ratio of the DV-instruction count over the individual instruc-
tion count for 4W ×2T DITVA and 4W ×4T DITVA. In average on our benchmark set,
this ratio is 69% for 4W × 2T DITVA and 49% for 4W × 4T DITVA. DV-instruction
count is low for applications Radix, FFT, Hotspot, Srad and Streamcluster, which have
nearly perfect dynamic vectorization. However, the DV-instruction count reduction
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Table 3: Area and static power McPAT estimates.
Component 4T SMT 4W×2T DITVA 4W×4T DITVA

Area
(mm2)

Static
P. (W)

Area
(mm2)

Static
P. (W)

Area
(mm2)

Static
P. (W)

Front-end 3.46 0.140 3.63 0.149 4.14 0.175
LSU 1.32 0.050 2.21 0.041 2.33 0.054
MMU 0.22 0.009 0.32 0.012 0.50 0.018
Execute 20.98 0.842 21.51 0.868 22.40 0.920
Core total 35.50 1.815 37.30 1.868 39.09 2.001

in Volrend, Fluidanimate and Ocean is compensated by the parallelization overhead
caused by the thread count increase.

We modeled a baseline SMT processor and DITVA within McPAT [39]. It assumes
a 2 GHz clock in 45nm technology with power gating. We modeled two alternative
designs. The first one is the configuration depicted on Table 1, except the cache that
was modeled as 64 KB 8-way as we could not model the banked 32 KB 16-way config-
uration in McPAT. The dynamic energy consumption modeling is illustrated on Figure
18 while modeled silicon area and static energy are reported in Table 3. As in Section
5, we assume that DITVA is built on top of an SMT processor with 256-bit wide AVX
SIMD execution units and that these SIMD execution units are reused in DITVA.

Note that McPAT models execution units as independent ALUs and FPUs, rather
than as SIMD blocks as implemented on current architectures. Also, estimations may
tend to underestimate front-end energy [40]. Thus, the front-end energy savings are
conservative, while the overhead of the back-end is a worst-case estimate. Despite
these conservative assumptions, Figure 18 and Table 3 show that DITVA appears as
an energy-effective solution for SPMD applications with average energy reduction of
22% and 24% for 4W × 2T and 4W × 4T DITVA respectively.

The energy reduction is the result of both a decrease in run-time (Figure 12) and
a reduction in the number of fetched instructions, mitigated by an increase in static
power from the wider execution units.

7. Conclusion

In this paper, we have proposed the DITVA architecture that aims at partially filling
the gap between massively threaded machines, e.g. SIMT GPUs, and SMT general-
purpose CPUs. Compared with an in-order SMT core architecture, DITVA achieves
high throughput on the parallel sections of the SPMD applications by extracting dy-
namic data-level parallelism at runtime. DITVA provides a design tradeoff between
an in-order SMT core and an SIMT GPU core. It vectorizes instructions dynamically
across threads like SIMT GPUs, but retains binary compatibility with general-purpose
CPUs. Applications require no source modification nor re-compilation.

DITVA group threads statically into fixed-size warps. SPMD threads from a warp
are dynamically vectorized at instruction fetch time. The instructions from the differ-
ent threads are grouped together to share an instruction stream whenever their PC are
equal. Then the group of instructions (the DV-instruction) progresses in the pipeline
as a unit. This allows to mutualize the instruction front-end as well as the overall in-
struction control. The instructions from the different threads in a DV-instruction are
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executed on replicated execution lanes. DITVA maintains competitive single-thread
and divergent multi-thread performance by using branch prediction and speculative
predicated execution. By relying on a simple thread scheduling policy favoring con-
vergence and by handling branch divergence at the execute stage as a partial branch
misprediction, most of the complexity associated with tracking and predicting thread
divergence and convergence can be avoided. To support concurrent memory accesses,
DITVA implements a bank-interleaved cache with a fully hashed set index to mitigate
bank conflicts. DITVA leverages the possibility to use TLBs with different contents
for the different threads. It uses a split TLB much smaller than the TLB of an in-order
SMT core.

Our simulation shows that 4W × 2T and 4W × 4T DITVA processors are cost-
effective design points. For instance, a 4W×4T DITVA architecture reduces instruction
count by 51% and improving performance by 55% over a 4-thread 4-way issue SMT on
the SPMD applications from PARSEC and OpenMP Rodinia. While a DITVA archi-
tecture induces some silicon area and static energy overheads over an in-order SMT,
by leveraging the preexisting SIMD execution units to execute the DV-instructions,
DITVA can be very energy effective to execute SPMD code. Therefore, DITVA ap-
pears as a cost-effective design for achieving very high single-core performance on
SPMD parallel sections. A DITVA-based multi-core or many-core would achieve very
high parallel performance.

As DITVA shares some of its key features with the SIMT execution model, many
micro-architecture improvements proposed for SIMT could also apply to DITVA. For
instance, more flexibility could be obtained using Dynamic Warp Formation [17] or Si-
multaneous Branch Interweaving [18], Dynamic Warp Subdivision [33] could improve
latency tolerance by allowing threads to diverge on partial cache misses, and Dynamic
Scalarization [41] could further unify redundant data-flow across threads. The design
of fetch steering policies that best balance SIMD utilization with fairness is still an open
research problem. Adaptive hybrid policies could enable both high SIMD utilization
on data-parallel code and good fairness when running independent threads.
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(a) Scalar ALU instruction (b) Scalar SSE (floating-point) with mask
1111

(c) Packed 128-bit SSE with mask 1011 (d) Packed 256-bit AVX with mask 1011

Figure 10: Operand collection on 4W × 4T DITVA depending on DV-instruction type and execution mask.
’w’ represents a 64-bit word
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Figure 11: Speedup with thread count in the baseline SMT configuration, normalized to single-thread per-
formance
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Figure 12: Speed-up over 4-thread SMT as a function of warp size
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Figure 13: Divergence and mispredictions per thousand instructions
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Figure 14: TLB misses per thousand instructions for split or unified TLBs on 4W × 4T DITVA
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Figure 15: Bank conflicts for 4W × 4T DITVA
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Figure 16: Performance scaling with memory bandwidth, relative to 4-thread SMT with 2 GB/s DRAM
bandwidth
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Figure 17: DV-instruction count reduction over 4-thread SMT as a function of warp size
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Figure 18: Relative energy consumption over 4-thread SMT. -dyn and -st are dynamic and static energy,
respectively.
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