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THE SEMICLASSICAL ZETA FUNCTION FOR GEODESIC

FLOWS ON NEGATIVELY CURVED MANIFOLDS

FRÉDÉRIC FAURE AND MASATO TSUJII

Abstract. We consider the semi-classical (or Gutzwiller-Voros) zeta functions
for C8 contact Anosov flows. Analyzing the spectra of the generators of some

transfer operators associated to the flow, we prove that, for arbitrarily small
τ ą 0, its zeros are contained in the union of the τ -neighborhood of the
imaginary axis, |ℜpsq| ă τ , and the half-plane ℜpsq ă ´χ0 ` τ , up to finitely
many exceptions, where χ0 ą 0 is the hyperbolicity exponent of the flow.
Further we show that the density of the zeros along the imaginary axis satisfy
an analogue of the Weyl law.
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2 FRÉDÉRIC FAURE AND MASATO TSUJII

1. Introduction

The dynamical zeta functions for flows are introduced by S. Smale in the mon-
umental paper “Differentiable dynamical systems” [40]. In the former part of the
paper, he discussed about the Artin-Masur zeta function for discrete dynamical
systems among others and showed that it is a rational function for any Anosov
diffeomorphism. Then, in the latter part, he considered a parallel object for con-
tinuous dynamical systems (or flows). He defined the dynamical zeta function for
a (non-singular) flow by the formula

(1.1) Zpsq :“
ź

γPΓ

8ź

k“0

´
1 ´ e´ps`kq|γ|

¯
“ exp

˜
´

ÿ

γPΓ

8ÿ

k“0

8ÿ

m“1

e´ps`kqm¨|γ|

m

¸
,

where Γ denotes the set of prime periodic orbits for the flow and |γ| denotes the
period of γ P Γ. This definition, seemingly rather complicated, is motivated by a
famous result of Selberg [38]. For the geodesic flow on a closed hyperbolic surface,
i.e. a closed surface with negative constant curvature (” ´1), Zpsq coincides with
the Selberg zeta function and the result of Selberg gives1 the following analytic
properties of Zpsq: (See Figure 1.)

(a) The infinite product and sum on the right-hand side of (1.1) converge ab-
solutely when Repsq ą 1. Hence Zpsq is initially defined as an analytic
function without zeros on the region tRepsq ą 1u.

(b) The function Zpsq thus defined extends analytically to the whole complex
plane C.

(c) The analytic extension of Zpsq has zeros at s “ ´n for n “ 0, 1, 2, ¨ ¨ ¨ and
the order of the zero s “ ´n is p2n` 1qpg´ 1q, where g ě 2 is the genus of
the surface. The other zeros are exactly

s “
1

2
˘

c
1

4
´ λi, i “ 0, 1, 2, ¨ ¨ ¨

where λ0 “ 0 ď λ1 ď λ2 ď ¨ ¨ ¨ are the eigenvalues of the Laplacian on the
surface. In particular, all of the zeros of the latter kind (called non-trivial
zeros) are located on the line Repsq “ 1{2 with finitely many exceptions.

(d) The analytic extension of Zpsq satisfies the functional equation2

Zp1 ´ sq “ Zpsq ¨ exp

˜
2pg ´ 1q

ż s´1{2

0

πx tanpπxqdx

¸
.

Smale’s idea was to study the dynamical zeta function Zpsq defined as above
in more general context. The main question3 ought to have been whether the
properties (a)-(d) above hold for more general types of flow, such as the geodesic

1 The paper [38] treats much more general setting and the results are stated in terms of
geometry. Since the closed geodesics correspond to the periodic orbits of the geodesic flow, we
may interpret the results in terms of dynamical systems. For the result mentioned here, we refer
[31, 41].

2The line integral on the right-hand side may change its value by an integer multiple of 2πi
when we consider a different path for integration. But this ambiguity is cancelled when it is put
in the exponential function and therefore the factor expp¨q on the right-hand side is well-defined.

3There are many other related problems. For instance the relation of special values of the
dynamical zeta function to the geometric properties of the underlying manifolds is an interesting
problem. See [12, 21, 32].
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Figure 1. Zeros of the Selberg zeta function Zpsq

flows on manifolds with negative variable curvature or, more generally, to general
Anosov flows. But it was not clear whether this idea was reasonable, since the
results of Selberg were based on the Selberg trace formula for the heat kernel on
the surface and depended crucially on the fact that the surface was of negative
constant curvature. This must be the reason why Smale described his idea “wild”.
In [40], he showed that Zpsq has meromorphic extension to the whole complex
plane if the flow is a suspension flow of an Anosov diffeomorphism by a constant
roof function. However the main part of the “wild” idea was left as a question.

Later the dynamical zeta function Zpsq is generalized and studied extensively
by many people not only in dynamical system theory but also in the fields of
mathematical physics related to “quantum chaos”. In dynamical system theory,
the dynamical zeta function Zpsq and its variants are related to semi-groups of
transfer operators associated to the flow through the Atiyah-Bott-Guillemin trace
formula, as we will explain later. We refer the papers [36, 37] for the development
in the early stage and the paper [22] (and the references therein) for the recent
state of related researches.

For the extensions of the claim (a) and (b) above, we already have satisfactory
results: for instance, the dynamical zeta function Zpsq for a C8 Anosov flow is
known to have meromorphic extension to the whole complex plane C. (See [22, 11].
Note that the arguments in these papers are applicable to more general dynamical
zeta functions.) However, to the best of authors’ understanding, not much is known
about the extension of the claims (c) or (d), or more generally on the distributions
of singularities of the (generalized) dynamical zeta functions. In this paper, we
consider an extension of the claim (c) in the case of geodesic flows on negatively
curved manifolds or, more generally, contact Anosov flows.

Before proceeding with the problem, we would like to pose a question whether
the zeta function Zpsq introduced by Smale is the “right” candidate to be studied.
In fact, there are variety of generalized dynamical zeta functions which coincide
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Figure 2. The zeros of the semi-classical zeta function Zscpsq.
The zeros are symmetric with respect to the complex conjugation.

with Zpsq in the cases of geodesic flows on closed hyperbolic surfaces, because so
do some dynamical exponents. Each of such generalized dynamical zeta functions
may be regarded as an extension of Selberg zeta function in their own rights and
their analytic property will be different when we consider them in more general
cases. And there is no clear evidence that Zpsq is better or more natural than the
others. This is actually one of the question that the authors would like to address
in this paper. For the geodesic flows on a negatively curved closed manifold N (or
more generally non-singular flows with some hyperbolicity), the “semi-classical” or
“Gutzwiller-Voros” zeta function Zscpsq is defined by

(1.2) Zscpsq “ exp

˜
´

ÿ

γPΓ

8ÿ

m“1

e´s¨m¨|γ|

m ¨ | detpId ´Dm
γ q|1{2

¸

where Dγ is the transversal Jacobian matrix4 along a prime periodic orbit γ. (See
[6] for instance.) As we will see, this is a variant of the dynamical zeta function Zpsq
and coincides with the dynamical zeta function Zpsq if N is a closed surface with
constant negative (” ´1) curvature5, with shift of the variable s by 1{2. Hence
we may regard Zscpsq as a different generalization of Selberg zeta function than
Zpsq. As the main result of this paper, we show that an extension of the claim (c)
holds for Zscpsq in the case of the geodesic flows on manifolds with negative variable
curvature (and more generally for contact Anosov flows), that is, countably many
zeros of the analytic extension of Zscpsq concentrate along the imaginary axis and
there are regions on the both sides of the imaginary axis with only finitely many
zeros. (See Figure 2 and compare it with Figure 1.) It seems that this result

4This is the Jacobian matrix of the Poincaré map for the orbit γ at the intersection.
5For the case of a surface with constant negative curvature (” ´1), the eigenvalues of Dγ are

expp˘|γ|q. Hence we can check the equality Zscpsq “ Zps ` 1{2q by simple calculation.
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and the argument in the proof are suggesting that the semi-classical zeta function
Zscp¨q is the “right” generalization of the Selberg zeta function when we consider
the extension of the claim (c) (and (d)).

Below we describe our result more precisely. Let M be a closed C8 manifold of
odd dimension, say, 2d`1. We consider a C8 contact Anosov flow f t :M Ñ M . By
definition, the flow f t preserves a contact form α onM , that is, a differential 1-form
for which α^ pdαq^d vanishes nowhere. (We may and do assume αpV q ” 1 for the
generating vector field V of the flowf t by multiplying α by a C8 function.) Also
there exist constants χ0 ą 0, C ą 0 and a Df t-invariant continuous decomposition

TM “ E0 ‘ Es ‘ Eu

of the tangent bundle TM such that E0 is the one-dimensional subbundle spanned
by the generating vector field V of the flow f t and that

(1.3) }Df t|Es
} ď Ce´χ0t and }Df´t|Eu

} ď Ce´χ0t for t ě 0.

Remark 1.1. The geodesic flow f t : T ˚
1 N Ñ T ˚

1 N on a closed negatively curved
manifold N is a contact Anosov flow, where T ˚

1 N is the unit cotangent bundle of
N and the contact form α preserved by the flow is the restriction of the canonical
one form on T ˚N .

From the definitions, it is not difficult to see that

Es ‘ Eu “ kerα and dimEu “ dimEs “ d.

We henceforth fix χ0 ą 0 satisfying (1.3) and call it the hyperbolicity exponent
of the flow f t. Note that the subbundles Es and Eu are in general not smooth
but only Hölder continuous. Below we suppose that the subbundles Es and Eu are
β-Hölder continuous with exponent

(1.4) 0 ă β ă 1.

The main result of this paper is the following theorem.

Theorem 1.2. If f t : M Ñ M is a contact Anosov flow, its semi-classical zeta
function Zscpsq, which is initially defined6 by (1.2) as a holomorphic function with-
out zeros on the half-plane

(1.5) Repsq ą Ptoppf t,´p1{2q log |Df t|Eu
|q ą 0,

extends to a meromorphic function on the whole complex plane C. For arbitrarily
small τ ą 0, the zeros of the meromorphic extension of Zscpsq are contained in the
region

(1.6) Upχ0, τq :“ tz P C | |Repzq| ă τ or Repzq ă ´χ0 ` τu

up to finitely many exceptions7, while there are at most finitely many poles on the
region Repsq ą ´χ0 ` τ . There do exist infinitely many zeros on the strip

(1.7) U0pτq “ tz P C | |Repzq| ă τu

6Since the factor | detpId ´ Dm
γ q| in the definition of Zscpsq is positive and proportional to

|detpDfm|γ||Eu
pxγqq| for xγ P γ, the sum in the definition of Zscpsq converges absolutely if and

only if (1.5) holds. (See [29, Theorem C] for the definition of topological pressure Ptopp¨q and its
expression in terms of periodic orbits in the case of Anosov flow.) Further Zscpsq has its rightmost
zero at Ptoppf t,´p1{2q log |Df t|Eu

|q. For the proof, see [37] and the expression (1.13).
7The number of exceptional zeros may increase as τ becomes smaller.
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and a (weak) analogue of Weyl law holds for the distribution of the imaginary part
of the zeros in U0pτq, that is, for any δ ą 0, there exists a constant C ą 1 such
that, for arbitrarily small 0 ă τ ă χ0, the estimate

(1.8)
|ω|d

C
ă

#t zeros of Zscpsq | |Repsq| ă τ , ω ď Impsq ď ω ` |ω|δ u

|ω|δ
ă C|ω|d

holds for any real number ω with sufficiently large absolute value.

The last claim implies in particular that

|ω|d`1

C 1
ă # t zeros of Zscpsq | |Repsq| ă τ , |Impsq| ď ω u ă C 1|ω|d`1

for some constant C 1 ą 0 and for sufficiently large ω ą 0.

Remark 1.3. In (1.8) above, the estimate from below is the main assertion. In
similar problems (such as density of Ruelle-Pollicott resonances and resonances in
the scattering problems), reasonable estimates from below are usually much more
difficult to obtain compared with those from above. (For estimates from above,
we refer [8, 15].) It will be possible to make the estimate (1.8) more precise by
replacing the factors |ω|δ in it by smaller factor such as log |ω| or even by some
fixed large constant. Also, by analogy with the Weyl law for the Laplacians, it is
natural to expect that the ratio

#tzeros of Zscpsq | |Repsq| ă τ , ω ď Impsq ď ω ` |ω|δ u

|ω|d`δ

converges to p2πq´d´1VolpMq as ω Ñ ˘8 where Vol denotes the contact volume,
i.e. Vol “ α^ pdαq^d. But we do not go farther into these problems in this paper.

We deduce the theorem above from spectral properties of some transfer operators
associated to the flow f t. Let us recall an idea due to Ruelle. Let πV : V Ñ M be a
complex vector bundle8 over M and write Γ0pV q for the set of continuous sections
of V . Let F t : V Ñ V be a one-parameter group of vector bundle maps which
makes the following diagram commutes:

V
F t

ÝÝÝÝÑ V

πV

§§đ πV

§§đ

M
ft

ÝÝÝÝÑ M

We consider the one-parameter group of vector-valued transfer operators

Lt : Γ0pV q Ñ Γ0pV q, Ltvpxq “ F tpvpf´tpxqqq.

The flat (or Atiyah-Bott-Guillemin) trace of Lt is calculated as

(1.9) Tr5
Lt “

ÿ

γPΓ

8ÿ

m“1

|γ| ¨ TrEm
γ

| detpId ´D´m
γ q|

¨ δpt ´m ¨ |γ|q,

where Eγ is the linear transformation F |γ| : π´1
V pxγq Ñ π´1

V pxγq at a point xγ on

the orbit γ. (See the remark below.) Notice that Tr5
Lt is not a function of t in the

usual sense but is a distribution.

8We always assume that each vector bundle is complexified and equipped with a Hermitian
inner product on it. The choice of the Hermitian inner product is not essential. But we need it
for some expressions, e.g. the definition (1.11).
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Remark 1.4. The flat trace in (1.9) is defined as the integral of the Schwartz kernel
of Lt on the diagonal set in M ˆ M . The integral is well-defined as a distribution
(see [27, Ch. 8], [25, Th.8]), because hyperbolicity of the flow f t ensures that the
graph of pt, xq ÞÑ f tpxq is transversal to the diagonal set x “ y in R` ˆ M ˆ M .
But, for our argument, it will be more convenient to interpret the definition as
follows. First we consider the case where V is one-dimensional and trivial, so that
Lt may be regarded as scalar-valued. Let Kpx, y; tq be the Schwartz kernel of the
operator Lt and let Kδpx, y; tq for δ ě 0 be a one-parameter family of smoothings
of Kpx, y; tq by using mollifier, which converges to Kpx, y; tq as δ Ñ `0. We define

the distribution Tr5
Lt on p0,8q by the relation

xTr5
Lt, ϕy :“ lim

δÑ`0

ż
Kδpx, x; tqϕptqdx

for ϕ P C8
0 pRq supported on tt P R | t ą 0u. It is not difficult to check that

the limit on the right-hand side exists and does not depend on the choice of the
smoothing Kδpx, y; tq. When V is higher dimensional or non-trivial, we write the
transfer operator Lt as a matrix of scalar-valued transfer operators pLt

ijq1ďi,jďN

by using a system of local trivializations of V and an associated partition of unity.

We define the flat trace as Tr5
Lt “

řN
i“1 Tr

5
Lt

ii. We can check that this definition
does not depend on the matrix expression pLt

ijq1ďi,jďN and gives (1.9).

For 0 ď k ď d, let π : pE˚
u q^k Ñ M be the k-th exterior product of the dual E˚

u

of the unstable sub-bundle Eu and let F t
k : pE˚

u q^k Ñ pE˚
u q^k be the vector bundle

map defined by9

(1.10) F t
kpvq “ | detDf t|Eu

pπpvqq|1{2 ¨ ppDf´tq˚q^kpvq.

Note that the action of pDf´tq˚ on E˚
u is contracting when t ě 0. The correspond-

ing one-parameter family of vector-valued transfer operators is

Lt
kupxq “ F t

kpupf´tpxqqq(1.11)

“ | detDf t|Eu
pf´tpxqq|1{2 ¨ ppDf´tq˚q^kpupf´tpxqqq

and its flat trace is

Tr5
Lt

k “
ÿ

γPΓ

8ÿ

m“1

|γ| ¨ | detDu
γ |m{2 ¨ Tr ppDu

γ q´mq^k

| detpId ´D´m
γ q|

¨ δpt´m ¨ |γ|q

where Du
γ is the transversal Jacobian matrix for γ P Γ restricted to the unstable

sub-bundle Eu.
Since the differential dα of the contact form α restricts to a symplectic form on

kerα “ Es ‘ Eu and is preserved by Df t, we have
b

| detpId ´D´m
γ q| “ | detpDu

γ q|m{2 ¨ | det
`
Id ´ pDu

γ q´m
˘

|.

Hence, provided that the subbundle E˚
u is orientable, we have

dÿ

k“0

p´1qk Tr5
Lt

k “
ÿ

γPΓ

8ÿ

m“1

|γ|a
| detpId ´D´m

γ q|
¨ δpt´m ¨ |γ|q

9As careful readers may have realized, the sub-bundles Eu (and Es) are not smooth in general
and this will cause many technical difficulties in the argument. Indeed this is the main issue of
this paper in technical sense. We will address this problem in the next section. For a while, we
assume that Eu is smooth or just ignore the problem.
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from the algebraic relation

detpId ´ pDu
γ q´mq “

dÿ

k“0

p´1qk ¨ Tr pppDu
γ q´mq^kq.

Remark 1.5. In the case where E˚
u is not orientable, the formula above is not valid.

In fact, we actually had to replace F t
k with its extension

rF t
k “ F t

k b pDf´tq˚ : pE˚
u q^k b ℓu Ñ pE˚

u q^k b ℓu

where ℓu is the orientation line bundle of E˚
u and pDf´tq˚ : ℓu Ñ ℓu denotes the

natural pull-back action by f´t on ℓu. (See [20].) Since this modification does no
harm in the argument below except making the notation more cumbersome, we
proceed with assuming E˚

u to be orientable and keep this modification necessary
for the other cases implicit in the following.

Therefore the semiclassical zeta function Zscpsq is expressed as 10

(1.12) Zscpsq “ exp

˜
´

ż 8

`0

e´st

t

dÿ

k“0

p´1qkTr5
Lt

kdt

¸
.

We define the dynamical Fredholm determinant of Lt
k by

dkpsq : “ exp

ˆ
´

ż 8

`0

e´st

t
¨ Tr5

Lt
kdt

˙

“ exp

˜
´

ÿ

γPΓ

8ÿ

m“1

e´s¨m¨|γ| ¨ | detDu
γ |m{2 ¨ Tr ppDu

γ q´mq^k

m ¨ | detpId ´D´m
γ q|

¸
.

Then the semi-classical zeta function is expressed as an alternative product

(1.13) Zscpsq “
dź

k“0

dkpsqp´1qk

at least for s with sufficiently large real part. The dynamical Fredholm determinant
dkpsq satisfies

plog dkpsqq1 “
dkpsq1

dkpsq
“

ż 8

`0

e´st ¨ Tr5
Lt

kdt.

If Lt
k were a finite rank diagonal matrix with diagonal elements eλℓt and if the flat

trace Tr5 were the usual trace, the right-hand side would be
ř

ℓps ´ λℓq
´1 and we

would have dkpsq “ const.
ś

ℓps´ λℓq. We therefore expect that the eigenvalues of
the generator of Lt

k appear as zeros of the dynamical Fredholm determinant dkpsq
and consequently zeros (resp. poles) of Zscpsq when k is even (resp. odd).

2. Grassmann extension

A technical difficulty in dealing with the semi-classical zeta functions Zscpsq is
that the coefficient | detDf t|Eu

|1{2 and also the vector bundle pE˚
u q^k in the defini-

tion (1.11) of the corresponding transfer operators Lt
k is not smooth but only Hölder

continuous. To avoid this difficulty, we actually consider the corresponding transfer
operators on a Grassmann bundle G over the manifold M . (In the literature, this
kind of idea is found in the papers [7, 24].)

10The lower bound `0 in the integration indicates some small positive number that is smaller
than the minimum of the periods of periodic orbits for the flow.
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Consider the Grassmann bundle πG : G Ñ M that consists of d-dimensional
subspaces of the tangent bundle TM . By definition, the fiber π´1

G pxq for each point
x P M is the Grassmann space Gx that consists of d-dimensional subspaces of the
tangent space TxM , whose dimension is dimGx “ dp2d ` 1 ´ dq “ d2 ` d. We
suppose that G is equipped with a smooth Riemann metric.

The flow f t naturally induces a flow on G:

f t
G :“ pDf tq˚ : G Ñ G, f t

Gpx, σq :“ pDf tq˚px, σq “ pf tpxq, Df tpσqq.

Let eu : M Ñ G be the section which assigns the unstable subspace Eupxq P G

to each point x P M . (But notice that this section eu is not smooth in general.)
Clearly the following diagrams commute:

G
ft
GÝÝÝÝÑ G

πG

§§đ πG

§§đ

M
ft

ÝÝÝÝÑ M

G
ft
GÝÝÝÝÑ G

eu

İ§§ eu

İ§§

M
ft

ÝÝÝÝÑ M

Since image Impeuq of the section eu is an attracting isolated invariant subset for the
extended flow f t

G, we can take a small relatively compact absorbing neighborhood
U0 of it so that

f t
GpU0q Ť U0 for t ą 0, and

č

tě0

f t
GpU0q “ Impeuq.

The semi-flow f t
G : U0 Ñ U0 for t ě 0 is hyperbolic in the following sense: There is

a continuous decomposition of the tangent bundle

(2.1) TU0 “ rEu ‘ rEs ‘ rE0

where rEs :“ Dπ´1
G pEsq, rE0 :“ xBtf

t
Gy and rEu is a complement of rE0 ‘ rEs “

π´1
G pE0 ‘ Esq such that DπGp rEuq “ Eu; The semi-flow f t

G : U0 Ñ U0 (t ě 0) is

exponentially contracting (resp. expanding) on rEs (resp. rEu), that is
11,

(2.2) }Df t
G| rEs

} ď Ce´χ0t and }Df t
G| rEu

}min ě C´1eχ0t for t ě 0

where } ¨ }min in the latter inequality denotes the minimum expansion rate

}Df t
G| rEu

}min “ mint}Df t
Gv} | v P rEu, |v| “ 1u.

The sub-bundles rE0 and rEs are (forward) invariant with respect to the semi-flow

f t
G, while

rEu will not.
Let πK : VK Ñ G be the pd2 ` dq-dimensional sub-bundle of TG defined by

VK :“ tpz, vq P TG | DπGpvq “ 0u Ă TG.

Let π˚
GpTMq be the pull-back of the tangent bundle TM by the projection πG :

G Ñ M and let π : Vu Ñ G be its smooth sub-bundle defined tautologically by

Vu “ tpz, vq P π˚
GpTMq | v P rzsu

where rzs denotes the d-dimensional subspace of TπGpzqM that z P G represents.
Let π : V ˚

u Ñ G be the dual of Vu. We define

πk,ℓ : Vk,ℓ :“ pV ˚
u q^k b pVKq^ℓ Ñ G for 0 ď k ď d and 0 ď ℓ ď d2 ` d.

11We can and do take the constant χ0 same as that in (1.3), though this is not necessary.
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This is a smooth vector bundle. And, instead of the non-smooth one-parameter
group of vector bundle map F t

k in (1.10), we consider the smooth one-parameter
semi-group F t

k,ℓ : Vk,ℓ Ñ Vk,ℓ defined by

(2.3) F t
k,ℓpz, ub vq “

`
f t
Gpzq, btpzq ¨ ppDf´tq˚q^kpuq b pDf t

Gq^ℓpvq
˘

where

(2.4) btpzq “ | detDf t
πGpzq|rzs|

1{2 ¨ | detppDf t
Gqz|kerDπG

q|´1.

The first term on the right-hand side of (2.4) is the determinant of the restriction
of Df t at πGpzq to the subspace rzs of TπGpzqM represented by z, while the second

term is the determinant of the restriction of Df t
G at z to the kernel of DπG. Clearly

the action of F t
k,ℓ is smooth.

Let Γ8pU0, Vk,ℓq be the set of smooth sections of the vector bundle Vk,ℓ whose
support is contained in the isolating neighborhood U0 of the attracting subset
Impeuq. The semi-group of transfer operators associated to F t

k,ℓ is

(2.5) Lt
k,ℓ : Γ

8pU0, Vk,ℓq Ñ Γ8pU0, Vk,ℓq, Lt
k,ℓupzq “ F t

k,ℓpupf´t
G pzqqq.

The flat trace of Lt
k,ℓ is computed as

Tr5
Lt

k,ℓ “
ÿ

γPΓ

8ÿ

m“1

|γ| ¨ | detpDu
γ q|m{2 ¨ Tr ppDu

γ q´mq^k ¨ Tr ppDK
γ qmq^ℓ

| detpDK
γ q|m ¨ | detpId ´D´m

γ q| ¨ | detpId ´ ppDK
γ q´mq|

¨δpt´m|γ|q

whereDK
γ is the restriction of the transversal Jacobian matrix for the prime periodic

orbit γ̂ptq “ eupγptqq of the flow f t
G to V K “ kerDπG. We define the dynamical

Fredholm determinant of Lt
k,ℓ by

(2.6) dk,ℓpsq “ exp

ˆ
´

ż 8

`0

e´st

t
¨ Tr5

Lt
k,ℓdt

˙
.

Computation as in the last section then gives

(2.7) Zscpsq “
dź

k“0

d2`dź

ℓ“0

dk,ℓpsq
p´1qk`ℓ

provided that E˚
u is orientable. (Note that d2 ` d is even and recall Remark 1.5.)

Remark 2.1. This argument using the Grassmann extension resolves the problems
related to non-smoothness of the coefficient of the transfer operators Lt

k in the
formal level. However the things are not that simple. The attracting section eu is
not smooth and we will find some technical problems (and solutions to them) in
the course of the argument. See Subsection 5.1 for instance.

The next theorem on the spectral property of the generators of one-parameter
semi-groups Lt

k,ℓ is the main ingredient of this paper.

Theorem 2.2. Let 0 ď k ď d and 0 ď ℓ ď d2 ` d. For each r ě 0, there exists a
Hilbert space

Γ8pU0, Vk,ℓq Ă rKrpU0, Vk,ℓq Ă pΓ8pU0, Vk,ℓqq1

that consists of distributional sections of the vector bundle Vk,ℓ and, if r ą 0 is
sufficiently large, the following claims hold true:
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(1) The one-parameter semi-group of operators Lt
k,ℓ for t ě 0 extends to a

strongly continuous semi-group of operators on rKrpU0, Vk,ℓq and the spectral
set of the generator

Ak,ℓ : DpAk,ℓq Ă rKrpU0, Vk,ℓq Ñ rKrpU0, Vk,ℓq

in the region tRepzq ą ´rχ0{4u consists of discrete eigenvalues with fi-
nite multiplicity. These discrete eigenvalues (and their multiplicities) are
independent of the choice of r.

(2) For any τ ą 0, there exist only finitely many eigenvalues of the generator
Ak,ℓ on the region Repsq ą ´pk ` ℓqχ0 ` τ .

(3) For the case pk, ℓq “ p0, 0q, the spectral set of A0,0 is contained in the region
Upχ0, τq defined in (1.6), up to finitely many exceptions, for arbitrarily
small 0 ă τ ă χ0. Moreover there do exist countably many eigenvalues of
A0,0 in the strip U0pτq defined in (1.7) and, for any δ ą 0, we have

|ω|d

C
ă

#teigenvalues of A0,0 | |Repsq| ă τ , ω ď Impsq ď ω ` |ω|δu

|ω|δ
ă C|ω|d

for ω with sufficiently large absolute value, where C ą 1 is a constant
independent of ω.

The next theorem gives the relation between the eigenvalues of the generator of
the semi-group Lt

k,ℓ and zeros of the dynamical Fredholm determinant dk,ℓpsq.

Theorem 2.3. The dynamical Fredholm determinant dk,ℓpsq of the one-parameter
semi-group of transfer operators Lt

k,ℓ extends to a holomorphic function on the
complex plane C. For any c ą 0, there exists r˚ ą 0 such that, if r ě r˚, the zeros
of the analytic extension of dk,ℓpsq coincide with the eigenvalues of the generator of

Lt
k,ℓ :

rKrpU0, Vk,ℓq Ñ rKrpU0, Vk,ℓq on the region Repsq ą ´c, including multiplicity.

Since the relation (2.7) holds at least for s P C with sufficiently large real part,
the main theorem (Theorem 1.2) follows immediately from the two theorems above.

Remark 2.4. In the proofs of Theorem 2.2 and Theorem 2.3, we will mostly consider
the case pk, ℓq “ p0, 0q and put a few remarks about the other cases pk, ℓq ‰ p0, 0q
in the course of the argument. Indeed the case pk, ℓq “ p0, 0q is most important
because the zeros of the semi-classical zeta function Zscpsq along the imaginary
axis correspond to the eigenvalues of the generator A0,0 of the semi-group Lt

0,0.

Note that we may and do regard Lt
0,0 as a scalar-valued transfer operator because

the vector bundle V0,0 is one-dimensional and trivial. In the cases where pk, ℓq ‰
p0, 0q, the transfer operators Lt

k,ℓ are vector-valued. But we can apply the parallel

argument regarding the transfer operators Lt
k,ℓ as matrices of scalar-valued transfer

operators as we noted at the end of Remark 1.4. (Actually the argument is much
simpler in the cases pk, ℓq ‰ p0, 0q, because they are irrelevant to the claim (3) in
Theorem 2.2.)

We finish this section by describing12 the ideas behind the proofs and the plan of
the following sections. A basic idea in the proofs is to regard the transfer operators
as “Fourier integral operator”, that is to say, to regard functions (or sections of vec-
tor bundles actually) as superposition of wave packets (i.e. functions concentrating

12But note that the rigorous argument in the proofs will somewhat deviate from the explanation
here by technical reasons.
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both on the real and frequency spaces) and look how the action of the transfer
operator transform one wave packet to another (or to a cloud of wave packets more
precisely). For simplicity, let us consider the case Lt

0,0 of scalar-valued transfer
operators. In our argument, the wave packets are parametrized by the points in
the cotangent bundle T ˚U0 Ă T ˚G and the transformation of the wave packets
that Lt

0,0 induces is closely related to the map pDf´t
G q˚ : T ˚U0 Ñ T ˚U0, called

the canonical map. Notice that, since the flow f t preserves the contact form α, the
action of the canonical map pDf´t

G q˚ preserves the submanifold

(2.8) X “ ts ¨ π˚
Gpαqpwq P T ˚U0 | s P R, w P Impeuqu Ă T ˚U0,

which is called the “trapped set”13, and the action on the outside of a small neigh-
borhood of X is not recurrent as a consequence of hyperbolicity of the flow f t

G. This
fact suggests that, concerning the spectrum and trace, the most essential is the ac-
tion of the transfer operators on the wave packets corresponding to the points in a
small neighborhood of X . This idea has been used in the previous papers [42, 43]
and led to the results which essentially correspond to the claim (2) of Theorem 2.2.

Remark 2.5. If the reader is familiar with Dolgopyat argument [9], the idea behind
the claim (2) of Theorem 2.2 (and the reason for the factors | detpDf t

x|Eu
q|1{2 in

the definitions of transfer operators) may be understood roughly as follows. For
simplicity, let us forget about the Grassmann extension for the moment and consider
the simple transfer operator u ÞÑ u˝f´t onM . The trapped set in such setting is the
one-dimensional vector subbundle of T ˚M spanned by α. Consider the situation
where the transfer operator Lt

0 for t " 1 acts on wave packets that have high
frequency in the direction of α with spatial size 0 ă δ ! 1 As usual in Dolgopyat
argument, we suppose that this action of the transfer operator Lt

0 is followed by a
smoothing (or averaging) operation14 along the stable foliation in the scale δ. The
last smoothing enlarge the supports of the images of wave packets in the stable
direction by the rate proportional to | detpDf t

x|Es
q|´1 „ | detpDf t

x|Eu
q|. Hence, on

the one hand, the L2 norms of the images of wave packets decrease by the rate
proportional to | detpDf t

x|Eu
q|´1{2 and, on the other hand, makes overlaps of the

images of wave packets at points that were separated in the stable direction. The
analysis of interference (or cancellation by difference of complex phase) between
such overlapping images is equivalent to the essential part of Dolgopyat argument.
In the papers [42, 43], we showed basically that the overlapping images are almost
orthogonal to each other in L2, using complete non-integrability of the contact form
α, and concluded that the essential spectral radius of the (simple) transfer operator

is bounded by supx | detpDf t
x|Eu

q|´1{2. With the same idea, we can show the claim
corresponding to Theorem 2.2 (2) for Lt

0, because the coefficient of Lt
0 balances the

rate | detpDf t
x|Eu

q|´1{2.

However, in order to get more information on the spectrum as described in the
claim (3), we have to analyze more precisely the action of transfer operators on the
wave packets associated to the points in a neighborhood of the trapped set X . Such
action is modeled by the so-called “prequantum map” and has already been studied
in the paper [13] in the linear setting and then extended to the non-linear setting

13In terminology of dynamical system theory, this is nothing but the non-wandering set for
the dynamics of pDf´t

G
q˚.

14Here we do not explain why we apply this smoothing along stable foliation. Let us just note
that the effect of this smoothing will decreases exponentially fast in further evolution.
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Lt

smoothing along
stable foliation

Figure 3. A schematic picture for the explanation in Remark 2.5.
This is a picture viewed from the direction of the flow.

in the previous paper [18] of the authors. (The explanation in [18, Section 2.3] will
be useful to understand the idea that leads to the main theorems.) We are going
to put the argument developed in those papers into the setting of contact Anosov
flows. Note that, in [13, 18], it was crucially important that the trapped set was an
invariant symplectic submanifold of the phase space and normally hyperbolic for
the induced dynamical system on the phase space. In our setting of contact Anosov
flows, this corresponds to the fact that the projection of the trapped set X above
to T ˚M ,

(2.9) X̌ “ ts ¨ αpxq P T ˚M | s P R, x P Mu Ă T ˚M,

is an invariant symplectic submanifold of T ˚M on the outside of the zero section
and is normally hyperbolic with respect to the flow pDf´tq˚.

Organization of this paper. The remaining part of this paper is organized as
follows. In the next section, Section 3, we make a few comments related to the
main results. The proof of the main results starts from Section 4. In Section 4,
we consider a linear model for contact Anosov flows and prove a proposition cor-
responding to Theorem 2.2 in such model. The argument in this section is based
on that in [13] and [18] for prequantum Anosov map and will serve as a guide-
line for the argument developed in the later sections. In Section 5, we introduce
some systems of local charts and associated partitions of unity on the Grassmann
bundle G. Then, using them, we define the (modified) anisotropic Sobolev space

KrpK0q in Section 6. The Hilbert space ĂKrpK0q appearing in Theorem 2.2 is a
slight modification of KrpK0q. In Section 7, we give several propositions on the
properties of the transfer operators Lt “ Lt

0,0 on the Hilbert space KrpK0q. We
expect that these propositions are easy to understand and intuitive for the readers.
Then we prove that Theorem 2.2 follows from them in Section 8. In Section 9–11,
we give the proofs of the propositions given in Section 7. The argument in these
sections is elementary but necessarily rather involved one because we have to deal
with “non-smooth” objects. The proof of Theorem 2.3 (and that of a small lemma
given in Section 11) is put in Section B in the appendix. (See the remark below.)

Remark 2.6. It is possible to derive Theorem 2.3 from Theorem 2.2 by using a
slight generalization of the existing results. In the paper [22], it is proved that
the dynamical zeta function Zpsq for a general C8 Anosov flow has meromorphic
extension to the whole complex plane and that its zeros and poles are related to the
discrete spectra of the generators for some associated transfer operators. To deal
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with the semi-classical zeta function and the Grassmann extension f t
G : G Ñ G,

we actually need a generalization of such results. This is not be difficult to obtain.
Though a different kind of Banach spaces is used in [22], it is possible to show that
the discrete spectrum does not depend essentially on the function space. (See [5,
Appendix A].) We present a proof of Theorem 2.3 for completeness, based on the
idea presented in [5] in the case of hyperbolic discrete dynamical systems.

3. Comments

3.1. About this paper and a few related works of the authors. A few years
ago, the authors started the joint project studying transfer operators for geodesic
flows on negatively curved manifolds (or more general contact Anosov flows) from
the viewpoint of semi-classical analysis. In the first paper [18] of the project, we
considered prequantum Anosov maps and studied the associated transfer operators
in detail. A prequantum Anosov map is a Up1q-extension of a symplectic Anosov
map, equipped with a specific connection. It may be regarded as a model of contact
Anosov flow because its local structure is very similar to that of the time-t-maps
of a contact Anosov flow and, in technical sense, it is more tractable because the
associated transfer operator is decomposed into the Fourier modes with respect to
the Up1q action. (See [18] for more explanation.)

In this paper and [17], we extend the argument in [18] to the contact Anosov
flows. This paper concerns the results about the semi-classical transfer operators
and also the semi-classical zeta functions. In the other paper [17], we consider the
band structure of the spectrum of the generators and also on the semi-classical
aspect of the argument. (A part of the results in [17] has been announced in [16].)

3.2. Recent related works. During the period the authors were writing this
paper and the previous paper [18], there have been some related developments.
We give a few of them that came into the authors’ knowledge. Recently, Giulietti,
Liverani and Pollicott published a paper [22] on dynamical zeta functions for Anosov
flows. They proved among others that the dynamical zeta functions (including Zpsq
defined by Smale) has meromorphic extension to the complex plane C if the flow is
C8 Anosov.

In the proofs of the main theorems, we will regard the transfer operator as a
“Fourier integral operator” and consider its action in the limit of high-frequency.
(See [18] for more explanation.) Therefore the main part of the argument is natu-
rally in the realm of semiclassical analysis. From this view point, the terminology
and techniques developed in semiclassical analysis must be very useful. (But this
sounds somewhat strange because the geodesic flow is completely a classical ob-
ject!). A first formulation of transfer operators and Ruelle spectrum in terms of
semiclassical analysis was given in the papers of the first author with N. Roy and
J. Sjöstrand [14, 15]. It was shown there that Ruelle resonances are “quantum
resonances for a scattering dynamics in phase space”. Recently a few papers au-
thored by K. Datchev, S. Dyatlov, S. Nonnenmacher and M. Zworski gave precise
results for contact Anosov flows using this semiclassical approach: spectral gap es-
timate and decay of correlations [35], Weyl law upper bound [8] and meromorphic
properties of dynamical zeta function [11]. We would like to mention also a closely
related work: in [10], for a problem concerning decay of waves around black holes,
S. Dyatlov shows that the spectrum of resonances has a band structure similar to
what we observe for contact Anosov flows. In fact these two problems are very
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similar in the sense that in both cases the trapped set is symplectic and normally
hyperbolic. This geometric property is the main reason for the existence of a band
structure. However in [10], S. Dyatlov requires and uses some regularity of the
hyperbolic foliation that is not present for contact Anosov flows.

3.3. Why do we consider the semi-classical zeta function? The semi-
classical (or Gutzwiller-Voros) zeta function is related to the transfer operator with
non-smooth coefficient if we do not consider the Grassmann extension. From this
aspect, the semi-classical zeta function is a rather singular and difficult object to
study. This may be one reason why the semi-classical zeta function has not been
well studied in mathematics, at least compared with in physics. But here we would
like to explain that the semi-classical zeta function is a very nice object to study
among other kind of dynamical zeta functions.

3.3.1. Zeros along the imaginary axis. In physics, there is a clear reason to study
the semi-classical zeta function Zscpsq rather than the zeta function Zpsq. The
semi-classical zeta function appears in the semi-classical theory of quantum chaos
in physics [44, 45, 6]. If we consider the semi-classical approximation of the kernel
of the semi-group generated by the Schrödinger equation (or the wave equation) on
a manifold N , we get the Gutzwiller trace formula [26]. This formula is actually
for some fixed range of time and for the limit where the Plank constant ~ goes to
zero (or the energy goes to infinity). But, if we suppose that the formula holds
for long time and if the long-time limit t Ñ 8 and the semi-classical limit ~ Ñ
0 were exchangeable, we would expect that the zeros of the semi-classical zeta
function, which is defined from the Gutzwiller trace formula, is closely related to
the spectrum of the Laplacian on the manifold N . Thus the semi-classical zeta
function is an object that connects the spectral structure of the quantized system
(or the Schrödinger equation) and the structure of the periodic orbits for the chaotic
classical dynamical systems. For this reason, the semi-classical zeta function and its
zeros have been discussed extensively in the field of “quantum chaos”. Of course,
as any mathematician can imagine, there is much difficulty in making such idea
into rigorous argument. Still the semi-classical zeta function and its zeros are
interesting objects to study. To date, mathematically rigorous argument on semi-
classical zeta function seems to be limited to the special case of constant curvature,
where Selberg trace formula is available. To the authors’ knowledge, Theorem 1.2
is the first rigorous result for the semi-classical zeta function for the geodesic flows
on manifolds with negative variable curvature. We hope that our results will shed
light on the related studies.

3.3.2. Cohomological argument. There is some hope that we can relate the semi-
classical zeta function Zscpsq to transfer operators on some cohomological spaces
(rather than those on the spaces of differential forms as in (2.7)) and get more
precise results on its analytic properties. Though the idea is not new and may be
well known, we would like to present it here and discuss how we may be able to go
further than the main results of this paper. First of all, let us recall the following
argument in the case of Anosov diffeomorphism. Let f : M Ñ M be an Anosov
diffeomorphism. The Artin-Mazur zeta function of f is defined by

ζpzq “ exp

˜
´

8ÿ

n“1

zn

n
#Fixpfnq

¸
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where #Fixpfnq denotes the number of fixed points for fn. The flat trace of the
transfer operator Lk : ΩkpMq Ñ ΩkpMq associated to the natural action of f on
the space ΩkpMq of k-forms is

Tr5
Lk “

ÿ

pPFixpfq

Tr pDfpq^k

| detp1 ´Dfpq|

and the dynamical Fredholm determinant of Lk is defined by

Dkpzq “ exp

˜
´

8ÿ

n“1

zn

n
Tr5

Ln
k

¸
“ exp

¨
˝´

8ÿ

n“1

zn

n

ÿ

pPFixpfnq

Tr pDfn
p q^k

| detp1 ´Dfn
p q|

˛
‚.

Then, similarly to (2.7), the Artin-Mazur zeta function is expressed15 as

(3.1) ζpzq “
dimMź

k“1

Dkpzqp´1qdimM´k

.

We can show that the dynamical Fredholm determinants Dkpzq are entire functions
and its zeros coincide with the reciprocals of the discrete eigenvalues of the transfer
operator Lk acting on some Hilbert space. (See [5].) So the Artin-Mazur zeta
function ζpzq is a meromorphic function on C. This argument is true for more
general (Ruelle) dynamical zeta functions. But, for the Artin-Mazur zeta function
ζpzq, we can simplify the argument as follows. Note that we have the commutative
diagram

(3.2)

0 ÝÝÝÝÑ Ω0 d
ÝÝÝÝÑ Ω1 d

ÝÝÝÝÑ ¨ ¨ ¨
d

ÝÝÝÝÑ ΩdimM ÝÝÝÝÑ 0
§§đL0

§§đL1

§§đLdimM

0 ÝÝÝÝÑ Ω0 d
ÝÝÝÝÑ Ω1 d

ÝÝÝÝÑ ¨ ¨ ¨
d

ÝÝÝÝÑ ΩdimM ÝÝÝÝÑ 0.

This tells that many of the discrete eigenvalues of Lk for adjacent k’s coincide and
the corresponding zeros of the dynamical Fredholm determinant Dkpzq cancel each
other in the alternative product (3.1). The remaining zeros and poles of the zeta
function ζpzq should correspond to the eigenvalues of the (push-forward) action of
f on the de Rham cohomology H˚

DRpMq of M . Indeed we can actually count the
number of periodic points using the Lefschetz fixed point formula and show that
ζpzq is a rational function. (See [40].)

For Anosov flows, the corresponding argument become much more subtle and
only much less is known. The argument using the flat trace and dynamical Fredholm
determinant work as well, as we discussed in the previous sections. But, for the
moment, we do not know whether it can be simplified as in the case of Anosov
diffeomorphism. This is not a new problem and there are many works on this
subject especially in the case of geodesic flows on hyperbolic surfaces. (See the
introduction chapter of [28] for instance.) But there seems no much argument in
more general cases.

Note that the Artin-Masur zeta functions was special because the corresponding
transfer operators commute with the exterior derivatives d. Indeed, if we consider
other (Ruelle) zeta functions, the corresponding transfer operator will not have
this property and hence the structure of the zeta functions will be much more

15For simplicity, we assume that the stable and unstable subbundle are orientable and f

preserves their orientations.
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complicated. The similar will be true in the case of Anosov flows, so that we will
have to choose a “good” dynamical zeta function, although we do not know whether
there do exists such choice. For instance, let us consider the Smale’s zeta function
Zpsq. As is presented in [22] (and in many other places), it is expressed as follows.
Let f t :M Ñ M be a contact Anosov flow. Let Ωk

KpMq be the space of k-forms on
M which vanish for the generating vector field of the flow. If we write dK

k psq for the
dynamical Fredholm determinant of the natural (push-forward) action of the flow

on Ωk
KpMq, we have Zpsq “

ś2d
k“0pdK

k psqqp´1qk . But, unfortunately, the exterior

derivative d does not preserves the space Ωk
K Ă ΩkpMq. This is one reason why we

can not apply the cohomological argument to the zeta function Zpsq. (Of course
there is possibility that some better expression of the zeta function Zpsq works.)

Let us now turn to the case of the semi-classical zeta function Zscpsq. For sim-
plicity, we assume that Es is orientable and the the stable foliation is smooth. (The
latter is a strong assumption.) As we discussed in Section 1, Zscpsq is expressed as
an alternative product (1.12) of dynamical Fredholm determinants for the transfer
operators on differential forms. But here we consider in a slightly different way. Let
π : L Ñ M be the line bundle L “ pEuq^d. Since Eu is assumed to be orientable, L
is trivial and therefore we can consider the square root L1{2 of L. Note that there
is a natural dynamically defined connection along the unstable manifolds on the
line bundles L and L1{2, in which two elements σ, σ1 P L (or L1{2) on an unstable
manifold are parallel if and only if the ratio between pDf tq˚pσq and pDf tq˚pσ1q
(considered in some local chart) converges to 1 as t Ñ `8. By definition, these
connections are flat (along unstable manifolds) and preserved by the natural ac-
tion of the flow f t. Let Λk be the space of smooth sections of the vector bundle
L1{2 b pE˚

u q^k. In other words, this is the space of differential k-forms along the
stable foliation that take values in L1{2. Let Lt

k : Λk Ñ Λk be the natural (push-
forward) action of the flow f t. Then these transfer operators are equivalent to
those in Section 1 denoted by the same symbol and therefore the expression (1.13)
holds with dkpsq the dynamical Fredholm determinant for Lt

k defined above. One
definitely better fact in this expression is that we have the commutative diagram:

(3.3)

0 ÝÝÝÝÑ Λ0 DuÝÝÝÝÑ Λ1 DuÝÝÝÝÑ ¨ ¨ ¨
DuÝÝÝÝÑ Λd ÝÝÝÝÑ 0

§§đL
t
0

§§đL
t
1

§§đL
t
dimM

0 ÝÝÝÝÑ Λ0 DuÝÝÝÝÑ Λ1 DuÝÝÝÝÑ ¨ ¨ ¨
DuÝÝÝÝÑ Λd ÝÝÝÝÑ 0

where Du is the covariant exterior derivative along the stable manifolds. (Again
this observation is not new. For instance, we can find it in the paper [25] by
Guillemin.) We therefore expect that large part of the zeros of the dynamical
Fredholm determinant dkpsq will cancel each other in the expression (1.13). In fact,
under some strong assumptions on smoothness of the unstable foliation, it seems
possible to prove this. But, for more general contact Anosov flows, it is not clear
whether we can set up appropriate Hilbert spaces as completions of Λk so that the
commutative diagram above is extended to them. Also it is not clear to what extent
the cancellation between zeros will be complete. Still, to be optimistic, we would
like to put the following conjecture.
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Conjecture. The semi-classical zeta function Zscpsq for contact Anosov flows will
have holomorphic extension to the whole complex plane C. Its zeros will be con-
tained in the region tz P C | |Repsq| ď τ or |Impsq| ď Cu for some C ą 0 and
arbitrarily small τ ą 0 up to finitely many exceptions.

4. Linear models

In this section, we discuss about a one-parameter family of partially hyperbolic
linear transformations. This is a linearized model of the Grassmann extension f t

G

of the flow f t viewed in local coordinate charts. The main statement, Theorem
4.17, of this section is a prototype of Theorem 2.2. The idea presented below is
initially given in [13] and the following is basically a restatement of the results there
in a modified setting and in a different terminology. We have given a very similar
argument in our previous paper [18, Chapter 3 and 4] on prequantum Anosov maps.
Since the argument there is self-contained and elementary, we will refer [18] for the
proofs of some statements and also for more detailed explanations.

4.1. A linear model for the flow f t
G.

4.1.1. Euclidean space and coordinates. Let us consider the Euclidean space

R
2d`d1`1 “ R

2d ‘ R
d1

‘ R

as a local model of the Grassmann bundle G, where we suppose that the component
Rd1

in the middle is the fiber of the Grassmann bundle and the last component R
is the flow direction. We equip the space R2d`d1`1 with the coordinates

(4.1) px, y, zq with x P R2d, y P Rd1

and z P R.

The first component x P R2d is sometimes written

(4.2) x “ pq, pq with q, p P Rd.

We suppose that the q-axis and the p-axis are respectively the expanding and
contracting subspaces. Also we sometimes write the coordinates (4.1) above as

(4.3) pw, zq with setting w “ px, yq P R
2d`d1

for simplicity. In order to indicate which coordinate is used on which component,
we sometimes use such notation as

R
2d`d1`1
px,y,zq “ R

2d
x ‘ R

d1

y ‘ Rz “ R
d
q ‘ R

d
p ‘ R

d1

y ‘ Rz “ R
2d`d1

w ‘ Rz.

The orthogonal projections to some of the components are written as follows:

(4.4) ppx,zq : R
2d`d1`1
px,y,zq Ñ R

2d`1
px,zq , ppx,yq : R

2d`d1`1
px,y,zq Ñ R

2d`d1

px,yq , px : R
2d`d1`1
px,y,zq Ñ R

2d
x

We suppose that the space R
2d`1
px,zq “ R

2d`1
pq,p,zq is equipped with the contact form

(4.5) α0 “ dz ´ qdp` pdq.
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4.1.2. Partially hyperbolic linear transformations. Let us consider invertible linear

transformations A : Rd Ñ Rd and pA : Rd1

Ñ Rd1

and suppose that they are
expanding and contracting respectively in the sense that

(4.6) }A´1} ă
1

λ
and } pA} ă

1

λ
for some constant λ ě 1.

The transpose of the inverse of A will be written as

(4.7) A: :“ ptAq´1 : Rd Ñ R
d.

In the following, we investigate the one-parameter family of partially hyperbolic
affine transformations

(4.8) Bt : R2d`d1`1
px,y,zq Ñ R

2d`d1`1
px,y,zq , Btpq, p, y, zq “ pAq,A:p, pAy, z ` tq,

as a model of the family of diffeomorphisms f t`t0
G for t0 " 0 viewed in flow-box

coordinate charts16. Observe that Bt preserves the one form pppx,zqq˚α0. Below we
consider the one-parameter family of transfer operators

(4.9) Lt : C8pR2d`d1`1q Ñ C8pR2d`d1`1q, Ltupwq “
| detA|1{2

| det pA|
¨ upB´tpwqq.

Remark 4.1. We ask the readers to check that the coefficient | detA|1{2{| det pA| is
chosen so that Lt is an appropriate model of the transfer operator Lt

0,0 considered
in Section 2. See (2.3), (2.4) and (2.5) for the definitions.

4.2. Bargmann transform.

4.2.1. Definition. We will employ the partial Bargmann transform for analysis of
the transfer operators. This is a kind of wave-packet transform. To begin with, we
recall the definition of the (usual) Bargmann transform and its basic properties.
We refer [18, Chapter 3] and [19] for more detailed accounts.

Let us consider the D-dimensional Euclidean space RD
w and its cotangent bundle

T ˚
R

D
w “ R

2D
pw,ξwq “ R

D
w ‘ R

D
ξw
,

where we regard ξw P RD as the dual variable of w P RD. Let ~ ą 0 be a parameter
that is related to the sizes of wave packets. For each point pw, ξwq P T ˚RD

w , we
assign a Gaussian wave packet

(4.10) φw,ξw pw1q “ aDp~q ¨ exppiξw ¨ pw1 ´ pw{2qq{~ ´ |w1 ´ w|2{p2~qq

where aDp~q is a normalization constant defined by

(4.11) aDp~q “ pπ~q´D{4.

The Bargmann transform on R
D
w (for the parameter ~ ą 0) is defined by

(4.12) B~ : L2pRD
w q Ñ L2pR2D

pw,ξwqq, B~upw1, ξ1
wq “

ż
φw1,ξ1

w
pwq ¨ upwqdw.

Its L2-adjoint B˚
~
: L2pR2D

pw,ξwqq Ñ L2pRD
w q is given as

B˚
~
vpw1q “

ż
φw,ξw pw1qvpw, ξwq

dwdξw

p2π~qD
.

16We will take flow-box coordinate charts κ and κ1 around a point P and its image f
t0
G

pP q
respectively, so that the q-axis and p-axis corresponds to the unstable and stable subspace, and

consider the family of maps pκ1q´1 ˝ f
t`t0
G

˝ κ. Then its linearization will look like Bt.
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Here we make a convention that we use the volume form dwdξw{p2π~qD in defining
the L2-norm on L2pR2D

pw,ξwqq. Then we have

Lemma 4.2 ([18, Lemma 3.1.2]). The Bargmann transform B~ is an L2-isometric
embedding. Its adjoint B˚

~
is a bounded operator with respect to the L2 norm and

satisfies B˚
~

˝ B~ “ Id.

The last claim implies that u P L2pRD
w q is expressed as a superposition (or an

integration) of the wave packets φw,ξwp¨q for pw, ξwq P R2D
pw,ξwq:

upw1q “ B˚
~

˝ B~upw1q “

ż
φw,ξw pw1qvpw, ξwq

dwdξw

p2π~qD
with setting v “ B~u.

Lemma 4.3 ([18, Proposition 3.1.3]). The operator

(4.13) P~ “ B~ ˝ B˚
~
: L2pR2D

pw,ξwqq Ñ L2pR2D
pw,ξwqq

is an orthogonal projection onto the image of B and called the Bargmann projector.
It is expressed as an integral operator

P~vpw1, ξ1
wq “

ż
KP,~pw1, ξ1

w;w, ξwqvpw, ξwq
dwdξw

p2π~qD

with the kernel

(4.14) KP,~pw1, ξ1
w;w, ξwq “ e´iΩppw1,ξ1

wq,pw,ξwqq{p2~q´|pw1,ξ1
wq´pw,ξwq|2{p4~q,

where Ωppw1, ξ1
wq, pw, ξwqq “ ξ1

ww´w1ξw is the standard symplectic form on R2D
pw,ξwq.

4.2.2. Lift of transfer operators with respect to the Bargmann transform. Let Q :
RD

w Ñ RD
w be an invertible affine transformation. Let Q0 : RD

w Ñ RD
w be its linear

part and q0 :“ Qp0q P R
D be the constant part. Let LQ : L2pRD

w q Ñ L2pRD
w q be

the L2-normalized transfer operator defined by

(4.15) LQupwq “ | detQ0|´1{2 ¨ upQ´1wq.

We call the operator

Llift
Q :“ B~ ˝ LQ ˝ B˚

~
: L2pR2D

pw,ξwqq Ñ L2pR2D
pw,ξwqq

the lift of the operator LQ with respect to the Bargmann transform B~, as it makes
the following diagram commutes

L2pR2D
pw,ξwqq

Llift

Q
ÝÝÝÝÑ L2pR2D

pw,ξwqq

B~

İ§§ B~

İ§§

L2pRD
w q

LQ
ÝÝÝÝÑ L2pRD

w q.

The next lemma gives a useful expression of the lift Llift
Q . We consider the natural

(push-forward) action of Q on the cotangent bundle T ˚RD
w “ R2D

pw,ξwq:

D:Q : R2D
pw,ξwq Ñ R

2D
pw,ξwq, D:Qpw, ξwq “ pQw,Q:

0ξwq “ pQw, ptQ0q´1ξwq.

Let LD:Q be the associated (L2-normalized) transfer operator, which is defined by

(4.15) with A replaced by D:Q, that is, LD:Qu :“ u ˝ pD:Qq´1.



THE SEMICLASSICAL ZETA FUNCTION 21

Lemma 4.4 ([18, Lemma 3.2.2 and Lemma 3.2.4]). The lift Llift
Q is expressed as

Llift
Q vpw, ξwq “ dpQq ¨ e´iξwq0{p2~q ¨ P~ ˝ LD:Q ˝ P~vpw, ξwq

where dpQq “ | detppQ0 ` tQ´1
0 q{2q|1{2. If Q is isometric, we have rLD:Q,P~s “ 0

and therefore P~ ˝ LD:Q ˝ P~ “ LD:Q ˝ P~ “ P~ ˝ LD:Q.

4.3. Partial Bargmann transform.

4.3.1. Definition. The partial Bargmann transform, which we will use in later sec-

tions, is roughly the Fourier transform along the z-direction in R
2d`d1`1
px,y,zq combined

with the Bargmann transform B~ in the transverse directions, where the parameter
~ is related to the frequency ξz in the z-direction as ~ “ xξzy´1. Here and hence-
forth, we let xsy be a smooth function of s P R such that xsy “ |s| if |s| ě 2 and
that xsy ě 1 for all s P R.

As the (partial) cotangent bundle of R2d`d1`1
px,y,zq , we consider the Euclidean space

R
4d`2d1`1
px,y,ξx,ξy,ξzq equipped with the coordinates

px, y, ξx, ξy , ξzq with x, ξx P R2d, y, ξy P Rd1

, ξz P R.

We regard it as the cotangent bundle of the Euclidean space R
2d`d1`1
px,y,zq , where ξx,

ξy, ξz are regarded as the dual variable of x, y, z respectively. (But notice that we
omit the variable z. This is because we consider the Fourier transform along the
z-axis.) For simplicity, we sometimes write the coordinates above as

pw, ξw , ξzq with setting w “ px, yq, ξw “ pξx, ξyq.

Also, according to (4.2), we sometimes write the coordinate ξx P R2d as

ξx “ pξq, ξpq with ξq, ξp P Rd.

Instead of the functions φw,ξw p¨q in (4.10), we consider the functions

(4.16) φx,y,ξx,ξy,ξz : R2d`d1`1
px,y,zq Ñ C for px, y, ξx, ξy, ξzq P R

4d`2d1`1

defined by

φx,y,ξx,ξy,ξzpx1, y1, z1q

“ a2d`d1pxξzy´1q ¨ exp

ˆ
iξzz

1 ` ixξzy ξwpw1 ´ pw{2qq ´ xξzy ¨
|w1 ´ w|2

2

˙

“ a2d`d1pxξzy´1q ¨ exp
`
iξzz

1 ` ixξzy ξxpx1 ´ px{2qq ` ixξzy ξypy1 ´ py{2qq
˘

¨ exp

ˆ
´xξzy ¨

|x1 ´ x|2

2
´ xξzy ¨

|y1 ´ y|2

2

˙

where aDp¨q is that in (4.11). For brevity, we sometimes write φw,ξw,ξz pw1, z1q for
φx,y,ξx,ξy,ξzpx1, y1, z1q.

Remark 4.5. Note that ξz in (4.16) indicates the frequency of φx,y,ξx,ξy,ξz p¨q in z,
and that the frequency in w “ px, yq is actually xξzyξw “ xξzypξx, ξyq, that is, it is
rescaled by the factor xξzy.

The partial Bargmann transform

B : L2pR2d`d1`1
px,y,zq q Ñ L2pR4d`2d1`1

px,y,ξx,ξy,ξzqq
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is defined by

(4.17) Bupx1, y1, ξ1
x, ξ

1
y, ξ

1
zq “

ż
φx1,y1,ξ1

x,ξ
1
y,ξ

1
z
px, y, zq ¨ upx, y, zqdxdydz.

We make a convention that we use the volume form

(4.18) dm “ p2πq´1 ¨ p2πxξzy´1q´2d´d1

dxdydξxdξydξz

in defining the L2-norm on L2pR4d`2d1`1
px,y,ξx,ξy,ξzqq. Then the L2-adjoint

B˚ : L2pR4d`2d1`1
px,y,ξx,ξy,ξzqq Ñ L2pR2d`d1`1

px,y,zq q

of the partial Bargmann transform B is the operator given by

(4.19) B˚vpx1, y1, z1q “

ż
φx,y,ξx,ξy,ξzpx1, y1, z1qvpx, y, ξx, ξy, ξzqdm.

4.3.2. Basic properties of the partial Bargmann transform. The following is a basic
property of the partial Bargmann transform B, which follows from those of the
Bargmann transform and the Fourier transform.

Lemma 4.6. The partial Bargmann transform B is an L2-isometric injection and
B˚ is a bounded operator such that B˚ ˝ B “ Id. The composition

(4.20) P :“ B ˝ B˚ : L2pR4d`2d1`1
px,y,ξx,ξy,ξzqq Ñ L2pR4d`2d1`1

px,y,ξx,ξy,ξzqq

is the L2 orthogonal projection onto the image of B.

Suppose that B : R2d`d1`1
pw,zq Ñ R

2d`d1`1
pw,zq is an affine transform of the form

Bpw, zq “ pB0pwq ` b0, z ` C0pwq ` c0q

where B0 : R2d`d1

w Ñ R2d`d1

w and C0 : R2d`d1

w Ñ R are linear maps and b0 and c0
are constants. (The linear model Bt in (4.8) is a special case of such maps.) Let

D:B : R4d`2d1`1
pw,ξw,ξzq Ñ R

4d`2d1`1
pw,ξw,ξzq be the naturally induced (push-forward) action

D:Bpw, ξw , ξzq “ pB0pwq ` b0, B
:
0pξw ´ tC0ξzq, ξzq

on the partial cotangent bundle R4d`2d1`1
pw,ξw,ξzq . We consider the L2-normalized transfer

operators LB and LD:B defined in (4.15) with A replaced by B and D:B respec-
tively. The lift Llift

B of the operator LB with respect to the partial Bargmann
transform B is defined by

Llift
B :“ B ˝ LB ˝ B˚ : R4d`2d1`1

pw,ξw,ξzq Ñ R
4d`2d1`1
pw,ξw,ξzq

and makes the following diagram commutes:

L2pR4d`2d1`1q
Llift

BÝÝÝÝÑ L2pR4d`2d1`1q

B

İ§§ B

İ§§

L2pR2d`d1`1q
LBÝÝÝÝÑ L2pR2d`d1`1q.

The next lemma is a consequence of Lemma 4.4 and gives an expression of Llift
B .
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Lemma 4.7. The lift Llift
B :“ B ˝ LB ˝ B˚ is expressed as

Llift
B vpw, ξw , ξzq “ dpB0q¨e´pixξzy{2qξw ¨b0´iξz ¨pC0B

´1

0
pw´b0q`c0q¨P˝LD:B˝Pvpw, ξw , ξzq

If B is isometric, we have rP, LD:Bs “ 0 and therefore

Llift
B v “ e´pixξzy{2qξw¨b0´iξz ¨pC0B

´1

0
pw´b0q`c0q ¨ LD:B ˝ Pvpw, ξw , ξzq.

Remark 4.8. The relation between (the lift of) the transfer operator LB and its
canonical map D:B given in the lemma above realizes the idea explained in the
latter part of Section 2 in a simple setting. Here note that the kernel of the partial
Bargmann projector P is of the form kpw1, ξ1

w;w, ξwq ¨ δpξ1
z ´ ξzq and we have

kpw1, ξ1
w;w, ξwq ď Cνxxξzy1{2|w ´ w1|y´ν ¨ xxξzy1{2|ξw ´ ξ1

w|y´ν

for arbitrarily large ν ą 0, where Cν is a constant depending on ν.

4.4. A coordinate change on the phase space.

4.4.1. The lift of the transfer operators Lt and the trapped set. Let us now consider
the family of transfer operators Lt defined in (4.9) and its lift with respect to the
partial Bargmann transform:

(4.21) pLtqlift “ B ˝ Lt ˝ B˚.

Below we keep in mind that Lt is a model of the transfer operator Lt
0,0 viewed in the

local coordinate charts. As we explained at the end of Section 2, we mainly consider
the action of the transfer operator Lt on the wave packets (with high frequency)
corresponding to the points near the trapped set X given in (2.8). In our linear
model, we understand that the hyperplane

tpx, y, zq P R
2d`d1`1 | y “ 0u Ă R

2d`d1`1
px,y,zq

corresponds to the section eu in the global setting. Then the trapped set X0, which
corresponds to X in (2.8), must be

X0 :“ tµ ¨ p˚
px,zqα0px, 0, zq | µ P R, px, zq P R

2d`1u.

Since we consider the rescaled coordinates, as mentioned in Remark 4.5, the subset
X0 is given by the equations

(4.22) xξzyξp “ ´ξzq, xξzyξq “ ξzp, y “ 0, ξy “ 0, ξz ‰ 0

in the coordinates pq, p, y, ξq, ξp, ξzq on R4d`2d1`1.
By Lemma 4.7, the lift pLtqlift of Lt is expressed as a composition of the transfer

operator LD:Bt with the Bargmann projectorsP and some multiplication operator,
where D:Bt is the linear map

D:Bt : R4d`2d1`1 Ñ R
4d`2d1`1, D:Bt : R4d`2d1`1pw, ξw , ξzq “ pBtw,B

:
0ξw , ξzq

with B0 :“ A‘A: ‘ pA : R2d`d1

w Ñ R2d`d1

w and B:
0 :“ ptB0q´1. Note that this linear

map D:Bt preserves the trapped set X0.
Let us consider the level sets of the coordinate ξz ,

Zc :“ tpx, y, ξx, ξy, ξzq P R
4d`2d1`1 | ξz “ cu,

which is preserved by D:Bt. This level set Zc carries the canonical symplectic form
dw ^ dξw , which is also preserved by D:Bt. Observe that the subspace X0 X Zc

is a symplectic subspace of Zc with respect to this symplectic structure, provided
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c ‰ 0. (This is a consequence of the fact that α0 is a contact form.) Hence the
action of D:Bt restricted to each Zc with c ‰ 0 preserves the decomposition

(4.23) Zc “ pX0 X Zcq ‘ pX0 X Zcq
K

where pX0 X ZcqK denotes the symplectic orthogonal of the subspace pX0 X Zcq:

pX0 X Zcq
K :“ tv P Zc | dw ^ dξwpv, v1q “ 0 @v1 P X0 X Zcu.

The restriction of D:Bt to the subspace pX0 X Zcq describes the dynamics inside
the trapped set, while that to the symplectic orthogonal pX0 X Zcq

K describes the
dynamics in the transverse (or normal) directions.

Remark 4.9. Notice that the symplectic decomposition (4.23) does not make good
sense when c “ 0. Correspondingly we have to treat the hyperplane Z0 “ tξz “ 0u
as an exceptional set when we consider this decomposition.

4.4.2. A new coordinate system. From the observation above (and the argument in

[18, Chapter 2 and 4]), we introduce the coordinates on R
4d`2d1`1
pw,ξw,ξzq ,

ζ “ pζp, ζqq P R
2d, ν “ pνq, νpq P R

2d, and pỹ, ξ̃yq P R
2d1

“ R
d1

‘ R
d1

as follows. On the region ξz ě 0, we define

ζp “ 2´1{2xξzy´1{2pxξzyξp ` ξzqq, ζq “ 2´1{2xξzy´1{2pxξzyξq ´ ξzpq,(4.24)

νq “ 2´1{2xξzy´1{2pξzq ´ xξzyξpq, νp “ 2´1{2xξzy´1{2pξzp` xξzyξqq,

ỹ “ xξzy1{2y, ξ̃y “ xξzy1{2ξy

while, on the region ξz ă 0, we modify the definitions of ζp and νq as

ζp “ ´2´1{2xξzy´1{2pxξzyξp ` ξzqq, νq “ ´2´1{2xξzy´1{2pξzq ´ xξzyξpq,(4.25)

by changing the signs, but keep the other definitions of ζq, νp, ỹ and ξ̃y .

Remark 4.10. Basically we consider these new coordinates on the region |ξz | ě 2
where xξzy “ |ξz |. But we defined them also on the region |ξz | ď 2 for convenience
in some definitions below. (See Definition 4.13.) Note that, if ξz ě 2 or ξz ď ´2, we
have xξzy “ |ξz | “ ˘ξz and the relations in the definitions above become simpler.

The coordinates pν, ζ, ỹ, ξ̃y, ξzq above are defined so that the following hold on
the region |ξz | ě 2:

(1) The trapped set X0 is characterized by the equation pζ, y, ξyq “ p0, 0, 0q.
(2) The coordinate change transformation preserves the canonical symplectic

form and the Riemann metric on Zc up to multiplication by the factor |ξz|,
that is, on each of the level set Zc with |c| ě 2, we have

|ξz|pdx ^ dξx ` dy ^ dξyq “ dζp ^ dζq ` dνq ^ dνp ` dỹ ^ dξ̃y

and

|ξz|p|dx|2 ` |dξx|2 ` |dy|2 ` |dξy |2q “ |dζ|2 ` |dν|2 ` |dỹ|2 ` |dξ̃y |2.

(3) the volume form in (4.18) is written

(4.26) dm “ p2πq´p2d`d1`1qdνdζdỹdξ̃ydξz ,

(4) the ζp, νq and ξ̃y axes are the expanding directions whereas the ζq, νp and
ỹ axes are the contracting directions.
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We write the corresponding coordinate change transformation as

Φ : R4d`2d1`1 Ñ R
4d`2d1`1, Φpx, y, ξx, ξy, ξzq “ ppνq, νpq, ppζp, ξ̃yq, pζq, ỹqq, ξzq,

where the order and combination of the variables on the right-hand side is chosen
for convenience in the argument below.

Remark 4.11. Below we sometimes restrict our attention to the functions supported
on the region |ξz | ě 2. We use the subscript : to remind such restriction. For

instance, we write L2
:pR4d`2d1`1

pw,ξw,ξzq q for the subspace of L2pR4d`2d1`1
pw,ξw,ξzq q that consists of

functions supported on the region |ξz | ě 2. Correspondingly we let L2
:pR2d`d1`1

px,y,zq q be

the preimage of L2
:pR4d`2d1`1

pw,ξw,ξzq q with respect to the partial Bargmann transform B.

The pull-back operator by Φ restricted to the region |ξz | ě 2,

Φ˚ : L2
:pR4d`2d1`1

ppνq ,νpq,ppζp,ξ̃yq,pζq,ỹqq,ξzq
q Ñ L2

:pR4d`2d1`1
px,y,ξx,ξy,ξzqq, Φ˚u “ u ˝ Φ,

is a unitary operator, because the norm on L2pR4d`2d1`1

ppνq,νpq,ppζp,ξ̃yq,pζq,ỹqq,ξzq
q is defined

by using the volume form (4.26).

4.4.3. A tensorial decomposition of the transfer operator Lt. In the next lemma,
we express the transfer operator Lt as a tensor product of three simple operators.
This is a consequence of the fact that D:Bt preserves the symplectic decomposition

(4.23). In the statement below, we write B
pdq
1 for the Bargmann transform defined

in (4.12) with D “ d and ~ “ 1 and let P
pdq
1 be the corresponding Bargmann

projector defined in (4.13).

Lemma 4.12. [18, Proposition 4.3.1 and Proposition 7.1.2] The transformation
Φ˚ above satisfies

(4.27) P ˝ Φ˚ “ Φ˚ ˝ pP
p2d`d1q
1 b Idq “ Φ˚ ˝ pP

pdq
1 b P

pd`d1q
1 b Idq

on L2
:pR4d`2d1`1q and is an isomorphism between the images of the operators

B
pdq
1 b B

pd`d1q
1 b Id : L2

:pR2d`d1`1

pνq,pζp,ξ̃yq,ξzq
q Ñ L2

:pR4d`2d1`1

ppνq,νpq,ppζp,ξ̃yq,pζq,ỹqq,ξzq
q

and

B : L2
:pR2d`d1`1

px,y,zq q Ñ L2
:pR4d`2d1`1

px,y,ξx,ξy,ξzqq.

The operator

U “ B˚ ˝ Φ˚ ˝ pB
pdq
1 b B

pd`d1q
1 b Idq : L2

:pR2d`d1`1

pνq ,pζp,ξ̃yq,ξzq
q Ñ L2

:pR2d`d1`1
px,y,zq q

is a unitary operator and makes the following diagram commute:

L2
:pR2d`d1`1

px,y,zq q
U

ÐÝÝÝÝ L2
:pR2d`d1`1

pνq,pζp,ξ̃yq,ξzq
q – L2pRd

νq
q b L2pRd`d1

pζp,ξ̃yq
q b L2

:pRξzq
§§đLt Lt

§§đ

L2
:pR2d`d1`1

px,y,zq q
U

ÐÝÝÝÝ L2
:pR2d`d1`1

pνq,pζp,ξ̃yq,ξzq
q – L2pRd

νq
q b L2pRd`d1

pζp,ξ̃yq
q b L2

:pRξzq

where the operator Lt is defined by

Lt “
| detA|1{2

| det pA|1{2
¨ LA b pL

A‘ pA:q b eiξzt,
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writing LA and L
A‘ pA: for the L2-normalized transfer operators defined by

LAu “
1

| detA|1{2
¨ u ˝A´1, L

A‘ pA:u “
| det pA|1{2

| detA|1{2
¨ u ˝ pA ‘ pA:q´1.

For the proof, we refer [18, Proposition 7.1.2 and Proposition 4.3.1].

4.5. Anisotropic Sobolev space HrpR2d`d1`1q. We introduce the anisotropic
Sobolev spaces in order to study spectral properties of transfer operators. This
kind of Hilbert spaces have been introduced (in the context of dynamical systems)
by Baladi [3] and the related argument is developed in the papers [4, 5, 42, 14, 15].
This is a kind of (generalized) Sobolev space with the weight function adapted
to hyperbolicity of the dynamics (and is anisotropic accordingly). Note that the
anisotropic Sobolev space is not contained in the space of usual functions but con-
tained in the space of distributions.

4.5.1. The definition of the anisotropic Sobolev space. For each r ą 0, we will define
the anisotropic Sobolev space HrpR2d`d1`1q. For the construction below, we do not
need any assumption on the range of the parameter r. But, for the argument in
the later subsections, we assume

(4.28) r ą 2 ` 2p2d` d1q

and also

(4.29) λr´1 ą | detA| ¨ | det pA|´1

in relation to the affine transformation Bt given in (4.8).
For each τ ą 0, let us consider the cones

C
pd`d1,d`d1q
` pτq “ tpζp, ξ̃y , ζq, ỹq P R

2d`2d1

| |pζq, ỹq| ď τ ¨ |pζp, ξ̃yq|u and,(4.30)

C
pd`d1,d`d1q
´ pτq “ tpζp, ξ̃y , ζq, ỹq P R

2d`2d1

| |pζp, ξ̃yq| ď τ ¨ |pζq, ỹq|u(4.31)

in R2d`2d1

equipped with the coordinates ζp, ζq P Rd and ξ̃y , ỹ P Rd1

. Next we take

and fix a C8 function on the projective space PpR2d`2d1

q,

ord : P
´
R

2d`2d1
¯

Ñ r´1, 1s

so that

(4.32) ord
´

rpζp, ξ̃y, ζq, ỹqs
¯

“

#
´1, if pζp, ξ̃y, ζq, ỹq P C

pd`d1,d`d1q
` p1{2q;

`1, if pζp, ξ̃y, ζq, ỹq P C
pd`d1,d`d1q
´ p1{2q

and that

ord
´

rpζ 1
p, ξ̃

1
y, ζ

1
q, ỹ

1qs
¯

ď ord
´

rpζp, ξ̃y, ζq, ỹqs
¯

if
|pζ 1

q , ỹ
1q|

|pζ 1
p, ξ̃

1
yq|

ď
|pζq, ỹq|

|pζp, ξ̃yq|
.

We then consider the smooth function

W r : R2d`2d1

Ñ R`, W rpζp, ξ̃y , ζq, ỹq “ x|pζp, ξ̃y, ζq, ỹq|yr¨ordprpζp,ξ̃y,ζq,ỹqsq.

By definition, we have that

W rpζp, ξ̃y, ζq, ỹq “

#
x|pζp, ξ̃y, ζq, ỹ|qy´r on C

pd`d1,d`d1q
` p1{2q;

x|pζp, ξ̃y, ζq, ỹq|y`r on C
pd`d1,d`d1q
´ p1{2q.
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A simple (but important) property of the function W r is that we have

(4.33) W rpppA ‘ pA:q ‘ pA ‘ pA:q:qpζp, ξ̃y, ζq, ỹqq ď C0λ
´r ¨W rpζp, ξ̃y, ζq, ỹq

when A and pA satisfy (4.6) with some λ ě 1 and pζp, ξ̃y, ζq, ỹq P R
2d`2d1

is suffi-

ciently far from the origin, where C0 ą 0 is a constant independent of A and pA.
Another important property is that it is rather smooth in the sense that we have

(4.34) W rpζp, ξ̃y, ζq, ỹq ď C0 ¨W rpζ 1
p, ξ̃

1
y, ζ

1
q, ỹ

1q ¨ x|pζp, ξ̃y, ζq, ỹq ´ pζ 1
p, ξ̃

1
y, ζ

1
q, ỹ

1q|y2r

for some constant C0 ą 0.

Definition 4.13 (Anisotropic Sobolev space). Let Wr : R4d`2d1`1 Ñ R` be the
function defined by

Wrpx, y, ξx, ξy, ξzq “ p1 bW r b 1q ˝ Φpx, y, ξx, ξy, ξzq “ W rpζp, ξ̃y, ζq, ỹq

where the variables17 pζp, ξ̃y , ζq, ỹq in the rightmost term are those defined by (4.24).

We define the anisotropic Sobolev norm } ¨ }Hr on SpR2d`d1`1q by

}u}Hr :“ }Wr ¨ Bu}L2.

The anisotropic Sobolev space HrpR2d`d1`1q is the Hilbert space obtained as the

completion of the Schwartz space SpR2d`d1`1q with respect to this norm.

By definition, the partial Bargmann transform B extends to an isometric em-
bedding

B : HrpR2d`d1`1
pw,zq q Ñ L2pR4d`2d1`1

pw,ξw,ξzq , pW
rq2q

where L2pR4d`2d1`1
pw,ξw,ξzq , pW

rq2q denotes the weighted L2 space

L2pR4d`2d1`1
pw,ξw,ξzq , pW

rq2q “ tu P L2
locpR

4d`2d1`1
pw,ξw,ξzq q | }Wr ¨ u}L2 ă 8u.

(Note that the L2 norm on R
4d`2d1`1
pw,ξw,ξzq is defined with respect to the volume form

dm in (4.18).)

4.5.2. Variants of HrpR2d`d1`1q. The anisotropic Sobolev spaces HrpR2d`d1`1q in-
troduced above are quite useful when we consider the spectral properties of the
transfer operators for hyperbolic maps or flows. But, in using them, one has to be
careful that they have singular properties related to their anisotropic nature. For
instance, even if a linear map B : R2d`d1`1 Ñ R2d`d1`1 is close to the identity,
the action of the associated transfer operator LB on them can be unbounded. This
actually leads to various problems. In order to do with such problems, we introduce
variants Hr,σpR2d`d1`1q of HrpR2d`d1`1q below. We consider the index set

(4.35) Σ0 “ t´1, 0,`1u Ă Σ “ t´2,´1, 0,`1,`2u.

For σ P Σ, we define ordσ : P
´
R2d`2d1

¯
Ñ r´1, 1s by

(4.36) ordσ
´”

pζp, ξ̃y, ζq, ỹq
ı¯

“ ord
´”

p2´σ{2ζp, 2
´σ{2ξ̃y, 2

`σ{2ζq, 2
`σ{2ỹq

ı¯

so that we have

(4.37) ordσ
1

prpζp, ξ̃y, ζq, ỹqsq ď ordσprpζp, ξ̃y, ζq, ỹqsq if σ1 ď σ.

17Notice that this function Wr is continuous despite of the discontinuity of the coordinates

pζp, ξ̃y, ζq , ỹq at points on the hyperplane ξz “ 0.
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(Here we use the factor 2˘1{2 for concreteness, but it could be any real number
greater than 1.) We define

W r,σ : R2d`2d1

Ñ R`, W r,σpζp, ξ̃y , ζq, ỹq “ x|pζp, ξ̃y, ζq, ỹq|yr¨ordσprpζp,ξ̃y,ζq,ỹqsq.

From (4.37), we have

(4.38) W r,σ1

pζp, ξ̃y, ζq, ỹq ď W r,σpζp, ξ̃y, ζq, ỹq if σ1 ď σ.

These functions also satisfy the properties parallel to (4.33) and (4.34).

The functions Wr,σp¨q, the norms } ¨ }Hr,σ and the Hilbert spaces Hr,σpR2d`d1`1q

are defined in the same manner as Wr, } ¨ }Hr and HrpR2d`d1`1q respectively, with
the function W rp¨q replaced by W r,σp¨q. In particular, we have

W r,0p¨q “ W rp¨q, Wr,0p¨q “ Wrp¨q, Hr,0pR2d`d1`1q “ HrpR2d`d1`1q.

From (4.38), we have

(4.39) }u}Hr,σ1 ď }u}Hr,σ if σ1 ď σ,

and hence

Hr,σpR2d`d1`1q Ă Hr,σ1

pR2d`d1`1q if σ1 ď σ.

The partial Bargmann transform B extends to isometric embeddings

B : Hr,σpR2d`d1`1q Ñ L2pR4d`2d1`1, pWr,σq2q for σ P Σ.

4.6. The spectral structure of the transfer operator Lt. We now discuss
about the spectral properties of the transfer operator Lt, defined in (4.9), on the

anisotropic Sobolev spaces Hr,σpR2d`d1`1q. First we recall a few results from [18,

Chapter 4 and 7]. Let Hr,σpRd`d1

q be the completion of the space SpRd`d1

q with
respect to the norm

}u}Hr,σ “ }W r,σ ¨ B
pd`d1q
1 u}L2.

From the definition of Wr,σ, the commutative diagram in Lemma 4.12 extends
naturally to

(4.40)

H
r,σ
: pR2d`d1`1

px,y,zq q
U

ÐÝÝÝÝ L2pRd
νq

q bHr,σpRd`d1

pζp,ξ̃yq
q b L2

:pRξz q
§§đLt Lt

§§đ

H
r,σ1

: pR2d`d1`1
px,y,zq q

U
ÐÝÝÝÝ L2pRd

νq
q bHr,σ1

pRd`d1

pζp,ξ̃yq
q b L2

:pRξz q

if t ě 0 and σ1 ď σ, where U is an isomorphism. (Here we use the subscript : in

H
r,σ1

: pR2d`d1`1
px,y,zq q in the same meaning as noted in Remark 4.11.)

Therefore the operator Lt : Hr,σpR2d`d1`1
px,y,zq q Ñ Hr,σ1

pR2d`d1`1
px,y,zq q is identified with

the tensor product of the three operators

LA : L2pRd
νq

q Ñ L2pRd
νq

q,(4.41)

rL :“
| detA|1{2

| det pA|1{2
¨ L

A‘ pA: : Hr,σpRd`d1

pζp,ξ̃yq
q Ñ Hr,σ1

pRd`d1

pζp,ξ̃yq
q,(4.42)

and

eiξzt ¨ Id : L2
:pRξz q Ñ L2

:pRξz q.(4.43)
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The first and third operators are unitary. In [18, Chapter 3], we studied the second

operator rL to some detail, which we recall below.
Let us consider the projection operator

(4.44) T0 : SpRd`d1

pζp,ξ̃yq
q Ñ SpRd`d1

pζp,ξ̃yq
q1, T0puqpxq “ up0q ¨ 1

where 1 denotes the constant function on R
d`d1

pζp,ξ̃yq
with value 1. This is a simple

operation that extracts the constant term in the Taylor expansion of a function

at the origin. Letting B
pd`d1q
1 : L2pRd`d1

pζp,ξ̃yq
q Ñ L2pR2d`2d1

pζp,ξ̃y,ζq,ỹq
q be the Bargmann

transform with ~ “ 1, we set

(4.45) T lift
0 :“ B

pd`d1q
1 ˝ T0 ˝ pB

pd`d1q
1 q˚ : L2pR2d`2d1

pζp,ξ̃y,ζq,ỹq
q Ñ L2pR2d`2d1

pζp,ξ̃y,ζq,ỹq
q.

(Here we regard ζq and ỹ as the dual variable of ζp and ξ̃y respectively.) Clearly it
makes the following diagram commutes:

(4.46)

L2
´
R

2d`2d1

pζp,ξ̃y,ζq,ỹq

¯
T lift

0ÝÝÝÝÑ L2
´
R

2d`2d1

pζp,ξ̃y,ζq,ỹq

¯

B
pd`d1q
1

İ§§ B
pd`d1q
1

İ§§

L2pRd`d1

pζp,ξ̃yq
q

T0ÝÝÝÝÑ L2pRd`d1

pζp,ξ̃yq
q.

Lemma 4.14 ([18, Lemma 3.4.2 and its proof]). The operator T lift
0 is written as

an integral operator

T lift
0 upζ 1

p, ξ̃
1
y, ζ

1
q, ỹ

1q “

ż
K`pζ 1

p, ξ̃
1
y , ζ

1
q, ỹ

1qK´pζp, ξ̃y , ζq, ỹqupζp, ξ̃y, ζq, ỹqdζpdξ̃ydζqdỹ

where the functions K˘p¨q satisfy, for any σ, σ1 P Σ, that

W r,σ1

pζ 1
p, ξ̃

1
y, ζ

1
q, ỹ

1q ¨K`pζ 1
p, ξ̃

1
y, ζ

1
q, ỹ

1q ď C0xpζ 1
p, ξ̃

1
y, ζ

1
q, ỹ

1qy´r(4.47)

and

W r,σpζp, ξ̃y, ζq, ỹq´1 ¨ K´pζp, ξ̃y, ζq, ỹq ď C0xpζp, ξ̃y, ζq, ỹqy´r(4.48)

for a constant C0 ą 0. Hence, for any σ, σ1 P Σ, T lift
0 extends to a rank-one operator

T lift
0 : L2pR2d`2d1

, pW r,σq2q Ñ L2pR2d`2d1

, pW r,σ1

q2q.

Corollary 4.15. The operator T0 extends naturally to a rank-one operator

T0 : Hr,σpRd`d1

pζp,ξ̃yq
q Ñ Hr,σ1

pRd`d1

pζp,ξ̃yq
q for any σ, σ1 P Σ.

The next lemma is a rephrase of the main statement in [18, Chapter 3]. Note

that A ‘ pA: : Rd`d1

Ñ Rd`d1

is an expanding map satisfying (4.6) for some λ ě 1.

Lemma 4.16 ([18, Proposition 3.4.6 and Section 4]). (1) The operator rL in (4.42)

extends to a bounded operator rL : Hr,σpRd`d1

pζp,ξ̃yq
q Ñ Hr,σ1

pRd`d1

pζp,ξ̃yq
q for σ, σ1 P Σ with

σ1 ď σ and the operator norm is bounded by a constant independent of A. Further,
if λ is sufficiently large, say λ ą 10, then this is true for any σ, σ1 P Σ.

(2) The operator rL : Hr,σpRd`d1

pζp,ξ̃yq
q Ñ Hr,σpRd`d1

pζp,ξ̃yq
q commutes with T0. And it

preserves the decomposition Hr,σpRd`d1

pζp,ξ̃yq
q “ H0 ‘ H1 where

H0 “ ImT0 “ tc ¨ 1 | c P Cu and H1 “ KerT0 “ tu P Hr,σpRd`d1

pζp,ξ̃yq
q | up0q “ 0u.
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Further we have that

(i) the restriction of rL to H0 is the identity, and that

(ii) the restriction of rL to H1 is contracting in the sense that

}rLu}Hr,σ ď C0 ¨ p1{λq ¨ }u}Hr,σ for all u P H1,

where C0 is a constant independent of A and pA.

From the last lemma and the commutative diagram (4.40), we conclude the next
theorem. This is the counterpart of Theorem 2.2 for the operator Lt as a (local)
linearized model of the transfer operator Lt. We consider the projection operator

(4.49) T0 “ U ˝ pId b T0 b Idq ˝ U´1 : S:pR2d`d1`1
px,y,zq q Ñ S:pR2d`d1`1

px,y,zq q1

Theorem 4.17. (1) The operator T0 extends naturally to a bounded operator

T0 : Hr,σ
: pR2d`d1`1

px,y,zq q Ñ H
r,σ1

: pR2d`d1`1
px,y,zq q for any σ, σ1 P Σ.

(2) Lt extends to a bounded operator Lt : Hr,σ
: pR2d`d1`1q Ñ H

r,σ1

: pR2d`d1`1q for

any σ, σ1 P Σ with σ1 ď σ and the operator norms are bounded by a constant

independent of A and pA. Further, if λ in the assumption (4.6) is sufficiently large,
say λ ą 10, this is true for any σ, σ1 P Σ.
(3) Lt commutes with the projection operator T0 and preserves the decomposition

H
r,σ
: pR2d`d1`1q “ H0 ‘ H1 where H0 “ ImT0 and H1 “ KerT0.

Further we have that

(i) the restriction of Lt to H0 is a unitary operator, and that
(ii) the restriction of Lt to H1 is contracting in the sense that

}Ltu}Hr,σ ď C0 ¨ p1{λq ¨ }u}Hr,σ for all u P H1,

where C0 is a constant independent of A and pA.

The lift of the operator T0 with respect to the partial Bargmann transform B is

(4.50) Tlift
0 “ B ˝ T0 ˝ B˚ : S:pR4d`2d1`1

pw,ξw,ξzq q Ñ S:pR4d`2d1`1
pw,ξw,ξzq q1.

Note that, by the definitions and the relation (4.27), we may write it as

(4.51) Tlift
0 “ B ˝U ˝ pId bT0 b Idq ˝U´1 ˝B˚ “ Φ˚ ˝ pP

pdq
1 b T lift

0 b Idq ˝ pΦ˚q´1.

The next is a simple consequence of this expression and Lemma 4.14.

Corollary 4.18. The operator Tlift
0 is written as an integral operator

Tlift
0 upw1, ξ1

w, ξzq “

ż
Kpw1, ξ1

w;w, ξw ; ξzqupw, ξw , ξzqdwdξw

and the kernel satisfies, for any σ, σ1 P Σ and m ą 0, that

Wr,σ1

pw1, ξ1
w, ξzq

Wr,σpw, ξw , ξzq
¨Kpw1, ξ1

w;w, ξw; ξzq

ď Cmxpζ 1
p, ξ̃

1
y, ζ

1
q, ỹ

1qy´rxpζp, ξ̃y, ζq, ỹqy´rxpν1
q, ν

1
pq ´ pνq, νpqy´m

ď C 1xxξzy1{2 ¨ |pw1, ξ1
wq ´ pw, ξwq|y´r
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where Cm ą 0 and C 1 ą 0 are constants and where pζp, ξ̃y, ζq, ỹq and ν “ pνq, νpq

(resp. pζ 1
p, ξ̃

1
y, ζ

1
q, ỹ

1q and ν1 “ pν1
q, ν

1
pq) are the coordinates of pw, ξw , ξzq (resp.

pw1, ξ1
w, ξzq) defined in (4.24). In fact, the kernel is written as

Kpw1, ξ1
w;w, ξw; ξzq “ K`pζ 1

p, ξ̃
1
y , ζ

1
q, ỹ

1q ¨ K´pζp, ξ̃y, ζq, ỹq ¨ kpν1, ν1q

where K˘p¨q are the functions in Lemma 4.14 and kpν, ν1q is the kernel of the

Bargmann projector P
pdq
1 , which satisfies

|kpν, ν1q| ď Cmxν ´ ν1y´m for any m ą 0.

4.7. Fibered contact diffeomorphism and affine transformations. In this
subsection and the next, we prepare a few definitions and related facts for the
argument in the following sections. We first introduce the following definition.

Definition 4.19. We call a C8 diffeomorphism f : V Ñ V 1 “ fpV q between open

subsets V, V 1 Ă R
2d`d1`1
px,y,zq a fibered contact diffeomorphism if it satisfies the following

conditions:

(1) f is written in the form

(4.52) fpx, y, zq “ pf̃pxq, f̂px, yq, z ` τpxqq,

(2) the diffeomorphism

f̌ : ppx,zqpV q Ñ ppx,zqpV
1q, f̌px, zq “ pf̃pxq, z ` τpxqq

preserves the contact form α0 given in (4.5).

Remark 4.20. We can always extend a fibered contact diffeomorphism f : V Ñ V 1

to f : ppx,yqpV qq ˆ Rz Ñ ppx,yqpV
1q ˆ Rz by the expression (4.52). We will assume

this extension in some places.

The diffeomorphism f̌ above is called the base diffeomorphism of f . The diffeomor-
phism

(4.53) f̆ : ppx,yqpV q Ñ ppx,yqpV
1q, f̆px, yq :“ pf̃pxq, f̂px, yqq

is called the transversal diffeomorphism of f . We have the commutative diagrams

V
f

ÝÝÝÝÑ V 1

ppx,zq

§§đ ppx,zq

§§đ

ppx,zqpV q
f̌

ÝÝÝÝÑ ppx,zqpV q

V
f

ÝÝÝÝÑ V 1

ppx,yq

§§đ ppx,yq

§§đ

ppx,yqpV q
f̆

ÝÝÝÝÑ ppx,yqpV
1q

The function τpxq in (4.52) is determined by the transversal diffeomorphism f̆

up to an additive constant. In particular, we have

Lemma 4.21 ([43, Lemma 4.1]). If f : V Ñ V 1 is a fibered contact diffeomorphism
as above and suppose that the transversal diffeomorphism preserves the origin, i.e.

f̆p0q “ 0, then the function τpxq in the expression (4.52) satisfies

Dxτp0q “ 0, D2
xτp0q “ 0.

Proof. The first equality Dτp0q “ 0 is obvious. The second is also easy to prove
but we need a little computation. See the proof of [18, Lemma 5.4.3]. �

Next we restrict ourselves to the case of affine transformations and introduce the
following definitions.
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Definition 4.22 (Groups A0 Ą A1 Ą A2 of affine transforms on R2d`d1`1).

(1) Let A0 be the group of affine transformations a : R2d`d1`1
px,y,zq Ñ R

2d`d1`1
px,y,zq that are

fibered contact diffeomorphisms (with setting V “ V 1 “ R2d`d1`1).
(2)Let A1 Ă A0 be the subgroup of all the affine transformations in A0 of the form

(4.54) a : R2d`d1`1
pq,p,y,zq Ñ R

2d`d1`1
pq,p,y,zq , apq, p, y, zq “ pAq`q0, A

:p`p0, pAy, z`bpq, pq`z0q

where A : Rd Ñ Rd and pA : Rd1

Ñ Rd1

are unitary transformations, b : R2d Ñ R

is a linear map and pq0, p0, y0, z0q P R
2d`d1`1
pq,p,y,zq is a constant vector. (Recall (4.7) for

the definition of A:.)
(3) Let A2 Ă A1 be the subgroup of all the affine transforms a P A1 as above with

A and pA the identities on Rd and Rd1

respectively.

Remark 4.23. Suppose that a P A1 is of the form (4.54). Then, from the condition
that the base diffeomorphism preserves the contact form α0, we see that the linear
map bpq, pq is determined by A, p0 and q0. In fact, by simple calculation, we find
bpq, pq “ ´ptAp0q ¨ q ` pA´1q0q ¨ p.

The following fact is easy to check and quite useful.

Lemma 4.24. The transfer operator La for a P A1 (defined by Lau :“ u ˝ a´1)

extends to a unitary operator on HrpR2d`d1`1q (resp. on Hr,σpR2d`d1`1q) and com-
mutes with the projection operator T0, that is, La ˝ T0 “ T0 ˝ La.

We use the next lemma in setting up the local charts on G in the next section.

Lemma 4.25. Let ℓ and ℓ1 be d-dimensional subspaces in TwR
2d`d1`1
px,y,zq at a point

w P R
2d`d1`1
px,y,zq . Suppose that the projection ppx,zq : R

2d`d1`1
px,y,zq Ñ R

2d`1
px,zq maps ℓ and ℓ1

bijectively onto the images ppx,zqpℓq and ppx,zqpℓ
1q and that we have

ppx,zqpℓq ‘ ppx,zqpℓ
1q “ kerα0pw̌q, dα0|ppx,zqpℓq “ 0, dα0|ppx,zqpℓ1q “ 0

where w̌ “ ppx,zqpwq. Then there exists an affine transform a P A0 (which is in
particular a fibered contact diffeomorphism) such that

ap0q “ w, pDaq0pRd
q ‘ t0u ‘ t0u ‘ t0uq “ ℓ, pDaq0pt0u ‘ R

d
p ‘ t0u ‘ t0uq “ ℓ1.

Proof. By changing coordinates by the transformation group A0, we may assume
that w “ 0 and that the subspaces ℓ and ℓ1 are subspaces of R2d

pq,pq ‘ t0u ‘ t0u Ă

R2d`d1`1. Thus we have only to find a linear map ǎ : R2d`1 Ñ R2d`1 preserving
α0 such that

(4.55) DǎpRd
q ‘ t0u ‘ t0uq “ ppx,zqpℓq, Dǎpt0u ‘ R

d
p ‘ t0uq “ ppx,zqpℓ

1q.

Note that a linear map ǎ : R2d`1 Ñ R2d`1 preserves the contact form α0 if and
only if it is of the form ǎpx, zq “ pa0pxq, zq and a0 : R2d Ñ R2d preserves the sym-
plectic form dα0 (identifying R2d with R2d ‘ t0u). Since the subspaces ppx,zqpℓq and
ppx,zqpℓ

1q are Lagrangian subspaces (i.e. the restriction of dα0 to those subspaces

are null) transversal to each other, we can find a linear transform ǎ : R2d`1 Ñ R2d`1

preserving dα0 so that (4.55) holds true. �
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5. Local charts and partitions of unity

In this section, we discuss about choice of local coordinate charts and partitions
of unity that we will use. We henceforth fix a small constant 0 ă θ ă 1 such that

(5.1) 0 ă θ ă mintβ, 1 ´ βu{20 ď 1{40

where 0 ă β ă 1 is the Hölder exponent given in (1.4). Also we let χ : R Ñ r0, 1s
be a C8 function satisfying the condition that18

(5.2) χpsq “

#
1 for s ď 4{3;

0 for s ě 5{3.

5.1. On the choice of local coordinate charts and partitions of unity.

Before giving the choice of local coordinate charts and partitions of unity precisely,
we explain the motivation behind the choice. Observe first of all that, in the linear
model that we discussed in the last section, we may decompose the action of the
transfer operator with respect to the frequency in z-direction. Indeed, in Lemma
4.12, we had only point-wise multiplication in the third factor L2pRξz q. Though this
is not true for the transfer operators Lt

k,ℓ in exact sense, it is important to observe
that they “almost” preserve the frequency in the flow direction. And, based on such
observation, we will decompose functions on M so that each of the components has
frequencies around some ω P Z in the flow direction and then consider the action
of the transfer operators on each of them. To look into such action, we choose a
finite system of local charts and an associated partition of unity for each ω P Z.

When we consider the action of the transfer operator on a component with fre-
quency around ω, we will look things in the scale xωy´1{2 in the directions transver-
sal to the flow. (Note that this corresponds to the scale in the definition of the
partial Bargmann transform.) Accordingly we would like to consider a system of

local charts and a partition of unity of size xωy´1{2`θ. Then, in such small scale,
the action of the transfer operators will be well-approximated by those for linear
transformations considered in the last section.

However, to proceed with this idea, we face one problem caused by the fact
that the section eu : M Ñ G is only Hölder continuous. If we look its image
Im eu in the local chart of size xωy´1{2`θ, its variation in the fiber directions of
the Grassmann bundle will be proportional to xωy´βp1{2´θq " xωy´1{2`θ. This
is a problem because the image Im eu must be approximated by the “horizontal”

subspace R2d
x ‘t0u‘Rz Ă R

2d`d1`1
px,y,zq to make use of the argument in the last section.

Our solution for this problem is rather simple-minded: We choose the system
of local charts so that the section Im eu “looks” horizontal. (See Figure 4.) More
precisely, we choose local coordinate charts for the parameter ω P Z so that the
objects look contracted by the rate xωy´p1´βqp1{2´θq´4θ in the fiber directions of
the Grassmann bundle. Then the “vertical” variation of the section Im eu in such
coordinates will be bounded by

xωy´βp1{2´θq ¨ xωy´p1´βqp1{2´θq´4θ “ xωy´1{2´3θ ! xωy´1{2

so that the section Im eu will look “horizontal” in the scale xωy´1{2. Of course,
there are some drawbacks of such choice of (asymptotically) singular local charts.

18This definition of χp¨q may look a bit strange for the argument below. Since we use this
function χp¨q later in a different context, we define it in this way.
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G

R
2d`d1`1

Im eu

Figure 4. A schematic picture of the choice of local charts.

At least, we have to be careful about the non-linearity of the flow viewed in such
local charts. Also we will find a related technical problem, as discussed in the
beginning of the next section.

Remark 5.1. The idea mentioned above is equivalent to consider a generalization
of Bargmann transform using eccentric wave packets.

5.2. Hyperbolicity of the flow f t
G. The flow f t

G is hyperbolic in the neighbor-
hood U0 of the section Im eu with hyperbolic decomposition given in (2.1), as we
noted in Section 2. For the argument below, we take the “maximum” exponent
χmax ą χ0 so that

(5.3) |Df t
Gpvq| ď C0 ¨ eχmax¨|t| ¨ |v| for any t P R and v P TU0

with some constant C0 ą 0.

Remark 5.2. The hyperbolicity exponent χ0 ą 0 was taken as the constant satis-
fying the condition (2.2). But, in what follows, we additionally suppose that the
condition (2.2) remains true if we replace χ0 with χ0 ` ε for some small ε ą 0.
Since we have not used χ0 from Section 4 to this point and since the equalities
in the main theorems related to χ0 are strict ones, this does not cause any loss of
generality.

In the next lemma, we introduce a continuous (but not necessarily smooth)
Riemann metric | ¨ |˚ on U0 Ă G which is adapted to the flow.

Lemma 5.3. There exists a β-Hölder continuous Riemann metric | ¨ |˚ on U0 Ă G

such that, for the decomposition TU0 “ rEu ‘ rEs ‘ rE0 in (2.1), we have

(1) |Df t
Gpvq|˚ ě eχ0t ¨ |v|˚ for v P rEu and t ě 0,

(2) |Df t
Gpvq|˚ ď e´χ0t ¨ |v|˚ for v P rEs and t ě 0,

(3) |v|˚ “ |αpvq| for v P rE0,

(4) rEs, rEu and rE0 are orthogonal to each other with respect to the metric | ¨ |˚,

(5) |v|˚ “ suptdαpv, v1q | v1 P rEs, |v
1|˚ “ 1u for v P rEu.
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Proof. The construction is standard. For v P rEs, we set

|v|˚ “

ż T

0

e`χ0t|Df t
Gpvq|dt

where T ą 0 is a constant. Letting T ą 0 be sufficiently large and using Remark
5.2, we see that the condition (2) is fulfilled for 0 ď t ď 1 and hence for all t ě 0. For

the vectors in rEu and rE0, we define the norm | ¨ |˚ uniquely so that the conditions
(5) and (3) hold. We extend such construction so that the condition (4) holds.

Then it is easy to check the condition (1): For v P rEu, we have

|Df t
Gpvq|˚ “ suptdαpDf tpvq, v1q | v1 P rEs, |v

1|˚ “ 1u

“ suptdαpv, v2q | v2 P rEs, |Df
tpv2q|˚ “ 1u ě eχ0t ¨ |v|˚.

The Hölder continuity of } ¨ }˚ follows from that of the decomposition TU0 “
rEu ‘ rEs ‘ rE0 and the construction above. �

5.3. Darboux charts. The next lemma is a slight extension of the Darboux the-
orem [1, pp.168] for contact structure.

Lemma 5.4. There exists a finite system of local coordinate charts on M ,

κ̌a : V̌a Ă R
2d`1
px,zq Ñ Ǔa :“ κ̌apV̌aq Ă M for a P A,

and corresponding local coordinate charts on G,

κa : Va Ă R
2d`d1`1
px,y,zq Ñ Ua :“ κapVaq Ă G for a P A,

such that

(1) V̌a “ pxpV̌aq ˆ p´s0, s0q for some s0 ą 0,
(2) κ̌a are Darboux charts, that is, κ̌˚

aα “ α0 on Ǔa, where α0 is the standard
contact form in (4.5).

(3) Ua “ π´1
G pǓaqXU0, where U0 is the absorbing neighborhood of the attractor

Impeuq, and the following diagram commutes:

Ua
κaÐÝÝÝÝ Va Ă R

2d`d1`1
px,y,zq

πG

§§đ ppx,zq

§§đ

Ǔa
κ̌aÐÝÝÝÝ V̌a Ă R

2d`1
px,zq

(4) the pull-back of the generating vector field of f t
G by κa is the (constant)

vector field Bz on R
2d`d1`1
px,y,zq .

Proof. The Darboux theorem for contact structure gives the Darboux charts κ̌a,
a P A, satisfying the condition (2). The generating vector field viewed in those

coordinates are the constant vector field Bz on R
2d`1
px,zq because it is characterized as

the Reeb vector field of α. Then we can easily define the extended charts κa for
a P A so that the conditions (1), (3) and (4) hold. �

We henceforth fix the local charts κa in the lemma above. The time-t-map of
the flow f t

G viewed in those local charts are

f t
aÑa1 :“ κ´1

a1 ˝ f t
G ˝ κa : κ´1

a pUa X f´t
G pUa1 qq Ñ κ´1

a1 pf t
GpUaq X Ua1 q.

The next lemma is a consequence of the choice of the local charts κa.
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Lemma 5.5. The mappings f t
aÑa1 : κ´1

a pUa X f´t
G pUa1 qq Ñ κ´1

a1 pf t
GpUaq X Ua1 q are

fibered contact diffeomorphisms (defined in Definition 4.19). Further we have

f t`s
aÑa1 px, y, zq “ f t

aÑa1 px, y, z ` sq

provided that both sides are defined and s ą 0 is sufficiently small.

Let K0 Ť U0 be a compact neighborhood of the section Im eu such that

(5.4) f t
GpK0q Ť K0 for all t ą 0.

We take and fix a family of C8 functions

ρa : Va Ñ r0, 1s for a P A

such that supp ρa Ť Va and that

ÿ

aPA

ρa ˝ κ´1
a ”

#
1, on K0;

0, on a neighborhood of GzU0.

For the argument in the later sections, we take another family of smooth functions

ρ̃a : Va Ñ r0, 1s for a P A

such that supp ρ̃a Ă Va and ρ̃a ” 1 on supp ρa.

5.4. The local charts adapted to the hyperbolic structure. In the next
proposition, we construct local charts that are more adapted to the hyperbolic
structure of the flow f t

G, by pre-composing affine transformations. These local
charts are centered at the points of the form eupκ̌apx, 0qq with x P pxpVaq Ă R2d.

Proposition 5.6. For a P A and x P pxpVaq Ă R2d, we can choose an affine
transformation

Aa,x : R2d`d1`1
px,y,zq Ñ R

2d`d1`1
px,y,zq

in the transformation group A0 (defined in Definition 4.22) so that, if we set

κa,x :“ κa ˝Aa,x : A´1
a,xpVaq Ñ Ua,

it sends the origin 0 P R
2d`d1`1
px,y,zq to the point eupκ̌apx, 0qq P Im eu and the differential

pDκa,xq0 is isometric with respect to the Euclidean metric in the source and the
Riemann metric | ¨ |˚ in the target and, further, pDκa,xq0 sends the components of
the decomposition

T0R
2d`d1`1
px,y,zq “ R

d
q ‘ R

d
p ‘ R

d1

y ‘ Rz

to those of the decomposition

Teupκ̌apx,0qqG “ rEu ‘˚ p rEs a˚ kerDπGq ‘ kerDπG ‘ rE0

respectively in this order. ( rEs a˚ kerDπG denotes the orthogonal complement of

kerDπG in rEs with respect to the Riemann metric } ¨ }˚.)

Proof. By applying Lemma 4.25, we can find the affine map Aa,x such that all
the conditions in the conclusion hold true, but for the isometric property. By
pre-composing a simple linear map of the form

C ‘ C: ‘ pC ‘ Id : Rd
q ‘ R

d
p ‘ R

d1

y ‘ Rz Ñ R
d
q ‘ R

d
p ‘ R

d1

y ‘ Rz,

we may modify Aa,x so that pDκa,xq0 restricted to t0u ‘ Rd
p ‘ t0u ‘ t0u and t0u ‘

t0u‘R
d1

y ‘ t0u are respectively isometric. Then, from (3) and (5) in Lemma 5.3, we
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see that pDκa,xq0 restricted to t0u‘ t0u‘ t0u‘Rz and Rd
q ‘ t0u‘ t0u‘ t0u are also

isometric and then, from (4), we obtain the isometric property of pDκa,xq0. �

5.5. The local coordinate charts parametrized by ω P Z. For each integer
ω P Z, we set up a finite system of local charts and an associated partition of unity.
Following the idea explained in the beginning of this section, we define the local
charts as the composition of the charts κa,x introduced in the last subsection with
the partially expanding linear map

(5.5) Eω : R2d`d1`1
px,y,zq Ñ R

2d`d1`1
px,y,zq , Eωpx, y, zq “ px, xωyp1´βqp1{2´θq`4θy, zq.

Remark 5.7. We will use the numerical relation

(5.6) p1 ´ βqp1{2 ´ θq ď p1 ´ βq{2 ď 1{2 ´ 10θ,

which follows from the choice of the constant θ ą 0 in (5.1).

For each a P A and ω P Z, we consider the following finite subset of R2d:

Npa, ωq “ tn P R
2d | n P pxωy´1{2`θ ¨ Z2dq X pxpVaqu.

For each element n P Npa, ωq, we define the local chart κ
pωq
a,n by

(5.7) κpωq
a,n :“ κa,n ˝ Eω : V pωq

a,n :“ E´1
ω ˝A´1

a,npVaq Ñ Ua,

where κa,n is the local chart κa,x defined in Proposition 5.6 for x “ n.
Next, for each integer ω P Z, we introduce a partition of unity associated to the

system of local coordinate charts tκ
pωq
a,nuaPA,nPNpa,ωq. First we take and fix a smooth

function ρ0 : R2d Ñ r0, 1s so that the support is contained in the cube p´1, 1q2d

and that

(5.8)
ÿ

nPZ2d

ρ0px´ nq ” 1 for all x P R
2d.

(For instance, set ρ0pxq “
ś2d

i“1pχpxi ` 1q ´χpxi ` 2qq for x “ pxiq
2d
i“1 P R2d, using

the function χp¨q in (5.2). ) For a P A and n P Npa, ωq, we define the function

ρ
pωq
a,n : R2d`d1`1

px,y,zq Ñ r0, 1s by

(5.9) ρpωq
a,npx, y, zq “ ρapx1, y1, z1q ¨ ρ0pxωy1{2´θpx1 ´ nqq

where px1, y1, z1q “ Aa,n ˝ Eωpx, y, zq. From this definition, we have

(5.10) ρpωq
a,n ˝ pκpωq

a,nq´1ppq “ ρa ˝ κ´1
a ppq ¨ ρ0pxωy1{2´θppx ˝ κ´1

a,nppq ´ nqq.

Hence, from (5.8) and the choice of ρa, we have, for each ω P Z, that

ÿ

aPA

ÿ

nPNpa,ωq

ρpωq
a,n ˝ pκpωq

a,nq´1 “
ÿ

aPA

ρa ˝ κ´1
a ”

#
1 on K0;

0 on a neighborhood of GzU0.

That is, the set of functions

tρpωq
a,n ˝ pκpωq

a,nq´1 : U0 Ñ r0, 1s | a P A, n P Npa, ωqu

is a partition of unity on K0 supported on U0.
For the argument in the later sections, we define an “enveloping” family of

functions, ρ̃
pωq
a,np¨q for ω P Z, a P A and n P Npa, ωq, by

(5.11) ρ̃pωq
a,npx, y, zq “ ρ̃apx1, y1, z1q ¨ ρ̃0pxωy1{2´θpx1 ´ nqq
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where px1, y1, z1q “ Aa,n ˝ Eωpx, y, zq and ρ̃0 : R2d Ñ r0, 1s is a C8 function sup-
ported on the cube p´1, 1q2d such that ρ̃0 ” 1 on the support of ρ0. By definition,

we have ρ̃
pωq
a,npx, y, zq ” 1 on the support of ρ

pωq
a,n.

6. Modified anisotropic Sobolev spaces Kr,σpK0q

We define the function spaces Kr,σpK0q, called the modified anisotropic Sobolev
spaces, that consist of distributions on the neighborhoodK0 of the attracting section
Im eu. The function spaces in Theorem 2.2 will be obtained from them by a simple
procedure of time averaging of the norm. (See Definition 8.1.) We will use a simple
periodic partition of unity tqω : R Ñ r0, 1suωPZ defined by

(6.1) qωpsq “ χps´ ω ` 1q ´ χps´ ω ` 2q.

6.1. The problems caused by the factor Eω. A simple idea to define the Hilbert
spaces in Theorem 2.2 is to patch the anisotropic Sobolev spaces Hr,σpR2d`d1`1q

using the local charts κ
pωq
a,n and the partition of unity ρ

pωq
a,n. But, proceeding with

this idea, we face one problem caused by the singularity of the local charts κ
pωq
a,n.

This forces us to give a more involved definition of the modified anisotropic Sobolev
space Kr,σpK0q in the following subsections.

The difficulty may be explained as follows. (The explanation below may not be
very clear and is not indispensable for the argument in the following subsections.)

For facility of explanation, suppose that M “ R
2d`1
px,zq and G “ R

2d`d1`1
px,y,zq and that

the the local chart to look functions with frequency around ω P Z along the flow
direction (or the z-axis) is just the partial expanding map Eω in (5.5). Then, if
we follow the idea mentioned above, the norm that we consider for a function u on

G “ R
2d`d1`1
px,y,zq will look like

}u} “ }Wr ¨ Bu}L2 with Wrpw, ξw , ξzq :“
ÿ

ω

qωpξzq ¨ Wr ˝D˚Eωpw, ξw , ξzq

where D˚Eω : R4d`2d1`1
pw,ξw,ξzq Ñ R

4d`2d1`1
pw,ξw,ξzq denotes the pull-back by Eω. The problem

with this norm is that the function Wrp¨q is rather singular in the limit |ξw | Ñ 8.
To be more precise, let us consider two integers 0 ! ω ! ω1. Since the non-conformal
property of D˚Eω depends on ω and since the weight function Wr is anisotropic,
we can find ξw P R2d`d1

such that

(6.2) lim
sÑ`8

Wrp0, s ¨ ξw, ωq

Wrp0, s ¨ ξw, ω1q
“ 8.

while the distance between the points p0, s ¨ ξw, ωq and p0, s ¨ ξw, ω
1q is bounded

uniformly in s. With this singularity19 of Wr, even multiplications by moderate
smooth functions will be unbounded with respect to the norm above.

We emphasize that the problem mentioned above does not affect the most es-
sential part of our argument because it happens only for the action of transfer
operators on the wave packets that are very far from the trapped set. (Recall the
explanation at the end of Section 2.) The modification of the definition of the
Hilbert spaces will be described in the following subsections. The idea is simply to

19In terms of the theory of pseudo-differential operator, this implies that the function Wr does
not belong to an appropriate class of symbols.
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relax the non-conformal property of the factor Eω gradually and sufficiently slowly
as we go far from the trapped set.

6.2. Partitions of unity on the phase space. We introduce a few partitions of

unity on the phase space R
4d`2d1`1
pw,ξw,ξzq .

6.2.1. Interpolating Eω and the identity map. We first construct a family of linear
maps Eω,m for m ě 0, which interpolates the linear map Eω and the identity map.
To begin with, we introduce two constants

1 ă Θ1 ă Θ2.

These constants will be used to specify the interval of integers m where we do the
relaxation of the singularity (or non-conformal property) of the local coordinate
charts. The choice of these constant are rather arbitrary. But, to make sure that
the relaxation takes place sufficiently slowly, we suppose

(6.3) Θ2 ´ Θ1 ą 10 ¨
χmax

χ0

ą 10,

so that

(6.4) µ :“
p1 ´ βqp1{2 ´ θq ` 4θ

Θ2 ´ Θ1

ă
1{2

Θ2 ´ Θ1

ă
χ0

20 ¨ χmax

ă
1

20
.

For each ω P Z, we set

(6.5) n0pωq :“ rθ ¨ logxωys , n1pωq :“ rΘ1 ¨ logxωys , n2pωq :“ rΘ2 ¨ logxωys

so that

en0pωq „ xωyθ, en1pωq „ xωyΘ1 and en2pωq „ xωyΘ2.

Then we define a function eω : Z` Ñ R by

(6.6) eωpmq “

$
’&
’%

1, if m ď n1pωq;

eµpm´n1pωqq, if n1pωq ă m ă n2pωq;

xωyp1´βqp1{2´θq`4θ, if m ě n2pωq.

From the choice of the constants above, this function varies slowly satisfying

(6.7)
eωpmq

eωpm1q
ď eµp|m´m1|`2q ă ep|m´m1|`2q{20.

We define the family of linear maps Eω,m : R2d`d1`1
px,y,zq Ñ R

2d`d1`1
px,y,zq for ω P Z and

m P Z` by

Eω,mpx, y, zq “ px, eωpmq ¨ y, zq.

From the definition, this family interpolates Eω and the identity map in the sense
that Eω,m “ Id if m ď n1pωq and Eω,m “ Eω if m ě n2pωq.

Let D˚Eω,m : R4d`2d1`1
px,y,ξx,ξy,ξzq Ñ R

4d`2d1`1
px,y,ξx,ξy,ξzq be the natural pull-back action of

Eω,m on the cotangent bundle:

(6.8) D˚Eω,mpx, y, ξx, ξy, ξzq “ px, eωpmq´1y, ξx, eωpmqξy, ξzq.
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6.2.2. A partition of unity on the phase space. We next define partitions of unity

on the phase space R
4d`2d1`1
px,y,ξx,ξy,ξzq. Recall the periodic partition of unity tqωuωPZ on

the real line R and also the function χp¨q, defined in (6.1) and (5.2) respectively.
We define a family of functions

(6.9) Xm : R4d`2d1`1
px,y,ξx,ξy,ξzq Ñ r0, 1s for m P Z`

by

Xmpx, y, ξx, ξy, ξzq “ χpe´m|pζp, ξ̃y, ζq, ỹq|q

where ζp, ζq, ỹ, ξ̃y are coordinates on R
4d`2d1`1
px,y,ξx,ξy,ξzq introduced in (4.24). Then we

define the functions

rXω,m : R4d`2d1`1
px,y,ξx,ξy,ξzq Ñ r0, 1s for ω P Z and m P Z with m ě n0pωq

by

rXω,m “

#
Xn0pωq ¨ qω “ pXn0pωq ˝D˚E´1

ω,mq ¨ qω if m “ n0pωq;

pXm ˝D˚E´1
ω,m ´Xm´1 ˝D˚E´1

ω,m´1q ¨ qω if m ą n0pωq

where (and also in many places in the following) we understand qωp¨q as a function
of the coordinate ξz in px, y, ξx, ξy, ξzq. By this construction, the family of functions

t rXω,m : R4d`2d1`1
px,y,ξx,ξy,ξzq Ñ r0, 1s | ω P Z,m P Z` with m ě n0pωqu

is a partition of unity on R
4d`2d1`1
px,y,ξx,ξy,ξzq.

Remark 6.1. The index m above is related to the distance of the support of rXω,m

from the trapped set X0, while ω indicates the values of the coordinate ξz. When
m “ n0pωq, the support is contained in the e2xωyθ-neighborhood of the trapped
set X0 in the standard Euclidean norm in coordinates introduced in (4.24). When
n0pωq ď m ď n1pωq, it is contained in the region where the distance from the
trapped set X0 is in between em´2 and em`2. When m ě n1pωq, the situation is a
little more involved because the modification by the family of linear maps D˚E´1

ω,m

takes effect. (If we look things through the linear map D˚E´1
ω,m, we have a parallel

description.)

Next, for σ P Σ, we define the functions Zσ
`, Z

σ
´ : R4d`2d1`1

px,y,ξx,ξy,ξzqzt0u Ñ r0, 1s by

Zσ
`px, y, ξx, ξy, ξzq “

1

2
p1 ´ ordσprpζp, ξ̃y, ζq, ỹqsqq

and

Zσ
´px, y, ξx, ξy, ξzq “

1

2
pordσprpζp, ξ̃y, ζq, ỹqsq ` 1q.

Obviously we have Zσ
`p¨q ` Zσ

´p¨q ” 1. (Recall (4.32) and (4.36) for the definition
of the function ordσp¨q.) For each m P Z with m ‰ 0, we set

Zσ
`,ω,m “ Zσ

` ˝D˚E´1
ω,m and Zσ

´,ω,m “ Zσ
´ ˝D˚E´1

ω,m.

Again we have Zσ
`,ω,mp¨q ` Zσ

´,ω,mp¨q ” 1 for each integer ω and m ě 0.
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Remark 6.2. The supports of Zσ
˘p¨q are contained in some conical subsets in the

coordinates pζp, ξ̃y, ζq, ỹq in the stable or unstable direction. For instance, we have

Zσ
`px, y, ξx, ξy, ξzq ‰ 0 only if pζp, ξ̃y, ζq, ỹq belongs to the coneC

pd`d1,d`d1q
` p2¨2´σ{2q.

This is true also for the supports of Zσ
˘,ω,mp¨q, but the corresponding cones will be

distorted by the factor D˚Eω,m.

Finally we define the functions

Ψσ
ω,m : R4d`2d1`1

px,y,ξx,ξy,ξzq Ñ r0, 1s, for ω P Z, m P Z and σ P Σ

by

(6.10) Ψσ
ω,m “

$
’’’&
’’’%

rXω,n0pωq, if m “ 0;

0, if 0 ă |m| ď n0pωq;
rXω,m ¨ Zσ

`,ω,m, if m ą n0pωq;
rXω,|m| ¨ Zσ

´,ω,m, if m ă ´n0pωq.

For each σ P Σ, the family of functions tΨσ
ω,m | ω P Z,m P Zu is a partition of

unity on R
4d`2d1`1
px,y,ξx,ξy,ξzq. For the support of the function Ψσ

ω,m, the index ω indicates

the approximate value of ξz, the absolute value of m indicates the distance from
the trapped set, and the sign of m indicates the (stable or unstable) directions from
the trapped set.

Remark 6.3. In the definitions above, we suppose that the coordinates pw, ξw , ξzq

corresponds to those given by the distorted local charts κ
pωq
a,n in (5.7). Note that,

by definition, the supports of the functions Ψσ
ω,m in the partition of unity above

will look somewhat regular if m ď n1pωq and they become distorted gradually by
the factor D˚Eω,m as m increase. If m ě n2pωq and |ω| is large, the supports
of Ψσ

ω,m will be strongly distorted. However, if we look things in the usual local

coordinate charts (say, κ
pωq
a,n without the factor Eω in its definition (5.7)), they will

look reversely: The supports of Ψσ
ω,m for m ď n1pωq will look strongly distorted

while those for m ě n2pωq will look regular in such coordinates.

6.3. The decomposition of functions. Suppose σ P Σ. For each u P C8pU0q,
we assign a countable family of functions

uσa,ω,n,m “ Ψσ
ω,m ¨ B

´
ρpωq
a,n ¨ u ˝ κpωq

a,n

¯
P C8psuppΨσ

ω,mq Ă C8pR4d`2d1`1
px,y,ξx,ξy,ξzqq

for a P A, ω P Z, n P Npa, ωq and m P Z, where ρ
pωq
a,n ˝ κ

pωq
a,n for a P A, ω P Z and

n P Npa, ωq are those introduced in Subsection 5.5 and Ψσ
ω,m for ω,m P Z are those

introduced in the last subsection. For simplicity, we set

J “ tj “ pa, ω, n,mq | a P A, ω P Z, n P Npa, ωq, m P Z s.t. m “ 0 or |m| ą n0pωqu

and write

uσj “ uσa,ω,n,m for j “ pa, ω, n,mq P J.

We will refer the components of j “ pa, ω, n,mq P J as

apjq “ a, ωpjq “ ω, npjq “ n, mpjq “ m.

Also we set, for j P J,

(6.11) ρj :“ ρ
pωpjqq
apjq,npjq, ρ̃j :“ ρ̃

pωpjqq
apjq,npjq, κj :“ κ

pωpjqq
apjq,npjq and Ψσ

j :“ Ψσ
ωpjq,mpjq.
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Then the assignment mentioned above can be regarded as an operator

Iσ : C8pU0q Ñ
à

jPJ

L2psuppΨσ
j q, Iσu “ puσj qjPJ.

This is of course injective on C8pK0q.

Remark 6.4. Since the intersection multiplicities of

tsuppΨσ
ω,mumPZ and tsupp ρpωq

a,n ˝ pκpωq
a,nq´1 | a P A, n P Npa, ωqu

are bounded by absolute constants and since the functions ρ
pωq
a,n are smooth in the

z-direction uniformly a, n and ω, it is not difficult to see that

ÿ

jPJ

}uσj }2L2 ď C0

ÿ

ωPZ

››››
ÿ

jPJ;ωpjq“ω

uσj

››››
2

L2

ď CR

ÿ

ωPZ

xωy´2R}u}2HR for u P C8pU0q

for any R ą 0, where }¨}HR denotes the norm on the Sobolev spaceHRpK0q of order
R. (For the definition of the Sobolev spaces using Bargmann transform, we refer

[34, Ch.1].) Hence the range of Iσ above is indeed contained in
À

jPJ L
2psuppΨσ

j q.

A left inverse of Iσ is defined as

pIσq˚ :
à

jPJ
L2psuppΨσ

j q Ñ L2pU0q, pIσq˚ppujqjPJq “
ÿ

jPJ

´
pρ̃j ¨ B˚ujq ˝ κ´1

j

¯
.

Note that this is not the L2 adjoint of Iσ. The following is not trivial.

Lemma 6.5. pIσq˚ ˝ pIσq “ Id on C8pK0q for any σ P Σ.

Proof. From Remark 6.4, we can see also that the composition pIσq˚ ˝ pIσq is well-
defined from C8pK0q to itself. To prove the claim, it is enough to show

(6.12)
ÿ

jPJ

`
ρ̃j ¨ B˚

`
Ψσ

j ¨ Bpρj ¨ pu ˝ κjqq
˘˘

˝ κ´1
j “ u

for u P C8pK0q. The proof is simple if we take the sum in an appropriate order.
On the left hand side of (6.12), we first take the sum over j with apjq “ a, ωpjq “ ω

and npjq “ n P Npa, ωq fixed. Then the sum is
ÿ

a,ω,n

ρ̃pωq
a,n ˝ pκpωq

a,nq´1 ¨
´

pB˚ ˝ Mpqωq ˝ Bqpρpωq
a,n ¨ u ˝ κpωq

a,nq
¯

˝ pκpωq
a,nq´1

where Mpqωq is the multiplication by the function qω. Recall that the partial
Bargmann transform B is a composition of the Fourier transform in the variable
z and the Bargmann transforms in the variable w with scaling depending on the
frequency ξz . From this, we see that the operator B˚ ˝ Mpqωq ˝ B above is a
convolution operator which involves only the variable z and commutes with the

action of the fibered contact diffeomorphism pκ
pωq
a,nq´1˝κa. In the definition (5.11) of

ρ̃
pωq
a,np¨q, the latter factor does not depend on the variable z so that the multiplication

by that factor commutes with the operator B˚ ˝Mpqωq ˝B. Using these facts with
(5.8) and (5.10), and taking the sum over n P Na,ω, we see that the left hand side
of (6.12) equals

ÿ

a,ω

pρ̃a ¨ pB˚ ˝ Mpqωq ˝ Bqpρa ¨ pu ˝ κaqqq ˝ κ´1
a .

Taking sum with respect to ω P Z and then to a P A, we see that this equals u. �
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6.4. The modified anisotropic Sobolev space Kr,σpK0q. We define the Hilbert
space Kr,σpK0q for r ą 0 and σ P Σ as follows. Though the definition makes sense
for any r ą 0, we henceforth assume that r satisfies (4.28) and

(6.13) pr ´ 1qχ0 ą 4pd ` d1qχmax

which corresponds to (4.29), in order to make use of the results in Section 4.

Definition 6.6. Let Kr,σ be the completion of
À

jPJ L
2psuppΨσ

j q with respect to
the norm

}u}2Kr,σ “
ÿ

jPJ:mpjq“0

}Wr,σ ¨ uj}
2
L2 `

ÿ

jPJ:mpjq‰0

2´r¨mpjq}uj}
2
L2 for u “ pujqjPJ.

Then let Kr,σpK0q be the completion of the space C8pK0q with respect to the norm

}u}Kr,σ :“ }Iσpuq}Kr,σ .

For any compact subset K 1 Ă K0, K
r,σpK 1q denotes the subspace of Kr,σpK0q that

consists of elements supported on K 1.

Remark 6.7. From Remark 6.4 and geometric consideration about the position of
the supports of functions Ψσ

j “ Ψσ
ωpjq,mpjq, we see that the inequality

C´1}u}H´R ď }u}Kr,σ ď C}u}HR for any u P C8pK0q

holds for some R ą r and C ą 1. This implies that we have

C8pK0q Ă HRpK0q Ă Kr,σpK0q Ă H´RpK0q Ă D1pK0q

where HRpK0q denotes the (usual) Sobolev space of order R.

For convenience in the argument in the later sections, we give a few related def-
initions. For each j P J, we define the Hilbert space Kr,σ

j as the space L2psuppΨσ
j q

equipped with the norm

(6.14) }u}Kr,σ

j
“

#
}Wr,σu}L2 if mpjq “ 0;

2´r¨mpjq{2}u}L2 if mpjq ‰ 0.

Then we have

Kr,σ “
à

jPJ

K
r,σ
j for σ P Σ.

For each j P J, we define

Iσj : Kr,σpK0q Ñ L2psuppΨσ
j q, Iσj u “ Ψσ

j ¨ Bpρj ¨ u ˝ κjq

so that the operator Iσ is the direct product of them:

(6.15) Iσ “
à

jPJ

Iσj : Kr,σpK0q Ñ Kr,σ “
à

jPJ

K
r,σ
j .

Remark 6.8. We could define the modified anisotropic Sobolev space Kr,σpK0q in

the same spirit as in the definition of Hr,σpR2d`d1`1q. Let Wr,σ
ω : R2d`d1`1 Ñ R be

the function defined by

Wr,σ
ω “

¨
˝pWr,σ ¨ Ψω,0q2 `

ÿ

|m|ąn0pωq

2´rm ¨ Ψ2
ω,m

˛
‚
1{2

.
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Then the norm }u}Kr,σ is equivalent to the norm

}u}1
Kr,σ “

¨
˝ ÿ

aPA,ωPZ,nPNpa,ωq

}Wr,σ
ω ¨ Bpρpωq

a,n ¨ u ˝ κpωq
a,nq}2L2

˛
‚
1{2

.

This definition looks a little simpler than the definition given above, since it avoids
the decomposition of functions with respect to the integer m. But the definition
that we gave in the text is more useful in our argument.

Remark 6.9. In this section, we have defined the modified anisotropic Sobolev
spaces Kr,σpK0q as a completion of the space of C8 functions. This is enough for
the purpose of considering the scalar-valued transfer operators Lt “ Lt

0,0. When

we consider the vector-valued transfer operators Lt
k,ℓ, we have to define the similar

Hilbert spaces as a completion of Γ8pK0, Vk,ℓq. The extension of the definition
is straightforward once we fix some local trivializations of Vk,ℓ subordinate to the
local charts κa.

7. Properties of the transfer operator Lt

In order to clarify the structure of the proof of Theorem 2.2, we state several
propositions below in this section and then deduce Theorem 2.2 from them in the
next section. The proofs of the propositions are deferred to the later sections,
Sections 9,10 and 11. Below we mostly consider the case of scalar-valued transfer
operator Lt “ Lt

0,0. For the other cases of vector-valued transfer operators Lt
k,ℓ

with pk, ℓq ‰ p0, 0q, we put a remark, Remark 7.15, at the end.

7.1. Constants and some definitions. In addition to the constants χ0, β, θ, Θ1

and Θ2 that we have fixed in the previous sections, we introduce two more constants
t0 ą 0 and ǫ0 ą 0.

We take t0 ą 0 as the time that we need to wait until the hyperbolicity of the
flow takes sufficiently strong effects. Precisely we take and fix t0 such that

eχ0t0 ą 10 and f t0
G pU0q Ă K0.

Also we take ǫ0 ą 0 as a small constant and define

(7.1) tpωq :“ maxtǫ0 logxωy, t0u.

When we consider functions with frequency around ω in the flow direction, we look
them in a small neighborhood of a point with size xωy´1{2`θ in the transversal
directions to the flow. For each fixed time t, if we view the flow f t

G in such neigh-
borhood, the effect of non-linearity will decrease as |ω| Ñ 8. By a little more
precise consideration, we see that such estimates on non-linearity remains true for
t in the range 0 ď t ď tpωq if tpωq grows sufficiently slowly with respect to |ω|, that
is, if the constant ǫ0 is sufficiently small. Roughly this is what we want to realize
by choosing small ǫ0. The choice of ǫ0 will be given in the course of the argument.

Recall that we took the compact subset K0 Ť U0 as a neighborhood of the
section eu satisfying the forward invariance condition (5.4). We define, in addition,

K0 Ţ K1 :“ f t0
G pK0q Ţ K2 :“ f2t0

G pK0q
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and take smooth functions ρK0
, ρK1

: U0 Ñ r0, 1s such that

(7.2) ρK0
ppq “

#
1, if p P K1;

0, if p R K0.
, ρK1

ppq “

#
1, if p P K2;

0, if p R K1.

We will use these functions to restrict the supports of functions to K0 and K1.
We introduce the operator Qω for ω P Z, which extracts the parts of functions

whose frequency in the flow direction are around ω P Z.

Definition 7.1. For each ω P Z, let Πω : Kr,σ Ñ Kr,σ be the operator defined by

pΠωuqj “

#
uj, if ωpjq “ ω;

0, otherwise,
for u “ pujqjPJ.

Then we define Qω : C8pK0q Ñ C8pK0q by

Qω “ MpρK0
q ˝ pIσq˚ ˝ Πω ˝ Iσ.

From Lemma 6.5 and the choice of the function ρK0
, we have

(7.3)
ÿ

ωPZ

Qωu “ u for u P C8pK1q.

Remark 7.2. Since the operator Qω may enlarge the support of functions, each of
QωpC8pK1qq will not be contained in C8pK1q.

Remark 7.3. The equality (7.3) is valid for any distribution u P D1pK1q if we regard
the both sides as distributions.

In the next definition, we introduce the operator Tω, which corresponds to T0 in
(4.49) on local charts (restricted to the frequency around ω)..

Definition 7.4. For ω P Z and σ, σ1 P Σ0, let TσÑσ1

ω : Kr,σ Ñ Kr,σ1

be the
operator defined by

(7.4) pTσÑσ1

ω uqj “

#
Xn0pωq ¨ Tlift

0 uj, if mpjq “ 0 and ωpjq “ ω with20 |ω| ě 3;

0, otherwise,

for u “ pujqjPJ. See (4.50) and (6.9) for the definitions of Tlift
0 and Xn0pωq. Then

we define

(7.5) Tω “ MpρK1
q ˝ pIσ

1

q˚ ˝ TσÑσ1

ω ˝ Iσ : C8pK0q Ñ C8pK1q.

Notice that the right-hand side actually does not depend on σ, σ1 P Σ.

Remark 7.5. The multiplication by Xn0pωq in (7.4) is inserted in order that the

operator TσÑσ1

ω is well-defined as that from Kr,σ to Kr,σ1

. (Note that the operator
Tlift
0 does not enlarge the support of the function in the ξz direction.) Similarly

the multiplication operator MpρK1
q in (7.5) is inserted so that the image of Tω is

supported on K1.

Remark 7.6. Since the definition of TσÑσ1

ω above involves only finitely many com-
ponents in effect (and erase the other components), it is easy to see that Tω for
each ω is continuous from Kr,σpK0q to C8pK1q.

7.2. Properties of the operators Lt, Qω and Tω.
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7.2.1. Boundedness and continuity of the operators Lt. First of all, we give a basic
statement on continuity of the family Lt. From the fact noted in the beginning of
Subsection 4.5.2, we unfortunately do not know whether Lt : Kr,σpK0q Ñ Kr,σpK0q
is bounded when t ą 0 is small. Instead, we prove the following proposition. Note
that, from (4.39), we have

(7.6) Kr,`pK0q Ă KrpK0q Ă Kr,´pK0q.

Remark 7.7. Here and henceforth, we write Kr,´pK0q, KrpK0q and Kr,`pK0q for
the Hilbert space Kr,σpK0q with σ “ ´1, 0,`1 respectively. Similarly we will write
} ¨ }Kr,´ , } ¨ }Kr and } ¨ }Kr,` for the norms on them.

Proposition 7.8. Suppose that σ, σ1 P Σ. The operator Lt : Kr,σpK0q Ñ Kr,σ1

pK0q
is bounded if

(7.7) either (i) t ě 0 and σ1 ă σ or (ii) t ě t0 (and any σ, σ1).

In the latter case (ii), the image is contained in Kr,σ1

pK1q. Further there exists a
constant C ą 0 such that

}Lt : Kr,σpK0q Ñ Kr,σ1

pK0q} ď CeCt

provided that the condition (7.7) holds true.

7.2.2. The operator Qω. Since the operator Qω extracts the parts of functions whose
frequencies in the flow direction is around ω, the claims of the next lemma is natural.

Lemma 7.9. Suppose that σ, σ1 P Σ satisfy σ1 ă σ. The operator Qω extends
naturally to a bounded operator Qω : Kr,σpK0q Ñ Kr,σ1

pK0q. There exists a constant
C0 ą 0 such that

(7.8)
ÿ

ωPZ

}Qωu}2
Kr,σ1 ď C0}u}2Kr,σ for u P Kr,σpK0q.

Remark 7.10. The claim of the lemma above will not hold for the case σ “ σ1

because of the anisotropic property of our Hilbert spaces. (Note that the operator
Qω involves the coordinate change transformations.)

7.2.3. The operator Tω. From Lemma 4.14, the (Schwartz) kernel of the operator
Tlift
0 concentrate around the trapped set if we view it through the weight function

Wr,σ. Also the operator Tω concerns the part of functions whose frequency in the
flow direction is around ω. Hence it is not difficult to see that this is a compact
operator. More precise consideration leads to the following lemma.

Lemma 7.11. Let σ, σ1 P Σ0. The operator Tω extends to a trace class operator
Tω : Kr,σpK0q Ñ Kr,σ1

pK1q. There is a constant C0 ą 0 such that, for any subset
Z Ă Z, we have

(7.9)

›››››
ÿ

ωPZ

Tω : Kr,σpK0q Ñ Kr,σ1

pK1q

››››› ď C0.

Further there exist constants C0 ą 1 and ω0 ą 0 such that, for each ω P Z with
|ω| ě ω0, we have

(a) the estimate

(7.10) C´1
0 xωyd ď }Tω : Kr,σpK0q Ñ Kr,σ1

pK1q}Tr ď C0xωyd

where } ¨ }Tr denotes the trace norm of an operator, and
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(b) there exists a subspace V pωq Ă Kr,σpK1q with dimV pωq ě C´1
0 xωyd such

that

(7.11) }Tωu}Kr,σ1 ě C´1
0 }u}Kr,σ for all u P V pωq.

Further there exists a constant Cν ą 0 for ν ą 0 such that

(7.12) |pTωu,Tω1vqKr,σ | ď Cνxω1 ´ ωy´ν ¨ }u}Kr,σ}v}Kr,σ

for u P V pωq and v P V pω1q provided |ω|, |ω1| ě ω0.

7.2.4. The transfer operators Lt. We give two propositions on the transfer operators
Lt. The first one below is in the same spirit as Theorem 4.17 in Section 4.

Proposition 7.12. Let σ, σ1 P Σ0. There exist constants ǫ ą 0 and Cν ą 1 for any
ν ą 0 such that, for ω, ω1 P Z and 0 ď t ď 2tpωq, we have

}Tω1 ˝ Lt ˝ Tω : Kr,σpK0q Ñ Kr,σ1

pK1q} ď Cνxω1 ´ ωy´ν,(7.13)

}pQω1 ´ Tω1 q ˝ Lt ˝ Tω : Kr,σpK0q Ñ Kr,σ1

pK0q} ď Cνxωy´ǫxω1 ´ ωy´ν ,(7.14)

}Tω1 ˝ Lt ˝ pQω ´ Tωq : Kr,σpK0q Ñ Kr,σ1

pK1q} ď Cνxωy´ǫxω1 ´ ωy´ν(7.15)

and, under the additional condition (7.7) on t, also

(7.16) }pQω1 ´Tω1q˝Lt ˝pQω ´Tωq : Kr,σpK0q Ñ Kr,σ1

pK0q} ď Cνe
´χ0txω1 ´ωy´ν .

In particular, from the four inequalities above, it follows that

(7.17) }Qω1 ˝ Lt ˝ Qω : Kr,σpK0q Ñ Kr,σ1

pK0q} ď Cνxω1 ´ ω1y´ν

for ω, ω1 P Z and 0 ď t ď 2tpωq satisfying (7.7) with respect to σ and σ1.

We need the next proposition when we consider the resolvent of the generator
of Lt. This is essentially an estimate on Lt for negative t ă 0. The transfer
operators Lt with negative t ! 0 will not be a bounded operator on our modified
anisotropic Sobolev spaces. But, since Tωu for u P Kr,σpK0q is a smooth function
as we noted in Remark 7.6, its image LtpTωuq for t ă 0 is well defined and smooth.
More precise consideration leads to

Proposition 7.13. Let σ, σ1 P Σ0. There exist constants ǫ ą 0, C0 ą 0 and Cν ą 0
for any ν ą 0 such that, for u P Kr,σpK0q, ω P Z and 0 ď t ď 2tpωq, there exists

vω P Kr,σ1

pK1q such that

}Ltvω ´ Tωu}Kr,σ ď C0xωy´θ}u}Kr,σ(7.18)

and, for ω1 P Z and 0 ď t1 ď t,

}Qω1 ˝ Lt1

vω}Kr,σ1 ď Cνxω1 ´ ωy´ν}u}Kr,σ ,(7.19)

}pQω1 ´ Tω1 q ˝ Lt1

vω}Kr,σ1 ď Cνxωy´ǫxω1 ´ ωy´ν}u}Kr,σ .(7.20)

7.2.5. Short-time estimates. The next lemma is a consequence of the fact that the
component Qωu of u P Kr,σpK0q has frequency close to ω in the flow direction.

Lemma 7.14. Suppose that σ, σ1 P Σ0 satisfy σ1 ă σ. There exists a constant
C0 ą 0 such that, for ω P Z and 0 ď t ď t0,

(7.21) }pe´iωtLt ´ 1q ˝ Qω : Kr,σpK0q Ñ Kr,σ1

pK0q} ď C0t.
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For the generator A :“ limtÑ`0pLt ´ 1q{t of Lt, we have, for u P Kr,σpK0q,
ÿ

ωPZ

}piω ´Aq ˝ Qωu}2
Kr,σ1 ď C0}u}2Kr,σ(7.22)

and
ÿ

ωPZ

}Qω ˝ piω ´Aqu}2
Kr,σ1 ď C0}u}2Kr,σ .(7.23)

Further the claims (7.22) and (7.23) remain valid when Qω is replaced by Tω.

Remark 7.15. For the vector-valued transfer operators Lt
k,ℓ with pk, ℓq ‰ p0, 0q,

we consider their action on the Hilbert spaces given in Remark 6.9 and prove the
propositions parallel to those stated in this section, except for Lemma 7.11 and
Proposition 7.13. The extensions of the proofs given in later sections to such cases
are straightforward. We will not need Lemma 7.11 and Proposition 7.13 for the
vector-valued cases.

8. Proof of the main theorems (1): Theorem 2.2

We prove Theorem 2.2 assuming the propositions given in the last section. Below
we consider the case of scalar-valued transfer operator Lt “ Lt

0,0. For the other
cases, we put a remark, Remark 8.11, at the end of Subsection 8.3.

8.1. Strong continuity and the generator. We define the Hilbert space rKrpK0q
in the statement of Theorem 2.2 as follows.

Definition 8.1. We define the norm } ¨ } rKr on C8pK0q by

}u} rKr :“

ˆż t0

0

}Ltu}2Kr,´dt

˙1{2

.

The Hilbert space rKrpK0q is the completion of the space C8pK0q with respect to
this norm.

From Proposition 7.8, we have

(8.1) KrpK0q Ă rKrpK0q

and the transfer operator Lt for t ě t0 extends to

(8.2) Lt : rKrpK0q Ñ Kr,`2pf tpK0qq Ă KrpK2q.

Remark 8.2. The Hilbert space rKrpK0q is contained in Sobolev space H´RpK0q of

some negative order ´R ă 0, since Lt0p rKrpK0qq Ă Krpf t0pK0qq Ă H´Rpf t0pK0qq
from Remark 6.7 and L´t0 is bounded from H´Rpf t0pK0qq to H´RpK0q.

Proposition 8.3. The transfer operators Lt : C8pK0q Ñ C8pK0q for t ě 0 extend
to a strongly continuous one-parameter semi-group of bounded operators

L :“ tLt : rKrpK0q Ñ rKrpK0q, t ě 0u.

For some constant C ą 0, we have

(8.3) }Lt : rKrpK0q Ñ rKrpK0q} ď CeCt for t ě 0.
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Proof. The claims follow from the definition of } ¨ } rKr and Proposition 7.8. Indeed,
for 0 ď t ď t0, we have

}Ltu}2rKr
“

ż t0

0

}Ls`tu}2Kr,´ds “

ż t0

t

}Lsu}2Kr,´ds `

ż t

0

}Lt0 ˝ Lsu}2Kr,´ds

ď

ż t0

t

}Lsu}2Kr,´ds ` C

ż t

0

}Lsu}2Kr,´ds ď p1 ` Cq}u}2rKr
.

Then we use this estimate recursively to get (8.3). The correspondence t ÞÑ Ltpuq P

C8pK0q Ă rKrpK0q for u P C8pK0q is continuous at t “ 0 from Remark 6.7. Since

C8pK0q is dense in rKrpK0q by definition, we obtain strong continuity of the semi-
group L by approximation argument. �

We will denote the generator of the one-parameter semi-group L by

A : DpAq Ă rKrpK0q Ñ rKrpK0q.

By general argument (see [33, §1.4 p.51]), this is a closed operator defined on a

dense linear subspace DpAq Ă rKrpK0q that contains C8pK0q.

8.2. Meromorphic property of the resolvent. In the following, we suppose
that τ ą 0 is that in the statement of Theorem 2.2, given as an arbitrarily small
positive real number. The resolvent of the generator A is written

Rpsq “ ps´Aq´1.

As the second step toward the proof of Theorem 2.2, we prove

Proposition 8.4. The resolvent Rpsq is meromorphic on the region

ts P C | Repsq ą ´χ0 ` τ, |Impsq| ą s0u

if s0 ą 0 is sufficiently large. Further there exists a constant C0 ą 0 such that, for
ω˚ P Z with sufficiently large absolute value, there exist at most C0|ω˚|d poles of
the resolvent Rpsq (counted with multiplicity) in the region

(8.4) Rpω˚q “ ts P C | ´χ0 ` 2τ ă Repsq ă 1, |Impsq ´ ω˚| ď 1 u.

Remark 8.5. We actually can prove the meromorphic property of the resolvent
Rpsq “ ps´Aq´1 on much larger region. (See Remark B.10 in Appendix B.)

Proof. For each integer ω˚ P Z with sufficiently large absolute value, we prove that
the resolvent Rpsq is meromorphic on the rectangle

rRpω˚q :“ ts P C | Repsq ą ´χ0 ` τ, |Impsq ´ ω˚| ă 2u Ţ Rpω˚q.

Let us consider the operator

rTω˚ “
ÿ

|ω´ω˚|ď2ℓ

Tω : Kr,σpK0q Ñ Kr,σ1

pK1q

where the integer ℓ will be specified in the course of the argument below. (But note
that we will choose ℓ uniformly for ω˚.) Below we write C0 for large constants that
are independent of ω˚ and ℓ. From Lemma 7.11, we have

(8.5)
›››rTω˚ : Kr,σpK0q Ñ Kr,σ1

pK1q
››› ď C0

and also

(8.6) }rTω˚ : Kr,σpK0q Ñ Kr,σ1

pK1q}Tr ď C0ℓ ¨ |ω˚|d
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for any σ, σ1 P Σ. We regard the generator A as a compact perturbation of

A1 :“ A ´ χ0 ¨ rTω˚ : DpAq Ñ rKrpK0q.

As the main step of the proof, we prove

Lemma 8.6. The resolvent R1psq :“ ps ´ A1q´1 of A1 is bounded and satisfies

}R1psq} rKr ď C0 for s P rRpω˚q provided that |ω˚| is sufficiently large.

We postpone the proof of Lemma 8.6 and finish the proof of Proposition 8.4.

From Proposition 8.3, the resolvent Rpsq “ ps ´ Aq´1 : rKrpK0q Ñ rKrpK0q is a
uniformly bounded holomorphic family of isomorphisms on the region Repsq ě C1

if we take sufficiently large C1. Let us write the operator s´A as

(8.7) s ´A “ ps´A1q ˝ Upsq where Upsq :“ 1 ´ χ0ps´A1q´1 ˝ rTω˚ .

From Lemma 8.6, the operator ps ´ A1q´1 ˝ rTω˚ belongs to the trace class and is

holomorphic with respect to s on the region rRpω˚q. Thus the resolvent Rpsq extends

as a meromorphic family of Fredholm operators of index 0 to the region rRpω˚q. This
gives the former claim of the proposition. Below we provide a more quantitative
argument21 to get the latter claim. To begin with, note that the resolvent Rpsq has

a pole of order m at s0 P rRpω˚q if and only if

kpsq :“ detUpsq

has a zero of order m at s “ s0.

Remark 8.7. The determinant detUpsq is well-defined since Upsq is a perturbation
of the identity by a trace class operator. We refer [23] for the trace and determinant
of operators on Hilbert (or Banach) spaces.

From (8.6) and Lemma 8.6, we have

(8.8) log |kpsq| ď C0ℓ|ω˚|d uniformly for s P rRpω˚q.

We may write Upsq´1 for s P rRpω˚q with Repsq ě C1 as

Upsq´1 “ ps´Aq´1ps ´A1q “ Id ` χ0ps ´Aq´1 ˝ rTω˚ .

Hence, from (8.6), we obtain that

(8.9) log |kpsq| ě ´C0ℓ|ω˚|d uniformly for s P rRpω˚q with Repsq ě C1.

By virtue of Jensen’s formula [2, Chapter 5, formula (44) on page 208]22, the es-
timates (8.8) and (8.9) imply that there are at most C0|ω˚|d poles in the region

Rpω˚q Ť rRpω˚q. This proves the latter claim of the proposition. �

Proof of Lemma 8.6. For the proof, we construct approximate right and left inverse
of ps ´Aq, that is,

QR “ QRpsq, QL “ QLpsq : rKrpK0q Ñ DpAq Ă rKrpK0q

21We learned the following argument from the paper [39] of Sjöstrand.
22By the Riemann mapping theorem, we find a biholomorphic mapping which maps the region

rRpω˚q onto the unit disk |z| ă 1 so that a point s˚ P rRpω˚q with Reps˚q ą C1 and Imps˚q “ ω˚

is sent to the origin 0. Then we apply Jensen’s formula to the holomorphic function on the unit
disk corresponding to kpsq. (See also the proof of Corollary 8.8.)
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for s P rRpω˚q satisfying }QR} rKr ď C0, }QL} rKr ď C0 and

(8.10) }Id ´ ps ´A1q ˝QR} rKr ă
1

2
, }Id ´QL ˝ ps ´A1q} rKr ă

1

2
.

Once we obtain such operators QL and QR, we can prove Lemma 8.6, constructing
the resolvent R1psq “ ps ´A1q´1 by iterative approximation. Indeed, if we define

rQR :“ QR

8ÿ

k“0

pId ´ ps ´A1qQRqk and rQL :“
8ÿ

k“0

pId ´QLps´A1qqkQL

we have } rQR} rKr ď C 1
0, } rQL} rKr ď C 1

0 and

ps´A1q ˝ rQR “ Id, rQL ˝ ps ´A1q “ Id, rQR “ rQL ˝ ps ´A1q ˝ rQR “ rQL.

Below we construct QR satisfying (8.10). The construction of QL is parallel and

will be mentioned later. First, for u P rKrpK0q, we put

ũ “ e´st0Lt0u´ χ0
rTω˚

ż t0

0

e´stLtudt.

Then we have }ũ}Kr,` ď C0}u} rKr from Proposition 7.8 and Lemma 7.11. We define

the operator QR : rKrpK0q Ñ rKrpK0q by setting

QRu :“ Q
p1q
R ũ`Q

p2q
R ũ`Q

p3q
R ũ`

ż t0

0

e´stLtudt

where

Q
p1q
R ũ “

ÿ

ω:|ω´ω˚|ďℓ

ż tpω˚q

0

e´ps`χ0qt ¨ Lt ˝ Tωũdt,

Q
p2q
R ũ “

ÿ

ω:|ω´ω˚|ďℓ

ż tpω˚q

0

e´stLt ˝ pQω ´ Tωqũdt,

Q
p3q
R ũ “

ÿ

|ω´ω˚|ąℓ

ps´ iωq´1Qωũ.

We have }Q
pkq
R ũ} rKr ď C0}u} rKr for k “ 1, 2, 3. In the cases k “ 1, 2, this follows

from Proposition 7.12. In the case k “ 3, this follows from Lemma 7.9 and Schwarz
inequality.

Since pd{dtqpe´stLtuq “ ´ps´Aqe´stLtu, we have

ps´A1q

ż t0

0

e´stLtudt “ u´ e´st0Lt0u` χ0
rTω˚

ż t0

0

e´stLtudt “ u´ ũ.

Therefore, to prove the former claim in (8.10) for QR, it is enough to show

(1) }ps ´A1qQ
p1q
R ũ´

ř
ω:|ω´ω˚|ďℓ Tωũ} rKr ă p1{6q}u} rKr ,

(2) }ps ´A1qQ
p2q
R ũ´

ř
ω:|ω´ω˚|ďℓpQω ´ Tωqũ} rKr ă p1{6q}u} rKr ,

(3) }ps ´A1qQ
p3q
R ũ´

ř
ω:|ω´ω˚|ąℓ Qωũ} rKr ă p1{6q}u} rKr .
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To prove the claims (1) and (2), we write

ps ´A1qQ
p1q
R ũ “ ps` χ0 ´AqQ

p1q
R ũ´ χ0p1 ´ rTω˚qQ

p1q
R ũ

“
ÿ

ω:|ω´ω˚|ďℓ

”
Tωũ´ e´ps`χ0qtpω˚qLtpω˚q ˝ Tωũ

ı

`
ÿ

ω:|ω´ω˚|ďℓ

χ0p1 ´ rTω˚q

ż tpω˚q

0

e´ps`χ0qt ¨ Lt ˝ Tωũdt

and, similarly,

ps´A1qQ
p2q
R ũ “

ÿ

ω:|ω´ω˚|ďℓ

”
pQω ´ Tωqũ´ e´stpω˚qL´tpω˚q ˝ pQω ´ Tωqũ

ı

`
ÿ

ω:|ω´ω˚|ďℓ

χ0

ż tpω˚q

0

e´st ¨ rTω˚ ˝ Lt ˝ pQω ´ Tωqũdt.

Then using Proposition 7.12 and the relation

p1 ´ rTω˚q “
ÿ

|ω´ω˚|ď2ℓ

pQω ´ Tωq `
ÿ

|ω´ω˚|ą2ℓ

Qω,

we can deduce the claims (1) and (2), provided that ℓ and |ω˚| are sufficiently large.
To prove the claim (3), we write

ps ´A1qQ
p3q
R ũ “

ÿ

|ω´ω˚|ąℓ

ˆ
Qωũ´

A ´ iω

s´ iω
¨ Qωũ`

χ0

s´ iω
¨ rTω˚ ˝ Qωũ

˙
.

The sum of the second terms on the right-hand side is bounded in the rKr-norm by

C0

¨
˝ ÿ

|ω´ω˚|ąℓ

1

|s ´ iω|2

˛
‚
1{2 ¨

˝ ÿ

|ω´ω˚|ąℓ

}piω ´Aq ¨ Qωũ}2Kr

˛
‚
1{2

ď C0

}u} rKr

ℓ1{2

from Lemma 7.14. Hence, if we take sufficiently large ℓ and then let ω˚ be suffi-
ciently large, we obtain the claim (3).

For the construction of QL, we modify the definition of ũ as

ũ “ e´st0Lt0u` χ0

ż t0

0

e´stLt ˝ rTω˚udt

and replace Lt˝Tω and Lt˝pQω´Tωq in the definitions of Q
p1q
R and Q

p2q
R respectively

by Tω ˝Lt and pQω ´Tωq˝Lt. Then we can follow the argument above with obvious
modifications and obtain the latter claim in (8.10) for QL. �

From the argument in the proof above, we get the following corollary, which we
will use later in the proof of Proposition 8.12 in Subsection 8.4.

Corollary 8.8. There exists a constant C0 ą 1 and ω0 ą 0 such that, if ω˚ P Z

satisfies |ω˚| ą ω0, there exists some ω P R with |ω ´ ω˚| ă 1 such that

(8.11) sup
µPr´τ,τ s

}Rpµ ` ωiq : rKrpK0q Ñ rKrpK0q} ď exppC0|ω˚|dq.

Remark 8.9. The estimate (8.11) seems very coarse. But for the moment we do
not know whether we can give better estimates.
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Proof. Let us recall the subharmonic function23 log |kpsq| “ log | detUpsq| and the
constant C1 in the proof of the last proposition. By the Riemann mapping theorem,

we take a biholomorphic mapping ϕ : int rRpω˚q Ñ D which maps the region rRpω˚q

onto the unit disk D “ t|z| ă 1u so that the point s˚ “ C1 ` iω˚ P rRpω˚q is mapped
to the origin 0. Let ψpzq “ log |kpϕ´1pzqq| for z P D and observe that

(1) ψpzq ď C0|ω˚|d uniformly on D from (8.8),
(2) ψpzq is a subharmonic function with at most C0|ω˚|d points wi for 1 ď i ď I

(with I ă C0|ω˚|d) such that

∆ψpzq “
Iÿ

i“1

δwi
,

(3) ψp0q “ log |kps˚q| ě ´C0|ω˚|d from (8.9) and the choice of s˚ above.

Let ψi, 1 ď i ď I, be the Green’s function on D at wi, which is by definition the
subharmonic function satisfying ∆ψi “ δwi

and ψi ” 0 on BD. Then we see

ψpzq “ ψ0pzq `
Iÿ

i“1

ψipzq

where ψ0 is the harmonic function which takes the same boundary values as ψ.
From the property (3) and the subharmonic property of ψ, it follows

1

2π

ż

BD

ψ0pzq|dz| “
1

2π

ż

BD

ψpzq|dz| ě ψp0q ě ´C0|ω˚|d.

From this and the property (1) above,

1

2π

ż

BD

|ψpzq||dz| ď C0|ω˚|d.

Hence, by Poisson’s formula [2], we get

ψpzq ě ´C0|ω˚|d `
Iÿ

i“1

ψipzq for z P ϕpRpω˚qq Ť D.

Note that the distortion of the Riemann map ϕ on the compact subset Rpω˚q Ť D

is bounded uniformly in ω˚, that is,

C´1
0 |s ´ s1| ď |ϕpsq ´ ϕps1q| ď C0|s´ s1| for s, s1 P Rpω˚q

because the pairs pRpω˚q, rRpω˚qq for different ω˚ are translations of each other.
Since ψipzq ě log |z ´ w1

i| ´ C0, we obtain that

log |kpsq| ě ´C0|ω˚|d `
Iÿ

i“1

plog |s ´ w1
i| ´ C0q for s P Rpω˚q,

23We suppose that subharmonic functions can take value ´8 and that log 0 “ ´8.
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where w1
i “ ϕ´1pwiq. In particular we have

ż ω˚`1

ω˚´1

ˆ
inf

µPr´τ,τ s
log |kpµ ` ωiq|

˙
dω

ě ´C0|ω˚|d `
Iÿ

i“1

ˆż ω˚`1

ω˚´1

log |ω ´ Impw1
iq|dω ´ C0

˙

ě ´C0|ω˚|d ´ C0I ě ´C0|ω˚|d.

Hence we can find ω P rω˚ ´ 1, ω˚ ` 1s such that

(8.12) inf
µPr´τ,τ s

|kpµ ` ωiq| ě expp´C0|ω˚|dq.

For a self-adjoint trace class operator X such that 1 `X is positive, we have

}p1 `Xq´1} ď detp1 `Xq´1 expp}X}Tr ` 1q

because, writing σi ą ´1 for the eigenvalues of X , we have24

detp1 `Xq´1 expp}X}Trq ě
ź

i

eσi

1 ` σi
ě max

i
eσip1 ` σiq

´1 ě e´1}p1 `Xq´1}.

Applying this to Upsq˚ ¨ Upsq “ 1 `X with setting

X “ ´Y ´ Y ˚ ` Y ˚ ¨ Y and Y “ 1 ´ Upsq “ χ0ps´A1q´1 ˝ rTω˚ ,

we obtain that

}Upsq´1}2 ď C0 exppC0}X}Trq ¨ | detUpsq|´2 for s P Rpω˚q.

Estimating the trace norm }X}Tr by (8.6) and Claim 3 and recalling the relation
(8.7), we conclude

}Rpsq} ď C0}Upsq´1} ď C0 exppC0|ω˚|dq ¨ |kpsq|´1 for s P Rpω˚q.

Therefore (8.12) implies the required estimate. �

8.3. Boundedness of the resolvent. The third step toward the proof of Theorem
2.2 is to prove that there are only finitely many eigenvalues of the generator A on
the outside of Upχ0, τq. (See (1.6) for the definition of Upχ0, τq.)

Proposition 8.10. There exists s0 ą 0 such that the resolvent Rpsq is bounded as

an operator on rKrpK0q uniformly for s P CzUpχ0, τq satisfying Repsq ą ´χ0 ` τ

and |Impsq| ě s0.

Proof. We consider s P CzUpχ0, τq satisfying Repsq ą ´χ0 ` τ and |Impsq| ě s0

and take ω˚ “ ω˚psq so that s P Rpω˚q. We show that, for any u P rKrpK0q, there

exists w P rKrpK0q such that }w} rKr ď C0}u} rKr and that

(8.13) }ps ´Aqw ´ u} rKr ď
1

2
}u} rKr .

By iterative approximation as in the proof of Lemma 8.6, this implies that ps´Aq
has a right inverse whose operator norm is bounded by C0. Then, by Lemma 8.6
and the relation (8.7), we see that the right inverse thus obtained is actually the
resolvent Rpsq and therefore obtain the conclusion of the proposition.

24Note that ex{p1 ` xq ą 1 for x ą ´1.
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The following argument is mostly parallel to that in the proof of Lemma 8.6. In
the case Repsq ą τ , we set

w “ w1 ` w2 ` w3 `

ż t0

0

e´stLtudt

where, letting ũ “ e´st0Lt0u, we set

w1 “
ÿ

ω:|ω´ω˚|ďℓ

ż tpω˚q

0

e´ps`χ0qt ¨ Lt ˝ Tωũdt,(8.14)

w2 “
ÿ

ω:|ω´ω˚|ďℓ

ż tpω˚q

0

e´st ¨ Lt ˝ pQω ´ Tωqũdt,(8.15)

w3 “
ÿ

|ω´ω˚|ąℓ

ps ´ iωq´1Qωũ(8.16)

where ℓ ą 0 is an integer that we will specify later. In the case Repsq ă ´τ , we
replace the definition of w1 above by

w1 “ ´
ÿ

ω:|ω´ω˚|ďℓ

ż tpω˚q

0

esptpω˚q´tqLtvωdt

where vω P Kr,`pK1q is that in Proposition 7.13 with setting σ “ 0, σ1 “ `1 and
letting u in its statement be ũ P Kr,`2pK2q.

We can check that }w} rKr ď C0}u} rKr as in the proof of Lemma 8.6. Since

ps ´Aq

ż t0

0

e´stLtudt “ u´ e´st0Lt0u “ u´ ũ,

the inequality (8.13) follows if we prove the claims

(1) }ps ´Aqw1 ´
ř

ω:|ω´ω˚|ďℓ Tωũ} rKr ă p1{6q}u} rKr ,

(2) }ps ´Aqw2 ´
ř

ω:|ω´ω˚|ďℓpQω ´ Tωqũ} rKr ă p1{6q}u} rKr ,

(3) }ps ´Aqw3 ´
ř

ω:|ω´ω˚|ąℓ Qωũ} rKr ă p1{6q}u} rKr .

The proofs of the claims (1) and (2) are obtained from that of the corresponding
claims in the proof of Lemma 8.6, letting χ0 be 0 in some places. But, in the case
Repsq ă ´τ , we need to modify the proof of (2) slightly as follows: We write

ps ´Aqw1 “ ´
ÿ

ω:|ω´ω˚|ďℓ

ż tpω˚q

0

esptpω˚q´tqLtvωdt

“
ÿ

ω:|ω´ω˚|ďℓ

restpω˚q ¨ vω ´ Ltpω˚qvωs

and check that the claim follows from the choice of vω. The proof of the claim (3)
is again parallel to that in Lemma 8.6. �

Remark 8.11. In the cases of vector-valued transfer operators Lt
k,ℓ with pk, ℓq ‰

p0, 0q, we can get the proof of the corresponding claims of Theorem 2.2 by the
argument parallel to that in this section for the case Repsq ą τ . (See Remark 6.9
and Remark 7.15 also.) Note that we do not need statements corresponding to
Lemma 7.11 and Proposition 7.13 for these cases.
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8.4. Lower bound for the density of eigenvalues. To complete25 the proof
of Theorem 2.2, it is enough to prove the following lower bound on the density of
eigenvalues of the generator A.

Proposition 8.12. For any δ ą 0, there exist constants C0 ą 1 and ω0 ą 0 such
that, for ω˚ P Z with |ω˚| ě ω0, it holds

#t poles of Rpsq such that |Repsq| ă τ and |Impsq ´ ω˚| ď |ω˚|δ u

|ω˚|δ
ě

|ω˚|d

C0

.

Proof. For ω˚ P Z, we consider the rectangle

(8.17) Rectpω˚q “ ts P C | |Repsq| ă τ, ´|ω˚|δ ` ∆ ă Impsq ´ ω˚ ă |ω˚|δ ´ ∆1u

where we choose ∆,∆1 P r0, 2s so that the estimate (8.11) in Corollary 8.8 holds
true on the horizontal sides of Rectpω˚q. Then we consider the spectral projector

Πω˚ “
1

2πi

ż

BRectpω˚q

Rpsqds

for the spectral set of A in this rectangle. For the proof of the proposition, it is
enough to show that

rankΠω˚ ě
1

C0

|ω˚|d`δ when |ω˚| is sufficiently large.

We prove this claim by contradiction. Let ℓ ą 0 be a constant which we will specify
in the course of the argument (independently of ω˚). We consider an integer ω˚

with large absolute value and take a sequence

ω˚ ´ |ω˚|δ{2 ă ωp1q ă ωp2q ă ¨ ¨ ¨ ă ωpkq ă ω˚ ` |ω˚|δ{2

so that

|ωpj ` 1q ´ ωpjq| ě 2ℓ and k ě
|ω˚|δ

4ℓ
.

We take the subspace V pωpjqq in Lemma 7.11(b) for each 1 ď j ď k and set

rV pωpjqq “ TωpjqpV pωpjqqq Ă Kr,`pK1q Ă KrpK1q.

From the choice of V pωpjqq in Lemma 7.11(b), we have

dim rV pωpjqq “ dimV pωpjqq ě C´1
0 |ω˚|d.

Let us set

W pω˚q “
kÿ

j“1

rV pωpjqq Ă Kr,`pK1q.

From (7.11) and (7.12) in Lemma 7.11, the subspaces rV pωpjqq for 1 ď j ď k

are almost orthogonal to each other (and linearly independent) provided that ℓ is

25As we noted in Remark 8.5, we actually have proved discreteness of the spectral set of the
generator A only on the region Repsq ą ´χ0 ` τ and |Impsq| ě s0 for some large s0. We will see

that this is true for the region Repsq ą ´rχ0{4 in Appendix B.
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sufficiently large. More precisely, if we set ṽj “ Tωpjqvj P rV pωpjqq for any given
vj P V pωpjqq for 1 ď j ď k, we have

ÿ

i,j:i‰j

|pṽi, ṽjqKr,σ | ď C0

ÿ

i,j:i‰j

xωpiq ´ ωpjqy´2}vi}Kr,σ}vj}Kr,σ(8.18)

ď C0ℓ
´1 ¨

ÿ

j

}vj}2Kr,σ ď C0ℓ
´1 ¨

ÿ

j

}ṽj}2Kr,σ .

Hence, provided that ℓ is so large that C0ℓ
´1 ă 1, we see

dimW pω˚q “
kÿ

j“1

dim rV pωpjqq “
kÿ

j“1

dimV pωpjqq ě
|ω˚|d`δ

4ℓC0

.

From our assumption (for the proof by contradiction), we can take arbitrarily
large ω˚ P Z and an element w̃ P W pω˚q with }w̃}Kr “ 1 that belongs to kerΠω˚ .
We express w̃ as

w̃ “
kÿ

j“1

Tωpjqwpjq with wpjq P V pωpjqq

and, for simplicity, set

w̃pjq :“ Tωpjqwpjq P rV pωpjqq Ă Kr,`pK1q.

Note that we have

(8.19) C´1
0 }wpjq}Kr ď }w̃pjq}Kr ď C0}wpjq}Kr

from the choice of V pωpjqq and the uniform boundedness of the operators Tω in ω.
We choose an integer 1 ď k˚ ď k so that }wpk˚q}Kr is the largest among }wpjq}Kr

for 1 ď j ď k.
For further argument, we introduce an entire holomorphic function

(8.20) Ω : C Ñ Czt0u, Ωpsq :“ expp1 ´ cospsqq.

This function converges to zero rapidly when |s| Ñ 8 in the strip |Repsq| ă π{3.
More precisely, we have

|Ωpsq| “ expp1 ´ Repcospsqqq ď expp1 ´ expp|Impsq|q{4q

for s P C with |Repsq| ď π{3, because, if s “ x` iy with x P r´π{3, π{3s,

Repcospsqq “ cospxq ¨ coshpyq ě expp|y|q{4.

Also we can check that y ÞÑ Ωpx ` iyq for x P r´π{3, π{3s is a function in the
Schwartz class SpRq and uniformly bounded.

Let b ą 0 be a small constant, which we will specify in the last part of the proof,
and define the KrpK0q-valued function

Y : Rectpω˚q Ñ KrpK0q, Ypsq “ Ωpbps´ iωpk˚qqq ¨ Rpsqw̃.

Since w̃ belongs to the kernel of the spectral projector Πω˚ , this is holomorphic on
a neighborhood of the rectangle Rectpω˚q and hence we have

(8.21)

ż

BRectpω˚q

Ypsqds “ 0.
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Below we show that this can not be true. In fact, we claim that, if |ω˚| is sufficiently
large, we have

(8.22)

›››››Q˚

˜ż

BRectpω˚q

Ypsqds

¸
´ w̃pk˚q

›››››
Kr

ď
1

2
}w̃pk˚q}Kr

where

Q˚ “
ÿ

ω:|ω´ωpk˚q|ďℓ

Qω.

Since w̃pk˚q ‰ 0 from the choice of k˚ and (8.19), this proves the proposition by
contradiction.

To begin with, note that we have

(8.23) }Q˚w̃pk˚q ´ w̃pk˚q}
Kr ď

1

4
}w̃pk˚q}Kr

provided that ℓ is sufficiently large. In fact, since w̃pk˚q is supported on K1 and
satisfies (7.3), we may write the left hand side as

››››››

ÿ

ω1:|ω1´ωpk˚q|ąℓ

Qω1 ˝ Tωpk˚qwpk˚q

››››››
Kr

.

Hence, using (7.13) and (7.14) for t “ 0 and also (8.19), we can check (8.23).
Let us write BhRectpω˚q and BvRectpω˚q for the horizontal and vertical sides of

the rectangle Rectpω˚q. For the integral (8.21) restricted to the horizontal sides,
we have, from the choice of ∆,∆1 ą 0 in the definition of Rectpω˚q and (8.20), that

(8.24)

›››››

ż

BhRectpω˚q

Ypsqds

›››››
Kr

ď exp

ˆ
´ expp|ω˚|δ ´ 1q{4

˙
¨ exp

`
C0|ω˚|d

˘
¨ }w̃}Kr .

Since }w̃}Kr ď C0|ω˚|δ}wpk˚q}Kr from the choice of k˚, this part of integral is
much smaller than }wpk˚q}Kr provided |ω˚| is large.

To evaluate the integral on the vertical sides, we prepare the next lemma. Recall
that ǫ0 is the constant that appear in the definition (7.1) of tpωq.

Lemma 8.13. Suppose that ρ P R satisfies |ρ ´ ω˚| ď |ω˚|δ ` 1. There exists a
constant C0 ą 0, independent of ω˚ and ρ, such that, for 1 ď j ď k, we have

›››››Rpτ ` iρqw̃pjq ´

ż tpω˚q

0

e´pτ`iρqtLtw̃pjqdt

›››››
Kr

ď C0|ω˚|´τǫ0}w̃pjq}Kr

and further that, for the function vωpjq given in Proposition 7.13 for the setting
σ “ σ1 “ 0, u “ wpjq, ω “ ωpjq and t “ tpω˚q ď 2tpωpjqq, we have

›››››Rp´τ ` iρqw̃pjq `

ż tpω˚q

0

ep´τ`iρqtLtpω˚q´tvωpjqdt

›››››
Kr

ď C0|ω˚|´τǫ0}w̃pjq}Kr .

Proof. Since

ppτ ` iρq ´Aq

˜ż tpω˚q

0

e´pτ`iρqtLtdt

¸
“ 1 ´ e´pτ`iρqtpω˚qLtpω˚q,
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we obtain, by applying Rpτ ` iρq to the both sides, that

Rpτ ` iρq “

˜ż tpω˚q

0

e´pτ`iρqtLtdt

¸
` e´pτ`iρqtpω˚qRpτ ` iρq ˝ Ltpω˚q.

We apply this operator to w̃pjq. Since Ltpω˚qw̃pjq is supported on K1 and satisfies
(7.3), we may use (7.13) and (7.14) in Proposition 7.12 and also Proposition 8.10
to get the estimate

›››››Rpτ ` iρqw̃pjq ´

ż tpω˚q

0

e´pτ`iρqtLtw̃pjqdt

›››››
Kr

ď C0e
´τtpω˚q}wpjq}Kr

ď C0|ω˚|´τǫ0}w̃pjq}Kr .

This is the first claim. We can get the second inequality by a similar manner. Since

pp´τ ` iρq ´Aq

˜ż tpω˚q

0

ep´τ`iρqtLtpω˚q´tdt

¸
“ ep´τ`iρqtpω˚q ´ Ltpω˚q,

we have

Rp´τ ` iρq ˝ Ltpω˚q “ ´

˜ż tpω˚q

0

ep´τ`iρqtLtpω˚q´tdt

¸
` ep´τ`iρqtpω˚qRp´τ ` iρq.

We obtain the second inequality by applying this operator to vωpjq and using the
estimate›››Rp´τ ` iρq ˝ Ltpω˚qvωpjq ´ Rp´τ ` iρqw̃pjq

›››
Kr

ď C0|ω˚|´θ}wpjq}Kr

that follows from the condition (7.18) in the choice of vωpjq. (We choose ǫ0 so small
that τǫ0 ă θ.) �

From Lemma 8.13 above and the choice of k˚, we have that

Q˚

ż

BRectpω˚q

Ypsqds

“
kÿ

j“1

ż `8

´8

dρ

ż tpω˚q

0

Ωb,`pρ ´ ωpk˚qqe´ipρ´ωpk˚qqtep´τ´iωpk˚qqtQ˚ ˝ Lt rwpjq dt

`
kÿ

j“1

ż `8

´8

dρ

ż tpω˚q

0

Ωb,´pρ ´ ωpk˚qqeipρ´ωpk˚qqtep´τ`iωpk˚qqtQ˚ ˝ Ltpω˚q´tvωpjq dt

` OKr

`
|ω˚|´τǫ0`δ}w̃pk˚q}Kr

˘

where we set

Ωb,˘pρq “ Ωpbp˘τ ` ρiqq.

Remark 8.14. The last term OKr

`
|ω˚|´τǫ0`δ}w̃pk˚q}Kr

˘
denotes an error term

whose Kr-norm is bounded by C|ω˚|´τǫ0`δ}w̃pk˚q}Kr . We use this notation below.

Note that the integration along the horizontal sides of Rectpω˚q and also the
integration with respect to ρ on the outside of the interval

rω˚ ´ |ω˚|δ ` ∆, ω˚ ` |ω˚|δ ´ ∆1s
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is included in the last error term. (The former is small as we have seen in (8.24).
The latter is also very small because of the property of the function Ωp¨q in the
integrand.)

Performing integration with respect to ρ, we get

Q˚

ż

BvRectpω˚q

Ypsqds “
kÿ

j“1

ż tpω˚q

0

pΩb,`ptq ¨ ep´τ´iωpk˚qqt ¨ Q˚ ˝ Lt rwpjq dt

`
kÿ

j“1

ż tpω˚q

0

pΩb,´p´tq ¨ ep´τ`iωpk˚qqt ¨ Q˚ ˝ Ltpω˚q´tvωpjq dt

` OKr

`
|ω˚|´τǫ0`δ}w̃pk˚q}Kr

˘

where pΩb,˘p¨q is the Fourier transform of Ωb,˘p¨q,

pΩb,˘ptq “
1

2π

ż 8

´8

e´iρtΩb,˘pρqdρ “
1

2π

ż 8

´8

e´iρtΩpbp˘τ ` iρqqdρ.

In both of the sums over 1 ď j ď k on the right-hand side above, the contribution
from the terms other than j “ k˚ is relatively small provided that ℓ ą 0 is large
enough (independently of ω˚). In fact, from Proposition 7.12 and the choice of k˚,

››Q˚ ˝ Lt rwpjq
››
Kr ď

Cνℓ ¨ }w̃pjq}Kr

x|ωpjq ´ ωpk˚q| ´ ℓyν
ď

Cνℓ ¨ }w̃pk˚q}Kr

x|ωpjq ´ ωpk˚q| ´ ℓyν

for j ‰ k˚ and 0 ď t ď tpω˚q, with arbitrarily large ν ą 0. Similarly, from (7.19)
in the choice of vω, we have

››Q˚ ˝ Ltvωpjq

››
Kr ď

Cνℓ

x|ωpjq ´ ωpk˚q| ´ ℓyν
¨ }w̃pk˚q}Kr .

Therefore the sum of contributions from the integrals for j ‰ k˚ is bounded by
Cℓ´ν`2}w̃pk˚q}Kr in the Kr-norm. That is, we have

Q˚

ż

BvRectpω˚q

Ypsqds “ Q˚

˜ż tpω˚q

0

pΩb,`ptq ¨ ep´τ´iωpk˚qqt ¨ Lt rwpk˚q dt

¸

` Q˚

˜ż tpω˚q

0

pΩb,´p´tq ¨ ep´τ`iωpk˚qqt ¨ Ltpω˚q´tvωpk˚q dt

¸

` OKr

`
pℓ´ν`1 ` |ω˚|´τǫ0`δq ¨ }w̃pk˚q}Kr

˘
.

We (finally) fix the constant ℓ ą 0 so that the last error term is bounded by
}w̃pk˚q}Kr{10 when ω˚ is sufficiently large. (Since we have only to prove Proposition
8.12 for sufficiently small δ, we assume δ ă τǫ0.)

Now we let the constant b be small. Then the functions pΩb,˘ptq concentrate

around 0 (in the L1 sense) and, further,
ş`8

0
pΩb,˘ptqdt and

ş0
´8

pΩb,˘ptqdt become

close to 1{2 by symmetry. By (7.21) in Lemma 7.14, we have

}ep´τ´iωpk˚qqtLtw̃pk˚q ´ w̃pk˚q}Kr ď C0|t|}w̃pk˚q}Kr .

Similarly, by (7.21) in Lemma 7.14 and (7.18) in the choice of vωpk˚q, we have also

}ep´τ`iωpk˚qqtLtpω˚q´tvωpk˚q ´ w̃pk˚q}Kr ď C0p|t| ` |ω˚|´θq}w̃pk˚q}Kr .

Therefore each of the integrations on the right-hand side above become close to
Q˚w̃pk˚q{2 in KrpK0q as b Ñ `0 uniformly in ω˚. Recalling (8.23), we conclude
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(8.22) when |ω˚| is sufficiently large, provided the constant b ą 0 is sufficiently
small. We finished the proof of Proposition 8.12. �

9. Some preparatory lemmas

In the last section, we have deduced Theorem 2.2 from the propositions given
in Subsection 7.2. The remaining task (in proving Theorem 2.2) is to prove those
propositions. This is done in this section and the following two sections. This
section is devoted to some basic estimates.

9.1. Multiplication by functions. We begin with considering the multiplication
operator by a function ψ P C8

0 pR2d`d1`1q,

Mpψq : C8pR2d`d1`1q Ñ C8pR2d`d1`1q, Mpψqu “ ψ ¨ u

and its lift with respect to the partial Bargmann transform,

(9.1) Mpψqlift :“ B ˝ Mpψq ˝ B˚.

Below we assume the following setting, which abstracts the situations that we will
meet later.

Setting I: For each ω P Z, there is a given set Xω of C8 functions on R2d`d1`1

such that the following conditions hold for all ω P Z and ψ P Xω with uniform
positive constants C and Cα,k (independent of ω and ψ):

(C1) the support of ψ P Xω is contained in

D
p2dqpCxωy´1{2`θq ‘ D

pd1qpCq ‘ D
p1qpCq Ă R

2d`d1`1

where DpDqpδq Ă RD is the disk of radius δ with center at the origin.

(C2) ψ P Xω satisfies the uniform estimate

|Bα
wBk

zψpw, zq| ă Cα,kxωyp1´θq|α|{2, @w P R2d`d1

, @z P R,

for any multi-indices α P Z
2d`d1

` and k P Z`.

Remark 9.1. The conditions (C2) above means that the normalized family

rXω “ tψ̃pw, zq “ ψpxωy´p1´θq{2w, zq | ψ P Xωu

is uniformly bounded in Ck-norm for any k, that is, they look very smooth (or

almost constant) in the variable w if we view them in the scale xωy´1{2. This
observation is basic in the following argument.

Remark 9.2. If we set Xω “ tρj | j P J with ωpjq “ ωu where ρj are those defined
in (5.9) and (6.11), then the conditions (C1) and (C2) above hold. But notice
that a little stronger condition than (C2) holds: we may replace xωyp1´θq|α|{2 by

xωyp1´2θq|α|{2 ! xωyp1´θq|α|{2 in (C2).

In the next lemma, we consider the lifted multiplication operatorMpψqlift for ψ P
Xω precomposed by Mpqωq and approximate it by a simpler operator constructed

as follows. For ψ P Xω, let pψ be the Fourier transform of ψ along the z-axis:

(9.2) pψpw, ξzq “
1

2π

ż
e´iξzzψpw, zqdz, w P R

2d`d1

, ξz P R.
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Note that, from the conditions (C1) and (C2) in Setting I, there exists a constant

Cα,ν ą 0 for any α P Z
2d`d1

` and ν ą 0 such that

(9.3) |Bα
w

pψpw, ξzq| ă Cα,νxωyp1´θq|α|{2xξzy´ν for ψ P Xω.

We then define the operator Cpψq : SpR4d`2d1`1q Ñ SpR4d`2d1`1q by

Cpψqupw1, ξ1
w, ξ

1
zq “

ż
pψpw1, ξ1

z ´ ξzqupw, pxξ1
zy{xξzyqξ1

w, ξzq dξz .

This is essentially the convolution operator in the variable ξz but looks a little
more complicated because of the rescaling mentioned in Remark 4.5. Recall the
Bargmann projection operator P from (4.20). For brevity of notation, we will write

L2pWr,σq for L2pR4d`2d1`1; pWr,σq2q below.

Lemma 9.3. Let σ P Σ. There exists a constant Cν ą 0 for each ν ą 0 such that,
for any ω, ω1 P Z and any ψ P Xω, we have

}Mpqω1 q ˝ pMpψqlift ´ P ˝ Cpψqq ˝ Mpqωq}L2pWr,σq ď Cνxωy´θ{2xω1 ´ ωy´ν

and

}Mpqω1q ˝ pMpψqlift ´ Cpψq ˝ Pq ˝ Mpqωq}L2pWr,σq ď Cνxωy´θ{2xω1 ´ ωy´ν.

Proof. Below we prove the first inequality. The second inequality is proved in
a parallel manner. We write the kernel Kpw1, ξ1

w, ξ
1
z ;w, ξw, ξzq of the operator

Mpψqlift ´ P ˝ Cpψq explicitly and find

|Kpw1, ξ1
w, ξ

1
z;w, ξw , ξzq|

“ a2d`d1pxξ1
zy´1q2

ˆ

ˇ̌
ˇ̌
ż
e´ipxξ1

zyξ1
w´xξzyξwqw2

¨
”
e´xξ1

zy|w2´w1|2{2´xξzy|w2´w|2{2 ¨ ∆pw,w2, ξ1
z , ξzq

ı
dw2

ˇ̌
ˇ̌

where

∆pw,w2, ξ1
z , ξzq

“

˜
xξzyp2d`d1q{4

xξ1
zyp2d`d1q{4

¨ pψpw2, ξ1
z ´ ξzq ´ epxξzy´xξ1

zyq|w2´w|2{2 ¨ pψpw, ξ1
z ´ ξzq

¸
.

The computation to get the expression above is straightforward. We take integra-
tion with respect to z and perform the change of variables pxξ1

zy{xξzyqξw ÞÑ ξw.
Note that we consider the volume form dm in (4.18) and that we ignored the term

eixξ
1
zyξ1

w¨w1{2´ixξzyξw¨w{2 as we take absolute value of the both sides.
We claim that, for any ν ą 0,

(9.4) |Kpw1, ξ1
w, ξ

1
z;w, ξw , ξzq| ď Cν

xωy´θ{2 ¨ xxωy1{2|w1 ´ w|y´ν

xxωy´1{2pxξ1
zyξ1

w ´ xξzyξwqyν ¨ xξ1
z ´ ξzyν

provided ξ1
z P supp qω1 and ξz P supp qω, where the constant Cν ą 0 is uniform for

ψ P Xω and ω P Z. Once we get this estimate, we obtain the conclusion by Schur
test. (See the remark below and also recall (4.34).) Notice that ν ą 0 in (9.4) is
arbitrary large and may be different from that in the statement of the lemma.
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Remark 9.4. Schur test mentioned above reads as follows: For an integral operator
T : L2pRDq Ñ L2pRDq of the form Tfpxq “

ş
Kpx, yqdy, we have

}T : L2pRDq Ñ L2pRDq} ď

ˆ
sup
x

ż
|Kpx, yq|dy

˙1{2 ˆ
sup
y

ż
|Kpx, yq|dx

˙1{2

.

For the proof, see [30, p.50] for instance.

In order to prove the estimate (9.4), we apply integration by parts several times,

regarding the term w2 ÞÑ e´ipxξ1
zyξ1

w´xξzyξwq¨w2

as the oscillating part and using the
differential operator

(9.5) D1 “
1 ` ixωy´1pxξ1

zyξ1
w ´ xξzyξwq ¨ Bw2

1 ` xωy´1|xξ1
zyξ1

w ´ xξzyξw|2
.

Remark 9.5. Here and henceforth, we mean, by “integration by parts regarding
eiϕpxq as the oscillatory part”, application of the formula

ż
eiϕpxqΦpxqdx “

ż
pDmeiϕqpxqΦpxqdx “

ż
eiϕpxqptDqmΦpxqdx

which holds when a differential operator D satisfies pDeiϕqpxq “ eiϕpxq.

To get (9.4), it is enough to show the estimate

(9.6) |Bα
w2∆pw,w2, ξ1

z, ξzq| ď Cα,νxωy´θ{2`|α|{2 ¨ xxωy1{2|w2 ´ w|y|α| ¨ xξ1
z ´ ξzy´ν

when ξ1
z P supp qω1 and ξz P supp qω . For convenience, we separate the cases where

ω and ω1 are relatively close and apart, that is, the cases

(9.7) piq |xωy ´ xω1y| ď xωy1{2 and piiq |xωy ´ xω1y| ą xωy1{2.

In the case (ii), the proof is easy: We apply (9.3) to differentials of the two terms
in ∆pw,w2, ξ1

z , ξzq separately and get (9.6) using

(9.8) xξ1
z ´ ξzy´1 ď C0xω1 ´ ωy´1 ă C0xωy´1{2.

In the case (i), the proof is a little more complicated. Note that we have

(9.9)
ˇ̌
xξ1

zy{xξzy ´ 1
ˇ̌

ď C0xωy´1{2

in this case. If we replace the coefficient of pψpw2, ξ1
z ´ ξzq in ∆pw,w2, ξ1

z , ξzq with 1,
the difference made in ∆pw,w2, ξ1

z, ξzq satisfies (9.6) even with the factor xωy´θ{2 on

the right hand side replaced with xωy´1{2 and is therefore negligible. Also, noting

the factor e´xξzy|w2´w|2{2 in Kp¨q, we can replace the coefficient of pψpw, ξ1
z ´ξzq with

1, producing a negligible term. Therefore it is enough to prove (9.6) supposing

∆pw,w2, ξ1
z, ξzq “ pψpw2, ξ1

z ´ ξzq ´ pψpw, ξ1
z ´ ξzq.

But this is now an easy consequence of (9.3). �

Corollary 9.6. Let σ P Σ. There is a constant Cν ą 0 for each ν ą 0 such that

}Mpqω1 q ˝ Mpψqlift ˝ Mpqωq}L2pWr,σq ď Cνxω1 ´ ωy´ν

for all ω, ω1 P Z and ψ P Xω.

Remark 9.7. Lemma 9.3 and Corollary 9.6 remain true when we consider the oper-
ators on the space L2pR4d`2d1`1q instead of L2pWr,σq, because we have proved the
estimate (9.4) on the kernel.
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9.2. Transfer operator for nonlinear diffeomorphisms. We now assume the
following setting in addition to Setting I.

Setting II: For each ω P Z, there is a given set Gω of fibered contact diffeo-
morphisms g : Ug Ñ R2d`d1`1 whose domain Ug Ă R2d`d1`1 contains

D
p2dqpCxωy´1{2`θq ‘ D

pd1qpCq ‘ D
p1qpCq

where C is the constant in Setting I and, further, the following conditions hold
for ω P Z and g P Gω with positive constants C 1 and Cα uniform for ω and g:

(G0) gp0, 0, 0q “ p0, y˚, 0q where y˚ P R
d1

satisfies |y˚| ď C 1xωy´1{2´3θ.

(G1) For the first derivative of g at the origin 0 P R2d`d1`1, we have

}Dgp0q ´ Id} ă C 1 maxtxωy´βp1{2´θq, xωy´p1´βqp1{2´θq´2θu.

(G2) We have

}Bα
wgpw, zq} ă Cαxωypp1´βqp1{2´θq`4θqp|α|´1q`|α|θ{2 on Ug

for α P Z
2d`d1

` with |α| ě 1. Further, for the base diffeomorphism

(defined in Definition 4.19) ǧ : ppx,zqpUgq Ñ R2d`1 of g , we have

}Bα
x,zǧpx, zq} ă Cαxωy|α|θ{2 on ppx,zqpUgq

for α P Z
2d`d1

` .

Remark 9.8. From the numerical relation (5.6) given in Remark 5.7, the conditions
above implies that the diffeomorphisms in Gω is close to identity including their
derivatives when we look them in the scale xωy´1{2 (or even in a little more larger
scale) in the source and target. The exponents in the conditions above are slightly
different from those in the corresponding argument in the previous paper [18, Ch. 7].

This is because of the involved definition of the partition of unity rXω,m introduced
in Subsection 6.2. But the difference is not essential.

Remark 9.9. We will see in Corollary 10.7 that we can set up the sets Gω of diffeo-
morphisms satisfying the conditions as above so that each of the diffeomorphisms
κ´1
j1 ˝ f t

G ˝κj with ωpjq „ ωpj1q „ ω and 0 ď t ď 2tpωq is expressed as a composition
of a diffeomorphism in Gω with some affine maps.

For a pair of a function ψ P Xω and a diffeomorphism g P Gω, we consider the
transfer operator

(9.10) Lpg, ψqu “ ψ ¨ pu ˝ g´1q

and also its lift with respect to the partial Bargmann transform

Lpg, ψqlift “ B ˝ Lpg, ψq ˝ B˚.

Remark 9.10. The assumption on the support Ug in Setting II is actually not
indispensable for the argument below. In fact, since we will consider the transfer
operator as above, it is enough to assume that Ug contains the support of ψ.

In the next lemma, we would like to show that the diffeomorphism g in the oper-
ator Lpg, ψqlift will not take much effect in its action and, consequently, Lpg, ψqlift

is well approximated by LpId, ψqlift “ Mpψqlift. But, actually, this conclusion is
not true if we consider the action of the operator Lpg, ψqlift on a region far from
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the trapped set X0. In order to restrict the action of the lifted transfer operator
Lpg, ψqlift to a region near the trapped set X0, we introduce the C8 function

Y : R4d`2d1`1
pw,ξw,ξzq Ñ r0, 1s, Y pw, ξw , ξzq “ χpxξzy´2θ|pζp, ξ̃y, ζq, ỹq|q(9.11)

where ζp, ζq, ỹ, ξ̃y are the coordinates defined in (4.24).

Lemma 9.11. Let σ P Σ. There exist constant Cν ą 0 for each ν ą 0 such that,
for any ω, ω1 P Z, ψ P Xω and g P Gω, we have

}Mpqω1q ˝ pLpg, ψqlift ´ Mpψqliftq ˝ MpY q ˝ Mpqωq}L2pWr,σq ď Cνxωy´θ{2xω1 ´ ωy´ν

and

}Mpqω1q ˝ MpY q ˝ pLpg, ψqlift ´ Mpψqliftq ˝ Mpqωq}L2pWr,σq ď Cνxωy´θ{2xω1 ´ ωy´ν .

Proof. Below we prove the former inequality. The latter is proved in a parallel
manner. For the proof, it is enough to show that the kernel Kpw1, ξ1

w, ξ
1
z, w, ξw , ξzq

of the operator

Mpqω1 q ˝ pLpg, ψq ´ Mpψqqlift ˝ MpY q ˝ Mpqωq

satisfies

(9.12) |Kpw1, ξ1
w, ξ

1
z, w, ξw , ξzq| ď Cν

xωy´θ{2 ¨ xxωy1{2|w1 ´ w|y´ν

xxωy´1{2|xξ1
zyξ1

w ´ xξzyξw|yν ¨ xξz ´ ξ1
zyν

for arbitrarily large ν ą 0. Indeed we can deduce the former inequality in the
lemma as a consequence of (9.12) by Schur test. From the definitions, we have

|Kpw1, ξ1
w, ξ

1
z;w, ξw , ξzq|(9.13)

ď

ˇ̌
ˇ̌
ż
eiϕpw2,z2;ξ1

w,ξ1
z;ξw,ξzq ¨ Φpw2, z2;w1, ξ1

w, ξ
1
z;w, ξw , ξzqdw2dz2

ˇ̌
ˇ̌

where
ϕpw2, z2; ξ1

w, ξ
1
z; ξw, ξzq “ pxξzyξw ´ xξ1

zyξ1
wq ¨ w2 ` pξz ´ ξ1

zqz2

and

Φpw2, z2;w1, ξ1
w, ξ

1
z ;w, ξw, ξzq

“ a2d`d1pxξ1
zy´1q ¨ a2d`d1 pxξzy´1q ¨ ψpw2, z2q ¨ e´xξ1

zy|w2´w1|2{2´xξzy|w´w2|2{2

ˆ
”
´1 ` eiξzτpw2q´ixξzyξw¨pw2´ğ´1pw2qq`xξzy|w´w2|2{2´xξzy|w´ğ´1pw2q|2{2q

ı
.

In the last line, the function τpwq and the diffeomorphism ğ´1 are those in the
expression of the fibered contact diffeomorphism g´1,

g´1pw2, z2q “ pğ´1pw2q, z2 ` τpx2qq for pw2, z2q “ px2, y2, z2q

in Definition 4.19. Note that we neglected the multiplication operators Mpqω1 q,
MpY q and Mpqωq on the right-hand side of (9.13), though we will remember and
use the fact that the kernel Kp¨q vanishes unless ξz P supp qω1 , ξ1

z P supp qω and
pw, ξw , ξzq P suppY .

For the proof of the estimate (9.12), we apply integration by parts several times

regarding the term pw2, z2q ÞÑ eiϕpw2,z2;ξw ,ξz;ξ
1
w,ξ1

zq as the oscillatory part and using
the differential operators

(9.14) D0 “
1 ´ ipξ1

z ´ ξzqBz2

1 ` |ξ1
z ´ ξz |2
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and D1 in (9.5). In order to get the required estimate (9.12), it is enough to show

(9.15) |Bα
w2Bk

z2Φpw2;w1, ξ1
w, ξ

1
z ;w, ξw, ξzq| ă

Cα,k,νxωy´θ{2`|α|{2

xxω1y|w1 ´ w2|yν ¨ xxωy|w ´ w2|yν

for pw1, ξ1
w, ξ

1
zq P supp qω1 , pw, ξw , ξzq P supp pY ¨ qωq and w2 P ppx,yqpsuppψq.

To proceed, it is convenient to consider the two cases in (9.7) separately, as in the
proof of Lemma 9.3. In the case (ii), we have (9.8) and hence each application of
integration by parts using D0 yields a small factor xξ1

z ´ ξzy´1 ă C0xωy´1{2. Hence
it is actually enough to prove (9.15) with an extra factor xωym for some m ą 0 on
the right-hand side. But such estimate can be obtained by plane estimates using
the conditions in Setting I and II and also noting (5.6) for the exponents.

We next consider the case (i) in (9.7), where we need more precise estimate. Let

us write w,w1w2 P R
2d`d1

“ R
2d ‘ R

d1

as w “ px, yq, w1 “ px1, y1q, w2 “ px2, y2q.
The condition w2 P ppx,yqpsuppψq implies that |x2| ď Cxωy´1{2`θ. Also the con-

dition pw, ξw , ξzq P suppY implies that |y| ď Cxωy´1{2`2θ. Below we assume that

|w|, |w1|, |w2| are bounded by Cxωy´1{2`2θ for some large C ą 0 because, otherwise,

the factor e´xξ1
zy|w2´w1|2{2´xξzy|w´w2|2{2 is bounded by Cνxωy´ν for arbitrarily large

ν and we can get (9.15) by easy estimate as in the case (ii). Then, under such an
assumption, the condition pw, ξw , ξzq P supp pY ¨ qωq implies |ξw | ă Cxωy´1{2`2θ.

Let us write Φ0pw2;w1, ξ1
w, ξ

1
z ;w, ξw, ξzq for the term in the square bracket r¨s in

the expression of Φp¨q above. The required estimate (9.15) follows immediately if
we show

(9.16) |Bα
w2Φ0pw2;w1, ξ1

w, ξ
1
z;w, ξw , ξzq| ă Cαxωy´θ{2`|α|{2.

From the condition (G2) in Setting II, we have |Bα
w2τpx2q| ď Cαxωy|α|θ{2 for any

multi-index α. Hence, from Lemma 4.21 and Taylor theorem, we get

|Bα
w2τpx2q| ď Cxωy´p3´|α|qp1{2´θq`p3{2qθ if 0 ď |α| ď 2

provided |x2| ď Cxωy1{2´θ. Also, by Taylor theorem for ğ´1 at the origin and using
the conditions in Setting II, we have

|ğ´1pw2q ´ w2| ď Cxωy´1{2´3θ ` Cxωymaxt´βp1{2´θq,´p1´βqp1{2´θq´2θuxωy´1{2`2θ

` Cxωypp1´βqp1{2´θq`4θq`θxωy2p´1{2`2θq

ď C 1xωy´1{2´3θ by (5.1).

The last estimate gives for instance

||w ´ w2|2{2 ´ |w ´ ğ´1pw2q|2{2| ď Cxωy´1{2`2θxωy´1{2´3θ “ Cxωy´1´θ

and further, together with the conditions (G1) and (G2) in Setting II,
ˇ̌
Bα
w2

`
|w ´ w2|2{2 ´ |w ´ ğ´1pw2q|2{2

˘ˇ̌
ď Cαxωy´1`|α|{2´θ.

It is now straightforward to show the claim (9.16) by using the estimates above,
(9.9) and the conditions in Setting II. �

9.3. The projection operator T0 and its lift. We next consider the lift Tlift
0 of

the projection operator T0 defined in (4.45). Recall from Corollary 4.18 that the
kernel of the operator Tlift

0 concentrates around the trapped set X0 if we view it
through the weight Wr,σ. The following two lemmas are direct consequences of this
fact and Lemma 9.3. We omit the proofs since they are straightforward. (Similar
statements and their proofs can be found in [18, Lemma 5.1.6, Lemma 5.3.1].)
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Lemma 9.12. Let σ, σ1 P Σ. There is a constant Cν ą 0 for each ν ą 0 such that

}Mpqω1 q ˝ rMpψqlift,Tlift
0 s ˝ Mpqωq}L2pWr,σqÑL2pWr,σ1 q ď Cνxωy´θ{2xω1 ´ ωy´ν

for ω, ω1 P Z and ψ P Xω. Here rA,Bs denotes the commutator of two operators A
and B, rA,Bs “ A ˝B ´B ˝A.

Lemma 9.13. Let σ, σ1 P Σ. There is a constant Cν ą 0 for each ν ą 0 such that

}Mpqω1 q ˝ Mp1 ´ Y q ˝ Tlift
0 ˝ Mpqωq}L2pWr,σqÑL2pWr,σ1 q ď Cxωy´θxω1 ´ ωy´ν

and

}Mpqω1 q ˝ Tlift
0 ˝ Mp1 ´ Y q ˝ Mpqωq}L2pWr,σqÑL2pWr,σ1 q ď Cxωy´θxω1 ´ ωy´ν

for ω, ω1 P Z and ψ P Xω.

We prepare the next elementary lemma for the proof of Lemma 7.11(b).

Lemma 9.14. Let σ, σ1 P Σ. For any ǫ ą 0, there exist a constant c ą 0 and ω0 ą 0
such that, for ω P Z with |ω| ě ω0, we can find a finite dimensional subspace

(9.17) W pωq Ă C8ptpw, zq P R
2d`d1`1 | |w| ď ǫxωy´1{2`θ, |z| ď ǫuq

with

(9.18) dimW pωq ě cxωy2dθ

such that

}MpXn0pωqq ˝ Tlift
0 ˝ MpΨσ

ω,0q ˝ Bv}L2pWr,σ1 q ě c}MpΨσ
ω1,0q ˝ Bv}L2pWr,σq(9.19)

for all v P W pωq.

Proof. Let N ą 0 be a large integer and take the lattice points

S “ tn P R
2d | n P Nxωy´1{2

Z
2d, |n| ă pǫ{2qxωy´1{2`θu.

Clearly we have C´1xωy2dθ ď #S ď Cxωy2dθ for a constant C ą 0 which depends

on the choice of N but not on ω. For each n P S, we let ξpnq “ pξw, ξzq P R2d`d1`1

be the unique point such that ξz “ ω and that ppn, 0q, ξpnqq belongs to the trapped

set X0, where pn, 0q P R
2d`d1

px,yq . Then we define vn P C8
0 pR2d`d1`1q by

vnpw, zq “ χp2ǫ´1|z|q ¨ χ
´
2ǫ´1xωy1{2´θ|w|

¯
¨ φpn,0q,ξpnqpw, zq

where χp¨q is the function defined in (5.2). By definition, the partial Bargmann
transform Bvn of vn concentrates around the point ppn, 0q, ξpnqq P X0 in the scale
xωy´1{2 in the variable pw, ξwq and the unit scale in the variable ξz. Hence, in the
coordinates (4.24) introduced in Subsection 4.4, it concentrates around the point

Ξn :“ pζ, ν, ỹ, ξ̃yq “ p0, 21{2xωy1{2n, 0, 0q

in the unit scale. Note that we have

(9.20) dpΞn,Ξn1 q “ 21{2xωy1{2 ¨ dpn,n1q ě 21{2N

for different points n ‰ n1 P S.
Let W pωq be the linear space spanned by the functions vn for n P S. Then the

claim (9.17) holds by definition. It is easy to check that the functions vn for n P S
are almost orthogonal in the sense that

|pvn, vn1 qHr,σ | ď Cν ¨ dpΞn,Ξn1 q´ν for n ‰ n1 P S
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with arbitrarily large ν. Hence we obtain (9.18):

dimW pωq ě #S ě cxωy2dθ

provided that we take sufficiently large constant N . From the description (4.51)
of the operator Tlift

0 , we see that the claim (9.19) holds for each v “ vn with some
small constant c ą 0 uniform for n P S and ω with |ω| ě ω0. But, since the
kernel of the operator Tlift

0 is localized as described in Corollary 4.51 and since we
have (9.20), we can extend the estimate to the linear combinations of them, again
provided that we take sufficiently large N ą 0. �

10. Components of lifted operators

10.1. The lifted transfer operators and their components. The semi-group
of (scalar-valued) transfer operators

Lt “ Lt
0,0 : C8pK0q Ñ C8pK0q for t ě 0

induces the family of lifted operators:

(10.1) Lt,σÑσ1

:“ Iσ
1

˝ Lt ˝ pIσq˚ :
à

jPJ

K
r,σ
j Ñ

ź

jPJ

K
r,σ1

j , σ, σ1 P Σ.

As we will see, these operators extend to bounded operators Lt,σÑσ1

: Kr,σ Ñ Kr,σ1

provided t ě 0 satisfies (7.7) with respect to σ and σ1. Hence the operators Lt :

Kr,σpK0q Ñ Kr,σ1

pK0q are also bounded and the diagram

(10.2)

Kr,σ Lt,σÑσ1

ÝÝÝÝÝÑ Kr,σ1

Iσ

İ§§ Iσ
1

İ§§

Kr,σpK0q
L

t

ÝÝÝÝÑ Kr,σ1

pK0q

commutes where Iσ : Kr,σpK0q Ñ Kr,σ is the natural isometric embedding.

The lifted transfer operator Lt,σÑσ1

in (10.1) is expressed as an infinite matrix
of operators:

(10.3) Lt,σÑσ1

u “

˜
ÿ

jPJ

L
t,σÑσ1

jÑj1 uj

¸

j1PJ

for u “ pujqjPJ.

The components Lt,σÑσ1

jÑj1 : L2psuppΨσ
j q Ñ L2psuppΨσ1

j1 q are the operators written
in the form

(10.4) L
t,σÑσ1

jÑj1 “ MpΨσ1

j1 q ˝ B ˝ Lp f t
jÑj1 , b̃tj1 ¨ ρtjÑj1 q ˝ B˚

where Lpg, ψq denotes the transfer operator defined by (9.10). The diffeomorphism
f t
jÑj1 and the function ρtjÑj1 in (10.4) are defined by

f t
jÑj1 :“ κ´1

j1 ˝ f t
G ˝ κj(10.5)

and

ρtjÑj1 :“ ρj1 ¨ pρ̃j ˝ pf t
jÑj1 q´1q.(10.6)
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(See (6.11) and also (5.7), (5.9) for the definitions of κj and ρj, ρ̃j.) The function

b̃tj1 p¨q in (10.4) is defined from btp¨q in (2.4) by

b̃tj1 pw, zq “ btpf´t
G ˝ κj1 pw, zqq for pw, zq P supp ρtjÑj1 .(10.7)

Remark 10.1. If we replace Lt by Lt ˝ MpρKi
q, i “ 0, 1, in the definitions above,

we obtain slightly different operators. But the difference is only that ρ̃j is replaced
by ρ̃j ¨ pρKi

˝ κjq, i “ 0, 1, and hardly affects the validity of the argument below. In
this section and Section 11, we suppose that we are discussing about these variants
in parallel.

From the definition of the partial Bargmann transform and its adjoint, given in

(4.17) and (4.19), the operator Lt,σÑσ1

jÑj1 is written as an integral operator

L
t,σÑσ1

jÑj1 upw1, ξ1
w, ξ

1
zq “

ż
K

t,σÑσ1

jÑj1 pw1, ξ1
w, ξ

1
z;w, ξw , ξzqupw, ξw , ξzqdmpw, ξw , ξzq

where dm is the volume form given in (4.17). The kernel is expressed as the integral

K
t,σÑσ1

jÑj1 pw1, ξ1
w, ξ

1
z;w, ξw , ξzq(10.8)

“ Ψσ1

j1 pw1, ξ1
w, ξ

1
zq ¨

ż
ktjÑj1 pw2, z2;w1, ξ1

w, ξ
1
z ;w, ξw, ξzqdw2dz2

where

ktjÑj1 pw2, z2;w1, ξ1
w, ξ

1
z ;w, ξw, ξzq

“ pb̃tj1 ¨ ρtjÑj1 qpw2, z2q ¨ φw1,ξ1
w,ξ1

z
pw2, z2q ¨ φw,ξw,ξzppf t

jÑj1 q´1pw2, z2qq.

For further argument, it is convenient to write the last function ktjÑj1 p¨q in the form

ktjÑj1 pw2, z2;w1, ξ1
w, ξ

1
z ;w, ξw, ξzq(10.9)

“ eiϕpw2,z2;w1,ξ1
w,ξ1

z;w,ξw,ξzq ¨ Φpw2, z2;w1, ξ1
w, ξ

1
z;w, ξw , ξzq

with setting

ϕpw2, z2;w1, ξ1
w, ξ

1
z ;w, ξw, ξzq “ ´xξ1

zyξ1
w ¨ w2 ` xξzyξw ¨ pf̆ t

jÑj1 q´1pw2q ´ pξ1
z ´ ξzqz2

and

Φpw2, z2;w1, ξ1
w, ξ

1
z ;w, ξw, ξzq(10.10)

“ a2d`d1pxξzy´1q a2d`d1 pxξ1
zy´1q ¨ exppixξ1

zyξ1
w ¨ w1{2 ´ ixξzyξw ¨ w{2q

ˆ pb̃tj1 ¨ ρtjÑj1 qpw2, z2q ¨ exppiξzτjÑj1 px2qq

ˆ expp´xξ1
zy|w2 ´ w1|2{2 ´ xξzy|pf̆ t

jÑj1 q´1pw2q ´ w|2{2q,

where x2 P R2d is the first component of w2 “ px2, y2q P R2d`d1

and τjÑj1 and

pf̆ t
jÑj1 q´1 are those in the expression

pf t
jÑj1 q´1pw2, z2q “ ppf̆ t

jÑj1 q´1pw2q, z2 ` τjÑj1 px2qq

of the fibered contact diffeomorphism pf t
jÑj1 q´1 corresponding to (4.52).

We may then regard the integral (10.8) as an oscillatory integral and expect
that it becomes small if the term eiϕp¨q oscillates fast with respect to w2 or z2.
Though we will give precise statements later, it is reasonable to make the following

observations for the kernel Kt,σÑσ1

jÑj1 pw1, ξ1
w, ξ

1
z;w, ξw , ξzq at this moment:
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(Ob1) It decays rapidly as the distance |ξ1
z ´ ξz | gets large. This is because the

term eiϕp¨q oscillates fast with respect to z2 (while the other terms do not).

(Ob2) It decays rapidly as the distance |f̆ t
jÑj1 pwq ´ w1| gets large in the scale

xωpjqy´1{2 „ xξzy´1{2 because so is the last term of (10.10).

(Ob3) It decays rapidly as the distance between xξ1
zyξ1

w and xξzyppDf̆ t
jÑj1 q˚

w2 q´1ξw

gets large (uniformly for w2 P supp ρtjÑj1) in the scale xωpjqy1{2 „ xξzy1{2.

This is because the term eiϕp¨q oscillates fast with respect to w2.

Remark 10.2. Intuitively, the observations above implies that the operator Lt,σÑσ1

jÑj1

is localized in “energy (or the frequency in z)”, “position” and “momentum” and

that the transport of wave packets induced by L
t,σÑσ1

jÑj is described by the canonical

map ppDf t
jÑj1 q˚q´1. (Recall the discussion at the end of Section 2.)

10.2. Distortion estimates on f t
jÑj1 . We give some estimates on the differentials

of diffeomorphisms f t
jÑj1 . The estimates are quite elementary, but may not be

completely obvious. Note that the main point in the estimates below is the effect
of the factor Eωpjq in the definition of the local charts κj. We henceforth consider

only those diffeomorphisms f t
jÑj1 for which the function ρtjÑj1 does not vanish. This

is of course enough for our consideration on the operators Lt,σÑσ1

jÑj1 .

From the definitions in Subsection 5.5, the diffeomorphism f t
jÑj1 is a fibered

contact diffeomorphism and is written in the form

(10.11) f t
jÑj1 “ E´1

ωpj1q ˝ htjÑj1 ˝ Eωpjq

where

(10.12) htjÑj1 :“ κ´1
apj1q,npj1q ˝ f t

G ˝ κapjq,npjq.

The local charts κa,n are composition of the coordinate charts κa and bijective
affine maps whose derivatives and their inverses are bounded uniformly. Hence we
have, for any j, j1 P J and any multi-index α, that

|Bα
wh

t
jÑj1 pw, zq| ď Cαe

|α|χmax|t|

for t P R and pw, zq P R
2d`d1`1
pw,zq at which htjÑj1 pw, zq is defined. In particular, we

have the estimate

(10.13) |Bα
wh

t
jÑj1 pw, zq| ď Cαxωyθ|α|{4 for 0 ď t ď 2tpωq

if we let the constant ǫ0 in the definition of tpωq be small.
Recall that there was some arbitrariness in the choice of the local coordinate

charts κa : Ua Ñ Va and the associated family of functions ρa in Subsection 5.3. By
modifying them if necessary (so that the supports of the functions ρa ˝ κa become
smaller), we may assume the following estimate on the diffeomorphism htjÑj1 for
uniformly bounded time, that is, for 0 ď t ď 2t0.

Lemma 10.3. For 0 ď t ď 2t0, j, j
1 P J and pw, zq P Eωpjqpsupp ρjq, we have

}pDhtjÑj1 qpw,zq ˝B´1 ´ Id} ă 10´2

with some linear map of the form

(10.14) B : R2d`d1`1
px,y,zq Ñ R

2d`d1`1
px,y,zq , Bpq, p, y, zq “ pAq,A:p, pAy, zq.
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depending on t, j, j1 and pw, zq, where

(10.15) eχ0t ď }A´1}´1 ď }A} ď eχmaxt, e´χmaxt ď } pA´1}´1 ď } pA} ď e´χ0t

and A: “ tA´1 as we defined in (4.7). (Recall (5.3) for the choice of χmax.)

Proof. Let us recall the construction of the local chart κa : Va Ñ Ua in Lemma 5.4
and that of κa,x : A´1

a,x Ñ Ua in Proposition 5.6. Since we are assuming 0 ď t ď 2t0,
we may let (the diameter of) Va be small so that the conclusion of the lemma holds
true with 1{100 replaced by 1{200 and the matrix B by

B1pq, p, y, zq “ pAq,A:p, pAy ` rBpq, pq, zq

where rB : R2d
pq,pq Ñ Rd1

y is bounded uniformly for 0 ď t ď t0, j, j1 P J and

pw, zq P Eωpjqpsupp ρjq. In order to suppress the extra term rB, we further modify
the local chart κa and κa,x by pre-composing the linear map px, y, zq ÞÑ px, ηy, zq.

Then the extra term rB becomes η´1 rB while the other conditions remain valid.

Therefore, letting η ą 1 large and incorporating η´1 rB in the error term, we obtain
the conclusion of the lemma. �

Let us recall the affine transformation groups A2 Ă A1 Ă A0 in Definition 4.22.
For each f t

jÑj1 , we take and fix an element atjÑj1 P A2 whose inverse carries the

point f t
jÑj1 p0, 0, 0q “ px˚, y˚, z˚q P R

2d`d1`1
px,y,zq to p0, y˚, 0q, so that

(10.16) f̃ t
jÑj1 :“ patjÑj1 q´1 ˝ f t

jÑj1 satisfies f̃ t
jÑj1 p0, 0, 0q “ p0, y˚, 0q.

Recall, from Lemma 4.24, that the transfer operator associated to atjÑj1 is a unitary

operator on Hr,σpR2d`d1`1q and therefore basically negligible.

Lemma 10.4. There exist constants C ą 0 and Cα ą 0 for each multi-index

α P Z
2d`d1

` such that, for j, j1 P J and 0 ď t ď 2tpωpjqq, the following hold true:

(1) For px˚, y˚, z˚q “ f t
jÑj1 p0, 0, 0q, we have

|x˚| ă Cxωpj1qy´p1{2´θq, |y˚| ă Cxωpj1qy´p1{2`3θq, |z˚| ă C.

(2) The first derivative of f̃ t
jÑj1 :“ patjÑj1 q´1 ˝ f t

jÑj1 defined in (10.16) above at the

origin 0 P R2d`d1`1 is written in the form

pDf̃ t
jÑj1 q0 “

¨
˝
a1,1 0 0
a2,1 a2,2 0
0 0 1

˛
‚ : R

2d
x ‘ R

d1

y ‘ Rz Ñ R
2d
x ‘ R

d1

y ‘ Rz

and the entries satisfy

}a1,1} ď xωpjqyθ{4,

}a2,1} ď xωpjqyθ{4xωpj1qy´p1´βqp1{2´θq´4θ, and

}a2,2} ď e´χ0t ¨ pxωpjqy{xωpj1qyqp1´βqp1{2´θq`4θ.

(3) For any multi-index α P Z
2d`d1`1
` with |α| ě 2, we have

}Bα
wf̃

t
jÑj1 }8 ă Cαxωpjqyθ|α|{4 ¨

A
xωpjqy|α|{xωpj1qy

Ep1´βqp1{2´θq`4θ

.

Also its base diffeomorphism pǎtjÑj1 q´1 ˝ f̌ t
jÑj1 satisfies

}Bβ
x,zppǎtjÑj1 q´1 ˝ f̌ t

jÑj1 q} ă Cβxωpjqyθ|α|{4
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for any multi-index β P Z
2d`1
` with |β| ě 2.

Remark 10.5. For the derivatives of f t
jÑj1 and f̃ t

jÑj1 with respect to z, we always

have Bzf
t
jÑj1 px, y, zq “ Bz f̃

t
jÑj1 px, y, zq ” p0, 0, 1q because f t

jÑj1 and f̃ t
jÑj1 are fibered

contact diffeomorphisms.

Proof. Since htjÑj1 defined in (10.12) is a fibered contact diffeomorphism, its Taylor
expansion up to the first order at the origin is of the form

htjÑj1

¨
˝
x

y

z

˛
‚“

¨
˝
x0
y0
z0

˛
‚`

¨
˝
A1,1 0 0
A2,1 A2,2 0
A3,1 0 1

˛
‚

¨
˝
x

y

z

˛
‚`

¨
˝

h1pxq
h2px, yq
h3pxq

˛
‚.

We have the following estimates when 0 ď t ď 2tpωpjqq:

(1) |x0| ď Cxωpj1qy´p1{2´θq, |y0| ď Cxωpj1qy´βp1{2´θq and |z0| ď C.

(2) }A1,1} ď xωpjqyθ{4, }A2,1} ď xωpjqyθ{4, }A2,2} ď e´χ0t, and26

(3) }Bα
wh

t
jÑj1 }8 ď Cαxωpjqyθ|α|{4 for α with |α| ě 2, from (10.13),

provided that we take sufficiently small constant ǫ0 ą 0 in the definition of tpωq.

Remark 10.6. For the second estimate on |y0| in (1) above, recall that the origin
of the local chart κj corresponds to a point on the section eu which is β-Hölder
continuous.

From the relation (10.11) and the choice of atjÑj1 , we see that the diffeomorphism

f̃ t
jÑj1 is expressed as

f̃ t
jÑj1

¨
˝
x

y

z

˛
‚“

¨
˝

0
xωpj1qy´Θ ¨ y0

0

˛
‚

`

¨
˝

A1,1 0 0
xωpj1qy´ΘA2,1 xωpjqyΘ ¨ xωpj1qy´ΘA2,2 0

0 0 1

˛
‚

¨
˝
x

y

z

˛
‚

`

¨
˝

g1pxq
xωpj1qy´Θ ¨ g2px, xωpjqyΘ ¨ yq

g3pxq

˛
‚

where we put Θ “ p1 ´ βqp1{2 ´ θq ` 4θ for brevity and the functions gip¨q for
i “ 1, 2, 3 are those obtained from hip¨q by changing the variable x by a translation.
The required estimates follow immediately from this expression. �

In the case where ωpjq and ωpj1q are relatively close to each other, we have

Corollary 10.7. Suppose that j, j1 P J satisfies the condition

(10.17) |xωy ´ xω1y| ď xωy1{2

with ω “ ωpjq and ω1 “ ωpj1q. Then the diffeomorphism f t
jÑj1 for 0 ď t ď 2tpωpjqq

is expressed as the composition

(10.18) f t
jÑj1 “ atjÑj1 ˝ gtjÑj1 ˝Bt

jÑj1

where

(1) atjÑj1 P A2 is the affine transform that we chose just before Lemma 10.4,

26We do not need the estimate on }A3,1} as it is determined by x0 and A1,1.
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(2) Bt
jÑj1 is a linear map of the form (10.14) (or (4.8) with t “ 0) with the linear

maps A : Rd Ñ Rd and pA : Rd1

Ñ Rd1

satisfying (10.15),

(3) gtjÑj1 is a fibered contact diffeomorphism such that the family

Gω “ tgtjÑj1 | ωpjq “ ω, ω1 “ ωpj1q satisfies (10.17), and 0 ď t ď 2tpωqu

fulfills the conditions (G0), (G1) and (G2) in Setting II.

Proof. From the choice of the local coordinate charts κj “ κ
pωpjqq
apjq,npjq, we see that

the linear map a1,1 : R2d Ñ R2d in Lemma 10.4, is written in the form

a1,1

ˆ
q

p

˙
“

´
Id ` Opxωpjqy´βp1{2´θqq

¯ ˆ
A 0
0 A:

˙ ˆ
q

p

˙

where A : Rd Ñ Rd is a linear map satisfying the condition in (10.15) and the
term Opxωpjqy´βp1{2´θqq denotes a linear map whose operator norm is bounded by
Cxωpjqy´βp1{2´θq with C independent of j, j1 and t P r0, 2tpωqs.

Let Bt
jÑj1 : R2d`d1`1 Ñ R2d`d1`1 be the linear map

Bt
jÑj1

¨
˚̊
˝

q

p

y

z

˛
‹‹‚“

¨
˚̊
˝

A 0 0 0
0 A: 0 0
0 0 a2,2 0
0 0 0 1

˛
‹‹‚

¨
˚̊
˝

q

p

y

z

˛
‹‹‚

where a2,2 is that in the claim of Lemma 10.4. This corresponds to the differential

Df̃ t
jÑj1 in Lemma 10.4 (2). But notice that we omitted the term a2,1, which enjoys

the estimate

}a2,1} ď Cxωpjqy´p1´βqp1{2´3θq´θ ď Cxωpjqy´3θ

and is incorporated in the nonlinear term

gtjÑj1 “ patjÑj1 q´1 ˝ f t
jÑj1 ˝ pBt

jÑj1 q´1.

The claims other than (3) are obvious. We can check that Claim (3) follows from
Lemma 10.4 by elementary estimates using the fact that the expansion rate of f t

jÑj1

and Bt
j,j1 (and their inverses) for 0 ď t ď 2tpωpjqq are bounded by Ce2χmaxtpωq ď

Cxωpjqyθ{4, provided that we choose sufficiently small ǫ0 in the definition of tpωq. �

We next consider the functions b̃tj1 ¨ ρtjÑj1 that appears as the coefficient in the

definition (10.4) of Lt,σÑσ1

jÑj1 . As a bound for this function, we define

(10.19) b̄tj1 :“ maxt|b̃tj1 px, y, zq| | px, y, zq P supp ρj1 u.

Letting ǫ0 in the definition of tpωq be small if necessary, we may and do assume

C´1
0 b̄tj1 ď b̃tj1 px, y, zq ď C0b̄

t
j1 for px, y, zq P supp ρj1 and 0 ď t ď tpωpj1qq.

Corollary 10.8. There exists a constant Cα,k ą 0 for each multi-indices α and
integer k ě 0 such that

(10.20) }Bα
wBk

z pb̃tj1 ¨ ρtjÑj1 q}8 ă Cα,k b̄
t
j1 ¨ maxtxωpjqy, xωpj1qyup1´θq|α|{2

for 0 ď t ď 2tpωpjqq. In particular, the family

Xω “ tpb̄tj1 q´1 ¨ b̃tj1 ¨ ρtjÑj1 | ωpjq “ ω, ω1 “ ωpj1q satisfies (10.17), 0 ď t ď 2tpωqu

for ω P Z satisfies the conditions (C1) and (C2) in Setting I.
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Proof. From Remark 9.2, the functions ρj1 and ρ̃j satisfy the conditions on the
derivatives stronger than that given in the condition (C2). This is also true for

the function b̃tj1 ˝ f t
jÑj1 “ bt ˝ κj. Hence we can get the corollary by estimating the

distortion of f t
jÑj1 using Lemma 10.4, recalling Remark 10.5 for the derivatives with

respect to z and letting ǫ0 in the definition of tpωq smaller if necessary. �

10.3. Supplementary estimates on the operator L
t,σÑσ1

jÑj1 . We finish this sec-

tion by providing two supplementary lemmas on the components Lt,σÑσ1

jÑj1 . The first

one below gives a solid bound on their L2-operator norm.

Lemma 10.9. There exists a constant Cν ą 0 for any ν ą 0 such that

}Lt,σÑσ1

jÑj1 : L2psuppΨσ
j q Ñ L2psuppΨσ1

j1 q} ď Cν b̄
t
j1 ¨ xωpj1q ´ ωpjqy´ν

for any j, j1 P J and t ě 0. (See (10.19) for the definition of b̄tj1 .)

Remark 10.10. Notice that this estimate holds for arbitrarily large t ě 0 with
uniform constant Cν and also that we consider the L2 norm without weight.

Proof. Below we suppose that f t
jÑj1 is extended naturally in the variable z as we

noted in Remark 4.20. Take a C8 function ρ̂j1 : R2d`d1`1
px,y,zq Ñ r0, 1s which does not

depend on the variable z, ρ̂j1 px, y, zq “ 1 if px, y, z1q P supp ρj1 for some z1 P R and
ρ̂j1 px, y, zq “ 0 if ρ̃j1 px, y, z1q “ 0 for all z1 P R. Then we may write the operator

L
t,σÑσ1

jÑj1 as the composition

L
t,σÑσ1

jÑj1 “ MpΨσ1

j1 q ˝ Mpb̃tj1 ¨ ρtjÑj1 qlift ˝ Lpf t
jÑj1 , ρ̂j1 qlift.

From Lemma 4.6, the operator norm of Lpf t
jÑj1 , ρ̂j1 qlift with respect to the L2 norm

is bounded by that of Lpf t
jÑj1 , ρ̂j1 q and hence by some uniform constant C. Note

that, since the function ρ̂j1 px, y, zq does not depend on z and since f t
jÑj1 is a fibered

contact diffeomorphism, this operator will not enlarge the support of the function
in the ξz direction. Hence, for the proof of the lemma, it is enough to show

}Mpb̃tj1 ¨ ρtjÑj1 qlift : L2psupp qωpjqq Ñ L2psupp qωpj1qq} ď Cν b̄
t
j1 ¨ xωpj1q ´ ωpjqy´ν

for any t ě 0 with a uniform constant Cν ą 0. Since f t
jÑj1 is a fibered contact

diffeomorphism and is just a translation in the lines parallel to the z-axis, there
exists a constant Ck ą 0 for each k ą 0 such that

}Bk
z pb̃tj1 ¨ ρtjÑj1 q}8 ď Ck b̄

t
j1 for any t ě 0.

If we set ψ “ b̃tj1 ¨ ρtjÑj1 and let pψpw, ξzq be that defined in (9.2), we have

sup
w

| pψpw, ξzq| ď Ck b̄
t
j1 xξzy´k

with possibly different constant Ck ą 0. Since the partial Bargmann transform B

is a combination of the Fourier transform in z and the (scaled) Bargmann transform

in w, we see that the L2-operator norm of Mpb̃tj1 ¨ ρtjÑj1 qlift is bounded by

C

ż

|ωpj1q´ωpjq|´2ă|ξz|ă|ωpj1q´ωpjq|`2

ˆ
sup
w

| pψpw, ξzq|

˙
dξz ď Ck b̄

t
j1 xωpj1q ´ ωpjqy´k.

This is the required estimate. �
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In the next lemma, we give a coarse estimate on the component Lt,σÑσ1

jÑj1 . This
is a crude estimate and will be used to get rough bounds for components that are
far from the trapped set X0. (So we do not pursue optimality in any sense for this
lemma and its consequences.) We set

δpω, ξwq “ xωyp1`θq{2 ¨
A

xωy1{2´4θ|ξw|
E1{2

for ω P Z and ξw P R
2d`d1

so that

δpω, ξwq „

#
xωyp1`θq{2, if |ξw| ď xωy´1{2`4θ ;

xωy1{4´p3{2qθ ¨ pxωy|ξw|q1{2, if |ξw| ą xωy´1{2`4θ.

We actually state the lemma for the operator B ˝Lp f t
jÑj1 , b̃tj1 ¨ ρtjÑj1 q ˝ B˚. Recall

from (10.4) that Lt,σÑσ1

jÑj1 is just this operator followed by the multiplication by Ψσ1

j1 .

Lemma 10.11. The operator B ˝ Lp f t
jÑj1 , b̃tj1 ¨ ρtjÑj1 q ˝ B˚ for any j, j1 P J and

0 ď t ď 2tpωpjqq is written as an integral operator of the form

pB ˝ Lp f t
jÑj1 , b̃tj1 ¨ ρtjÑj1 q ˝ B˚qupw1, ξ1

w, ξ
1
zq

“

ż ˜ż

supp ρt
jÑj1

Kpw2, z2;w1, ξ1
w, ξ

1
z;w, ξw , ξzq

dw2dz2

xωy´p2d`d1q{2

¸
upw, ξw , ξzqdmpw, ξw , ξzq

and the function Kp¨q in the integrand satisfies the following estimate: There exists
a constant Cν ą 0 for each ν ą 0 (independent of j, j1 and t), such that

|Kpw2, z2;w1, ξ1
w, ξ

1
z ;w, ξw, ξzq|(10.21)

ď
Cνxωyθ ¨

A
δpω, ξwq´1 ¨ |xξzyppDf̆ t

jÑj1 q˚
w2 q´1ξw ´ xξ1

zyξ1
w|

E´ν

xxωy1{2|pf̆ t
jÑj1 q´1pw2q ´ w|yν ¨ xxω1y1{2|w2 ´ w1|yν ¨ xω1 ´ ωyν

with setting ω “ ωpjq and ω1 “ ωpj1q, provided

(10.22) w2 P ppx,yqpsupp ρ
t
jÑj1 q and pw, ξw , ξzq P suppΨσ

j .

Proof. In (10.8), we have a similar expression for the kernel of Lt,σÑσ1

jÑj1 as in the

statement above. But the function ktjÑj1 p¨q in (10.8) does not satisfy the required

estimates. Below we apply integration by parts to the integral in (10.8) to realize

the required estimate. For simplicity, we consider f̃ t
jÑj1 given in (10.16) in the place

of f t
jÑj1 . This does not violate the validity of the proof because, from Lemma 4.7,

the action of the lift of the transfer operator for atjÑj1 is that for D:atjÑj1 composed

with the partial Bargmann projection P. We write ktjÑj1 p¨q as (10.9) and apply

integration by parts to it several times, viewing eiϕp¨q as oscillatory part and using
the differential operator D0 in (9.14) and

D2 “
1 ´ i ¨ δpω, ξwq´2 ¨ pxξzyppDf̆ t

jÑj1 q˚
w2 q´1ξw ´ xξ1

zyξ1
wq ¨ Bw2

1 ` δpω, ξwq´2 ¨ |xξzyppDf̆ t
jÑj1 q˚

w2 q´1ξw ´ xξ1
zyξ1

w|2
.

To get the required estimate, it is sufficient to prove

(10.23) |Bα
w2Bk

z2Φpw2, z2;w1, ξ1
w, ξ

1
z ;w, ξw, ξzq| ď Cα,kxωyθ{2`p2d`d1q{2 ¨ δpω, ξwq|α|

for the function Φp¨q in (10.10) and that

(10.24) |Bα
w2 Bk

z2 pxξzyppDf̆ t
jÑj1 q˚q´1

w2ξw ´ xξ1
zyξ1

wq| ď Cα,k ¨ δpω, ξwq|α|`1 if α ‰ H.
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To proceed, we again consider the two cases in (9.7) separately. In the case (ii),
we may suppose that we have an extra factor xωym with arbitrary m ą 0 on the
right-hand side of (10.23) and (10.24), as we noted in the proof of Lemma 9.11.
Then such an estimate can be obtained by crude estimates using Lemma 10.4.

In the case (i), we need more precise estimates, but the estimates are still easy.
The condition w2 “ px2, y2q P ppx,yqpsupp ρ

t
jÑj1 q implies that |x2| ď Cxωy´1{2`θ.

Then, from Lemma 4.21 and Lemma 10.4(3), it is easy to see

|ξzBα
x2τjÑj1 px2q| ď Cαδpω, ξwq|α| for any multi-index α ‰ H.

We may and do assume that |w2 ´ w| and |pf̆ t
jÑj1 q´1pw2q ´ w| is bounded by

Cxωy1{2`θ for some constant C ą 0, because, otherwise, the last factor on the right-
hand side of (10.10) is bounded by Cνxωy´m for arbitrarily large m and, hence, we
can prove the claims easily as in the case (ii). Then, under such an assumption, it
is straightforward to check the claims (10.23) and (10.24) using (9.9), Lemma 10.4
and Corollary 10.8. �

For ease of use in the next section, we derive a corollary from the last lemma.

We write ∆t,σÑσ1

jÑj1 for the supremum of the quantity appearing in (10.21),

(10.25)

A
δpωpjq, ξwq´1 ¨ |xξzyppDf̆ t

jÑj1 q˚
w2 q´1ξw ´ xξ1

zyξ1
w|

E´1

xxωpjqy1{2|pf̆ t
jÑj1 q´1pw2q ´ w|y ¨ xxωpj1qy1{2|w2 ´ w1|y ¨ xωpj1q ´ ωpjqy

under the conditions

w2 P ppx,yqpsupp ρ
t
jÑj1 q and pw, ξw , ξzq P suppΨσ

j , pw1, ξ1
w, ξ

1
zq P suppΨσ1

j1 .

Corollary 10.12. Let σ, σ1 P Σ. There exist constants Cν ą 0 for each ν ą 0

and m0 ą 0 such that the trace norm of L
t,σÑσ1

jÑj1 : Kr,σ
j Ñ K

r,σ1

j1 for j, j1 P J and

0 ď t ď 2tpωq is bounded by

(10.26) Cνp∆t,σÑσ1

jÑj1 qν ¨ maxtxωpjqy, xωpj1qy, empjq, empj1qum0 .

Proof. Note first of all that the claim is a crude estimate as we admit the factor
maxtxωpjqy, xωpj1qy, empjq, empj1qum0 . Consider j, j1 P J and 0 ď t ď 2tpωq and let

H : R4d`2d1`1
pw,ξz,ξzq Ñ R be the function

Hpw, ξw, ξzq

“ inftxξz ´ ξ2
zy ¨ xxξzy1{2|ξw ´ ξ2

w|y ¨ xxξzy1{2|w ´ w2|y | pw2, ξ2
w, ξ

2
z q P suppΨσ

j1 u,

which measures the distance of a point pw, ξw , ξzq P R
4d`2d1`1
pw,ξz,ξzq from the support of

the function Ψσ
j1 . We regard the operator Lt,σÑσ1

jÑj1 as the composition of

(10.27) MpH´ℓq ˝ B ˝ Lpf t
jÑj1 , b̃tj1 ¨ ρtjÑj1 q ˝ B˚ : Kr,σ

j Ñ L2pR4d`2d1`1q

and

(10.28) MpΨσ
j1 q ˝ B ˝ Mpρ̃j1 q ˝ B˚ ˝ MpHℓq : L2pR4d`2d1`1q Ñ K

r,σ1

j1

for some large ℓ ą 0. We already have estimates on the kernels of

B ˝ Lpf t
jÑj1 , b̃tj1 ¨ ρtjÑj1 q ˝ B˚ and B ˝ Mpρ̃j1 q ˝ B˚

in Lemma 10.11 and (in the proof of) Lemma 9.3 respectively. With using those
estimates, we see that, if ℓ is sufficiently large, the kernels of these operators are
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square-integrable as functions on pR4d`2d1`1q2 and therefore the operators (10.27)
and (10.28) are Hilbert-Schmidt operators27. Their Hilbert-Schmidt norms are
just the L2-norm of their kernels and easy to estimate. Indeed, for a very crude
bound for the volume of the supports of Ψσ

j and Ψσ1

j1 , we may take some power

of maxtxωpjqy, xωpj1qy, empjq, empj1qu. Then, from the estimates on the kernels men-

tioned above and the definition of ∆t,σÑσ1

jÑj1 , the Hilbert-Schmidt norms of the op-
erators above are bounded respectively by

Cνp∆t,σÑσ1

jÑj1 qν ¨ maxtxωpjqy, xωpj1qy, empjq, empj1qum0{2

and

Cmaxtxωpjqy, xωpj1qy, empjq, empj1qum0{2

for sufficiently largem0. Since the trace norm of Lt,σÑσ1

jÑj1 is bounded by the product

of the Hilbert-Schmidt norms of (10.27) and (10.28), we obtain the claim. �

11. Properties of the lifted operators

In this section, we prove several propositions for the lifted operators Lt,σÑσ1

using the estimates on their components Lt,σÑσ1

jÑj1 obtained in the previous sections
and then deduce the propositions in Subsection 7.2 from them. This finishes the
proof of Theorem 2.2.

11.1. Decomposition of the lifted transfer operator. We classify the com-

ponents Lt,σÑσ1

jÑj1 of the lifted operator Lt,σÑσ1

into three classes, namely “low fre-

quency”, “hyperbolic (or peripheral)” and “central” components. The classification
depends on a constant k0 ą 0 that we will specify in the course of the argument.

Definition 11.1. (1) A component Lt,σÑσ1

jÑj1 is a low frequency component if

(LF) either maxt|ωpjq|, |mpjq|u ď k0 or maxt|ωpj1q|, |mpj1q|u ď k0.

(2) A component Lt,σÑσ1

jÑj1 is a central component if it is not a low frequency com-
ponent but

(CT) mpjq “ mpj1q “ 0.

(3) The other components are called hyperbolic (or peripheral) components. That

is, a component Lt,σÑσ1

jÑj1 is a hyperbolic component if

(HYP) maxtωpjq,mpjqu ą k0, maxtωpj1q,mpj1qu ą k0 and (either mpjq ‰ 0 or
mpj1q ‰ 0).

The low frequency components are responsible for the action of transfer operators
on low frequency part of functions (in all the directions) and will be treated as a
negligible part in our argument. The central components are of primary importance
in our argument. In the global picture discussed at the end of Section 2, the central
part is responsible for the action of transfer operators Lt on the wave packets
corresponding to points near the trapped set X in (2.8). We are going to see that
the central components are well approximated by the linear models considered in
Section 4. The hyperbolic components are those components which are strongly
affected by the hyperbolicity and non-linearity of the flow. For these components,

27We refer [23, Chapter IV, Section 7] for Hilbert-Schmidt operators.
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we will see that the weight 2´rmpjq in the definition (6.14) of the norm on Kr,σ

takes effect and makes the operator norms small (at least if the constants k0 ą 0
and r ą 0 are sufficiently large).

Correspondingly to the classification of the components above, we decompose
the transfer operator Lt,σÑσ1

into three parts:

(11.1) Lt,σÑσ1

“ L
t,σÑσ1

low ` L
t,σÑσ1

ctr ` L
t,σÑσ1

hyp

where the low frequency part Lt,σÑσ1

low (resp. the central part Lt,σÑσ1

ctr , the hyperbolic

part Lt,σÑσ1

hyp ) is defined as the operator that consists of only the low frequency (resp.

central, hyperbolic) components of Lt,σÑσ1

. For instance, the low frequency part

L
t,σÑσ1

low is defined by

L
t,σÑσ1

low u “

˜
ÿ

low

L
t,σÑσ1

jÑj1 uj

¸

j1PJ

for u “ pujqjPJ,

where
ř

low is the sum over j P J such that Lt,σÑσ1

jÑj1 is a low frequency component.

Remark 11.2. In some places below, we will let the constant k0 be larger to get
preferred estimates. If we let k0 be larger, the components classified as central
and hyperbolic components will become fewer and this will enable us to get better
uniform estimates for the corresponding parts. Of course then the components
classified as low frequency components will increase. But, since we need only a few
simple estimates for this part, this will not cause any problem.

11.2. The central part. For the central components, we prove two propositions.
The first one below is a counterpart of Proposition 7.12 for the lifted operators
and corresponding to Theorem 4.17 in the linear setting. Let us recall the operator
TσÑσ1

ω from Definition 7.4. For simplicity, we write Tσ
ω for TσÑσ1

ω when σ1 “ σ.

Proposition 11.3. Let σ, σ1 P Σ. There exist constants ǫ ą 0 and Cν ą 1 for each
ν ą 0 such that

}Tσ1

ω1 ˝ L
t,σÑσ1

ctr ˝ Tσ
ω : Kr,σ Ñ Kr,σ1

} ď Cνxω1 ´ ωy´ν,

}Tσ1

ω1 ˝ L
t,σÑσ1

ctr ˝ pΠω ´ Tσ
ωq : Kr,σ Ñ Kr,σ1

} ď Cνxωy´ǫxω1 ´ ωy´ν ,

}pΠω1 ´ Tσ1

ω1 q ˝ L
t,σÑσ1

ctr ˝ Tσ
ω : Kr,σ Ñ Kr,σ1

} ď Cνxωy´ǫxω1 ´ ωy´ν

for any ω, ω1 P Z and 0 ď t ď 2tpωq, and further, if the condition (7.7) with respect
to σ and σ1 holds, then we have

}pΠω1 ´ Tσ1

ω1 q ˝ L
t,σÑσ1

ctr ˝ pΠω ´ Tσ
ωq : Kr,σ Ñ Kr,σ1

} ď Cνe
´χ0txω1 ´ ωy´ν

for any ω, ω1 P Z and 0 ď t ď 2tpωq.

Proof. We prove the claims assuming that the condition (10.17) for ω and ω1 holds
because, otherwise, the claims follow immediately from Lemma 10.9. (See Remark
11.6.) The following lemma is the component-wise version of Proposition 11.3, in
which we write Tσ

ω for the restrictions of Tσ
ω “ TσÑσ

ω to each K
r,σ
j with mpjq “ 0.

Lemma 11.4. There exist constants ǫ ą 0 and Cν ą 0 for each ν ą 0, independent

of ω, ω1 P Z, such that, for any central component L
t,σÑσ1

jÑj1 with ωpjq “ ω, ωpj1q “ ω1
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and mpjq “ mpj1q “ 0, we have

}Tσ1

ω1 ˝ L
t,σÑσ1

jÑj1 ˝ Tσ
ω : Kr,σ

j Ñ K
r,σ1

j1 } ď Cνxω1 ´ ωy´ν,

}Tσ1

ω1 ˝ L
t,σÑσ1

jÑj1 ˝ p1 ´ Tσ
ωq : Kr,σ

j Ñ K
r,σ1

j1 } ď Cνxωy´ǫxω1 ´ ωy´ν,

}p1 ´ Tσ1

ω1 q ˝ L
t,σÑσ1

jÑj1 ˝ Tσ
ω : Kr,σ

j Ñ K
r,σ1

j1 } ď Cνxωy´ǫxω1 ´ ωy´ν

for 0 ď t ď 2tpωpjqq, and further, if the condition (7.7) with respect to σ and σ1

holds for t in addition, then

}p1 ´ Tσ1

ω1 q ˝ L
t,σÑσ1

jÑj1 ˝ p1 ´ Tσ
ωq : Kr,σ

j Ñ K
r,σ1

j1 } ď Cνe
´χ0txω1 ´ ωy´ν .

Proof. We first prove the claim that, if 0 ď t ď 2tpωq satisfies the condition (7.7)
with respect to σ and σ1, then

}Lt,σÑσ1

jÑj1 : Kr,σ
j Ñ K

r,σ1

j1 } ď Cνxω1 ´ ωy´ν.

We express the diffeomorphism f t
jÑj1 as in Corollary 10.7 and correspondingly write

the operator Lt,σÑσ1

jÑj1 as

MpXn0pωpj1qq ¨ qωpj1qq ˝ Llift
a ˝ MliftpρtjÑj1 ˝ atjÑj1 q ˝ Llift

g ˝ Llift
B : Kr,σ

j Ñ K
r,σ1

j1

where Llift
a , Llift

g and Llift
B are the lifts of transfer operators for atjÑj1 , gtjÑj1 and

Bt
jÑj1 respectively. We regard that the rightmost factor Llift

B above as an operator

from K
r,σ
j to L2pWr,σq :“ L2pR4d`2d1`1, pWr,σq2q and that the rest is that from

L2pWr,σq to K
r,σ1

j1 . For the latter, we also note that Tlift
0 : L2pWr,σq Ñ L2pWr,σ1

q

is bounded for any combination of σ, σ1 P Σ from Theorem 4.17 (1).
Recall the function Y defined in (9.11) and also Lemma 4.7 and Remark 4.8 for

the operator Llift
a . Then we see

}MpXn0pωpj1qq ¨ qωpj1qq ˝ Llift
a ˝ Mp1 ´ Y q : L2pWr,σq Ñ K

r,σ1

j1 } ď Cνxω1y´ν .

From this and Theorem 4.17 (2) for Llift
B , we see that the difference between the

operator Lt,σÑσ1

jÑj1 and

MpXn0pωpj1qq ¨ qωpj1qq ˝Llift
a ˝

“
MpY q ˝MliftpρtjÑj1 ˝ atjÑj1 q ˝Llift

g

‰
˝Llift

B : Kr,σ
j Ñ K

r,σ1

j1

is bounded by Cνxω1y´ν and hence negligible. By virtue of the factor MpY q, we
can apply Lemma 9.11 to the operator in the square bracket r¨s above. Since Llift

a

and Llift
B preserve supp qωpj1q and supp qωpjq respectively, Lemma 9.11 together with

Corollary 9.6 and Corollary 10.8 yield the estimate that the operator norm of the
operator above other than the rightmost factor Llift

B is bounded by Cν b̄
t
j1 xω1 ´ ωyν.

On the other hand, from Theorem 4.17, the operator norm of b̄tj1 ¨ Llift
B is bounded

by a constant C0. (For this, recall the definition (4.9) of the operator Lt appearing
in Theorem 4.17.) Therefore we obtain the claim.

Now we prove the claims of the lemma. The proofs of the four claims are all
similar to that in the preceding paragraphs. Below we prove the second claim and

mention for the other cases at the end. We write Tσ1

ω1 ˝ L
t,σÑσ1

jÑj1 ˝ p1 ´ Tσ
ωq as

MpXn0pωpj1qqq ˝ Tlift
0 ˝ MpXn0pωpj1qq ¨ qωpj1qq ˝ Llift

a(11.2)

˝ MliftpρtjÑj1 ˝ atjÑj1 q ˝ Llift
g ˝ LliftpBq ˝ p1 ´ MpXn0pωpjqqq ˝ Tlift

0 q.
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Then, producing error terms bounded by Cνxωy´ǫxω1 ´ ωy´ν , we may

‚ introduce the factor MpY q before MliftpρtjÑj1 ˝ atjÑj1 q,

‚ replace Llift
g by the identity, using Lemma 9.11,

‚ replaceMpXn0pωpj1qqq andMpY q by the identity, using the localized property

of the kernel of Tlift
0 given in Lemma 4.18, and

‚ change the order of Tlift
0 and MliftpρtjÑj1 ˝ atjÑj1 q, using Lemma 9.12.

With these deformations, we reach the operator

(11.3) Mpqωpj1qq ˝ Llift
a ˝ MliftpρtjÑj1 ˝ atjÑj1 q ˝

“
Tlift
0 ˝ LliftpBq ˝ p1 ´ Tlift

0 q
‰
,

noting that Tlift
0 commutes with Mpqωpj1qq and Llift

a . But this operator is null from
Theorem 4.17. We therefore obtained the second claim.

The proofs of the other claims are parallel: We deform the operators to the
form corresponding to (11.3) in the same manner as above, producing error terms
bounded by Cνxωy´ǫxω1 ´ ωy´ν, and then use Corollary 9.6 (with Corollary 10.8)
and Theorem 4.17 (2). (For the last claim, we assume e´χ0tpωq " xωy´ǫ by letting
the constant ǫ0 ą 0 in the definition of tpωq smaller.) �

Proposition 11.3 is obtained by summing the estimates in Lemma 11.4. But there
is a small problem. Notice that, for j1 P J with ωpj1q “ ω1 andmpj1q “ 0, the number

of j P J satisfying ωpjq “ ω, mpjq “ 0 and L
t,σÑσ1

jÑj1 ‰ 0 will grow exponentially with
respect to t. Hence if we just add the inequalities in Lemma 11.4, we will not
get the claims of Proposition 11.3. This problem is resolved by using the localized

properties of the kernels of the operators Tlift
0 and L

t,σÑσ1

jÑj1 and also the fact that the

intersection multiplicities of the supports of tρj ˝ κ´1
j | j P J, ωpjq “ ωu is bounded

uniformly for ω. The argument is easy but may not be completely obvious. Since
we will use similar argument later, we present it below in some detail.

Recall the definition (10.6) of the functions ρtjÑj1 (and also that of ρ
pωq
a,n in Sub-

section 5.5). Let rDt
jÑj1 and Dt

jÑj1 be the xωy´p1´θq{2-neighborhoods of the subsets

ppx,yqpsupp ρ
t
jÑj1 q and ppx,yqpsupp pρtjÑj1 ˝ f t

jÑj1 qq in R
2d`d1

px,yq

respectively. For each j1 P J with ωpj1q “ ω1 andmpj1q “ 0 (resp. j P J with ωpjq “ ω

and mpjq “ 0) and for 0 ď t ď 2tpωq, the intersection multiplicity of the subsets in

t rDt
jÑj1 | j P J, ωpjq “ ω, mpjq “ 0, rDt

jÑj1 ‰ Hu(11.4)

presp. tDt
jÑj1 | j1 P J, ωpj1q “ ω1, mpj1q “ 0, Dt

jÑj1 ‰ Huq

is bounded by a constant C independent of ω, ω1 and t, provided that the constant
ǫ0 in the definition of tpωq is small enough.

Remark 11.5. The cardinality of the sets in (11.4) will not be bounded uniformly
with respect to t and ω, as we have noted. But note that, letting the constant ǫ0
be small, we may assume that this is bounded by Cxωyθ.

In order to discuss about the four claims in Lemma 11.4 in parallel, we write

M
t,σÑσ1

jÑj1 for either of the operators

Tσ1

ωpj1q ˝ L
t,σÑσ1

jÑj1 ˝ Tσ
ωpjq, Tσ1

ωpj1q ˝ L
t,σÑσ1

jÑj1 ˝ p1 ´ Tσ
ωpjqq, or

p1 ´ Tσ1

ωpj1qq ˝ L
t,σÑσ1

jÑj1 ˝ Tσ
ωpjq, p1 ´ Tσ1

ωpj1qq ˝ L
t,σÑσ1

jÑj1 ˝ p1 ´ Tσ
ωpjqq.
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Let us denote by 11
jÑj1 (resp. 1jÑj1) the indicator function of the subset

tpx, y, ξx, ξy, ξzq P R
4d`2d1`1 | px, yq P rDt

jÑj1(resp. px, yq P Dt
jÑj1 qu.

We first approximate the operator Mt,σÑσ1

jÑj1 by

(11.5) ĂMt,σÑσ1

jÑj1 “ Mp11
jÑj1 q ˝ M

t,σÑσ1

jÑj1 ˝ Mp1jÑj1 q,

by cutting off the tail part. By crude estimates using the localized properties of

the kernels of the operators Tσ
ωpjq and L

t,σÑσ1

jÑj1 , given in Corollary 4.18 and Lemma

10.11, together with the definitions of rDt
jÑj1 and Dt

jÑj1 , we see that

(11.6) }Mt,σÑσ1

jÑj1 ´ ĂMt,σÑσ1

jÑj1 : Kr,σ
j Ñ K

r,σ1

j1 } ď Cνxωy´θ ¨ xω1 ´ ωy´ν

for j, j1 P J with ωpjq “ ω, ωpj1q “ ω1 and mpjq “ mpj1q “ 0. (The factor xωy´θ

could be much better but this is enough.) Since the cardinality of the set (11.4) is
bounded by Cxωyθ as we noted in Remark 11.5 above, we obtain

ÿ

j1:ωpj1q“ω1,mpj1q“0

››››››

ÿ

j:ωpjq“ω,mpjq“0

pMt,σÑσ1

jÑj1 ´ ĂMt,σÑσ1

jÑj1 quj

››››››

2

K
r,σ1

j1

ď Cνxωyθ ¨ xωy´2θ ¨ xω1 ´ ωy´2ν
ÿ

j:ωpjq“ω,mpjq“0

}uj}
2
K

r,σ

j

for pujqjPJ P Kr,σ. Therefore the claims of Proposition 11.3 follow if we prove the

required estimates with M
t,σÑσ1

jÑj1 replaced by ĂMt,σÑσ1

jÑj1 .

By boundedness of the intersection multiplicities of (11.4), we have

ÿ

j1:ωpj1q“ω1,mpj1q“0

››››››

ÿ

j:ωpjq“ω,mpjq“0

ĂMt,σÑσ1

jÑj1 uj

››››››

2

K
r,σ1

j1

ď C
ÿ

j1:ωpj1q“ω1,mpj1q“0

ÿ

j:ωpjq“ω,mpjq“0

›››Mt,σÑσ1

jÑj1 : Kr,σ
j Ñ K

r,σ1

j1

›››
2

}Mp1jÑj1 quj}
2
K

r,σ

j

and also ÿ

j1:ωpj1q“ω1,mpj1q“0

}Mp1jÑj1 quj}
2
K

r,σ

j
ď C}uj}

2
K

r,σ

j
.

Hence, applying the claims of Lemma 11.4 to the term }Mt,σÑσ1

jÑj1 : Kr,σ
j Ñ K

r,σ1

j1 },
we obtain the required estimates. �

Remark 11.6. In the case where (10.17) does not hold, we have

xω1 ´ ωy ě maxtxωy1{2, xω1y1{2u{2,

and we can prove Lemma 11.4 by crude estimate using Lemma 10.11. We do not
need the argument on the intersection multiplicity as above because we have the
factor xω1 ´ ωy´ν À maxtxωy, xω1yu´ν{2. (See Remark 11.5.)

The second proposition below is essentially same as Proposition 7.13 but stated
in terms of lifted operators.
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Proposition 11.7. Let σ, σ1 P Σ. There exist constants ǫ ą 0, C0 ą 0 and Cν ą 0
for each ν ą 0 such that, for u P Kr,σpK0q, ω P Z and 0 ď t ď 2tpωq, there exists

vω P Kr,σ1

pK1q such that

(11.7) }Lt,σ1Ñσ ˝ Iσ
1

vω ´ Iσ ˝ MpρK1
q ˝ pIσq˚ ˝ Tσ

ω ˝ Iσu}Kr,σ ď C0xωy´θ}u}Kr,σ

and that, for ω1 P Z and 0 ď t1 ď t, we have

}Πω1 ˝ Iσ
1

˝ Lt1

vω}Kr,σ1 ď Cνxω1 ´ ωy´ν}u}Kr,σ , and(11.8)

}pΠω1 ´ Tσ1

ω1 q ˝ Iσ
1

˝ Lt1

vω}Kr,σ1 ď Cνxωy´ǫxω1 ´ ωy´ν}u}Kr,σ .(11.9)

Proof. For construction of vω, we first set

uω “ Tωu “ MpρK1
q ˝ pIσq˚ ˝ Tσ

ω ˝ Iσu P Kr,σpK0q.

(Recall (7.4) and (7.5) for the definition of Tω.) As we noted in Remark 7.6, this is
a smooth function and hence so is the function

vω :“ ρK0
¨ L´tuω “ L´tppρK0

˝ f´t
G q ¨ uωq

where ρK0
: G Ñ r0, 1s is the smooth function defined in (7.2) and is thrown in

because the support of L´tuω for 0 ď t ď 2tpωq may not be contained in K0.

Remark 11.8. Beware that we are considering the transfer operator L´t for a neg-
ative time ´t ă 0, which will not be bounded on Kr,σ.

For the proof of (11.7), we write the left hand side of (11.7) as

}Iσ ˝ MpρK1
pρK0

˝ f´t
G ´ 1qq ˝ pIσq˚ ˝ Tσ

ω ˝ Iσu}Kr,σ .

Since we are assuming 0 ď t ď 2tpωq, the function ρK1
pρK0

˝ f´t
G ´ 1q is supported

on the outside of the C´1xωy´θ neighborhood of the section Im eu. (To ensure this,
let the constant ǫ0 in the definition of tpωq be smaller if necessary.) Hence, by the
localized property of the kernel of Tσ

ω given in Corollary 4.18, we obtain (11.7).
For the proof of (11.8) and (11.9), we basically follow the argument in the proof

of Proposition 11.3. Below we assume the condition (10.17) because, otherwise,
the proof is obtained easily by using crude estimates. (See Remark 11.6.) We take
0 ď t1 ď t ď 2tpωq arbitrarily and write

Iσu “ pujqjPJ and Iσ
1

pLt1

vωq “ pvjqjPJ respectively.

Then vj1 for j1 P J with ωpj1q “ ω1 and mpj1q “ m1 is written as the sum

vj1 “
ÿ

j:ωpjq“ω,mpjq“0

L
´pt´t1q,σÑσ1

jÑj1 ˝ Tσ
ωuj

where L
´pt´t1q,σÑσ1

jÑj1 is defined in (10.4), but we read (10.6) as

ρ
´pt´t1q
jÑj1 “ b̃

´pt´t1q
j1 ¨ ppρK1

˝ f t´t1

G ¨ ρK0
˝ f´t1

G q ˝ κj1 q ¨ ρj1 ¨ ρ̃j ˝ f t´t1

j1Ñj.

Here we have the additional factor pρK1
˝ f t´t1

G ¨ ρK0
˝ f´t1

G q ˝ κj1 , but this hardly
affects the argument below as we noted in Remark 10.1. The following lemma is
the component-wise version of the claims (11.8) and (11.9).

Lemma 11.9. There exist constants ǫ ą 0 and Cν ą 0 for any ν ą 0, independent
of ω, ω1 P Z and 0 ď t1 ď 2tpωq, such that we have

}Tσ1

ω1 ˝ L
´pt´t1q,σÑσ1

jÑj1 ˝ Tσ
ω : Kr,σ

j Ñ K
r,σ1

j1 } ď Cνxω1 ´ ωy´ν(11.10)
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and

}p1 ´ Tσ1

ω1 q ˝ L
´pt´t1q,σÑσ1

jÑj1 ˝ Tσ
ω : Kr,σ

j Ñ K
r,σ1

j1 } ď Cνxωy´ǫxω1 ´ ωy´ν(11.11)

for j, j1 P J with ωpjq “ ω, ωpj1q “ ω1, mpjq “ mpj1q “ 0 and further

(11.12) }L
´pt´t1q,σÑσ1

jÑj1 ˝ Tσ
ω : Kr,σ

j Ñ K
r,σ1

j1 } ď Cνe
´|mpj1q| ¨ xω1 ´ ωy´ν

for j, j1 P J with ωpjq “ ω, ωpj1q “ ω1, mpjq “ 0 and mpj1q ‰ 0.

Proof of Lemma 11.9. We apply the argument in the proofs of Lemma 10.4 and
Corollary 10.7 to the time reversed system. Then, for 0 ď t ď 2tpωq, we get the
decomposition f´t

jÑj1 “ a´t
jÑj1 ˝ g´t

jÑj1 ˝B´t
jÑj1 corresponding to (10.18), such that

(1) a´t
jÑj1 is an affine transform in the group A2,

(2) the inverse of B´t
jÑj1 is a hyperbolic linear map of the form (4.8) with the

linear maps A : Rd Ñ Rd and pA : Rd1

Ñ Rd1

satisfying (10.15), and
(3) g´t

jÑj1 is a fibered contact diffeomorphism and the family

Gω “ tg´t
jÑj1 | ωpjq “ ω, ω1 “ ωpj1q satisfy (10.17), and 0 ď t ď 2tpωqu,

fulfills the conditions (G0), (G1) and (G2) in Setting II in Section 9.

Also, in parallel to Corollary 10.8, we can show that the family

Xω “ tpb̄´t
j1 q´1 ¨ b̃´t

j1 ¨ ρ´t
jÑj1 | ωpjq “ ω, ω1 “ ωpj1q satisfy (10.17), 0 ď t ď 2tpωqu

satisfies the conditions (C1) and (C2) in Setting I in Section 9.

Remark 11.10. The main point of the argument below is that, though the lift of
the transfer operator associated to B´t

jÑj1 will not be bounded as an operator on
Kr,σ, we have precise description about its inverse in Theorem 4.17.

To prove (11.10), we suppose mpjq “ mpj1q “ 0 and write Tσ1

ω ˝L
´pt´t1q,σÑσ1

jÑj1 ˝Tσ
ω

as the composition of

MpXn0pω1qq ˝ Tlift
0 ˝ MpΨσ1

j q ˝ B ˝ L
´
a´t
jÑj1 ˝ g´t

jÑj1 , ρ
´pt´t1q
jÑj1

¯
˝ B˚ and(11.13)

B ˝ LpB
´pt´t1q
jÑj1 , 1q ˝ B˚ ˝ MpXn0pωqq ˝ Tlift

0 .(11.14)

Below we regard (11.14) as an operator from K
r,σ
j to L2psupp qω, pW

r,σ1`1q2q and

(11.13) as that from L2psupp qω, pW
r,σ1`1q2q to K

r,σ1

j1 .

From Theorem 4.17 for B “ pB´pt´t1qq´1, we see that the operator norm of

B ˝ LpB
´pt´t1q
jÑj1 , 1q ˝ B˚ ˝ Tlift

0 : L2psuppΨσ
j , pW

r,σq2q Ñ L2psupp qω, pW
r,σq2q

is bounded by C0| det pA|´1| detA|1{2. The difference of this operator and (11.14) is
MpXn0pωqq in the middle of (11.14). But, by the localized property of the kernel of

Tlift
0 in Corollary 4.18 and also by Lemma 4.7, we see that the insertion ofMpXn0pωqq

makes only a negligible difference bounded by Cxωy´θ. Hence the operator norm

of (11.14) is bounded by C0| det pA|´1| detA|1{2. The operator norm of (11.13) is
bounded by Cν b̄

´t
j1 xωpj1q´ωpjqy´ν for any ν ą 0, by Lemma 9.11 and Corollary 9.6.

Since b̄´t
j1 ď C| det pA|´1| detA|1{2, the claim (11.10) follows from these estimates.

To prove the claim (11.11), we express the operator on its left-hand side as the
composition of (11.13) and (11.14), with Tlift

0 in (11.13) replaced by p1´Tlift
0 q. The

operator Tlift
0 commutes withB˝LpB

´pt´t1q
jÑj1 , 1q˝B˚ and approximately withMpΨσ1

j q
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and MpXn0pωqq, i.e. producing negligible terms bounded by Cνxωy´ǫxω1 ´ ωy´ν,

by the localized property of the kernel of Tlift
0 in Corollary 4.18. Also we see

that Tlift
0 commutes approximately with B ˝Lpa´t

jÑj1 ˝ g´t
jÑj1 , ρ

´pt´t1q
jÑj1 q ˝B˚ by using

Lemma 9.11, Lemma 9.12 and Lemma 9.13. Therefore we get (11.11) from the fact
that Tlift

0 is a projection operator.
To prove the last claim (11.12), we express the operator on its left-hand side as

the composition of (11.13) and (11.14), but now without the term MpXn0pω1qq˝Tlift
0

in (11.13). On the one hand, from the properties of Tlift
0 we have mentioned above,

the image of (11.14) concentrates around the trapped setX0 if we view it in the scale

xω1y´1{2 and through the weight function Wr,σ1

. On the other hand, since we have
|mpj1q| ě n0pω1q “ rθ ¨ logxω1ys from the assumption, the distance of the support

of Ψσ1

j1 from the trapped set X0 is not less than e|mpj1q| ¨ xω1y´1{2 Á xω1y´1{2`θ .

Therefore we conclude the claim (11.12), applying Lemma 9.11 (and Lemma 9.3)

for the operator B ˝ Lpa´t
jÑj1 ˝ g´t

jÑj1 , ρ
´pt´t1q
jÑj1 q ˝ B˚. �

The claims of Proposition 11.7 are obtained by summing the estimates for the
components in Lemma 11.9. We actually have to deal with the same problem as
that in deducing Proposition 11.3 from Lemma 11.4. But we omit it because the
argument is exactly same as that in the proof of Proposition 11.3. �

11.3. The hyperbolic part. We next consider the hyperbolic part Lt,σÑσ1

hyp . We
decompose it further into two parts. For this, we first introduce the new index

(11.15) m̃pjq “

$
’&
’%

mpjq ` p1{2q logxωpjqy, if mpjq ą 0;

mpjq ´ p1{2q logxωpjqy, if mpjq ă 0;

0, if mpjq “ 0.

Recall that the frequency vector of the wave packet φw,ξw,ξz p¨q is pxξzyξw, ξzq and
its distance from the trapped set X0, disregarding the normalization mentioned in
Remark 4.5, is xξzy1{2|pζp, ξ̃y, ζq, ỹq|. The absolute value of m̃pjq is directly related
to this distance (without normalization). Indeed, from the definition, we have

e|m̃pjq|´1 ď xξzy1{2|pζp, ξ̃y, ζq, ỹq| ď e|m̃pjq|`1 for pw, ξw , ξzq P suppΨσ
j ,

provided that 0 ă |mpjq| ď n1pωq. (In the case |mpjq| ą n1pωq, we can get a similar
estimate but need modification related to the factor Eω,n in the definition of Ψσ

j .)

Motivated by the observations (Ob3) in Subsection 10.1, we introduce

Definition 11.11 (The relation ãÑt). We write j ãÑt j1 for j, j1 P J and t ě 0 if
either of the following conditions holds true:

(1) m̃pjq ď 0 and m̃pj1q ě 0, or
(2) m̃pjq ¨ m̃pj1q ą 0 and m̃pj1q ě m̃pjq ` rtχ0s ´ 10.

Otherwise we write j ãÑt j1.

Remark 11.12. For the argument below, we ask the readers to observe that the
relation j ãÑt j1 implies that ppDf t

jÑj1 q´1q˚psuppΨσ
j q is separated from suppΨσ1

j1

for t satisfying the condition (7.7), at least if ω “ ωpjq and ω1 “ ωpj1q satisfy
(10.17) and that |mpjq|, |mpj1q| ď n1pωq. (For this, Remark 6.1 will be useful.) We
will give a related quantitative estimate in Lemma 11.15.
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Correspondingly to the definition above, we decompose the hyperbolic part

L
t,σÑσ1

hyp into two parts as follows. For t ě 0 and u “ pujqjPJ, we set

L
t,σÑσ1

hyp,ãÑ u “

˜
ÿ

j:jãÑtj1

L
t,σÑσ1

jÑj1 uj

¸

j1PJ

and

L
t,σÑσ1

hyp, ãÑ u “

˜
ÿ

j:jãÑtj1

L
t,σÑσ1

jÑj1 uj

¸

j1PJ

where the sum
ř

j:jãÑtj1 (resp.
ř

j:jãÑtj1) denotes that over j such that Lt,σÑσ1

jÑj1 is a

hyperbolic component and that j ãÑt j1 (resp. j ãÑt j1) holds. Obviously we have

(11.16) L
t,σÑσ1

hyp “ L
t,σÑσ1

hyp,ãÑ ` L
t,σÑσ1

hyp, ãÑ .

By geometric consideration based on the observations (Ob1) and (Ob3) discussed
in Subsection 10.1 and crude estimates using Corollary 10.12, we will see that a

hyperbolic component L
t,σÑσ1

jÑj1 satisfying j ãÑt j1 is (extremely) small in the trace

norm as well as in the operator norm and, consequently, so is the latter part Lt,σÑσ1

hyp, ãÑ .

The former part Lt,σÑσ1

hyp,ãÑ will not be small if we view it in the L2 norm. But, recall

from (6.14) that the norm on Kr,σ counts the component in K
r,σ
j with the weight

2´rmpjq (provided mpjq ‰ 0). This weight and the definition of the relation ãÑt

allow us to show that the latter part Lt,σÑσ1

hyp,ãÑ has a small operator norm.

Proposition 11.13. Let σ, σ1 P Σ. The hyperbolic part L
t,σÑσ1

hyp : Kr,σ Ñ Kr,σ1

is

bounded for 0 ď t ď 2t0 provided that (7.7) holds with respect to σ and σ1. There
exist constants Cν ą 0 and C 1

ν ą 0 for each ν ą 0 such that

(11.17) }Πω1 ˝ L
t,σÑσ1

hyp,ãÑ ˝ Πω} ď Cνe
´pr{2qχ0t ¨ xω1 ´ ωy´ν

and

(11.18) }Πω1 ˝ L
t,σÑσ1

hyp, ãÑ ˝ Πω} ď }Πω1 ˝ L
t,σÑσ1

hyp, ãÑ ˝ Πω}Tr ď C 1
νxωy´νxω1 ´ ωy´ν

for any ω, ω1 P Z and 0 ď t ď 2tpωq provided that the condition (7.7) holds.

Proof. The first claim follows from the claims (11.17) and (11.18). Below we first

prove (11.17) on the part Lt,σÑσ1

hyp,ãÑ . We restrict ourselves to the case where (10.17)

holds for ω, ω1 P Z by the same reason as in the proofs of a few previous propositions.
First we prove the following lemma for the components.

Lemma 11.14. Suppose that ω, ω1 P Z satisfy (10.17). There exists a constant

Cν ą 0 for each ν ą 0, independent of ω and ω1, such that, if L
t,σÑσ1

jÑj1 for j, j1 P J

with ωpjq “ ω and ωpj1q “ ω1 is a component of L
t,σÑσ1

hyp,ãÑ and if 0 ď t ď 2tpωq

satisfies (7.7), then we have

(11.19)
›››Lt

jÑj1 : K
r,σ
j Ñ K

r,σ1

j1

››› ď Cν b̄
t
j1 ¨ Λνpmpjq, ωpjq;mpj1q, ωpj1q; tq
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where b̄tj1 is that defined in (10.19) and we set

Λνpm,ω;m1, ω1; tq “

$
’&
’%

e´rm1`rmxω1 ´ ωy´ν, if m ‰ 0, m1 ‰ 0;

minte´rχ0t, e´rpm1´n0pωqquxω1 ´ ωy´ν, if m “ 0, m1 ą 0;

minte´rχ0t, erpm`n0pωqquxω1 ´ ωy´ν, if m ă 0, m1 “ 0.

Proof. In the case where mpjq ‰ 0 and mpj1q ‰ 0, the conclusion is a direct con-
sequence of Lemma 10.9 and the definition (6.14) of the weight on K

r,σ
j . Below

we prove the lemma for the case mpjq “ 0, but the case mpj1q “ 0 is proved in a
parallel manner.

Recall that the image and target spaces of Lt
jÑj1 are

K
r,σ1

j1 “ L2psuppΨσ1

j1 , 2´2rmpj1qq, K
r,σ
j “ L2psuppΨσ

j , pW
r,σq2q.

If e´rχ0t ě e´rpmpj1q´n0pωpjqqq, we get the required estimate easily by Lemma 10.9
because C´1e´rn0pωq ď Wr,σp¨q ď Ce`rn0pωq on suppΨσ

j “ suppΨσ
ω,0. Below we

assume e´rχ0t ă e´rpmpj1q´n0pωpjqqq. But this implies

(11.20) empj1q´n0pωpjqq ă eχ0t ă xωpj1qyθ and so empj1q ă xωpj1qy2θ

and hence both of the supports of Ψσ1

j1 and Ψσ
j are contained in that of the func-

tion Y in (9.11). This enables us to use the argument we have used in the
proof of Lemma 11.4. We express f t

jÑj1 as in Corollary 10.7 and note that, if

the non-linear diffeomorphism gtjÑj1 were identity, we could conclude (11.19) with

Λνpm,ω;m1, ω1; tq “ e´rχ0txω1 ´ ωy´ν immediately from the precise estimate on
the kernel of Lt

jÑj1 in Lemma 9.11 and Lemma 4.7. But, by virtue of Lemma 9.3

and the estimate (9.12) in its proof, we may indeed replace gtjÑj1 by the identity

producing a negligible error term bounded by Cνxωy´θxω1 ´ ωy´ν . �

We deduce the claim (11.17) from the estimates (11.19) by the argument parallel
to that in the latter part of the proof of Proposition 11.3. To begin with we note
the following estimate; Since b̄tj1 ă ep1{4qrχ0t from the choice of r in (6.13), we have

sup
m

ÿ

m1

b̄tj1 ¨ Λνpm,ω;m1, ω1; tq ď Cνe
´p1{2qrχ0txω1 ´ ωy´ν(11.21)

and

sup
m1

ÿ

m

b̄tj1 ¨ Λνpm,ω;m1, ω1; tq ď Cνe
´p1{2qrχ0txω1 ´ ωy´ν .(11.22)

We write LjÑj1 for the j Ñ j1 component of Lt,σÑσ1

hyp,ãÑ for brevity. As in the proof

of Proposition 11.3, we approximate it by rLjÑj1 “ Mp11
jÑj1 q ˝ LjÑj1 ˝ Mp1jÑj1 q

where 11
jÑj1 and 1jÑj1 are those defined in the paragraph preceding (11.5). It is not

difficult to see

}LjÑj1 ´ rLjÑj1 : Kr,σ
j Ñ K

r,σ1

j1 } ď Cνxωy´2θ ¨ Λνpmpjq, ωpjq;mpj1q, ωpj1q; tq



THE SEMICLASSICAL ZETA FUNCTION 87

from the proof of Lemma 11.14. Hence, from the uniform boundedness of the
intersection multiplicity of the sets (11.4) and Remark 11.5, we obtain

}Πω1 ˝ L
t,σÑσ1

hyp,ãÑ ˝ Πωu}2
Kr,σ1 ď

ÿ

m1

ÿ

j1:ω1,m1

›››››
ÿ

m

ÿ

j:ω,m

rLjÑj1uj

›››››

2

K
r,σ1

j1

` Cνxωy´θxω1 ´ ωy´ν}u}2Kr,σ

for u “ pujqjPJ P Kr,σ, where
ř

j:ω,m denotes the sum over j P J such that ωpjq “ ω

and mpjq “ m and so on. For the sum of the right-hand side, we have

ÿ

m1

ÿ

j1:ω1,m1

›››››
ÿ

m

ÿ

j:ω,m

rLjÑj1uj

›››››

2

K
r,σ1

j1

ď Cνe
´rχ0t{2xω1 ´ ωy´ν

ÿ

m,m1

ÿ

j1:ω1,m1

pb̄tj1 ¨ Λνpω,m;ω1,m1; tqq´1

›››››
ÿ

j:ω,m

LjÑj1uj

›››››

2

K
r,σ1

j1

ď Cνe
´rχ0t{2xω1 ´ ωy´ν

ÿ

m,m1

ÿ

j:ω,m

b̄tj1 ¨ Λνpω,m;ω1,m1; tq }uj}
2

K
r,σ

j

ď Cνe
´rχ0txω1 ´ ωy´2ν

ÿ

m

ÿ

j:ω,m

}uj}
2

K
r,σ

j

“ Cνe
´rχ0xω1 ´ ωy´2ν }u}

2

Kr,σ

where, besides boundedness of the intersection multiplicities of (11.4), we used
Schwartz inequality and (11.22) in the first inequality, Lemma 11.14 in the second,
and (11.21) in the third. We therefore obtain the required estimate (11.17).

We next prove the claim (11.18). We deduce it from the following lemma. Recall

the definition of the quantity ∆t,σÑσ1

jÑj1 preceding Corollary 10.12.

Lemma 11.15. Suppose that σ, σ1 P Σ and consider a (non-zero) component

L
t,σÑσ1

jÑj1 of L
t,σÑσ1

hyp, ãÑ and 0 ă t ď 2tpωpjqq satisfying (7.7). Then there exist con-

stants γ0 ą 0 and C0 ą 0 (independent of j, j1 and t) such that

(11.23) ∆t,σÑσ1

jÑj1 ă C0 maxtωpjq, ωpj1q, e|mpjq|, e|mpj1q|u´γ0 .

The conclusion of Lemma 11.15 is just an estimate between the supports of
pDf t

jÑj1 q˚pΨσ1

j1 q and Ψσ
j and hence should be obtained by elementary geometric

consideration. Also, from Remark 11.12 and the construction of Eω,m in Subsection
6.2, the claim may be intuitively rather obvious. This is indeed the case, however,
because of the involved definition of Ψσ

ω,m, we need to separate several cases and go
through cumbersome estimates that are not very essential. Thereby we defer the
proof of Lemma 11.15 to Section A in the appendix.

Once we obtain Lemma 11.15, we combine it with Corollary 10.12 to bound the

trace norms of the components of Lt,σÑσ1

hyp, ãÑ . Observe that the term p∆t,σÑσ1

jÑj1 qν in the

bound thus obtained dominates the latter factor in (10.26) provided ν is sufficiently
large. Hence we conclude the claim (11.18) simply by summing such bounds on the
trace norms. �

Remark 11.16. For the proof of Theorem 2.3 in Section B in the appendix, we
will actually need a little more information above the constants Cν and C 1

ν in the
claims of Proposition 11.13. Note that the constant Cν in (11.17) comes from that
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in Corollary 10.9 and can be chosen independently of the choice of t0 ą 0 if we
take larger k0 according to t0. Hence, by letting t0 be larger if necessary, we may

suppose that }Lt,σÑσ1

hyp,ãÑ : Kr,σ Ñ Kr,σ1

} ď e´pr{2qχ0t for t0 ď t ď 2t0. Also it is easy
to see that, by letting the constant k0 in Definition 11.1 be larger, we may restrict
the sum over pj, j1q P J2 and let C 1

ν in (11.18) be arbitrarily small.

From the definition of the hyperbolic part Lt,σÑσ1

hyp , its components Lt,σÑσ1

jÑj1 satisfy

eithermpjq ‰ 0 ormpj1q ‰ 0, that is, either |mpjq| ą n0pωpjqq or |mpj1q| ą n0pωpj1qq.

Hence either of the supports of Ψσ
j or Ψσ1

j1 are separated from the trapped set X0

by the distance proportional to xωpjqy´1{2`θ or xωpj1qy´1{2`θ. On the other hand,
from Corollary 4.18, the kernel of Tlift

0 is localized around the trapped set X0 in the
scale xωy´1{2 if we view it through the weight Wr,σ. These observations lead to

Lemma 11.17. Let σ, σ1 P Σ. There exists a constant Cν ą 0 for ν ą 0 such that

}Tσ1

ω1 ˝ L
t,σÑσ1

hyp ˝ Πω} ď Cνxωy´θxω1 ´ ωy´ν and(11.24)

}Πω1 ˝ L
t,σÑσ1

hyp ˝ Tσ
ω} ď Cνxωy´θxω1 ´ ωy´ν(11.25)

for any ω, ω1 P Z and 0 ď t ď 2tpωq.

Proof. From the observations made above, it is not difficult to see that

}Tσ1

ω1 ˝ L
t,σÑσ1

jÑj1 : Kr,σ
j Ñ K

r,σ1

j1 } ď Cνe
´|mpjq| ¨ xωy´θxω1 ´ ωy´ν

for j, j1 P J with ωpjq “ ω, mpjq ‰ 0 and ωpj1q “ ω1, mpj1q “ 0, and also that

}Lt,σÑσ1

jÑj1 ˝ Tσ
ω : Kr,σ

j Ñ K
r,σ1

j1 } ď Cνe
´|mpj1q| ¨ xωy´θxω1 ´ ωy´ν

for j, j1 P J with ωpjq “ ω, mpjq “ 0 and ωpj1q “ ω1, mpj1q ‰ 0. Then we obtain the
claims of Lemma 11.17, adding these estimates for the components by using the
argument parallel to that in the latter part of the proof of Proposition 11.3. �

11.4. The low frequency part. For the low frequency part, we prove

Lemma 11.18. Let σ, σ1 P Σ. The low frequency part L
t,σÑσ1

low : Kr,σ Ñ Kr,σ1

for
0 ď t ď 2t0 are trace class operators. Further, there exists a constant Cν ą 0 for
each ν ą 0 such that

}Πω1 ˝ L
t,σÑσ1

low ˝ Πω} ď }Πω1 ˝ L
t,σÑσ1

low ˝ Πω}Tr ď Cνxω1y´νxωy´ν

for any ω, ω1 P Z and 0 ď t ď 2tpωq.

The lemma above is obtained immediately by adding the estimates on the trace

norms of the components of Lt,σÑσ1

low given by the next lemma and Corollary 10.12.

Lemma 11.19. Let σ, σ1 P Σ. Suppose that Lt,σÑσ1

jÑj1 for j, j1 P J is a low frequency

component of Lt,σÑσ1

and that 0 ă t ď 2tpωpjqq satisfies (7.7) w.r.t. σ and σ1. Then
there exist constants γ0 ą 0 and C0 ą 0 (independent of j, j1 and t but dependent
on the constant k0) such that

(11.26) ∆t,σÑσ1

jÑj1 ă C0 maxtxωpjqy, xωpj1qy, e|mpjq|, e|mpj1q|u´γ0 .

Since we can take large constant C0 in the statement above depending on k0, we
can prove the claims above by crude geometric estimates on the supports of Ψσ

ω,m.
We omit the proof because it is straightforward and is obtained as an easier case
of the proof of Lemma 11.15 in the appendix.
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11.5. The operator TσÑσ1

ω . Let us recall the operator TσÑσ1

ω from Definition 7.4.
The following is the counterpart of Lemma 7.11.

Lemma 11.20. Let σ, σ1 P Σ. The operator TσÑσ1

ω : Kr,σ Ñ Kr,σ1

is bounded and
its operator norm is bounded uniformly in ω. There is a constant C0 ą 0 such that

(11.27) }Iσ
1

˝ Mp1 ´ ρK1
q ˝ pIσq˚ ˝ Tσ

ω : Kr,σ Ñ Kr,σ1

} ď C0xωy´θ

for any ω P Z. For the trace norm, we have that

(11.28) }Iσ
1

˝ MpρK1
q ˝ pIσq˚ ˝ Tσ

ω : Kr,σ Ñ Kr,σ1

}Tr ď C0xωyd

for any ω P Z. Further, for each ω P Z with |ω| ą k0, there exists a finite dimen-
sional vector subspace V pωq Ă Kr,σpK1q with dimV pωq ě xωyd{C0 such that

(11.29) }Iσ
1

˝ MpρK1
q ˝ pIσq˚ ˝ Tσ

ω ˝ Iσu}Kr,σ1 ě C´1
0 }u}Kr,σ for all u P V pωq.

Proof. Recall the definition (7.4) of TσÑσ1

ω and note that we have a precise de-
scription of the kernel of Tlift

0 from Corollary 4.18. Then we obtain the uniform

boundedness of the operator norm of TσÑσ1

ω and the claim (11.27) as immediate
consequences. To prove (11.28), it is enough to show, for some constant C ą 0
independent of ω, that

}Iσ
1

˝ MpρK1
q ˝ pIσj q˚ ˝ MpXn0pωqq ˝ Tlift

0 : Kr,σ
j Ñ Kr,σ1

}Tr ď Cxωy2d¨θ

for any j P J with ωpjq “ ω and mpjq “ 0, because the cardinality of the element
j P J satisfying ωpjq “ ω and mpjq “ 0 is bounded by Cxωyp1{2´θq¨2d. To prove
this claim, we express the operator on the left-hand side above as integration of
rank one operators by applying Corollary 4.18 to Tlift

0 . Applying Lemma 9.11 to

the j Ñ j1 component of Iσ
1

˝MpρK1
q ˝ pIσq˚ with mpjq “ 0, we see that those rank

one operators are uniformly bounded. Therefore we get the required inequality by
using triangle inequality on the trace norm.

We prove the last claim as a consequence of Lemma 9.14. Suppose that c ą 0
is sufficiently small. Then, for each ω P Z, we can choose a finite subset Jω in
tj P J | ωpjq “ ω,mpjq “ 0u so that #Jω ą cxωyp1{2´θq¨2d and that the supports of

ρ̃j ˝ κ´1
j for j P Jω are separated by distance not less than cxωy´1{2`θ. By choosing

the points in Jω appropriately (and also ρa if necessary), we may and do assume
that, for some ǫ ą 0 independent of ω, the function ρj for each j P Jω takes constant
value 1 on the subset

tpw, zq P R
2d`d1`1 | |w| ď ǫxωy´1{2`θ, |z| ď ǫu.

Let W pωq be the finite dimensional subspace given in Lemma 9.14 and put

V pωq :“
à

jPJω

pκ´1
j q˚pW pωqq Ă C8pK0q.

This is a direct sum because the subspaces on the right-hand side are almost or-
thogonal28 from the assumption made above. Hence we have

dimV pωq “ dimW pωq ¨ #J ě C´1
0 xωyd

for some constant C0 ą 0 independent of ω. From (9.19), we have (11.29) for
v P pκ´1

j q˚W pωq and j P Jω. Then it extends to all v P V pωq again by almost

orthogonality between the images of pκ´1
j q˚pW pωqq by Iσ

1

˝MpρK1
q˝pIσq˚ ˝Tσ

ω. �

28Here and a few lines below, we mean by “almost orthogonal” that we have the estimate
corresponding to (8.18).
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11.6. Short time estimates. Lastly we give an estimate on the lifted operator
Lt,σÑσ1

for small t ą 0. This is the counterpart of Lemma 7.14.

Lemma 11.21. Suppose that σ, σ1 P Σ satisfies σ1 ă σ. Then there exist constants
t˚ ą 0 and Cν ą 0 for each ν ą 0 such that

(11.30) }Πω1 ˝ pe´iωtLt,σÑσ1

´ L0,σÑσ1

q ˝ Πω : Kr,σ Ñ Kr,σ1

} ď Cνt ¨ xω1 ´ ωy´ν

for 0 ď t ă t˚ and ω, ω1 P Z. The limit

(11.31) Aω,ω1 :“ lim
tÑ`0

1

t
¨ Πω1 ˝ pe´iωtLt,σÑσ1

´ L0,σÑσ1

q ˝ Πω

exists and is a bounded operator from Kr,σ to Kr,σ1

satisfying

(11.32) }Aω,ω1 : Kr,σ Ñ Kr,σ1

} ď Cνxω1 ´ ωy´ν .

Proof. From the expression (10.4), we can write the j Ñ j1 component of

(11.33)
1

t
¨ Πω1 ˝ pe´iωt ¨ Lt ´ L0q ˝ Πω

with ωpjq “ ω and ωpj1q “ ω1 as

MpΨωpj1q,mpj1qq ˝ B ˝

ˆ
1

t

´
e´iωt ¨ Lpf t

jÑj1 , b̃
t
j1 ¨ ρtjÑj1 q ´ Lpf0

jÑj1 , b̃
0
j1 ¨ ρ0jÑj1 q

¯˙
˝ B˚.

Note that we have f t
jÑj1 px, y, zq “ f0

jÑj1 px, y, z` tq for sufficiently small t, provided

that the both sides are defined. Therefore, setting Ttpx, y, zq “ px, y, z ` tq, we
rewrite the operator above in the middle as

1

t

´
e´iωtLpf t

jÑj1 , b̃tj1 ¨ ρtjÑj1 q ´ Lpf0
jÑj1 , b̃0j1 ¨ ρ0jÑj1 q

¯
(11.34)

“
1

t
pe´iωt ´ e´iω1tq ¨ Lpf t

jÑj1 , b̃tj1 ¨ ρtjÑj1 q

` e´iω1t ¨ L

ˆ
f t
jÑj1 ,

1

t

´
b̃tj1 ¨ ρtjÑj1 ´ pb̃0j1 ¨ ρ0jÑj1 q ˝ T´t

¯˙

`

˜
e´iω1t

t
¨ LpTt, 1q ´ Id

¸
˝ Lpf0

jÑj1 , b̃0j1 ¨ ρ0jÑj1 q.

Correspondingly we decompose (11.33) into three parts L0, L1 and L2, which have
the first, the second and the third operators on the right-hand side above respec-
tively in their pj Ñ j1q-components.

To prove the former claim in the lemma, it is enough to prove

(11.35) }Lk : Kr,σ Ñ Kr,σ1

} ď Cνxω1 ´ ωy´ν for k “ 0, 1, 2

uniformly for small t ą 0. The case k “ 0 is obvious, because we have the same
estimate for Πω1 ˝Lt,σÑσ1

˝Πω by Proposition 11.3, Proposition 11.13 and Lemma
11.18 and because t´1pe´iωt ´ e´iω1tq is bounded by 2xω1 ´ωy. For the case k “ 1,

we note that the only difference between the operators Πω1 ˝ Lt,σÑσ1

˝ Πω and L1

is that the multiplication by b̃tj1 ¨ ρtjÑj1 in each component is replaced with that by

pb̃tj1 ¨ρtjÑj1 ´pb̃0j1 ¨ρ0jÑj1 q˝T´tq{t. Since the last function satisfies the similar estimates

for the derivatives and the support as b̃tj1 ¨ ρtjÑj1 , we can follow the argument in the

previous subsections to get (11.35) for k “ 1. For the case k “ 2, we regard the

components of the operator L2 as the operators L0,σÑσ1

jÑj1 post-composed by the lift
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of t´1pe´iωtLpTt, 1q ´ Idq. Since the supports of the functions in K
r,σ
j1 is contained

in rω1 ´ 1, ω1 ` 1s in the coordinate ξz, the operator norm of

ˆ
1

t
pe´iω1tLpTt, 1q ´ Idq

˙lift

“ P ˝ Mpt´1peipξz´ω1qt ´ 1qq : Kr,σ1

j1 Ñ K
r,σ1

j1

is bounded by 2. Therefore we obtain (11.35) in the case k “ 2.
To prove the latter claim on Aω,ω1 , we consider the limit t Ñ `0 in the argument

above. Convergence of (11.31) is clear from the expression (11.34). Then the
estimate (11.32) follows from (11.30). �

11.7. Proof of propositions in Subsection 7.2. Finally we deduce the propo-
sitions given in Subsection 7.2. Below we keep in mind that the diagram (10.2)
commutes and that Iσ : Kr,σ Ñ Kr,σ is an isometric embedding.

Proof of Proposition 7.8. Applying Proposition 11.3, Proposition 11.13 and Lemma
11.18 to the central, hyperbolic and low frequency parts of Lt,σÑσ1

respectively, we
see that there exists a constant Cν ą 0 for any ν ą 0 such that

(11.36) }Πω1 ˝ Lt ˝ Πω : Kr,σ Ñ Kr,σ1

} ď Cνxω1 ´ ωy´ν

for 0 ď t ď 2t0 satisfying (7.7). (Note that tpωq ě t0 by definition.) By the
definition of the norm on Kr,σ, this implies

(11.37) }Lt : Kr,σ Ñ Kr,σ1

} ď C for 0 ď t ď 2t0 satisfying (7.7).

Then, in view of the commutative diagram (10.2), we get

}Lt : Kr,σpK0q Ñ Kr,σ1

pK0q} ď C for 0 ď t ď 2t0 satisfying (7.7).

We obtain the last claim of Proposition 7.8 by iterative use of this estimate. �

Proof of Lemma 7.9. We consider the inequality (11.36) for the case t “ 0, but
with Lt replaced by Lt ˝ MpρKi

q, i “ 0, 1. (Recall Remark 10.1.) Then we have

(11.38) }Πω1 ˝ Iσ
1

˝ MpρKi
q ˝ pIσq˚ ˝ Πω : Kr,σ Ñ Kr,σ1

} ď Cνxω1 ´ ωy´ν

and hence

(11.39) }Iσ
1

˝ MpρKi
q ˝ pIσq˚ : Kr,σ Ñ Kr,σ1

} ď C

provided σ1 ă σ. From the definition of the norm } ¨ }Kr,σ in Definition 6.6, we have
}u}2Kr,σ “

ř
ω }Πω ˝ Iσu}2Kr,σ and

}Qωu}2
Kr,σ1 “

ÿ

ω1

}pΠω1 ˝ Iσ
1

˝ MpρK0
q ˝ pIσq˚ ˝ Πωq ˝ Πω ˝ Iσu}2

Kr,σ1 .

Therefore the inequality (7.8) follows from (11.38). �

Proof of Lemma 7.11. We deduce the claims from Lemma 11.20. From uniform
boundedness of TσÑσ1

ω given in Lemma 11.20 and the fact that TσÑσ1

ω for different
ω acts on different components in effect, there exists a constant C ą 0 such that
the operator norm of ÿ

ωPZ

TσÑσ1`1
ω : Kr,σ Ñ Kr,σ1`1
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for any subset Z Ă Z is bounded uniformly by C. The claim (7.9) follows from this
and (11.39) because the operator norm in (7.9) is bounded by that of

Iσ
1

˝ MpρK1
q ˝ pIσ

1`1q˚ ˝

˜
ÿ

ωPZ

TσÑσ1`1
ω

¸
: Kr,σ Ñ Kr,σ1

.

We next prove the latter claims (a) and (b) in Lemma 7.11. Since

}Tω : Kr,σpK0q Ñ Kr,σ1

pK0q}Tr ď }Iσ
1

˝ MpρK1
q ˝ pIσq˚ ˝ Tσ

ω : Kr,σ Ñ Kr,σ1

}Tr,

the upper bound in (7.10) follows from (11.28). The claim (b) is basically a literal
translation of the latter claim in Lemma 11.20. The estimates (7.11) and (7.12)
are immediate consequences of (11.29) and (11.38). Finally we see that the lower
bound in (7.10) is a consequence of the claim (b). �

Proof of Proposition 7.12. We first prove the claim (7.13). From (11.39) and the
commutative diagram (10.2), we have that

}Tω1˝Lt ˝ Tω : Kr,σpK0q Ñ Kr,σ1

pK0q}

ď C}Iσ
1

˝ MpρK1
q ˝ pIσ

1`1q˚ ˝ Tσ´1Ñσ1`1
ω1 ˝ Lt,σÑσ´1 ˝ Tσ

ω : Kr,σ Ñ Kr,σ1

}

ď C}Tσ´1Ñσ1`1
ω1 ˝ Lt,σÑσ´1 ˝ Tσ

ω : Kr,σ Ñ Kr,σ1`1}

“ C}Tσ1`1
ω1 ˝ Lt,σÑσ1`1 ˝ Tσ

ω : Kr,σ Ñ Kr,σ1`1}

where Lt,σÑσ´1 is to be read as the lift of Lt ˝MpρK1
q. (Recall Remark 10.1.) We

decompose Lt,σÑσ1`1 as in (11.1) and apply Proposition 11.3, Lemma 11.17 and
Lemma 11.18 to each part, noting uniform boundedness of Tσ

ω and the relation

(11.40) Πω ˝ TσÑσ1

ω “ TσÑσ1

ω ˝ Πω “ TσÑσ1

ω .

Then we obtain the first claim:

}Tω1 ˝Lt ˝ Tω : Kr,σpK0q Ñ Kr,σ1

pK0q}

ď Cνxω1 ´ ωy´ν ` Cνxωy´θxω1 ´ ωy´ν ` Cνxω1y´νxωy´ν ď Cνxω1 ´ ωy´ν .

We can prove (7.14), (7.15), (7.16) in a parallel manner. Just note that, in proving
the last inequality, we apply Proposition 11.13 instead of Lemma 11.17 for the
hyperbolic part. �

11.7.1. Proof of Proposition 7.13. The statements are direct consequences of those
in Proposition 11.7. In proving (7.19) and (7.20), we use (11.27) and (11.39) to
deal with the multiplication operators MpρK0

q and MpρK1
q.

11.7.2. Proof of Lemma 7.14. The statements are direct consequences of those in
Lemma 11.21, but with Lt replaced by Lt ˝ MpρK0

q. (Recall Remark 10.1 again.)
For the last statement on replacement of Qω with Tω, we use the relation (11.40).

Appendix A. Proof of Lemma 11.15

As we noted in the text after the statement of Lemma 11.15, the proof is obtained
by elementary geometric estimates about diffeomorphisms with some hyperbolicity.
We begin with preliminary argument. For definiteness, we assume that

(‹1) the condition (ii) in (7.7) holds, that is, t ě t0, and
(‹2) the condition (10.17) holds.
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The cases where these conditions do not hold are treated in a parallel and simpler
manner. (See Remark A.2.) Further we may and do assume

(‹3) mintmaxte|mpjq|, xωpjqyu,maxte|mpj1q|, xωpj1qyuu is large, and
(‹4) eχmax¨2tpωq ď xωyθ{10

by choosing large constant k0 in the definition of the low-frequency part and small
constant ǫ0 ą 0 in the definition of tpωq in (7.1) respectively.

For simplicity, we set ω “ ωpjq, ω1 “ ωpj1q, m “ mpjq, m1 “ mpj1q. Below we
consider points

w2 P supp ρtjÑj1 ,(A.1)

p “ pw, ξw , ξzq “ pq, p, y, ξq, ξp, ξy, ξzq P suppΨσ
j and(A.2)

p1 “ pw1, ξ1
w, ξ

1
zq “ pq1, p1, y1, ξ1

q, ξ
1
p, ξ

1
y, ξ

1
zq P suppΨσ1

j1(A.3)

and estimate the quantity (10.25). By changing the coordinates by a transformation
in A2, we may and do assume

(‹5) ppx,zqpw
2q “ 0 and ppx,zqppf̆ t

jÑj1 q´1pw2qq “ 0

without loss of generality. From the assumption that L
t,σÑσ1

jÑj1 is a component of

L
t,σÑσ1

hyp, ãÑ , we have m ¨ m1 ‰ 0 and hence

(A.4) emaxt|m|,|m1|u ě en0pωq ě C´1xωyθ.

We can get the conclusion of the lemma for small γ0 easily by using (A.4) if either

xω1y1{2|w1 ´w2| ě emaxt|m|,|m1|u{3 or xωy1{2|w´ pf̆ t
jÑj1 q´1pw2q| ě emaxt|m|,|m1|u{3.

Therefore we will assume

(‹6) maxt xω1y1{2|w1 ´ w2|, xωy1{2|w ´ pf̆ t
jÑj1 q´1pw2q| u ă emaxt|m|,|m1|u{3.

We prove the following claim under the additional assumptions above.

Sublemma A.1. There exists a constant C0 ą 0 such that
ˇ̌
ˇpD˚Eω,mq´1

´
pf̆ t

jÑj1 pwq, ppDf̆ t
jÑj1 q˚

w2 q´1ξw, ξzq ´ pw1, pxξ1
zy{xξzyqξ1

w, ξzq
¯ˇ̌

ˇ(A.5)

ą C´1
0 ep2{3q maxt|m|,|m1|uxωy´1{2,

where D˚Eω,m is the linear map defined in (6.8).

We defer the proof of this sublemma for a while and finish the proof of Lemma
11.15. We show that w-component of the quantity on the left hand side of (A.5),

i.e. Eω,mpf̆ t
jÑj1 pwq ´ w1q, is much smaller than the right-hand side of (A.5). In

the case |m| ď n1pωq, we have D˚Eω,m “ Id and |f̆ t
jÑj1 pwq ´ w1| is much smaller

than the right-hand side of (A.5) from (‹4), (‹5), (‹6) and (A.4). In the case

|m| ą n1pωq, we have e|m| ě C´1
0 xωyΘ1 and hence

|Eω,mpf̆ t
jÑj1 pwq´w1q| ď eωpmq ¨ |f̆ t

jÑj1 pwq´w1| ď xωyp1´βqp1{2´θq`4θ ¨ |f̆ t
jÑj1 pwq´w1|

is again much smaller than the right-hand side of (A.5).
Comparing Sublemma A.1 with what we proved in the last paragraph, we see

(A.6) |ppDf̆ t
jÑj1 q˚

w2 q´1pxξzyξwq ´ xξ1
zyξ1

w| ą p2C 1
0q´1ep2{3q maxt|m|,|m1|uxωy1{2.
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To finish, we prove

xωy´p1`θq{2 ¨ xxωy1{2´4θ|ξw |y´1{2 ¨ |ppDf̆ t
jÑj1 q˚

w2 q´1pxξzyξwq ´ xξ1
zyξ1

w|(A.7)

ě pC2
0 q´1 maxtω, ω1, e|m|, e|m1|uγ0

for a small constant γ0 ą 0. Clearly the required estimate in Lemma 11.15 follows
from this claim. In the case xωy1{2´4θ|ξw| ď 2, we may neglect the second factor
on the left hand side and hence obtain (A.7) immediately using (A.4) and (A.6).
Thus we consider the case xωy1{2´4θ|ξw| ą 2 below. In this case, we have

xωy1{2|ξw| ď emaxt|m|,|m1|u`2 ¨ eωp|m|q

from (A.2), (‹5) and (‹6). Hence it holds

xxωy1{2´4θ|ξw |y´1{2 “ xωy´1{4`2θ|ξw|´1{2 ě e´ maxt|m|,|m1|u{2´1xωy2θ ¨ eωp|m|q´1{2

and the left-hand side of (A.7) is bounded from below by

peC 1
0q´1xωyp3{2qθ ¨ emaxt|m|,|m1|u{6 ¨ eωp|m|q´1{2.

Since eωp|m|q ď eµmaxt|m|,|m1|u ď emaxt|m|,|m1|u{20, we obtain (A.7) again.

Proof of Sublemma A.1. For the points p and p1 in (A.2) and (A.3), we set

px̂, ŷ, ξ̂x, ξ̂y, ξzq :“ pD˚Eω,mq´1ppq “ pD˚Eω,mq´1pw, ξw , ξzq,(A.8)

px̂1, ŷ1, ξ̂1
x, ξ̂

1
y, ξzq :“ pD˚Eω,m1 q´1pp1q “ pD˚Eω,m1 q´1pw1, ξ1

w, ξzq,(A.9)

and also set

px̃, ỹ, ξ̃x, ξ̃y, ξzq :“ pD˚Eω,mq´1pf̆ t
jÑj1 pwq, ppDf̆ t

jÑj1 q˚
w2 q´1ξw, ξzq(A.10)

“ pEω,m ˝ f̆ t
jÑj1 ˝ E´1

ω,mpŵq, pE˚
ω,mq´1 ˝ ppDf̆ t

jÑj1 q˚
w2 q´1 ˝ E˚

ω,mpξ̂wq, ξzq.

The claim of Sublemma A.1 follows if we prove

(A.11) |pỹ, ξ̃x, ξ̃yq ´ pŷ1, pxξ1
zy{xξzyqξ̂1

x, ξ̂
1
yq| ě C´1

0 ep2{3q maxt|m|,|m1|uxωy´1{2.

Here we note that xξ1
zy{xξzy is bounded because of the assumption (‹2).

For the proof of (A.11), we investigate the conditions on the points (A.8) and
(A.9) that come from the choice (A.2) and (A.3) of p and p1. Then we look into
the correspondence from the point (A.8) to (A.10).

From the assumptions (‹5) and (‹6), the points p and p1 satisfy respectively

(A.12) |pq, pq| ă emaxt|m|,|m1|u{3xωy´1{2, |pq1, p1q| ă emaxt|m|,|m1|u{3xω1y´1{2.

Recall that the function Ψσ
j is defined in (6.10) using the coordinates (4.24). We

let pζq, ζp, ỹ, ξ̃yq and pζ 1
q , ζ

1
p, ỹ

1, ξ̃1
yq be the coordinates (4.24) for the points p and p1

in (A.2) and (A.3) respectively. Then, from (A.12), we have
ˇ̌
ˇ|pξq, ξpq| ´ 21{2xξzy´1{2|pζq, ζpq|

ˇ̌
ˇ ă Cemaxt|m|,|m1|u{3xωy´1{2(A.13)

and
ˇ̌
ˇ|pξ1

q, ξ
1
pq ´ 21{2xξ1

zy´1{2|pζ 1
q, ζ

1
pq|

ˇ̌
ˇ ă Cemaxt|m|,|m1|u{3xω1y´1{2.(A.14)
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From the former estimate and the condition (A.2), we see that the point (A.8)

satisfies the following conditions up to errors bounded by Cemaxt|m|,|m1|u{3xωy´1{2:
For the distance from the origin,

e|m|´1xωy´1{2 ď |pξ̂q , ŷ, ξ̂p, ξ̂yq| ď e|m|`1xωy´1{2 if m ‰ 0,(A.15)

|pξ̂q, ŷ, ξ̂p, ξ̂yq| ď e ¨ xωy´1{2`θ if m “ 0(A.16)

where we write ξ̂x “ pξ̂p, ξ̂qq; For the direction from the origin,

|pξ̂q, ŷq| ă 2 ¨ 2´σ{2|pξ̂p, ξ̂yq| if m ą 0,(A.17)

2 ¨ 2σ{2|pξ̂q, ŷq| ą |pξ̂p, ξ̂yq| if m ă 0.(A.18)

We have the parallel estimates on the point (A.9) as a consequence of (A.3).
Next we consider the correspondence from the point (A.8) to the point (A.10).

By contracting property of f t
jÑj1 along the y-axis and Lemma 10.4(1), we have

(A.19) |ỹ| ď e´χ0t|ŷ| ` Ceωpmq ¨ xωy´p1{2`3θq.

Recall the diffeomorphism htjÑj1 in (10.12), which is roughly the flow f t
G viewed in

the local charts without the factor Eω,m. By the relation (10.11), we have

(A.20) pξ̃x, ξ̃y, ξzq “ pE˚
ω,mq´1 ˝ E˚

ω1 ˝ ppDhtjÑj1 q˚
w̌q ˝ pE˚

ωq´1 ˝ E˚
ω,mpξ̂x, ξ̂y, ξzq

where w̌ is chosen so that pw̌, zq “ Eωpw2, zq.
To proceed, let us first consider the case where |m| ď n1pωq and |m1| ď n1pω1q.

In this case, we have eωpmq “ eω1 pm1q “ 1, Eω,m “ Eω1,m1 “ Id and therefore the
correspondence (A.20) is given by nothing but the map f t

jÑj1 . Then, by Lemma 10.4,

we get (A.11) by simple geometric estimates. Indeed, if we ignore

‚ the difference between f t
jÑj1 and its linearization at the origin,

‚ the errors mentioned about the estimates (A.15) – (A.18) and the corre-

sponding estimates on pŷ1, ξ̂1
x, ξ̂

1
yq, and

‚ the difference between xξ1
zy{xξzy and 1,

then the conclusion (A.11) is an easy consequence of hyperbolicity of f t
jÑj1 . But we

can check easily that the differences above are negligible in fact.
Next we consider the case |m| ě n2pωq and |m1| ě n2pω1q, the other extreme. In

this case, we have Eω,m “ Eω and Eω1,m1 “ Eω1 and therefore the correspondence
(A.20) is given by the map htjÑj1 . Note that htjÑj1 is given as iteration of the
maps satisfying the conditions in Lemma 10.3 and therefore have nice hyperbolic
property. (Note that Lemma 10.3 is valid only for 0 ď t ď 2t0.) Then we can get
the conclusion (A.11) by essentially same manner as in the previous case.

The situations in the middle, i.e. the case where either n1pωq ď |m| ď n2pωq or
n1pω1q ď |m1| ď n2pω1q is slightly more complicated. If ||m| ´ |m1|| ě 2χmaxt, it is

easy to get the conclusion (A.11) because the ratio between e|m| and e|m1| is much
larger (or smaller) than the expansion (or contraction) given by the correspondence
(A.20). So we may assume ||m| ´ |m1|| ď 2χmaxt. If we have eωpmq “ eω1 pm1q and
Eω,m “ Eω1,m1 , we can see that the correspondence (A.20) has good hyperbolic
property in the same manner as in the proof of Lemma 10.4 and hence we can get
the conclusion (A.20) again. But, from the slowly varying property (6.7) of eωpmq,
it is clear that the conclusion remains true without this assumption. �
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Remark A.2. In the case where the condition (i) in (7.7) holds and 0 ď t ď t0,
we can follow the argument given in the proof above. The only difference is that,
instead of the condition t ě t0 that ensure enough hyperbolicity of f t

G, we use the
fact that σ1 ă σ in the estimates. In the case where the condition (10.17) does not
hold, the proof is much simpler. We can obtain the conclusion immediately unless
both of |mpjq| and |mpj1q| satisfy |mpjq| ą n2pωq and |mpj1q| ą n2pω1q. But, in such
case, the conclusion is again easy to obtain as we mentioned in the proof above.

Appendix B. Proof of the main theorem (2): Theorem 2.3

In this section, we prove Theorem 2.3, using the propositions given in Section 10.
Below we continue to consider the case Lt “ Lt

0,0 as in the previous sections. But

we can proceed in parallel in the case of vector-valued transfer operators Lt
k,ℓ with

pk, ℓq ‰ p0, 0q by regarding them as matrices of scalar valued transfer operators,
as we have noted in Remark 2.4. (See also Remark 6.9, Remark 7.15 and Remark
8.11.) The argument in this section is essentially parallel to that in [5], where
dynamical zeta functions for hyperbolic diffeomorphisms are considered. The main
idea is to decompose the operators in consideration into two parts: a trace class
part and a “upper-triangular” part whose flat trace is zero. To realize this idea,
we will consider the lifted operator Lt rather than Lt. Below we suppose that the
operators are acting on KrpK0q or Kr if we do not specify otherwise.

B.1. Analytic extension of the dynamical Fredholm determinant. The dy-
namical Fredholm determinant dpsq of the one-parameter group of transfer oper-
ators L “ tLt “ Lt

0,0u is well-defined if the real part of s is sufficiently large. In
fact, the sum in the definition (2.6) of dpsq converges absolutely if Repsq is larger
than the topological pressure Ptop :“ Ptoppf t,´p1{2q log | detDf t|Eu

|q. (See [29,
Theorem 4.1] for instance.) Hence dpsq is a holomorphic function without zeros on
Repsq ą Ptop. We take a constant P ě Ptop such that

(B.1) }Lt} ď C}Lt} ď CePt for t ě t0

and consider the function log dpsq in the disk

(B.2) Dps0, r0q “ tz P C | |z ´ s0| ă r0u

for s0 P C with Reps0q ą P and r0 :“ Reps0q ` rχ0{4. The n-th coefficient of the
Taylor expansion of log dpsq at the center s0 is

an :“
1

n!

ˆ
dn

dsn
log d

˙
ps0q “ p´1qn´1 1

n!

ż 8

`0

tn´1e´s0t ¨ Tr5
Ltdt.

Since we have

Rps0qn “
1

pn ´ 1q!

ż 8

`0

tn´1e´s0tLtdt,

we may write the coefficient an as

an “
p´1qn´1

n
¨ Tr5pRps0qnq for n ě 1.

We are going to relate the asymptotic behavior of flat trace Tr5pRps0qnq as n Ñ 8
with the spectrum of the generator A. Precisely we prove
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Proposition B.1. The spectral set of the generator A of Lt : rKrpK0q Ñ rKrpK0q in
the disk Dps0, r0q consists of finitely many eigenvalues χi P C, 1 ď i ď m, counted
with multiplicity. We have the asymptotic formula

Tr5 pRps0qnq “
mÿ

i“1

1

ps0 ´ χiqn
`Qn

where the remainder term Qn satisfies

(B.3) |Qn| ď Cr´n
0 for n ě 0

with a constant C ą 0 which may depend on s0.

Theorem 2.3 is an immediate consequence of this proposition. In fact, we have

log dps0 ` zq “ log dps0q `
8ÿ

n“1

anz
n

“ log dps0q `
mÿ

i“1

8ÿ

n“1

p´1qn´1zn

nps0 ´ χiqn
`

8ÿ

n“1

p´1qnQn

n
zn

“ log dps0q `
mÿ

i“1

log

ˆ
1 `

z

s0 ´ χi

˙
`

8ÿ

n“1

p´1qnQn

n
zn

and hence

dps0 ` zq “ dps0q ¨

śm
i“1pps0 ` zq ´ χiqśm

i“1ps0 ´ χiq
¨ exp

˜
8ÿ

n“1

p´1qnQn

n
zn

¸

for z P C with sufficiently small absolute value. The right-most factor on the right-
hand side extends holomorphically to the disk Dps0, r0q and has no zeros on it.
So the dynamical Fredholm determinant dpsq extends to the disk Dps0, r0q as a
holomorphic function and the zeros in Dps0, r0q are exactly χi, 1 ď i ď m, counted
with multiplicity. Note that this conclusion holds for any s0 P C with Repsq ą Ptop

so that the imaginary part of s0 is arbitrary. Therefore, taking r˚ ą 0 so large that
r˚χ0{4 ą c, we obtain the conclusion of Theorem 2.3.

B.2. The flat trace of the lifted transfer operators. To proceed, we discuss
about the flat trace of the lifted operators and averaging with respect to time.
Suppose that L : Kr Ñ Kr is a bounded operator, expressed as

(B.4) LpujqjPJ “

˜
ÿ

jPJ

LjÑj1uj

¸

j1PJ

.

If the diagonal components LjÑj : K
r
j Ñ Kr

j for j P J are trace class operators and
if the sum of their traces converges absolutely, we set

Tr5 L :“
ÿ

jPJ

Tr LjÑj “
ÿ

jPJ

Tr5 LjÑj

and call it the flat trace of the operator L : Kr Ñ Kr.

Remark B.2. In this definition, we assume that each LjÑj is a trace class operator
and hence29 that its trace coincides with the flat trace.

29 If LjÑj is a trace class operator, it is expressed as LjÑj “
ř

k vk b v˚
k

with vk P K
r
j
,

v˚
k

P pKr
j

q˚ satisfying
ř

k }vk}Kr
j

}v˚
k

}pKr
j

q˚ ă 8. Then the Schwartz kernel of LjÑj is
ř

k vk bv˚
k

and the flat trace equals
ř

kpvkq˚vk “ TrLjÑj.
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Definition B.3. An operator L as above is upper triangular (with respect to the
index m̃p¨q) if the components LjÑj1 vanishes whenever m̃pj1q ď m̃pjq. (Recall
(11.15) for the definition of the index m̃p¨q.)

The next lemma is obvious from the definitions.

Lemma B.4. If L is upper triangular, its flat trace vanishes. If L and L1 are upper
triangular, so are their linear combinations αL` βL1 and their composition L ˝L1.

Since the flat trace of Lt is a distribution as a function of t, it takes values against
smooth functions ϕptq with compact support. Hence, rather than evaluating the
flat trace of Lt itself, it is natural and convenient to consider the flat trace of the
integration of Lt,

Lpϕq :“

ż
ϕptq ¨ Ltdt

against a smooth function ϕ : R` Ñ R compactly supported on the positive part
of the real line. We will also consider the corresponding lifted operator

(B.5) Lpϕq :“

ż 8

0

ϕptq ¨ Ltdt “ I ˝ Lpϕq ˝ I˚.

Recall the decomposition of the operator Lt,

Lt “ Lt
low ` Lt

hyp ` Lt
ctr “ Lt

low ` Lt
hyp,ãÑ ` Lt

hyp, ãÑ ` Lt
ctr,

that we introduced in Section 11.

Lemma B.5. Suppose that P is a set of C8 functions supported on r0, 2s Ă R and
uniformly bounded in the C8 sense. Then there exists a constant C ą 0 such that
the following holds true: For any ϕ P P, the operator Lpϕq ˝ Lt “ Lt ˝ Lpϕq for
t0 ď t ď 2t0 is decomposed into two parts

pL “

ż
ϕps ´ tq ¨ Ls

hyp,ãÑds and

qL “

ż
ϕps ´ tq ¨

`
Ls
low ` Ls

hyp, ãÑ ` Ls
ctr

˘
ds;

The former pL is upper triangular and satisfies }pL} ď C, while the latter qL is a trace

class operator and satisfies }qL}Tr ď C; Further the operator

pLt ´ Lt
hyp,ãÑq ˝ Lpϕq “ pLt

low ` Lt
hyp, ãÑ ` Lt

ctrq ˝ Lpϕq for t0 ď t ď 2t0

is a trace class operator and we have }pLt ´ Lt
hyp,ãÑq ˝ Lpϕq}Tr ď C.

Proof. The part pL is upper triangular and satisfies }pL} ď C by the definition of
the relation ãÑt in Definition 11.11 and Proposition 11.13. From Lemma 11.18 and
Proposition 11.13, we know that the operators Ls

low and Ls
hyp, ãÑ are trace class

operators and their trace norms are bounded uniformly for30 s P rt0, 2t0 ` 2s. It
remains to show that

ş
ϕps´ tq ¨Ls

ctrds and Lt
ctr ˝Lpϕq are trace class operators and

that their traces are uniformly bounded for t0 ď t ď 2t0 and ϕ P P. These claims
follow if we show

(B.6) }pLpϕq ˝ LtqjÑj1 : Kr
j Ñ Kr

j1 }Tr ď Cνxωpjqy´νxωpjq ´ ωpj1qy´νx|mpjq|y´ν

30Actually we proved this for s P rt0, 2t0s. But it is easy to see that the estimates remain true

for rt0, 2t0 ` 2s.
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for j, j1 P J with mpj1q “ 0 and t0 ď t ď 2t0. Note that, if we apply the argument
in the proofs of Lemma 10.11 and Corollary 10.12 to pLpϕq ˝ LtqjÑj1 , we obtain
the required estimate (B.6) without the term xωpjqy´ν on the right-hand side. To
retain the term xωpjqy´ν, we make use of the additional integration with respect

to time in Lpϕq. Since f t`t1

jÑj1 pw, zq “ f t
jÑj1 pw, zq ` p0, t1q when |t1| is sufficiently

small, such integration will reduce the j1-components of the image with large ωpj1q.
Indeed, if we (additionally) apply integration by parts to that integral with respect
to time using the differential operator D “ p1 ´ iξ1

zBtqp1 ` |ξ1
z |2q for several times,

we obtain the extra factor xωpjqy´ν. �

Corollary B.6. If ϕ : rt0,8q Ñ R be a smooth function with compact support, we

have Tr5Lpϕq “ Tr5
Lpϕq.

Proof. From the proof of Lemma B.5 above, we see that Tr5Lpϕq is well-defined,
that is, the sum over j P J in the definition converges absolutely. Hence we obtain

Tr5Lt “ Tr5pIσ ˝ Lt ˝ pIσq˚q “ Tr5pLt ˝ pIσq˚ ˝ Iσq “ Tr5
Lt

by rotating the order of composition in the middle. �

B.3. The flat trace of the iteration of the resolvent. Let us put

Rpnq “

ż 8

0

p1 ´ χpt{p2t0qqq ¨
tn´1e´ts0

pn ´ 1q!
¨ Lt dt(B.7)

and

Rpnq “

ż 8

0

p1 ´ χpt{p2t0qqq ¨
tn´1e´ts0

pn´ 1q!
¨ Lt dt(B.8)

where the function χp¨q is that in (5.2).

Remark B.7. The operator Rpnq above is defined as an approximation of Rps0qn

and the difference is

(B.9) rRpnq :“ Rps0qn ´ Rpnq “

ż 8

0

χpt{p2t0qq ¨
tn´1 ¨ e´ts0

pn´ 1q!
¨ Ltdt.

We put the part rRpnq aside because we can not treat the operators Lt with small
t ą 0 in the same way as those with large t ą 0. Since the flat trace and also

the operator norm of rRpnq on rKrpK0q converges to zero super-exponentially fast
as n Ñ 8, this does not cause any essential problem, though it introduces some
complication in a few places below.

We take constants r1
0 ă r2

0 such that

r0 “ Reps0q ` p1{4qrχ0 ă r1
0 ă r2

0 ă Reps0q ` p1{2qrχ0.

Lemma B.8. There exists a constant C ą 0, independent of n, such that the

operator Rpnq is expressed as a sum Rpnq “ pRpnq ` qRpnq and

(1) qRpnq : Kr Ñ Kr is a trace class operator, while

(2) pRpnq : Kr Ñ Kr is upper triangular and satisfies

} pRpnq} ď Cpr2
0q´n.
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Proof. Using the periodic partition of unity tqωuωPZ defined in (6.1), we set31

qpnq
ω ptq “ qωptq ¨ p1 ´ χpt{p2t0qq ¨

tn´1e´s0t

pn ´ 1q!
,

so that
ř

ωěr2t0s´1 q
pnq
ω ptq “ p1 ´ χpt{p2t0qq ¨ ptn´1e´s0tq{pn´ 1q! and that

Rpnq “
8ÿ

ω“r2t0s´1

Lpqpnq
ω q

from the definition (B.5). We deduce the claims of the lemma from

Claim 1. For arbitrarily small τ ą 0, there exists a constant C ą 0, independent

of n, such that the operators Lpq
pnq
ω q for n ě 1 are decomposed as

Lpqpnq
ω q “ pLpqpnq

ω q ` qLpqpnq
ω q

where pLpq
pnq
ω q are upper triangular and satisfy

(B.10) }pLpqpnq
ω q} ď C

ωn´1

pn ´ 1q!
¨ e´pReps0q`p1{2qrχ0qω`τn,

while qLpq
pnq
ω q are trace class operators satisfying

(B.11)
8ÿ

ω“r2t0s´1

}qLpqpnq
ω q}Tr ă `8.

From the claim above, we set

pRpnq “
8ÿ

ω“r2t0s´1

pLpqpnq
ω q and qRpnq “

8ÿ

ω“r2t0s´1

qLpqpnq
ω q.

Then the first claim (1) of the lemma follows from (B.11). The second claim (2)

also follows because pRpnq is upper triangular from Lemma B.4 and because

} pRpnq} ď
8ÿ

ω“r2t0s´1

}pLpqpnq
ω q} ď C

8ÿ

ω“r2t0s´1

ωn´1

pn´ 1q!
¨ e´pReps0q`p1{2qrχ0qω`τn

ď C

ż 8

0

tn´1

pn ´ 1q!
¨ e´pReps0q`p1{2qrχ0qt`τndt

“ Ceτn ¨

ˆż 8

0

e´pReps0q`p1{2qrχ0qtdt

˙n

ă Cpr2
0q´n

from (B.10). We give the proof of Claim 1 below to complete the proof. �

Proof of Claim 1. We first note that the family

(B.12) P “

"
pn ´ 1q! ¨ ω´n`1 ¨ eReps0qω´τn ¨ qpnq

ω pt ` ωq

ˇ̌
ˇ̌ n ě 1, ω ě r2t0s ´ 1

*

31Note that the variable ω P Z does not indicate the frequency as in the previous sections but
the range of time, now and henceforth.
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satisfies the assumption in Lemma B.5. To proceed, we write an integer ω ě r2t0s´1
as a sum of real numbers in rt0, 2t0s:

ω “

kpωqÿ

i“1

ti, t0 ď ti ď 2t0.

Then we decompose Lpq
pnq
ω q as follows: First we write

Lpqpnq
ω q “ Lpq̃pnq

ω q ˝ Lω “ L
tkpωq

hyp,ãÑ ˝ Lpq̃pnq
ω q ˝ Ltkpωq´1 ˝ ¨ ¨ ¨ ˝ Lt2 ˝ Lt1

` pLtkpωq ´ L
tkpωq

hyp,ãÑq ˝ Ltkpωq´1 ˝ ¨ ¨ ¨ ˝ Lt2 ˝ Lpq̃pnq
ω q ˝ Lt1

where we set q̃
pnq
ω ptq “ q

pnq
ω pt`ωq for brevity. Since the first term on the right-hand

side other than the first factor is of the same form as Lpq̃
pnq
ω q ˝ Lω , we apply the

parallel operation to it. If we continue this procedure, we can express Lpq
pnq
ω q as

L
tkpωq

hyp,ãÑ ˝ ¨ ¨ ¨ ˝ Lt2
hyp,ãÑ ˝ Lpq̃pnq

ω q ˝ Lt1(B.13)

`

kpωqÿ

j“2

L
tkpωq

hyp,ãÑ ˝ ¨ ¨ ¨ ˝ L
tj`1

hyp,ãÑ ˝ pLtj ´ L
tj
hyp,ãÑq ˝ Lpq̃pnq

ω q ˝ Ltj´1 ˝ ¨ ¨ ¨ ˝ Lt1 .

Note that, from Lemma B.5 and the estimate noted in the beginning, we see

pn ´ 1q! ¨ ω´n`1 ¨ eReps0qω´τn ¨ Lpq̃pnq
ω q ˝ Lt1 “ pL ` qL

where pL is upper triangular and }pL} ď C while qL is in the trace class and }qL}Tr ď C,
with C ą 0 a constant independent of n and ω. So we may rewrite the first term
on the right-hand side of (B.13) as

ωn´1

pn ´ 1q!
¨ e´Reps0qω`τn ¨ L

tkpωq

hyp,ãÑ ˝ ¨ ¨ ¨ ˝ Lt2
hyp,ãÑ ˝ pL(B.14)

`
ωn´1

pn ´ 1q!
¨ e´Reps0qω`τn ¨ L

tkpωq

hyp,ãÑ ˝ ¨ ¨ ¨ ˝ Lt2
hyp,ãÑ ˝ qL.

Let pLpq
pnq
ω q in Claim 1 be the first term of (B.14) above and qLpq

pnq
ω q be the

remainder, that is, the sum of the second term in (B.14) and the sum on the second

line of (B.13). By Lemma B.4, pLpq
pnq
ω q is upper triangular. Since

(B.15) }Lt
hyp,ãÑ} ď e´rχ0t{2 for t0 ď t ď 2t0

from Remark 11.16, we obtain the estimate (B.10) immediately. Also, for the second
term in (B.14), we have
››››
ωn´1e´Reps0qω`τn

pn´ 1q!
¨ L

tkpωq

hyp,ãÑ ˝ ¨ ¨ ¨ ˝ Lt2
hyp,ãÑ ˝ qL

››››
Tr

ď
ωn´1e´Reps0qω`τn

pn ´ 1q!
}L

tkpωq

hyp,ãÑ} ¨ ¨ ¨ }Lt2
hyp,ãÑ}}qL}Tr ď

Cωn´1e´pReps0q`p1{2qrχ0qω`τn

pn´ 1q!

and this bound is summable with respect to ω. To look into the sum in (B.13),

note that the operator pLtj ´ L
tj
hyp,ãÑq ˝ Lpq̃

pnq
ω q satisfies

}pLtj ´ L
tj
hyp,ãÑq ˝ Lpq̃pnq

ω q}Tr ď C ¨
ωn´1 ¨ e´Reps0qω`τn

pn ´ 1q!
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for a constant C ą 0 independent of n and ω, from the latter claim of Lemma B.5
and uniform boundedness of P. Hence we have

kpωqÿ

j“2

}L
tkpωq

hyp,ãÑ ˝ ¨ ¨ ¨ ˝ L
tj`1

hyp,ãÑ ˝ pLtj ´ L
tj
hyp,ãÑq ˝ Lpq̃pnq

ω q ˝ Ltj´1 ˝ ¨ ¨ ¨ ˝ Lt1}Tr

ď

kpωqÿ

j“2

}L
tkpωq

hyp,ãÑ} ¨ ¨ ¨ }L
tj`1

hyp,ãÑ} ¨ }pLtj ´ L
tj
hyp,ãÑq ˝ Lpq̃pnq

ω q}Tr ¨ }Ltj´1 ˝ ¨ ¨ ¨ ˝ Lt1}

ď C ¨
ωn´1 ¨ e´pReps0q´P qω`τn

pn´ 1q!
by (B.1) and (B.15).

This bound is again summable with respect to ω, provided τ is sufficiently small.
Therefore we obtain the estimate (B.11). �

Corollary B.9. The essential spectral radius of Rps0q : rKrpK0q Ñ rKrpK0q is
bounded by pr2

0q´1.

Proof. We consider the decomposition of Rps0qn : rKrpK0q Ñ rKrpK0q into

rRpnq, pRpnq “ I˚ ˝ pRpnq ˝ I and qRpnq “ I˚ ˝ qRpnq ˝ I

where rRpnq is that in (B.9). From the last lemma, the operator norm of pRpnq on

KrpK0q is bounded by Cpr2
0q´n with C ą 0 independent of n, and qRpnq onKrpK0q is

a trace class operator. Further it is not difficult to see that these remain true when

we regard pRpnq and qRpnq as operators on rKrpK0q, because Lt0 : rKrpK0q Ñ KrpK0q

is bounded from Proposition 7.8. Therefore, recalling Remark B.7 for rRpnq, we
obtain that the essential spectral radius of Rps0qn is bounded by Cpr2

0q´n and
hence by pr2

0q´n from the multiplicative property of essential spectral radius. �

Corollary B.9 implies that the spectral set of Rps0q : rKrpK0q Ñ rKrpK0q on the
outside of the disk |z| ď pr1

0q´1 consists of discrete eigenvalues µi, 1 ď i ď m,
counted with multiplicity. Since ARps0q “ s0Rps0q ` 1, we have

µ´ Rps0q “ µ ¨
`
ps0 ´ µ´1q ´A

˘
¨ Rps0q.

This implies that µi’s are in one-to-one correspondence to the eigenvalues χi, 1 ď
i ď m, of the generator A in the disk Dps0, r

1
0q by the relation

µi “
1

s0 ´ χi

“

ż 8

0

e´s0teχitdt.

Remark B.10. Since the argument above holds for any s0 satisfying Reps0q ą P ,
the spectrum of the generator A on the half-plane Repsq ą ´p1{4qrχ0 consists of
discrete eigenvalues with finite multiplicity and the resolvent Rpsq is meromorphic
on that half-plane.

Let π : rKrpK0q Ñ rKrpK0q be the spectral projector of Rps0q for the spectral set
tµiu

m
i“1 on the outside of the disk |z| ď r´1

0 . This is also the spectral projector of
the generator A for the spectral set tχiu

m
i“1 and its image is contained in KrpK0q

from Proposition 7.8. We set Fps0q “ π ˝ Rps0q, so that

TrFps0qn “ Tr5
Fps0qn “

mÿ

i“1

µn
i “

mÿ

i“1

1

ps0 ´ χiqn
.
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Our task is to prove (B.3) in Proposition B.1 for

Qn “ Tr5 pRps0qn ´ Fps0qnq “ Tr5 pp1 ´ πq ˝ Rps0qnq .

To continue, let N0 ą 0 be a large integer constant which will be specified later in
the course of the argument. Consider large integer n and write

Rps0qn ´ Fps0qn “ pId ´ πq ˝ Rps0qnpmq ˝ ¨ ¨ ¨ ˝ Rps0qnp1q.

where n “ np1q ` np2q ` ¨ ¨ ¨ ` npIq with N0 ď npiq ď 2N0. We decompose each
term Rps0qnpiq on the right-hand side as

Rps0qnpiq “ Rpnpiqq ` rRpnpiqq

in the same manner as (B.9). From Remark B.7, the part rRpnpiqq is very small in
the operator norm if we let the constant N0 be sufficiently large. (And note that
the following argument is much simpler if we ignore this part.)

Since the operators Rpnpiqq and rRpnpiqq for 1 ď i ď I commute each other and
also with the projection operator π, we can express Rps0qn ´Fps0qn as the sum of
the 2I terms of the form

(B.16) p1 ´ πq ˝

˜
I2ź

i“1

rRpn2piqq

¸
˝

˜
I1ź

i“1

Rpn1piqq

¸

where tn2p1q, ¨ ¨ ¨ , n2pI2q, n1p1q, ¨ ¨ ¨ , n1pI 1qu with I “ I 1 ` I2 ranges over all the
rearrangements of tnp1q, np2q, ¨ ¨ ¨ , npIqu. Hence our task is reduced to show

Claim 2. There exists a constant C ą 0 such that

(B.17)

ˇ̌
ˇ̌
ˇTr

5

˜
p1 ´ πq ˝

˜
I2ź

i“1

rRpn2piqq

¸
˝

˜
I1ź

i“1

Rpn1piqq

¸¸ˇ̌
ˇ̌
ˇ ď Cr´n

0 ¨ 2´I .

Proof of Claim 2. Below we prove the claim in the case I 1 ě I2 because, otherwise,
we can get the conclusion by a similar but much easier argument using Remark B.9.
We translate the claim to that on the lifted operators. Let us put

π
lift :“ I ˝ π ˝ I˚ : Kr Ñ Kr.

We write

(B.18) rRpnq “

ż 8

0

χpt{p2t0qq ¨
tn´1e´ts0

pn´ 1q!
¨ Lt dt,

so that

Rpnq ` rRpnq “ I ˝ Rps0qn ˝ I˚ “

ż 8

0

tn´1e´ts0

pn ´ 1q!
¨ Lt dt.

Then, from Corollary B.6, the inequality in Claim 2 is equivalent to

(B.19)

ˇ̌
ˇ̌
ˇTr

5

˜
p1 ´ π

liftq ˝

˜
I2ź

i“1

rRpn2piqq

¸
˝

˜
I1ź

i“1

Rpn1piqq

¸¸ˇ̌
ˇ̌
ˇ ď Cr´n

0 ¨ 2´I .

Since we are assuming I 1 ě I2 and since the operators on the left hand side above
commute, we may write the operator on the left-hand side above as

(B.20)
I1ź

i“1

pp1´π
liftq ˝Riq setting Ri “

#
rRpn2piqq ˝ Rpn1piqq, if 1 ď i ď I2;

Rpn1piqq, if I2 ă i ď I 1.
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From the choice of the spectral projector π and the fact that rRpnq has small operator
norm by the same reason as noted in Remark B.7, we get the estimate

(B.21) }p1 ´ π
liftq ˝ Ri : K

r Ñ Kr} ď pr0q´ñpiq{4 for 1 ď i ď I 1,

provided that the constant N0 is sufficiently large, where we set

ñpiq “

#
n1piq ` n2piq, if 1 ď i ď I2;

n1piq, if I2 ă i ď I 1.

By Lemma B.8, the operators Ri are decomposed as Ri “ pRi ` qRi where

(1) qRi is a trace class operator and } qRi}Tr ă C, and

(2) pRi is upper triangular and satisfies } pRi} ď r
´ñpiq
0 {4

provided that the constant N0 is sufficiently large. (For the case 1 ď i ď I2, we
need a slight modification of Lemma B.8 but the proof goes as well.) In (B.20), we
consider the decomposition

p1 ´ π
liftq ˝ Ri “ pRi ` p qRi ´ π

lift ˝ Riq

and apply the development it in the parallel manner as we used to obtain (B.13).

Then, noting that Tr5 p pR1 ˝ ¨ ¨ ¨ ˝ pRI1 q “ 0 from Lemma B.4, we obtain

Tr5
`
p1 ´ π

liftq ˝ R1 ˝ ¨ ¨ ¨ ˝ RI1

˘

“
I1ÿ

j“1

Tr5
´

pR1 ˝ ¨ ¨ ¨ ˝ pRj´1 ˝ p qRj ´ π
lift ˝ Rjq ˝ pp1 ´ π

liftq ˝ Rj`1 ˝ ¨ ¨ ¨ ˝ RI1 q
¯
.

This is bounded in absolute value by

I1ÿ

j“1

} pR1} ¨ ¨ ¨ } pRj´1} ¨ }p qRj ´ π
lift ˝ Rjq}Tr ¨ }p1 ´ π

liftq ˝ Rj`1 ˝ ¨ ¨ ¨ ˝ RI1 }.

The trace norm }p qRj ´ π
lift ˝ Rjq}Tr is bounded by a constant C independent of j

and n. Therefore, using the condition on pRi and (B.21), we conclude (B.19). This
completes the proof of Claim 2 and hence that of Proposition B.1. �
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