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THE SEMICLASSICAL ZETA FUNCTION FOR GEODESIC
FLOWS ON NEGATIVELY CURVED MANIFOLDS

FREDERIC FAURE AND MASATO TSUJII

ABSTRACT. We consider the semi-classical (or Gutzwiller-Voros) zeta functions
for C® contact Anosov flows. Analyzing the spectra of the generators of some
transfer operators associated to the flow, we prove that, for arbitrarily small
7 > 0, its zeros are contained in the union of the 7-neighborhood of the
imaginary axis, |R(s)| < 7, and the half-plane R(s) < —xo + 7, up to finitely
many exceptions, where xo > 0 is the hyperbolicity exponent of the flow.
Further we show that the density of the zeros along the imaginary axis satisfy
an analogue of the Weyl law.
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1. INTRODUCTION

The dynamical zeta functions for flows are introduced by S. Smale in the mon-
umental paper “Differentiable dynamical systems” [40]. In the former part of the
paper, he discussed about the Artin-Masur zeta function for discrete dynamical
systems among others and showed that it is a rational function for any Anosov
diffeomorphism. Then, in the latter part, he considered a parallel object for con-
tinuous dynamical systems (or flows). He defined the dynamical zeta function for
a (non-singular) flow by the formula

* LB —(s+k)mel|
(1.1) Z(s) := n H (1 - e—(s+k)h\) = exp <_ Z Z Z T) 7

~yel k=0 ~yel' k=0m=1

where I" denotes the set of prime periodic orbits for the flow and |y| denotes the
period of v € I'. This definition, seemingly rather complicated, is motivated by a
famous result of Selberg [38]. For the geodesic flow on a closed hyperbolic surface,
i.e. a closed surface with negative constant curvature (= —1), Z(s) coincides with
the Selberg zeta function and the result of Selberg givesﬁ the following analytic
properties of Z(s): (See Figure[Il)

(a) The infinite product and sum on the right-hand side of (II]) converge ab-
solutely when Re(s) > 1. Hence Z(s) is initially defined as an analytic
function without zeros on the region {Re(s) > 1}.

(b) The function Z(s) thus defined extends analytically to the whole complex
plane C.

(c) The analytic extension of Z(s) has zeros at s = —n for n = 0,1,2,--- and
the order of the zero s = —n is (2n 4+ 1)(g — 1), where g > 2 is the genus of
the surface. The other zeros are exactly

1 1
= 44/==N, i=0,1,2,--
s 5 TA 7 A 1=0

where A\g = 0 < A\; < Ay < --- are the eigenvalues of the Laplacian on the

surface. In particular, all of the zeros of the latter kind (called non-trivial

zeros) are located on the line Re(s) = 1/2 with finitely many exceptions.
(d) The analytic extension of Z(s) satisfies the functional equatio

s—1/2
Z(1—38)=Z(s) - exp (2(9 - 1)J X tan(mc)dw) .

0

Smale’s idea was to study the dynamical zeta function Z(s) defined as above
in more general context. The main questiorE ought to have been whether the
properties (a)-(d) above hold for more general types of flow, such as the geodesic

I The paper [38] treats much more general setting and the results are stated in terms of
geometry. Since the closed geodesics correspond to the periodic orbits of the geodesic flow, we
may interpret the results in terms of dynamical systems. For the result mentioned here, we refer
[31} [41].

2The line integral on the right-hand side may change its value by an integer multiple of 27
when we consider a different path for integration. But this ambiguity is cancelled when it is put
in the exponential function and therefore the factor exp(-) on the right-hand side is well-defined.

3There are many other related problems. For instance the relation of special values of the
dynamical zeta function to the geometric properties of the underlying manifolds is an interesting
problem. See [12] 21}, [32].
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FIGURE 1. Zeros of the Selberg zeta function Z(s)

flows on manifolds with negative variable curvature or, more generally, to general
Anosov flows. But it was not clear whether this idea was reasonable, since the
results of Selberg were based on the Selberg trace formula for the heat kernel on
the surface and depended crucially on the fact that the surface was of negative
constant curvature. This must be the reason why Smale described his idea “wild”.
In [40], he showed that Z(s) has meromorphic extension to the whole complex
plane if the flow is a suspension flow of an Anosov diffeomorphism by a constant
roof function. However the main part of the “wild” idea was left as a question.

Later the dynamical zeta function Z(s) is generalized and studied extensively
by many people not only in dynamical system theory but also in the fields of
mathematical physics related to “quantum chaos”. In dynamical system theory,
the dynamical zeta function Z(s) and its variants are related to semi-groups of
transfer operators associated to the flow through the Atiyah-Bott-Guillemin trace
formula, as we will explain later. We refer the papers [36] [37] for the development
in the early stage and the paper [22] (and the references therein) for the recent
state of related researches.

For the extensions of the claim (a) and (b) above, we already have satisfactory
results: for instance, the dynamical zeta function Z(s) for a C® Anosov flow is
known to have meromorphic extension to the whole complex plane C. (See [22] [TT].
Note that the arguments in these papers are applicable to more general dynamical
zeta functions.) However, to the best of authors’ understanding, not much is known
about the extension of the claims (c¢) or (d), or more generally on the distributions
of singularities of the (generalized) dynamical zeta functions. In this paper, we
consider an extension of the claim (¢) in the case of geodesic flows on negatively
curved manifolds or, more generally, contact Anosov flows.

Before proceeding with the problem, we would like to pose a question whether
the zeta function Z(s) introduced by Smale is the “right” candidate to be studied.
In fact, there are variety of generalized dynamical zeta functions which coincide
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FIGURE 2. The zeros of the semi-classical zeta function Z.(s).
The zeros are symmetric with respect to the complex conjugation.

with Z(s) in the cases of geodesic flows on closed hyperbolic surfaces, because so
do some dynamical exponents. Each of such generalized dynamical zeta functions
may be regarded as an extension of Selberg zeta function in their own rights and
their analytic property will be different when we consider them in more general
cases. And there is no clear evidence that Z(s) is better or more natural than the
others. This is actually one of the question that the authors would like to address
in this paper. For the geodesic flows on a negatively curved closed manifold N (or
more generally non-singular flows with some hyperbolicity), the “semi-classical” or
“Gutzwiller-Voros” zeta function Zs.(s) is defined by

—sm|y|
(12) Zscls) —exp( P (i - Dm>|1/2>

yel'm= 1

where D, is the transversal Jacobian matrix] along a prime periodic orbit v. (See
[6] for instance.) As we will see, this is a variant of the dynamical zeta function Z(s)
and coincides with the dynamical zeta function Z(s) if N is a closed surface with
constant negative (= —1) curvaturd], with shift of the variable s by 1/2. Hence
we may regard Zs.(s) as a different generalization of Selberg zeta function than
Z(s). As the main result of this paper, we show that an extension of the claim (c)
holds for Z,.(s) in the case of the geodesic flows on manifolds with negative variable
curvature (and more generally for contact Anosov flows), that is, countably many
zeros of the analytic extension of Zs.(s) concentrate along the imaginary axis and
there are regions on the both sides of the imaginary axis with only finitely many
zeros. (See Figure @] and compare it with Figure [[l) It seems that this result

4This is the Jacobian matrix of the Poincaré map for the orbit v at the intersection.
S5For the case of a surface with constant negative curvature (= —1), the eigenvalues of D, are
exp(=£|y]). Hence we can check the equality Zsc(s) = Z(s + 1/2) by simple calculation.
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and the argument in the proof are suggesting that the semi-classical zeta function
Zso(+) is the “right” generalization of the Selberg zeta function when we consider
the extension of the claim (c¢) (and (d)).

Below we describe our result more precisely. Let M be a closed C® manifold of
odd dimension, say, 2d+1. We consider a C® contact Anosov flow f* : M — M. By
definition, the flow f! preserves a contact form a on M, that is, a differential 1-form
for which a A (da)*? vanishes nowhere. (We may and do assume o (V) = 1 for the
generating vector field V' of the flow f by multiplying o by a C* function.) Also
there exist constants o > 0, C > 0 and a D f*-invariant continuous decomposition

TM=Ey®E;® Ey

of the tangent bundle T'M such that Ej is the one-dimensional subbundle spanned
by the generating vector field V of the flow f! and that

(1.3) |Df* < Ce ™' and |Df 7Y g,| < Ce Xt fort=0.

Es

Remark 1.1. The geodesic flow f': T¥N — TF¥N on a closed negatively curved
manifold N is a contact Anosov flow, where T{*N is the unit cotangent bundle of
N and the contact form « preserved by the flow is the restriction of the canonical
one form on T*N.

From the definitions, it is not difficult to see that
E,®F, =kera and dimFE, =dimFE, =d.

We henceforth fix xo > 0 satisfying ([3)) and call it the hyperbolicity exponent
of the flow f!. Note that the subbundles E, and E, are in general not smooth
but only Holder continuous. Below we suppose that the subbundles Es and E,, are
B-Holder continuous with exponent

(1.4) 0<p<l.
The main result of this paper is the following theorem.

Theorem 1.2. If f' : M — M is a contact Anosov flow, its semi-classical zeta
function Zs.(s), which is initially deﬁnedﬂ by (L3) as a holomorphic function with-
out zeros on the half-plane

(1.5) Re(s) > Prop(f*, —(1/2)log|Df*|p,]) > 0,

extends to a meromorphic function on the whole complex plane C. For arbitrarily
small T > 0, the zeros of the meromorphic extension of Zs.(s) are contained in the
region

(1.6) U(xo,7) :=={2€C||Re(z)] <7 or Re(z) < —x0 + 7}

up to finitely many exceptionﬂ, while there are at most finitely many poles on the
region Re(s) > —xo + 7. There do exist infinitely many zeros on the strip

(1.7) Uo(1) = {z e C| |Re(2)| < 7}

6Since the factor | det(Id — DT")| in the definition of Zsc(s) is positive and proportional to
| det(Df™Vl| g, (24))| for 2 € v, the sum in the definition of Zsc(s) converges absolutely if and
only if (I5) holds. (See [29] Theorem C] for the definition of topological pressure Piop(-) and its
expression in terms of periodic orbits in the case of Anosov flow.) Further Zs.(s) has its rightmost
zero at Prop(ft, —(1/2)log|Dft| g, |). For the proof, see [37] and the expression (CI3).

"The number of exceptional zeros may increase as 7 becomes smaller.
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and a (weak) analogue of Weyl law holds for the distribution of the imaginary part

of the zeros in Uy(T), that is, for any 6 > 0, there exists a constant C' > 1 such

that, for arbitrarily small 0 < T < o, the estimate

|9 _ #{ zeros of Zs(s) | |Re(s)| <7, w<Im(s) <w+ |w|®}
C jwl®

holds for any real number w with sufficiently large absolute value.

(1.8) < Clwl|?

The last claim implies in particular that
|w|d+1

O/
for some constant C’ > 0 and for sufficiently large w > 0.

< # { zeros of Z,.(s) | |Re(s)| <7, [Im(s)| < w } < C'|w|¢*!

Remark 1.3. In (L8) above, the estimate from below is the main assertion. In
similar problems (such as density of Ruelle-Pollicott resonances and resonances in
the scattering problems), reasonable estimates from below are usually much more
difficult to obtain compared with those from above. (For estimates from above,
we refer [8 [I5].) It will be possible to make the estimate (L8) more precise by
replacing the factors |w|® in it by smaller factor such as log|w| or even by some
fixed large constant. Also, by analogy with the Weyl law for the Laplacians, it is
natural to expect that the ratio
#{zeros of Zs.(s) | |Re(s)] <7, w <Im(s) <w + |w| }
|w|d+3

converges to (2m)~4"1Vol(M) as w — £0o0 where Vol denotes the contact volume,
i.e. Vol = a A (da)”¢. But we do not go farther into these problems in this paper.

We deduce the theorem above from spectral properties of some transfer operators
associated to the flow f*. Let us recall an idea due to Ruelle. Let 7y : V — M be a
complex vector bundld] over M and write T'°(V) for the set of continuous sections
of V. Let F* : V — V be a one-parameter group of vector bundle maps which
makes the following diagram commutes:

Ft

1% \%
ﬂvl wvl

We consider the one-parameter group of vector-valued transfer operators
LET0V) > TOV), Lho(x) = F'(u(f~'(2))).
The flat (or Atiyah-Bott-Guillemin) trace of £! is calculated as

0
|v| - Tr EZ*
1.9 ™ Lt = T Stt—m-

yel'm=1

where E, is the linear transformation £l : 7! (z,) — m;'(z,) at a point ., on

the orbit 7. (See the remark below.) Notice that Tr” £ is not a function of ¢ in the
usual sense but is a distribution.

SWe always assume that each vector bundle is complexified and equipped with a Hermitian
inner product on it. The choice of the Hermitian inner product is not essential. But we need it
for some expressions, e.g. the definition (CIT).
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Remark 1.4. The flat trace in (I3)) is defined as the integral of the Schwartz kernel
of £! on the diagonal set in M x M. The integral is well-defined as a distribution
(see [27, Ch. 8], [25, Th.8]), because hyperbolicity of the flow f! ensures that the
graph of (t,z) — f*(z) is transversal to the diagonal set z = y in Ry x M x M.
But, for our argument, it will be more convenient to interpret the definition as
follows. First we consider the case where V' is one-dimensional and trivial, so that
L' may be regarded as scalar-valued. Let K(x,y;t) be the Schwartz kernel of the
operator £ and let K°(x,y;t) for § = 0 be a one-parameter family of smoothings
of K(z,y;t) by using mollifier, which converges to K (z,y;t) as 6 — +0. We define
the distribution Tr’ £* on (0,0) by the relation

(TY’ £t o) = él_igrlo J Ko (x,z;t)p(t)dx

for ¢ € CP(R) supported on {t € R | ¢ > 0}. It is not difficult to check that
the limit on the right-hand side exists and does not depend on the choice of the
smoothing K 5(:10, y;t). When V is higher dimensional or non-trivial, we write the
transfer operator £! as a matrix of scalar-valued transfer operators (L%)KLK N
by using a system of local trivializations of V' and an associated partition of unity.
We define the flat trace as Tr” £¢ = 3V Tr’ £f,. We can check that this definition
does not depend on the matrix expression (£};)1<ij<n and gives (L3).

For 0 < k < d, let 7 : (E¥)"* — M be the k-th exterior product of the dual E*
of the unstable sub-bundle E, and let F}{ : (E¥)"* — (E¥)"* be the vector bundle
map defined byl

(1.10) F{(v) = [det Df*|p, (m(v))|* - (Df~)*)"* (v).
Note that the action of (D f~*)* on E¥ is contracting when ¢ > 0. The correspond-
ing one-parameter family of vector-valued transfer operators is

(1.11) Liu(@) = Fi(u(f~(x)))
= [det Df*|g, (f (@)Y - (DF ") (u(f(2))

and its flat trace is

D)

~yel'm=1

|y| - | det D¥|™/2 - Tx ((D2)~™)"F
[det(Id — D;™)]

Ot —m-|y])

where D7 is the transversal Jacobian matrix for 7 € I' restricted to the unstable
sub-bundle F,,.

Since the differential da of the contact form « restricts to a symplectic form on
kera = E; ® E, and is preserved by D f*, we have

/I det(1d — D3™)| = |det(D2)[™2 - | det (1d — (D2) ™) |.

Hence, provided that the subbundle E} is orientable, we have

Z L = ZZ |detId ooy ST
Y

k=0 yell m=1 )l

9As careful readers may have realized, the sub-bundles E,, (and Es) are not smooth in general
and this will cause many technical difficulties in the argument. Indeed this is the main issue of
this paper in technical sense. We will address this problem in the next section. For a while, we
assume that E, is smooth or just ignore the problem.
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from the algebraic relation
d

det(Id — (Dy)™™) = Y1 (=1)* - Tr (((D5)"™)"").
k=0

Remark 1.5. In the case where E is not orientable, the formula above is not valid.
In fact, we actually had to replace F} with its extension

Fi=F@Df")* ()" @t — (EN)" @t
where ¢, is the orientation line bundle of E¥ and (Df~%)* : £, — £, denotes the
natural pull-back action by f~* on £,. (See [20].) Since this modification does no
harm in the argument below except making the notation more cumbersome, we

proceed with assuming E to be orientable and keep this modification necessary
for the other cases implicit in the following.

Therefore the semiclassical zeta function Z.(s) is expressed as

o —st d
(1.12) Zoe(s) = exp (J et Z(1)kTrbL;dt).

+0 k=0

We define the dynamical Fredholm determinant of £} by

Q0 e—st
di(s) : =exp <J ; Ty L}Zdt>

+0

con (-3 3

yel' m=1

—sm- u|m/2 u\—m\Aak
e - det DY™/2 - Tr (D%)~™)
m - |det(Id — D;™)|

Then the semi-classical zeta function is expressed as an alternative product
d
(1.13) Zoo(s) = [ [ ()"
k=0

at least for s with sufficiently large real part. The dynamical Fredholm determinant
dy,(s) satisfies

I dk(S), _ JOO —st | b pt
(log d.(s)) (o) B e TY” L. dt.
If L1 were a finite rank diagonal matrix with diagonal elements et and if the flat
trace Tr’ were the usual trace, the right-hand side would be >(s =)t and we
would have dj,(s) = const. [ [,(s — A¢). We therefore expect that the eigenvalues of
the generator of L} appear as zeros of the dynamical Fredholm determinant dj(s)
and consequently zeros (resp. poles) of Zs.(s) when k is even (resp. odd).

2. GRASSMANN EXTENSION

A technical difficulty in dealing with the semi-classical zeta functions Z.(s) is
that the coefficient | det D f*|g,|'/? and also the vector bundle (E*)** in the defini-
tion (III]) of the corresponding transfer operators £} is not smooth but only Holder
continuous. To avoid this difficulty, we actually consider the corresponding transfer
operators on a Grassmann bundle G over the manifold M. (In the literature, this
kind of idea is found in the papers [7, [24].)

10The lower bound +0 in the integration indicates some small positive number that is smaller
than the minimum of the periods of periodic orbits for the flow.
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Consider the Grassmann bundle 7g : G — M that consists of d-dimensional
subspaces of the tangent bundle T'M. By definition, the fiber wél(x) for each point
x € M is the Grassmann space G, that consists of d-dimensional subspaces of the
tangent space T, M, whose dimension is dimG, = d(2d +1 —d) = d*> +d. We
suppose that G is equipped with a smooth Riemann metric.

The flow f! naturally induces a flow on G

o= (Df):G =G, fh(x.0) = (DfY)s(z,0) = (f'(2), Df' ().

Let e, : M — G be the section which assigns the unstable subspace E,(z) € G
to each point z € M. (But notice that this section e, is not smooth in general.)
Clearly the following diagrams commute:

a Js o a Je o
WCl WG[ eu[ eu[
M m ML m

Since image Im(e,, ) of the section e,, is an attracting isolated invariant subset for the
extended flow f&, we can take a small relatively compact absorbing neighborhood
Up of it so that

f&(Uy) €Uy for t >0, and ﬂ f&(Up) = Im(ey,).

t=0

The semi-flow f : Uy — Up for t = 0 is hyperbolic in the following sense: There is
a continuous decomposition of the tangent bundle

(21) TUO = Eu @Es (‘DEO
where B, := Dwél(ES), Ey = (Ouft) and E, is a complement of E,@®E, =

75 (Eo @ Es) such that Drg(E,) = Ey; The semi-flow f& : Uy — Up (t = 0) is
exponentially contracting (resp. expanding) on E, (resp. E’u), that i7

(2.2) IDfEls | < Ce ' and [ DfElp [min = C~ Xt fort >0
where || - |min in the latter inequality denotes the minimum expansion rate
ID£E| 3, lmin = min{| Dfo] | v € Bu, o] = 1}.
The sub-bundles Ey and Ej are (forward) invariant with respect to the semi-flow

fL, while E, will not.
Let m; : VI — G be the (d? + d)-dimensional sub-bundle of TG defined by

Vi :={(2,v) e TG | Dng(v) =0} c TG.

Let 7f,(T'M) be the pull-back of the tangent bundle TM by the projection m¢ :
G — M and let 7 : V,, - G be its smooth sub-bundle defined tautologically by

Vi ={(z,v) e n&(TM) | v e [z]}

where [z] denotes the d-dimensional subspace of Ty (.)M that z € G represents.
Let 7 : V) — G be the dual of V,,. We define

Moo Vi = (VM@ (V)Y -G for0<k<dand 0</<d?+d.

1\We can and do take the constant X0 same as that in (3], though this is not necessary.
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This is a smooth vector bundle. And, instead of the non-smooth one-parameter
group of vector bundle map Fy in (LI0), we consider the smooth one-parameter
semi-group F,ié : Vo = Vo defined by

(23)  Frulzu®v) = (f6(2),6°(2) - (DFT)) " (u) @ (DfE) ()

where
(2.4) b'(2) = |det DfE I [Y? - | det((DfE)zler Dre )~

The first term on the right-hand side of ([2]) is the determinant of the restriction
of Df* at mg(2) to the subspace [z] of Tr(.)M represented by z, while the second
term is the determinant of the restriction of D ff at z to the kernel of Dr¢. Clearly
the action of F} , is smooth.

Let I'°(Uy, Vik,¢) be the set of smooth sections of the vector bundle Vi, whose
support is contained in the isolating neighborhood Uy of the attracting subset
Im(e,). The semi-group of transfer operators associated to Fy , is

(2.5) Lo : T2 (U0, Vi) = T(Uo, Vie), L gu(z) = Fio(u(f5'(2)))-
The flat trace of £} , is computed as

» [+ [det (DY) - T ((D2)~™)** - Tr (D4)™)
T Lhe = 2 Z |det DD - |det(id = D] - [des(id — (o)) ¢

yel' m=1

where D#‘ is the restriction of the transversal Jacobian matrix for the prime periodic

orbit 4(t) = e, (y(t)) of the flow f& to V+ = ker Dmg. We define the dynamical
Fredholm determinant of £j, , by

o0] efst
(2.6) dk)g(s) = exp (—f . - . Tr" L};édt) .
+
Computation as in the last section then gives
d d’+d .
(2.7) Zoo(s) =[] T dee()™"
k=0 £=0

provided that EF is orientable. (Note that d* + d is even and recall Remark [L5)

Remark 2.1. This argument using the Grassmann extension resolves the problems
related to non-smoothness of the coefficient of the transfer operators £! in the
formal level. However the things are not that simple. The attracting section e, is
not smooth and we will find some technical problems (and solutions to them) in
the course of the argument. See Subsection [5.1] for instance.

The next theorem on the spectral property of the generators of one-parameter
semi-groups Lzyg is the main ingredient of this paper.

Theorem 2.2. Let 0 < k <d and 0 < ¢ < d?> +d. For each r = 0, there exists a
Hilbert space
I'*(Uo, Vi) € X" (Uo, Vieye) < (D% (Uo, Vi)'

that consists of distributional sections of the vector bundle Vi ¢ and, if r > 0 is
sufficiently large, the following claims hold true:
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(1) The one-parameter semi-group of operators L} , for t = 0 extends to a

strongly continuous semi-group of operators on 9~CT(U0, Vie,e) and the spectral
set of the generator

Ao D(Agy) © UNCT(UO,VM) — ir(anVk,é)

in the region {Re(z) > —rxo/4} consists of discrete eigenvalues with fi-
nite multiplicity. These discrete eigenvalues (and their multiplicities) are
independent of the choice of r.

(2) For any T > 0, there exist only finitely many eigenvalues of the generator
Apg,e on the region Re(s) > —(k + €)xo + 7.

(3) For the case (k,£) = (0,0), the spectral set of Ag,o is contained in the region
U(xo,T) defined in {IA), up to finitely many exceptions, for arbitrarily
small 0 < 7 < xo. Moreover there do exist countably many eigenvalues of
Ao in the strip Uyg(T) defined in (I.7) and, for any § > 0, we have

|w|? _ #{eigenvalues of Agp | |Re(s)| < 7, w < Im(s) < w + |w|}
C |wl®
for w with sufficiently large absolute value, where C > 1 is a constant
independent of w.

< Clw|?

The next theorem gives the relation between the eigenvalues of the generator of
the semi-group £, , and zeros of the dynamical Fredholm determinant dy ¢(s).

Theorem 2.3. The dynamical Fredholm determinant di ¢(s) of the one-parameter
semi-group of transfer operators L’;M extends to a holomorphic function on the
complex plane C. For any c > 0, there exists Ty > 0 such that, if r = 7y, the zeros
of the analytic extension of di ¢(s) coincide with the eigenvalues of the generator of

Lo K (Uy, Vieg) — K" (Uo, Vi) on the region Re(s) > —c, including multiplicity.

Since the relation ([2Z7) holds at least for s € C with sufficiently large real part,
the main theorem (Theorem [[2) follows immediately from the two theorems above.

Remark 2.4. In the proofs of Theorem[2.2]and Theorem[2.3] we will mostly consider
the case (k,£) = (0,0) and put a few remarks about the other cases (k,¢) # (0,0)
in the course of the argument. Indeed the case (k,¢) = (0,0) is most important
because the zeros of the semi-classical zeta function Zs.(s) along the imaginary
axis correspond to the eigenvalues of the generator Ago of the semi-group £f g.
Note that we may and do regard £, as a scalar-valued transfer operator because
the vector bundle Vj ¢ is one-dimensional and trivial. In the cases where (k, () #
(0,0), the transfer operators LZ,E are vector-valued. But we can apply the parallel
argument regarding the transfer operators L’,; ¢, as matrices of scalar-valued transfer
operators as we noted at the end of Remark [[L4l (Actually the argument is much
simpler in the cases (k,¢) # (0,0), because they are irrelevant to the claim (3) in
Theorem 2.2])

We finish this section by describin the ideas behind the proofs and the plan of
the following sections. A basic idea in the proofs is to regard the transfer operators
as “Fourier integral operator”, that is to say, to regard functions (or sections of vec-
tor bundles actually) as superposition of wave packets (i.e. functions concentrating

12Byt note that the rigorous argument in the proofs will somewhat deviate from the explanation
here by technical reasons.
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both on the real and frequency spaces) and look how the action of the transfer
operator transform one wave packet to another (or to a cloud of wave packets more
precisely). For simplicity, let us consider the case L&O of scalar-valued transfer
operators. In our argument, the wave packets are parametrized by the points in
the cotangent bundle T*Uy < T*G and the transformation of the wave packets
that 5670 induces is closely related to the map (ngt)* : T*Uy — T*Up, called
the canonical map. Notice that, since the flow f* preserves the contact form «, the
action of the canonical map (D f5")* preserves the submanifold

(2.8) X = {s -w&(a)(w) e T*Uy | s € R,w € Im(e,)} = T*Uy,

which is called the “trapped set”, and the action on the outside of a small neigh-
borhood of X is not recurrent as a consequence of hyperbolicity of the flow f. This
fact suggests that, concerning the spectrum and trace, the most essential is the ac-
tion of the transfer operators on the wave packets corresponding to the points in a
small neighborhood of X. This idea has been used in the previous papers [42] [43]
and led to the results which essentially correspond to the claim (2) of Theorem

Remark 2.5. If the reader is familiar with Dolgopyat argument [9], the idea behind
the claim (2) of Theorem (and the reason for the factors | det(Dft|g,)|"/? in
the definitions of transfer operators) may be understood roughly as follows. For
simplicity, let us forget about the Grassmann extension for the moment and consider
the simple transfer operator u + uof~t on M. The trapped set in such setting is the
one-dimensional vector subbundle of T*M spanned by «. Consider the situation
where the transfer operator £ for ¢ » 1 acts on wave packets that have high
frequency in the direction of o with spatial size 0 < § « 1 As usual in Dolgopyat
argument, we suppose that this action of the transfer operator £ is followed by a
smoothing (or averaging) operatio along the stable foliation in the scale . The
last smoothing enlarge the supports of the images of wave packets in the stable
direction by the rate proportional to |det(DfL|g,)|~! ~ |det(Df!|x,)|. Hence, on
the one hand, the L? norms of the images of wave packets decrease by the rate
proportional to | det(Df%|z,)|~*? and, on the other hand, makes overlaps of the
images of wave packets at points that were separated in the stable direction. The
analysis of interference (or cancellation by difference of complex phase) between
such overlapping images is equivalent to the essential part of Dolgopyat argument.
In the papers [42] [43], we showed basically that the overlapping images are almost
orthogonal to each other in L?, using complete non-integrability of the contact form
a, and concluded that the essential spectral radius of the (simple) transfer operator
is bounded by sup, |det(Df!|g,)|"*/?. With the same idea, we can show the claim
corresponding to Theorem 2.2] (2) for L}, because the coefficient of £} balances the
rate |det(DfE|g,)| /2.

However, in order to get more information on the spectrum as described in the
claim (3), we have to analyze more precisely the action of transfer operators on the
wave packets associated to the points in a neighborhood of the trapped set X. Such
action is modeled by the so-called “prequantum map” and has already been studied
in the paper [I3] in the linear setting and then extended to the non-linear setting

B terminology of dynamical system theory, this is nothing but the non-wandering set for
the dynamics of (Df&t)*.

MHere we do not explain why we apply this smoothing along stable foliation. Let us just note
that the effect of this smoothing will decreases exponentially fast in further evolution.
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FIGURE 3. A schematic picture for the explanation in Remark 2.5
This is a picture viewed from the direction of the flow.

in the previous paper [I8] of the authors. (The explanation in [I8] Section 2.3] will
be useful to understand the idea that leads to the main theorems.) We are going
to put the argument developed in those papers into the setting of contact Anosov
flows. Note that, in [I3][18], it was crucially important that the trapped set was an
invariant symplectic submanifold of the phase space and normally hyperbolic for
the induced dynamical system on the phase space. In our setting of contact Anosov
flows, this corresponds to the fact that the projection of the trapped set X above
to T* M,

(2.9) X={s-ax)eT*M |seR,xe M} c T*M,

is an invariant symplectic submanifold of T*M on the outside of the zero section
and is normally hyperbolic with respect to the flow (D f~t)*.

Organization of this paper. The remaining part of this paper is organized as
follows. In the next section, Section [3] we make a few comments related to the
main results. The proof of the main results starts from Section [@ In Section [
we consider a linear model for contact Anosov flows and prove a proposition cor-
responding to Theorem in such model. The argument in this section is based
on that in [13] and [I8] for prequantum Anosov map and will serve as a guide-
line for the argument developed in the later sections. In Section Bl we introduce
some systems of local charts and associated partitions of unity on the Grassmann
bundle G. Then, using them, we define the (modified) anisotropic Sobolev space
K" (Kp) in Section [@l The Hilbert space J?/T(KO) appearing in Theorem is a
slight modification of X" (Ky). In Section [7 we give several propositions on the
properties of the transfer operators £ = Lf ; on the Hilbert space X"(Kj). We
expect that these propositions are easy to understand and intuitive for the readers.
Then we prove that Theorem follows from them in Section 8 In Section QHIT]
we give the proofs of the propositions given in Section [l The argument in these
sections is elementary but necessarily rather involved one because we have to deal
with “non-smooth” objects. The proof of Theorem (and that of a small lemma
given in Section [I)) is put in Section [Blin the appendix. (See the remark below.)

Remark 2.6. It is possible to derive Theorem from Theorem by using a
slight generalization of the existing results. In the paper [22], it is proved that
the dynamical zeta function Z(s) for a general C* Anosov flow has meromorphic
extension to the whole complex plane and that its zeros and poles are related to the
discrete spectra of the generators for some associated transfer operators. To deal
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with the semi-classical zeta function and the Grassmann extension fL : G — G,
we actually need a generalization of such results. This is not be difficult to obtain.
Though a different kind of Banach spaces is used in [22], it is possible to show that
the discrete spectrum does not depend essentially on the function space. (See [B]
Appendix A].) We present a proof of Theorem for completeness, based on the
idea presented in [5] in the case of hyperbolic discrete dynamical systems.

3. COMMENTS

3.1. About this paper and a few related works of the authors. A few years
ago, the authors started the joint project studying transfer operators for geodesic
flows on negatively curved manifolds (or more general contact Anosov flows) from
the viewpoint of semi-classical analysis. In the first paper [18] of the project, we
considered prequantum Anosov maps and studied the associated transfer operators
in detail. A prequantum Anosov map is a U(1)-extension of a symplectic Anosov
map, equipped with a specific connection. It may be regarded as a model of contact
Anosov flow because its local structure is very similar to that of the time-t-maps
of a contact Anosov flow and, in technical sense, it is more tractable because the
associated transfer operator is decomposed into the Fourier modes with respect to
the U(1) action. (See [I8] for more explanation.)

In this paper and [I7], we extend the argument in [I§] to the contact Anosov
flows. This paper concerns the results about the semi-classical transfer operators
and also the semi-classical zeta functions. In the other paper [I7], we consider the
band structure of the spectrum of the generators and also on the semi-classical
aspect of the argument. (A part of the results in [I7] has been announced in [16].)

3.2. Recent related works. During the period the authors were writing this
paper and the previous paper [18], there have been some related developments.
We give a few of them that came into the authors’ knowledge. Recently, Giulietti,
Liverani and Pollicott published a paper [22] on dynamical zeta functions for Anosov
flows. They proved among others that the dynamical zeta functions (including Z(s)
defined by Smale) has meromorphic extension to the complex plane C if the flow is
C* Anosov.

In the proofs of the main theorems, we will regard the transfer operator as a
“Fourier integral operator” and consider its action in the limit of high-frequency.
(See [18] for more explanation.) Therefore the main part of the argument is natu-
rally in the realm of semiclassical analysis. From this view point, the terminology
and techniques developed in semiclassical analysis must be very useful. (But this
sounds somewhat strange because the geodesic flow is completely a classical ob-
ject!). A first formulation of transfer operators and Ruelle spectrum in terms of
semiclassical analysis was given in the papers of the first author with N. Roy and
J. Sjostrand [14, [15]. It was shown there that Ruelle resonances are “quantum
resonances for a scattering dynamics in phase space”. Recently a few papers au-
thored by K. Datchev, S. Dyatlov, S. Nonnenmacher and M. Zworski gave precise
results for contact Anosov flows using this semiclassical approach: spectral gap es-
timate and decay of correlations [35], Weyl law upper bound [8] and meromorphic
properties of dynamical zeta function [I1]. We would like to mention also a closely
related work: in [I0], for a problem concerning decay of waves around black holes,
S. Dyatlov shows that the spectrum of resonances has a band structure similar to
what we observe for contact Anosov flows. In fact these two problems are very
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similar in the sense that in both cases the trapped set is symplectic and normally
hyperbolic. This geometric property is the main reason for the existence of a band
structure. However in [I0], S. Dyatlov requires and uses some regularity of the
hyperbolic foliation that is not present for contact Anosov flows.

3.3. Why do we consider the semi-classical zeta function? The semi-
classical (or Gutzwiller-Voros) zeta function is related to the transfer operator with
non-smooth coefficient if we do not consider the Grassmann extension. From this
aspect, the semi-classical zeta function is a rather singular and difficult object to
study. This may be one reason why the semi-classical zeta function has not been
well studied in mathematics, at least compared with in physics. But here we would
like to explain that the semi-classical zeta function is a very nice object to study
among other kind of dynamical zeta functions.

3.3.1. Zeros along the imaginary azis. In physics, there is a clear reason to study
the semi-classical zeta function Z.(s) rather than the zeta function Z(s). The
semi-classical zeta function appears in the semi-classical theory of quantum chaos
in physics [44] [45] [6]. If we consider the semi-classical approximation of the kernel
of the semi-group generated by the Schrodinger equation (or the wave equation) on
a manifold N, we get the Gutzwiller trace formula [26]. This formula is actually
for some fixed range of time and for the limit where the Plank constant & goes to
zero (or the energy goes to infinity). But, if we suppose that the formula holds
for long time and if the long-time limit ¢ — o0 and the semi-classical limit 7 —
0 were exchangeable, we would expect that the zeros of the semi-classical zeta
function, which is defined from the Gutzwiller trace formula, is closely related to
the spectrum of the Laplacian on the manifold N. Thus the semi-classical zeta
function is an object that connects the spectral structure of the quantized system
(or the Schrédinger equation) and the structure of the periodic orbits for the chaotic
classical dynamical systems. For this reason, the semi-classical zeta function and its
zeros have been discussed extensively in the field of “quantum chaos”. Of course,
as any mathematician can imagine, there is much difficulty in making such idea
into rigorous argument. Still the semi-classical zeta function and its zeros are
interesting objects to study. To date, mathematically rigorous argument on semi-
classical zeta function seems to be limited to the special case of constant curvature,
where Selberg trace formula is available. To the authors’ knowledge, Theorem
is the first rigorous result for the semi-classical zeta function for the geodesic flows
on manifolds with negative variable curvature. We hope that our results will shed
light on the related studies.

3.3.2. Cohomological argument. There is some hope that we can relate the semi-
classical zeta function Z,.(s) to transfer operators on some cohomological spaces
(rather than those on the spaces of differential forms as in (27)) and get more
precise results on its analytic properties. Though the idea is not new and may be
well known, we would like to present it here and discuss how we may be able to go
further than the main results of this paper. First of all, let us recall the following
argument in the case of Anosov diffeomorphism. Let f : M — M be an Anosov
diffeomorphism. The Artin-Mazur zeta function of f is defined by

¢(z) = exp (— Z %#le(fn)>
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where #Fix(f™) denotes the number of fixed points for f™. The flat trace of the
transfer operator £y : QF(M) — QF(M) associated to the natural action of f on
the space QF(M) of k-forms is

o= Y Tr (D fyp)""

pEFiX(f) | det(l - Dfp)'

and the dynamical Fredholm determinant of Ly, is defined by

0 o0 n\Ak
il Zn Tr (Df )
D = N NS v -\ i
k(2) exp( Zl T k) exp Zl - Z [det(i — D7)
n= n= peFix(fm) P

Then, similarly to [2.7), the Artin-Mazur zeta function is expresse as

dim M _
(3.1) @)= [T Dalx)™™

k=1

We can show that the dynamical Fredholm determinants Dy (z) are entire functions
and its zeros coincide with the reciprocals of the discrete eigenvalues of the transfer
operator £y acting on some Hilbert space. (See [5].) So the Artin-Mazur zeta
function {(z) is a meromorphic function on C. This argument is true for more
general (Ruelle) dynamical zeta functions. But, for the Artin-Mazur zeta function
¢(2), we can simplify the argument as follows. Note that we have the commutative
diagram

0 0o d Ol d L d Qdim M 0
(3'2) lLo IL1 JLdim]W
0 0o d 0Ol d . d (dim M 0.

This tells that many of the discrete eigenvalues of £y, for adjacent k’s coincide and
the corresponding zeros of the dynamical Fredholm determinant Dy (z) cancel each
other in the alternative product (I]). The remaining zeros and poles of the zeta
function ((z) should correspond to the eigenvalues of the (push-forward) action of
f on the de Rham cohomology H}, (M) of M. Indeed we can actually count the
number of periodic points using the Lefschetz fixed point formula and show that
¢(z) is a rational function. (See [40].)

For Anosov flows, the corresponding argument become much more subtle and
only much less is known. The argument using the flat trace and dynamical Fredholm
determinant work as well, as we discussed in the previous sections. But, for the
moment, we do not know whether it can be simplified as in the case of Anosov
diffeomorphism. This is not a new problem and there are many works on this
subject especially in the case of geodesic flows on hyperbolic surfaces. (See the
introduction chapter of [2§] for instance.) But there seems no much argument in
more general cases.

Note that the Artin-Masur zeta functions was special because the corresponding
transfer operators commute with the exterior derivatives d. Indeed, if we consider
other (Ruelle) zeta functions, the corresponding transfer operator will not have
this property and hence the structure of the zeta functions will be much more

15por simplicity, we assume that the stable and unstable subbundle are orientable and f
preserves their orientations.
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complicated. The similar will be true in the case of Anosov flows, so that we will
have to choose a “good” dynamical zeta function, although we do not know whether
there do exists such choice. For instance, let us consider the Smale’s zeta function
Z(s). As is presented in [22] (and in many other places), it is expressed as follows.
Let f': M — M be a contact Anosov flow. Let Q% (M) be the space of k-forms on
M which vanish for the generating vector field of the flow. If we write di(s) for the
dynamical Fredholm determinant of the natural (push-forward) action of the flow
on Q% (M), we have Z(s) = iio(dé-(s))(_l)k. But, unfortunately, the exterior
derivative d does not preserves the space Q’j_ < QF(M). This is one reason why we
can not apply the cohomological argument to the zeta function Z(s). (Of course
there is possibility that some better expression of the zeta function Z(s) works.)
Let us now turn to the case of the semi-classical zeta function Zs.(s). For sim-
plicity, we assume that E; is orientable and the the stable foliation is smooth. (The
latter is a strong assumption.) As we discussed in Section [l Z.(s) is expressed as
an alternative product (ILI2) of dynamical Fredholm determinants for the transfer
operators on differential forms. But here we consider in a slightly different way. Let
7 : L — M be the line bundle L = (E,)"?. Since E, is assumed to be orientable, L
is trivial and therefore we can consider the square root L'/2 of L. Note that there
is a natural dynamically defined connection along the unstable manifolds on the
line bundles L and L2, in which two elements o,0’ € L (or L'/?) on an unstable
manifold are parallel if and only if the ratio between (Df*)*(o) and (Df*)*(o’)
(considered in some local chart) converges to 1 as t — +00. By definition, these
connections are flat (along unstable manifolds) and preserved by the natural ac-
tion of the flow ff. Let A* be the space of smooth sections of the vector bundle
LY? ® (E*)"*. In other words, this is the space of differential k-forms along the
stable foliation that take values in L'/2. Let £ : A¥ — AF be the natural (push-
forward) action of the flow f'. Then these transfer operators are equivalent to
those in Section [[l denoted by the same symbol and therefore the expression (L13)
holds with dj(s) the dynamical Fredholm determinant for £f defined above. One
definitely better fact in this expression is that we have the commutative diagram:

0 A —Bu Av _Pu 0 Du,pd 0
(3.3) JLB laﬁ JLfﬁmM
0 A Pu o pr De o Du, pd 0

where D,, is the covariant exterior derivative along the stable manifolds. (Again
this observation is not new. For instance, we can find it in the paper [25] by
Guillemin.) We therefore expect that large part of the zeros of the dynamical
Fredholm determinant dj(s) will cancel each other in the expression (LI3). In fact,
under some strong assumptions on smoothness of the unstable foliation, it seems
possible to prove this. But, for more general contact Anosov flows, it is not clear
whether we can set up appropriate Hilbert spaces as completions of A* so that the
commutative diagram above is extended to them. Also it is not clear to what extent
the cancellation between zeros will be complete. Still, to be optimistic, we would
like to put the following conjecture.
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Congecture. The semi-classical zeta function Z.(s) for contact Anosov flows will
have holomorphic extension to the whole complex plane C. Its zeros will be con-
tained in the region {z € C | [Re(s)| < 7 or |Im(s)| < C} for some C' > 0 and
arbitrarily small 7 > 0 up to finitely many exceptions.

4. LINEAR MODELS

In this section, we discuss about a one-parameter family of partially hyperbolic
linear transformations. This is a linearized model of the Grassmann extension f§
of the flow f! viewed in local coordinate charts. The main statement, Theorem
[AT17 of this section is a prototype of Theorem The idea presented below is
initially given in [I3] and the following is basically a restatement of the results there
in a modified setting and in a different terminology. We have given a very similar
argument in our previous paper [I8, Chapter 3 and 4] on prequantum Anosov maps.
Since the argument there is self-contained and elementary, we will refer [18] for the
proofs of some statements and also for more detailed explanations.

4.1. A linear model for the flow f{.

4.1.1. Euclidean space and coordinates. Let us consider the Euclidean space
R2d+d,+1 _ RQd @Rd/ @R

as a local model of the Grassmann bundle G, where we suppose that the component
R? in the middle is the fiber of the Grassmann bundle and the last component R
is the flow direction. We equip the space R24+d'+1 with the coordinates

(4.1) (x,y,2) with 2 € R2 5 e RY and z € R.
The first component z € R?? is sometimes written
(4.2) r=(q,p) with ¢,peR%

We suppose that the g-axis and the p-axis are respectively the expanding and
contracting subspaces. Also we sometimes write the coordinates (1)) above as

(4.3) (w, 2) with setting w = (z,y) € R24+¢

for simplicity. In order to indicate which coordinate is used on which component,
we sometimes use such notation as

RMOH —RZORY ®R, = RIORIOR] OR, = RZH OR..

The orthogonal projections to some of the components are written as follows:

. R2d+d +1 | m2d+1 cR2d+d +1 | p2d+d’ . R2d+d'+1 | mw2d
(44) P R 2 RED Py R 2 Re s perRELT — Ry

2d+1 _ p2d+1

We suppose that the space R(I 2 (@p%) is equipped with the contact form

(4.5) ag = dz — qdp + pdgq.
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4.1.2. Partially hyperbolic linear transformations. Let us consider invertible linear
transformations A : R — R? and A : RY — R? and suppose that they are
expanding and contracting respectively in the sense that

1 ~ 1
(4.6) A7 < " and ||A] < X for some constant A > 1.

The transpose of the inverse of A will be written as
(4.7) Al = (A7 R - RY

In the following, we investigate the one-parameter family of partially hyperbolic
affine transformations

(48) Bt . R2d+d,+1 N R2d+d,+1

(,9,2) (z,y,2) Bt(Qupa Y,2) = (AQu ATpa Ay, z +1),

as a model of the family of diffeomorphisms fg”o for ty » 0 viewed in flow-box
coordinate chartdd. Observe that B preserves the one form (p(,,.))*ao. Below we

consider the one-parameter family of transfer operators
| det AJY/2

| det A|
Remark 4.1. We ask the readers to check that the coefficient |det A|'/2/| det A| is

chosen so that L? is an appropriate model of the transfer operator L&O considered

in Section 2l See (2.3), (2Z4) and (Z3) for the definitions.

4.2. Bargmann transform.

(4.9) L': C®(R¥MHIH) o CP(RMHHY) - Lhy(w) u(B~(w)).

4.2.1. Definition. We will employ the partial Bargmann transform for analysis of
the transfer operators. This is a kind of wave-packet transform. To begin with, we
recall the definition of the (usual) Bargmann transform and its basic properties.
We refer [18, Chapter 3] and [19] for more detailed accounts.

Let us consider the D-dimensional Euclidean space RY and its cotangent bundle

D 2D D D
T*Rw = R(’w,fw) = Rw @wa’

where we regard &,, € R” as the dual variable of w € R”. Let & > 0 be a parameter
that is related to the sizes of wave packets. For each point (w,&,) € T*RE, we
assign a Gaussian wave packet

(4.10) Puwe, (W) = ap(h) - exp(i&y - (w' — (w/2))/h — |w' —w|*/(2h))
where ap(h) is a normalization constant defined by
(4.11) ap(h) = (wh)~P/4,

The Bargmann transform on RZ (for the parameter i > 0) is defined by
(@12) By LPRE) — PERE). B &) = [Fwe o) ulw)do.

Its L?-adjoint B} : L*(R2D ) — L*(RD) is given as

(w.w
dwdé,,

zmw=f%@wmwwm@%ﬁ

16\We will take flow-box coordinate charts x and &’ around a point P and its image fg’ (P)
respectively, so that the g-axis and p-axis corresponds to the unstable and stable subspace, and
consider the family of maps (x/)~! o f’gto o k. Then its linearization will look like B?.
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Here we make a convention that we use the volume form dwd¢,, /(2mh)P in defining

the L?-norm on L2 (R?fgw)). Then we have

Lemma 4.2 ([18, Lemma 3.1.2]). The Bargmann transform By, is an L?-isometric
embedding. Its adjoint B} is a bounded operator with respect to the L* norm and
satisfies By o By, = 1d.

The last claim implies that u € L2(RE) is expressed as a superposition (or an
integration) of the wave packets ¢. ¢, (+) for (w, &) € R?g&u)'

dwdt,
(2wh)P

Lemma 4.3 ([I8, Proposition 3.1.3]). The operator

with setting v = Bpu.

u(w') = BE o Bru(w jmw o(w, &) 20w

(4.13) Pr=BroBi: LX(R{D,.\) = L*(R{S )
is an orthogonal projection onto the image of B and called the Bargmann projector.
It is expressed as an integral operator

dwdé,

ﬂ’hv(u/,f JKTh w’ §w7w Ew)v(w, 5111)( h)D
with the kernel

(A14) Ko (s, £) = e~ R0 €0/ @0 I(w' €)= (w €)1/ 41)
where Q((w', &), (w,&y)) = &, ,w—w'&, is the standard symplectic form on R(w fw)’

4.2.2. Lift of transfer operators with respect to the Bargmann transform. Let @ :
RE — RE be an invertible affine transformation. Let Qo : RY — RZ be its linear
part and qo := Q(0) € RP be the constant part. Let Lo : L*(RL) — L2(RLD) be
the L?-normalized transfer operator defined by
(4.15) Lou(w) = | det Qo| ™2 - u(Q~w).
We call the operator

ngt :=BroLgoB}: L (R%DE ) — L2 (R(wg )

the lift of the operator Lg with respect to the Bargmann transform Bj, as it makes
the following diagram commutes

l]ft

2D 2 2D
'Bh] Bh[
L*RD) % I2(RD).

The next lemma gives a useful expression of the lift ngt. We consider the natural
(push-forward) action of @ on the cotangent bundle T*RL = R%ﬂ? €0’
D'Q:R{Y. ) =R, D'Qw, &) = (Qu,Qltw) = (Qu, (*Qo) "¢w).

Let Lpig be the associated (L?-normalized) transfer operator, which is defined by
([@I5) with A replaced by D@, that is, Lptgu:=uo (DTQ)~*
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Lemma 4.4 ([I8, Lemma 3.2.2 and Lemma 3.2.4]). The lift ngt is expressed as
L v(w, &) = d(Q) - e € /NP0 Ly 0 Pro(w, €u)

where d(Q) = |det((Qo + 'Qy")/2)|Y2. If Q is isometric, we have [Lpig:Pr] =0
and therefore Pp o Lpigo®Pp = LpigoPr="Pro Lpig.

4.3. Partial Bargmann transform.

4.3.1. Definition. The partial Bargmann transform, which we will use in later sec-
tions, is roughly the Fourier transform along the z-direction in R?g;i;l
with the Bargmann transform By in the transverse directions, where the parameter
h is related to the frequency &, in the z-direction as h = (£,)~!. Here and hence-
forth, we let (s) be a smooth function of s € R such that {(s) = |s| if |s| > 2 and
that {s) > 1 for all s € R.

As the (partial) cotangent bundle of R2d+d/+1, we consider the Euclidean space

(z,y,2)
R?jzzgd 21 ) equipped with the coordinates
sEarEy s

combined

(,9,&,6y,€2)  with 2,&, e R, ¢, 6, e RY, €, eR.
R2d+d’+1

(z,y,2)
&y, &, are regarded as the dual variable of z, y, z respectively. (But notice that we

omit the variable z. This is because we consider the Fourier transform along the
z-axis.) For simplicity, we sometimes write the coordinates above as

(wugwugz) with Setting w = (:Euy)a gw = (gmugu)

Also, according to ([.2)), we sometimes write the coordinate ¢, € R?? as

§o = (§g,&p) With &, &y € R<.
Instead of the functions ¢ ¢, (-) in (@I0), we consider the functions

We regard it as the cotangent bundle of the Euclidean space , where &,

(4.16) Gu ey RETIH S € for (2,9, 60,8, 6) € RIF2IH
defined by

gb%%fzafyqu (Ilv y/a Z,)

= a2d+d’(<52>_1) - exp (ifzzl + i<§z>§w(w, - (w/2)) - <§Z> ’ |w, ; w| )

= a2d+d’(<§z>71) " eXp (ifzz’ + i) Eala” — (2/2)) + i€ &y (v — (y/2)))

e (e T e D)

where ap(-) is that in (ZII)). For brevity, we sometimes write ¢, ¢, ¢, (W', 2) for
Doy, 60662 (7Y 2)-

Remark 4.5. Note that & in (4.I6) indicates the frequency of ¢z y¢,.¢,.¢.(-) in 2,
and that the frequency in w = (z,y) is actually (€.)€, = (€.)(&,&y), that is, it is
rescaled by the factor (£,).

The partial Bargmann transform

. T2(R2d+d 1Y _, 72 (méd+2d +1
B LR, ) = LTRG e y e)
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is defined by

(417) %’UJ({E/, ylv 5;/@5 51//7 é.lz) = J(bz/,y/{;,&@,&’z ({E, Y, Z) ! ’LL(.TE, Y, Z)diEdde
We make a convention that we use the volume form
(4.18) dm = (27) 1 - (21N 72 dadyde, e, de.

in defining the L2-norm on L%R‘g‘fg/‘gl c.))- Then the L?-adjoint

% . 72/mdd+2d +1 ., 72(R2d+d +1
B LR e e, e) = LTREG ST

of the partial Bargmann transform 5 is the operator given by
(419) %*U(‘T,u y/7 Z/) = f¢I7y7£m)£y)£z ($,7 yla Z/)U(:Eu Y, 5:67 §y7 gz)dm

4.3.2. Basic properties of the partial Bargmann transform. The following is a basic
property of the partial Bargmann transform B, which follows from those of the
Bargmann transform and the Fourier transform.

Lemma 4.6. The partial Bargmann transform B is an L?-isometric injection and
B* is a bounded operator such that B* o B =1d. The composition

. % . 72(m4d+2d +1 ., 72(R4d+2d +1
(420) m T % © % ' L (R(w,y,ﬁz,ﬁy,ﬁz)) L (R(w,y,ﬁz,ﬁy,fz))

is the L? orthogonal projection onto the image of B.

R2d+d’+1 . R2d+d’+1

(0,2) (w0.2) is an affine transform of the form

Suppose that B :
B(w,z) = (Bo(w) + bo, z + Co(w) + co)

where By : R24+d" _, R2d+d" and € : R24+4 — R are linear maps and by and c¢g
are constants. (The linear model B? in (&) is a special case of such maps.) Let

D'B: R‘(lj]‘?dg)l — R‘(ﬁ*’gd/g; be the naturally induced (push-forward) action

DTB(U},{'U,,fZ) = (BO(UJ) + bOa B(];(gw - tCO§Z)7 gz)

on the partial cotangent bundle R?i‘}id/g:)l. We consider the L?-normalized transfer

operators L and Lpip defined in (£I5) with A replaced by B and D' B respec-
tively. The lift ngt of the operator Lp with respect to the partial Bargmann
transform B is defined by

lift . _ % . p4d+2d +1 4d+2d'+1
Lp ==BoLpo®B" R, o) = Rukue)

and makes the following diagram commutes:

L2(R4d+2d’+1) L LQ(R4d+2d’+1)

2| 2|

L2(R2d+d/+1) Lp LQ(RM‘“’H).

The next lemma is a consequence of Lemma F4] and gives an expression of Lift.
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Lemma 4.7. The lift L' := B o Lg o B* is expressed as
L0, 60, €2) = d(Bo)-e~ 1€ boi€e:(CoBs (00 +00) Qo o1, 4, )
If B is isometric, we have B, Lprg] = 0 and therefore

Lty = ¢~ (#€82)/2)€wbo—i6+-(Co By (w—bo) +co) . Lpig oPo(w,€w, ).

Remark 4.8. The relation between (the lift of) the transfer operator Lp and its
canonical map D'B given in the lemma above realizes the idea explained in the
latter part of Section 2lin a simple setting. Here note that the kernel of the partial
Bargmann projector 98 is of the form k(w’,&l,; w, &) - 06(£, — &.) and we have

k(W' €y w, &) < CullEa)Plw —w'[)™ - (P |€w — E,1D7

for arbitrarily large v > 0, where C, is a constant depending on v.
4.4. A coordinate change on the phase space.

4.4.1. The lift of the transfer operators Lt and the trapped set. Let us now consider
the family of transfer operators L! defined in (£3) and its lift with respect to the
partial Bargmann transform:

(4.21) (LY =B o Lt o B*.

Below we keep in mind that L' is a model of the transfer operator £f , viewed in the
local coordinate charts. As we explained at the end of Section[2, we mainly consider
the action of the transfer operator £! on the wave packets (with high frequency)
corresponding to the points near the trapped set X given in ([Z8). In our linear
model, we understand that the hyperplane
{(x,y,Z) c R2d+d’+l | y = 0} c R%i—;i’;—l

corresponds to the section e, in the global setting. Then the trapped set X, which
corresponds to X in (Z8]), must be

Xo = {p- pz“w7z)o¢0(:1:, 0,2) | peR, (x,z2)e R},
Since we consider the rescaled coordinates, as mentioned in Remark [£.5] the subset
Xy is given by the equations
(4'22) <§z>§p = —&.q, <§z>§q =&p, y=0, §=0, £ #0

in the coordinates (g, p, y, &y, &p, €2) on RAGT2d'+1,

By LemmaE7 the lift (L)1 of L* is expressed as a composition of the transfer
operator L pt g« with the Bargmann projectors B and some multiplication operator,
where DTB? is the linear map

DTBt . R4d+2d/+1 N R4d+2d/+1, DTBt : R4d+2d/+l(w, ng é.z) _ (Btw, ngw, fz)

with By := A®AT@ A : R24+d" _ R24+d" and BY .= (*By)~L. Note that this linear
map DT B preserves the trapped set X.
Let us consider the level sets of the coordinate ¢,

Ze = {(2,y, €0, €y, &) € RAF2HL 0 o},

which is preserved by DT B*. This level set Z, carries the canonical symplectic form
dw A d€,, which is also preserved by DTB!. Observe that the subspace Xy N Z..
is a symplectic subspace of Z, with respect to this symplectic structure, provided
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¢ # 0. (This is a consequence of the fact that ag is a contact form.) Hence the
action of DT B? restricted to each Z, with ¢ # 0 preserves the decomposition

(4.23) Ze=(Xon Z.)®(Xo N Zo)*t
where (Xo N Z.)* denotes the symplectic orthogonal of the subspace (Xo N Z):
(Xon Z)t = {ve Z. | dw r déy(v,0") = 0¥ € Xg N Z.}.

The restriction of DTB? to the subspace (Xo n Z.) describes the dynamics inside
the trapped set, while that to the symplectic orthogonal (Xo n Z.)* describes the
dynamics in the transverse (or normal) directions.

Remark 4.9. Notice that the symplectic decomposition (A23]) does not make good
sense when ¢ = 0. Correspondingly we have to treat the hyperplane Zy = {£, = 0}
as an exceptional set when we consider this decomposition.

4.4.2. A new coordinate system. From the observation above (and the argument in
R4d+2d’+1
(0,6w,E2) "
C= (GG €R™ v = (vg,1,) R and (,6,) e R? =RY @RY

as follows. On the region &, > 0, we define
(424) G =2"VXE) &G T ), G =27HE) TN — &),

v =27 Ve (Eq — (698), o = 27VHE) T (Ep + (680,

§ =", & = ("%,
while, on the region £, < 0, we modify the definitions of (, and v, as

(4.25) G = —27VXE)TPENG +€0), v = —2VHE) T — (€)),
by changing the signs, but keep the other definitions of (4, v, § and Ey

[18, Chapter 2 and 4]), we introduce the coordinates on

Remark 4.10. Basically we consider these new coordinates on the region |£.| = 2
where (&,) = |£,|. But we defined them also on the region || < 2 for convenience
in some definitions below. (See Definition [I3) Note that, if £, = 2 or §, < —2, we
have (£,) = |£,| = &, and the relations in the definitions above become simpler.

The coordinates (v, ¢ ,g,éy,gz) above are defined so that the following hold on
the region |, = 2:
(1) The trapped set Xy is characterized by the equation (¢,y,&,) = (0,0,0).
(2) The coordinate change transformation preserves the canonical symplectic
form and the Riemann metric on Z. up to multiplication by the factor |&,],
that is, on each of the level set Z. with |c| > 2, we have

& |(dx A dEy + dy A dEy) = dCp A dCy + dug A duy + di A dE,
and
N dee® + [dés | + |y + |d&y [2) = ¢ + |dv]® + [dgl* + |dE, .
(3) the volume form in (IS) is written
(4.26) dm = (27) "I qudcdyde, de..,

(4) the (p, v4 and éy axes are the expanding directions whereas the (4, v, and
y axes are the contracting directions.
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We write the corresponding coordinate change transformation as

(I) : R4d+2d/+1 - R4d+2d/+17 (I)(Ia yvgmagyvé.z) = ((an V;D)a ((vag’y)a (an g))vgz)v

where the order and combination of the variables on the right-hand side is chosen
for convenience in the argument below.

Remark 4.11. Below we sometimes restrict our attention to the functions supported
on the region |£,] = 2. We use the subscript  to remind such restriction. For

instance, we write L%(R‘(‘izm';)l) for the subspace of L2 (Rz(;i?d’;)l) that consists of

functions supported on the region |¢.| > 2. Correspondingly we let L} (R%ﬁ’;d;l) be
the preimage of L%(R?izid g)l) with respect to the partial Bargmann transform 8.

The pull-back operator by ® restricted to the region |£,| = 2,
% . 72mdd+2d +1 ., 72(R4d+2d +1 *,
T LER (G o ) LT Ry g, 00 ST uo®,

R4d+2d’+1

((uq,up),((Cp)gy)ﬁ(gq)g))ygz)) is defined

is a unitary operator, because the norm on L?(
by using the volume form (E.26]).

4.4.3. A tensorial decomposition of the transfer operator Lt. In the next lemma,
we express the transfer operator L? as a tensor product of three simple operators.
This is a consequence of the fact that DT B? preserves the symplectic decomposition
(#23). In the statement below, we write Bgd) for the Bargmann transform defined
in @I2) with D = d and i = 1 and let ngd) be the corresponding Bargmann
projector defined in ([@.I3)).

Lemma 4.12. [I8, Proposition 4.3.1 and Proposition 7.1.2] The transformation
®* above satisfies
(4.27)  Pod* = &* o (PP @1d) = % o (P @ P @1d)
on L? (R4d+2d,+1) and is an isomorphism between the images of the operators
(d) (d+d) . 72(2d+d +1 _, T2(RAdF2d+1
B @B @I LR e e0) ™ TR ) () (o)
and

. 72(R2d+d +1y _ 72 mdd+2d +1
B Li(Rig ) = LRy e, 6):

The operator

_ Mm% * (d) (d+d") L7 2/m2d+d +1 _, T2(R2d+d'+1
U—B O@ O(‘Bl ®‘Bl ®Id)-LT(R(Vq,(Cp,éy),Ez)) LT(R(I,U,Z) )

is a unitary operator and makes the following diagram commute:

2(R2d+d'+1y W r2p2d+d+1
LiRig iy ) LI R e en))

L .

2(R2d+d +1 u 2(R2d+d +1 ~ 72(Rd 2 (mpd+d’ 2
LT(R(%%Z) ) LT(R(Vq,(Cpﬁéy),Ez)) = LR, L (R(Cpﬁﬁy))@gLT(R&Z)

where the operator £t is defined by
,St — |det ‘é|1/2 .
| det A|1/2

~ [2(RE) @ LARY . ) @ L2(Re,)
Va (Cpr&y) PR

LA ® (LAGBA\T) ® eifziﬁ7
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writing La and L yq 4+ for the L?-normalized transfer operators defined by

| det A]1/2

AArt = [ A e (A® AN

Lau cuo A7l L

)

1
| det A|Y/2
For the proof, we refer [I8, Proposition 7.1.2 and Proposition 4.3.1].

4.5. Anisotropic Sobolev space H"(R24+4'+1) We introduce the anisotropic
Sobolev spaces in order to study spectral properties of transfer operators. This
kind of Hilbert spaces have been introduced (in the context of dynamical systems)
by Baladi [3] and the related argument is developed in the papers [4] 5] 42} 14} [15].
This is a kind of (generalized) Sobolev space with the weight function adapted
to hyperbolicity of the dynamics (and is anisotropic accordingly). Note that the
anisotropic Sobolev space is not contained in the space of usual functions but con-
tained in the space of distributions.

4.5.1. The definition of the anisotropic Sobolev space. For each r > 0, we will define
the anisotropic Sobolev space H" (RQdJ’d/“). For the construction below, we do not
need any assumption on the range of the parameter r. But, for the argument in
the later subsections, we assume

(4.28) r>2+22d+d)
and also
(4.29) AU > | det A - | det A7

in relation to the affine transformation B! given in ().
For each 7 > 0, let us consider the cones

(4.30) CYTC N (1) = (G &y Con ) € R (¢ i) <7 1(Gpn )]} and,
431) CUH D ) (¢, €y G i) € R | (¢, 8 < 7+ (G )}

in R2d+2d' equipped with the coordinates (;,,(, € R? and éy, yE RY. Next we take
and fix a C* function on the projective space P(R2d+2d/),
ord : P (RQd”d,) - [-1,1]
so that
e —1, (GG p) e CYT T (12);
(432)  ord ([(Gpr&ys G )]) = B  drd
(16600 1, (G &y o) € T (1)2)
and that
A Y it ~ . |( (/pg/)|
ord ([(63:€: 91) < ord ([ Go)]) iF 722
pr Sy

[N
6:8)

<

We then consider the smooth function
W - R2d+2d' _ R-H WT(C;D? gy’ Cqu g) — <|(Cp7 gy7 an g)|>T'0rd([(4p75~y7<q:g)])'
By definition, we have that

UGy Carl)™  on CYHTAE ) (1 9y,

w (vagya Ctb Zj) = {<|(<p7gy, qu g)|>+7‘ on C(_d+d,’d+d,)(1/2).
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A simple (but important) property of the function W is that we have
(433) W (A®AN @A AN) (G &y G0 9) < CoX ™ W (G by G0r )

when A and A satisfy [@8) with some A > 1 and (Cpr€y» Cor 1) € R2H24 i suffi-

ciently far from the origin, where Cy > 0 is a constant independent of A and A.
Another important property is that it is rather smooth in the sense that we have

(434) WT(CPugyv qug) < CO : WT(C;,mé,yu Céu g/) : <|(Cpugy7 qug) - (C;/ng‘;v <:17g/)|>2r
for some constant Cy > 0.

Definition 4.13 (Anisotropic Sobolev space). Let W' : R4+2d'+1 _, R he the
function defined by
Wr(xayugwagyugz) = (1 ®WT ® 1) o (I)(‘/I:7y7§wu§y7§z) = WT(CP?%Z/?CQuﬂ)
where the variabled'] (Cpy &y» Cq» §) in the rightmost term are those defined by (E24).
We define the anisotropic Sobolev norm | - 3¢ on §(R24+4'+1) by
|u|gcr := |W" - Bu| 2.
The anisotropic Sobolev space H" (RQ‘”d/‘H) is the Hilbert space obtained as the

completion of the Schwartz space 8(R2d+d/+1) with respect to this norm.

By definition, the partial Bargmann transform 8 extends to an isometric em-
bedding
% - J_CT(R2d+d’+1) - LZ(R4d+2d’+1 (Wr)z)

(w,2) (w,6w,€z)”
where L? (R‘(lj]‘zid/g)l, (W)?) denotes the weighted L? space
LAREDZEN, (W)?) = fue LR (RETEZ) [ |W” - uf 2 < o0}

(Note that the L? norm on R‘(lj]‘zzd/;)l is defined with respect to the volume form
dm in ([£IJ).)

4.5.2. Variants of H" (R24+d'+1) " The anisotropic Sobolev spaces H" (R24+4 +1) jn-
troduced above are quite useful when we consider the spectral properties of the
transfer operators for hyperbolic maps or flows. But, in using them, one has to be
careful that they have singular properties related to their anisotropic nature. For
instance, even if a linear map B : R2d+d'+1 _, R2d+d'+1 jg close to the identity,
the action of the associated transfer operator Lp on them can be unbounded. This
actually leads to various problems. In order to do with such problems, we introduce
variants H"7 (R24+4'+1) of H"(R24+4+1) helow. We consider the index set

(4.35) So={-1,0,41} c ¥ ={-2,-1,0,+1, +2}.
For o € 3, we define ord” : P (R2d+2d/> — [~1,1] by
(4.36)  ord” (|(Gpr&sCir0)|) = ora ([ (277726, 27772, 2712, 20 7/2) )

so that we have

(4.37) ord” ([(Gp: &y Car D)) < 0rd” ([(Gps &9 Co D)) i 0 <0

17Notice that this function W is continuous despite of the discontinuity of the coordinates
(¢p, Ey+Cq,B) at points on the hyperplane &, = 0.
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(Here we use the factor 2+%/2 for concreteness, but it could be any real number
greater than 1.) We define

WT’U : R2d+2d - R+’ WT’U(CP? g’y7 Cqu g) = <|(<§D7 gyu Cqu g)|>T-ord”([((p1§y1<q)g)])-
From ([@31), we have

(4.38) WO (Gpr &y Can§) S W7 (G €y o) i 0" <0
These functions also satisfy the properties parallel to (£33) and (#34).

The functions W7 (-), the norms | - ||sc~- and the Hilbert spaces H"7 (R2d+d'+1)
are defined in the same manner as W”, | - 3¢ and H” (R24+4+1) respectively, with
the function W7 (-) replaced by W"7(-). In particular, we have

W’I’,O(.) _ WT('), WT,O(_) _ WT(~), :}CT,O(R2d+d/+1) _ %T(R2d+d/+1)'
From ([@38), we have
(4.39) ulggrr < llscre i o’ <,
and hence
}CT,U(R2d+d'+1) - f}-(“’/ (R2d+d’+1) if o’ <o
The partial Bargmann transform 8 extends to isometric embeddings

B - %T,U(R2d+d/+l) N L2(R4d+2d/+l7 (Wr,a)2) for o€ .

4.6. The spectral structure of the transfer operator L'. We now discuss
about the spectral properties of the transfer operator L?, defined in (Z3)), on the
anisotropic Sobolev spaces H™ (R24+4'+1) " First we recall a few results from [I8),
Chapter 4 and 7]. Let H"™ (R%+4) be the completion of the space §(R4T4) with
respect to the norm

ul e = [W7 - B 1

From the definition of W™ the commutative diagram in Lemma [.12] extends
naturally to

J_C;‘,U(RQd‘f’d,‘f’l) PRI L%R,’i}) ® Hr,a(Rder’ )® L%(Rgz)

(z,y,2) (Crnéy)
(4.40) | = o
,,,70./ ’ u r (T/ !
HPT(REEET) —— LPRY) @ H™ (R ) ® L7 (Re.)

if t > 0 and ¢/ < o, where U is an isomorphism. (Here we use the subscript { in

ﬂ{’{’g, (R%g;dgl) in the same meaning as noted in Remark [£11])

Therefore the operator Lt : H™ (R?jzd;)“) — Ko (R?ﬁ;dgl) is identified with

the tensor product of the three operators
(4.41) La:L*(RS) — L*(RY ),
E L | det A|1/2

4.42 =_— A
( ) |detA|1/2 APAT

. r,o d+d’~ _ ro’ d+d’~
H (R(vaﬁy)) " (R(vaﬁy))’

and

(4.43) et 1d : LI (Re.) — L3(Re,).
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The first and third operators are unitary. In [I8, Chapter 3], we studied the second
operator L to some detail, which we recall below.
Let us consider the projection operator

(4.44) Ty : zS(R‘(’l(j"lE )= S(R?C’Ldgy))’ To(u)(x) = u(0)-1

where 1 denotes the constant function on " with value 1. This is a simple

operation that extracts the constant term in the Taylor expansion of a function
at the origin. Letting Bgdﬂl) L2(RE ) - L2(R**2? ) be the Bargmann

((p;fy) (Cpfyv(qﬂl)
transform with A = 1, we set

lift . q(d+d’) (d+d’)\% 2 (mp2d+2d’ R 2d+2d’
(445) TO T 'Bl © TO © ('Bl ) L (R(Cp fy Ca> )) L (R(CP Ey Cq» y))

(Here we regard ¢, and § as the dual variable of {, and &, respectively.) Clearly it
makes the following diagram commutes:

12 <R2d+2d’ ) Ty 12 <R2d+2d’ )

(va&/v(gﬂ/) (Czh&n(qﬂl)
(4.46) B+ I B+ I
2 (pd+d’ To d+d’
L (R(vaéy)) L? (R(Cp»fy)

Lemma 4.14 ([I8, Lemma 3.4.2 and its proof]). The operator T} is written as
an integral operator

Ty (), &, ¢ 3) = f K (¢80 Cor i K—(Cpy €y Car ) (Cpr &y Gy ) ACpdEydCodi

where the functions K4 (-) satisfy, for any 0,0’ € X, that

(4.47) W (L G i) K (Gl i) < Col(Chy €y Gy )
and
(4.48) W (Cpr &y Can D) K (Cpy s Car 1) < Col(Gpr &y Cgn 9D

or a constant Cy > 0. Hence, for any 0,0’ € X, Tt extends to a rank-one operator

tant Cy > 0. Hi yo,0’ €%, T extends t k t
Téift . LQ(R2d+2d’7 (Wr,a)z) _ LQ(R2d+2d’7 (Wr,a’)z)'

Corollary 4.15. The operator Ty extends naturally to a rank-one operator

r,o (md+d’ _ r,o’ d+d/_ /
To: H" (R(Cp Ey)) H (R(Cp,ﬁy)) for any 0,0’ € X.

The next lemma is a rephrase of the main statement in [I8, Chapter 3]. Note
that A@ A" : RA+d — R+’ js an expanding map satisfying (@8] for some A > 1

Lemma 4.16 ([I8| Proposition 3.4.6 and Section 4]). ( ) The operator L in ([@A2)

extends to a bounded operator L : H™ U(R?jdg )) — H™? (R?gdg ) for 0,0’ € ¥ with
P18y

o’ < o and the operator norm is bounded by a constant independent of A. Further,
if X is sufficiently large, say A > 10, then this is true for any o,0’ € 3.

(2) The operator L : H”’(R‘Z;dgy)) — H“’(R‘Z;déy)) commutes with Ty. And it

preserves the decomposition H™ U(R?C‘Ldg ) = 9o ® H1 where

Ho=ImTy={c-1|ceC} and .61=KerT0={ueHT’U(R?£LdE ) | u(0) = 0}.
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Further we have that
(i) the restriction of L to $ is the identity, and that

(i) the restriction of L to $1 is contracting in the sense that
|Lul| e < Co - (1/N) - |ullgre  for all uwe $1,
where Cy is a constant independent of A and A.

From the last lemma and the commutative diagram ([£.40), we conclude the next
theorem. This is the counterpart of Theorem for the operator Lt as a (local)
linearized model of the transfer operator £!. We consider the projection operator

(4.49) To=Uo(Id®Ty®Id) o U=1t:8 (R2d+d +1) IS (R2d+d/+1)

(z,y,2) (z,y,2)

Theorem 4.17. (1) The operator Ty extends naturally to a bounded operator

To : FC7(REFEH) o 9007 (R2EIHY)  for any 0,0" € 3.

(2) L' extends to a bounded operator L' : %;’U(sz”d,*l) - H;*U,(Rm*d/*l) for
any 0,0’ € ¥ with o' < o and the operator norms are bounded by a constant
independent of A and A. Further, if A in the assumption [{{-0)) is sufficiently large,
say A > 10, this is true for any 0,0’ € X.

(3) Lt commutes with the projection operator To and preserves the decomposition

HEORXHY) = Ko @Iy where Ho=ImTo  and Hy = Ker To.
Further we have that

(i) the restriction of Lt to Hy is a unitary operator, and that
(i) the restriction of L' to Hy is contracting in the sense that

HLtqu—CT,d < CO . (1/)\) . HUH:}CT,U for all u e J-C17
where Cy is a constant independent of A and A.
The lift of the operator Ty with respect to the partial Bargmann transform 5 is
(4.50) T — B0 TpoB*: 8 (Rﬁg?dg)l) — 8 (R4
Note that, by the definitions and the relation ([£27)), we may write it as
(4.51) TH — BolUo(Id@Ty®@Id) o U™ o B* = &* o (P Q TH @ 1d) o (&%) 1.
The next is a simple consequence of this expression and Lemma [£.14

Corollary 4.18. The operator ‘J'%)ift is written as an integral operator

Totu(w, &, &) = fK(wla61/1;;wagw;gz)u(wagwagz)dwdgw
and the kernel satisfies, for any 0,0’ € ¥ and m > 0, that

W (', €,,6)

W (w, €)1 (i i)

< m<(<p’€y7 /7~/)> T<(<P’€y7<tb )>7T<(V:17V;J)7(VQ7VP)>7m
SO (W' €,) = (w, &) )T
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where Cp, > 0 and C" > 0 are constants and where (Cp, &y, g, §) and v = (vg, vp)
(resp. (¢, &,5Co, ') and V' = (vy,1,)) are the coordinates of (w,&w,&.) (resp.
(W', &,,&,)) defined in [{-24). In fact, the kernel is written as

K(wlvé.'iuv w;gw;é.z) = KJr(C;/)ag:/ya ;vg/) : K*(C}D?é’ya an 27) : k(ula V/)
where Ky () are the functions in Lemma and k(v,v') is the kernel of the

Bargmann projector ?gd), which satisfies

|k(v, V)] < Cppilv — VY™™ for any m > 0.

4.7. Fibered contact diffeomorphism and affine transformations. In this
subsection and the next, we prepare a few definitions and related facts for the
argument in the following sections. We first introduce the following definition.
Definition 4.19. We call a C* diffeomorphism f : V — V' = f(V') between open
subsets V, V' < R?zzijl a fibered contact diffeomorphism if it satisfies the following
conditions:

(1) f is written in the form

(4.52) fla,y,2) = (f@), flz.9), 2 + (@),
(2) the diffeomorphism
f : p(z,z)(v) - p(z,z)(vl)v .f(xv Z) = (fN(I)a z+ T(I))
preserves the contact form ag given in (L3H).

Remark 4.20. We can always extend a fibered contact diffeomorphism f:V — V’
to f Py (V) X Ry = pay) (V') x R, by the expression {@L52). We will assume
this extension in some places.

The diffeomorphism f above is called the base diffeomorphism of f. The diffeomor-
phism

is called the transversal diffeomorphism of f. We have the commutative diagrams

14 ! v/ v - v
P(x,2) l P(x,2) l P(x,y) l P(z,y) J
f I
Pz, (V) Pz, (V) Play) (V) —— Pla,y) (V)

The function 7(z) in @5 is determined by the transversal diffeomorphism f
up to an additive constant. In particular, we have

Lemma 4.21 ([43| Lemma 4.1]). If f : V — V' is a fibered contact diffeomorphism
as above and suppose that the transversal diffeomorphism preserves the origin, i.e.
f(0) =0, then the function T(x) in the expression {{.52) satisfies

D,7(0) =0, D27(0) = 0.
Proof. The first equality D7(0) = 0 is obvious. The second is also easy to prove
but we need a little computation. See the proof of [I8, Lemma 5.4.3]. O

Next we restrict ourselves to the case of affine transformations and introduce the
following definitions.
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Definition 4.22 (Groups Ay o A; D Aj of affine transforms on R24+4 +1),

(1) Let Ag be the group of affine transformations a : R24+d+1 _, p2d+d'+1
(z,y,2) (z,y,2)

fibered contact diffeomorphisms (with setting V = V/ = R2d+d"+1),
(2)Let Ay < Ag be the subgroup of all the affine transformations in Ag of the form

that are

(4.54) a: RYHTDH  RYDS (g, p,y, 2) = (Ag+qo, ATp+po, Ay, z+b(q, p)+20)
where 4 : RY - R? and A : RY — R? are unitary transformations, b : R?¢ — R
is a linear map and (qo, po, Yo, 20) € R?j;:iy/:)l is a constant vector. (Recall (@7]) for
the definition of AT.)

(3) Let Ay < A; be the subgroup of all the affine transforms a € A; as above with
A and A the identities on R? and RY respectively.

Remark 4.23. Suppose that a € A; is of the form ([@54]). Then, from the condition
that the base diffeomorphism preserves the contact form «g, we see that the linear
map b(g,p) is determined by A, pp and ¢o. In fact, by simple calculation, we find

b(q;p) = —(*Apo) - a+ (A" q0) - p.
The following fact is easy to check and quite useful.

Lemma 4.24. The transfer operator L, for a € Ay (defined by Lou := uoa™!)
extends to a unitary operator on H"(R2T4+1Y (resp. on K™ (R24+4+1)) and com-
mutes with the projection operator Ty, that is, Ls 0 Ty = Tg o Lg.

We use the next lemma in setting up the local charts on G in the next section.

2d+d +1

(2..2) at a point

Lemma 4.25. Let £ and ¢ be d-dimensional subspaces in T,,R

! !’
w e R¥+d+1 cR2FIHL R s 0 and 0
(%,y,2) (2,y,2) (w,2)

bijectively onto the images Py .y (€) and p(, . (¢') and that we have

. Suppose that the projection p(, )

P(a,2) () ®P(2,2) () =kerao(w),  daolp, ) =0,  daoly, . @) =0

where W = Pz )(w). Then there exists an affine transform a € Ag (which is in
particular a fibered contact diffeornorphism) such that

a(0) =w, (Da)o(Rg@{0} @ {0} @{0}) =¢ (Da)o({0} ®R; @ {0} ®{0}) = ¢'.

Proof. By changing coordinates by the transformation group Ag, we may assume
that w = 0 and that the subspaces ¢ and ¢’ are subspaces of R?? . @ {0} ® {0} <

(g,p)
R2d+d+1  Thus we have only to find a linear map @ : R??*! — R24+1 preserving

g such that

Note that a linear map @ : R??*1 — R24+1 preserves the contact form oy if and
only if it is of the form a(x,z) = (ao(z), z) and ag : R?? — R?? preserves the sym-
plectic form dey (identifying R?? with R2?@{0}). Since the subspaces P(2,2) () and
P(2,-)(¢') are Lagrangian subspaces (i.e. the restriction of dag to those subspaces
are null) transversal to each other, we can find a linear transform g : R?4+! — R2d+1
preserving dog so that (53] holds true. O
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5. LOCAL CHARTS AND PARTITIONS OF UNITY

In this section, we discuss about choice of local coordinate charts and partitions
of unity that we will use. We henceforth fix a small constant 0 < 6 < 1 such that

(5.1) 0 < 6 < min{B, 1 — 8}/20 < 1/40

where 0 < 8 < 1 is the Holder exponent given in (I4). Also we let x : R — [0, 1]
be a C® function satisfying the condition that™§

1 for s <4/3;
5.2 =
(5.2) x(s) {O for s = 5/3.

5.1. On the choice of local coordinate charts and partitions of unity.
Before giving the choice of local coordinate charts and partitions of unity precisely,
we explain the motivation behind the choice. Observe first of all that, in the linear
model that we discussed in the last section, we may decompose the action of the
transfer operator with respect to the frequency in z-direction. Indeed, in Lemma
[L12 we had only point-wise multiplication in the third factor L?(R¢, ). Though this
is not true for the transfer operators Lfg) , in exact sense, it is important to observe
that they “almost” preserve the frequency in the flow direction. And, based on such
observation, we will decompose functions on M so that each of the components has
frequencies around some w € Z in the flow direction and then consider the action
of the transfer operators on each of them. To look into such action, we choose a
finite system of local charts and an associated partition of unity for each w € Z.

When we consider the action of the transfer operator on a component with fre-
quency around w, we will look things in the scale (w)~/? in the directions transver-
sal to the flow. (Note that this corresponds to the scale in the definition of the
partial Bargmann transform.) Accordingly we would like to consider a system of
local charts and a partition of unity of size (w)~1/?*?. Then, in such small scale,
the action of the transfer operators will be well-approximated by those for linear
transformations considered in the last section.

However, to proceed with this idea, we face one problem caused by the fact
that the section e, : M — G is only Holder continuous. If we look its image
Ime, in the local chart of size (w)~/2%?  its variation in the fiber directions of
the Grassmann bundle will be proportional to (W) #(1/2=0) » (W)~1/2+0  This
is a problem because the image Im e, must be approximated by the “horizontal”
subspace R22@{0}®R, < Rffz‘i;l to make use of the argument in the last section.

Our solution for this problem is rather simple-minded: We choose the system
of local charts so that the section Ime, “looks” horizontal. (See Figure @) More
precisely, we choose local coordinate charts for the parameter w € Z so that the
objects look contracted by the rate (w)=(1=#)(1/2=0)=40 ip the fiber directions of
the Grassmann bundle. Then the “vertical” variation of the section Im e, in such
coordinates will be bounded by

<w>75(1/279) -<w>*(1*5)(1/2*9)*49 _ <w>71/2739 « <w>71/2
so that the section Ime, will look “horizontal” in the scale (w)~'/2. Of course,
there are some drawbacks of such choice of (asymptotically) singular local charts.

18This definition of x(-) may look a bit strange for the argument below. Since we use this
function x/(-) later in a different context, we define it in this way.
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- Ime,

R2d+d’+1 S S

G

FIGURE 4. A schematic picture of the choice of local charts.

At least, we have to be careful about the non-linearity of the flow viewed in such
local charts. Also we will find a related technical problem, as discussed in the
beginning of the next section.

Remark 5.1. The idea mentioned above is equivalent to consider a generalization
of Bargmann transform using eccentric wave packets.

5.2. Hyperbolicity of the flow ff. The flow f£ is hyperbolic in the neighbor-
hood Up of the section Im e, with hyperbolic decomposition given in (21]), as we
noted in Section For the argument below, we take the “maximum” exponent
Xmax > X0 SO that

(5.3) |DfE(v)] < Co - eXmexltl jy|  for any t € R and v e TUj
with some constant Cy > 0.

Remark 5.2. The hyperbolicity exponent yo > 0 was taken as the constant satis-
fying the condition (22)). But, in what follows, we additionally suppose that the
condition (2.2]) remains true if we replace xo with xo + € for some small ¢ > 0.
Since we have not used yg from Section Ml to this point and since the equalities
in the main theorems related to x( are strict ones, this does not cause any loss of
generality.

In the next lemma, we introduce a continuous (but not necessarily smooth)
Riemann metric | - [ on Uy € G which is adapted to the flow.

Lemma 5.3. There exists a 3-Holder continuous Riemann metric |- |« on Uy € G
such that, for the decomposition TUy = E’u ® EN’s @ Eo in 210, we have
(1) |DfL(v)]4 = Xt - vy for ve E, and t >0,
(2) [DfEW)]« < e X0t |v]y forve Ey and t >0,
) ol = la(0)] for v e B,
(4) Es, E, and Ey are orthogonal to each other with respect to the metric ||+,
(5) |v]s = sup{da(v,v') | v' € E,|V'|5 = 1} for v e E,,.
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Proof. The construction is standard. For v € ES, we set

T
o] =\[ P! D £ (0) | dt

0
where T' > 0 is a constant. Letting 7" > 0 be sufficiently large and using Remark
52 we see that the condition (2) is fulfilled for 0 < ¢ < 1 and hence for all ¢ = 0. For

the vectors in E, and Ep, we define the norm | - |« uniquely so that the conditions
(5) and (3) hold. We extend such construction so that the condition (4) holds.

Then it is easy to check the condition (1) For v € E,, we have
IDfE()]s = sup{da(Df*(v),') | ' € E, [v']s = 1)
=wmmwﬂﬁveEdﬂﬂvm=H>J“MM

The Holder continuity of | - ||« follows from that of the decomposition TUy =
E &) E &) EO and the construction above. O

5.3. Darboux charts. The next lemma is a slight extension of the Darboux the-
orem [I] pp.168] for contact structure.

Lemma 5.4. There exists a finite system of local coordinate charts on M,

fo: Vo C R?Z‘:)l U, := ka(Va) c M foracA,

and corresponding local coordinate charts on G,

VL, < Rszdzfl > U, :=kqo(Vo) G forace A,

such that
(1) Va = pa(Va) x (=50, 50) for some so >0,
(2) Ka are Darbouz charts, that is, k¥ = ag on U,, where ag is the standard

contact form in ([{.5).
(3) U, = 75" (Uy) n Uy, where Uy is the absorbing neighborhood of the attractor

Im(e,), and the following diagmm commutes:
V c R2d+d +1

Ua (@,7)

WGl p(z,z)l

Uy oV, c R

(4) the pull-back of the generating vector field of f& by ke is the (constant)

vector field 0, on ngzdzy'l.

Proof. The Darboux theorem for contact structure gives the Darboux charts &,
a € A, satisfying the condition (2). The generating vector field viewed in those
coordinates are the constant vector field ¢, on R?gt)l because it is characterized as

the Reeb vector field of a. Then we can easily define the extended charts x, for
a € A so that the conditions (1), (3) and (4) hold. O

We henceforth fix the local charts k, in the lemma above. The time-t-map of
the flow f§ viewed in those local charts are

;—m’ = ’i;’l Ofé ORaq : “gl(Ua A fét(Ua/)) - ’i;/l(fé(Ua) N Uy).

The next lemma is a consequence of the choice of the local charts k.
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Lemma 5.5. The mappings f!_ . : k7 (Ua 0 f5'Ua)) — 6,1 (fE(Us) 0 U are

fibered contact diffeomorphisms (defined in Definition[{.19). Further we have
f;isa’ (Ia Y, Z) = ;—NJ/(Ia Y,z + S)

provided that both sides are defined and s > 0 is sufficiently small.

Let Ko € Uy be a compact neighborhood of the section Im e, such that
(5.4) f&(Ko) @ Ky for all t > 0.
We take and fix a family of C'*° functions
pa:Va—[0,1] forae A
such that supp p, € V, and that

ZP ok—l— 1, on Ko;
e 0, on a neighborhood of G\Up.

For the argument in the later sections, we take another family of smooth functions
pa Vo —[0,1] forae A
such that supp p, < V, and p, = 1 on supp pq.

5.4. The local charts adapted to the hyperbolic structure. In the next
proposition, we construct local charts that are more adapted to the hyperbolic
structure of the flow f&, by pre-composing affine transformations. These local
charts are centered at the points of the form e, (k4 (z,0)) with = € p,(V,) < R??.

Proposition 5.6. For a € A and = € p,(V,) = R?? we can choose an affine

transformation
. 2d+d +1 2d+d'+1
Ao : R(%%Z) - R(w,y,Z)

in the transformation group Ao (defined in Definition[{.23) so that, if we set
Kag = Kq O Agz AL (Vo) = U,

s a,r
it sends the origin 0 € R?g;d;;rl to the point e, (kq(x,0)) € Ime,, and the differential

(Dkq,z)o is isometric with respect to the Euclidean metric in the source and the
Riemann metric | - |« in the target and, further, (Dkg )0 sends the components of
the decomposition

TOR2d+d/+1 _ RZ @ RZ @ RZ, @ Rz

(z,y,2)
to those of the decomposition

Teu(ka(z,O))G = Eu Dy (ES O ker Dﬂg) @ ker Drrg ® EO

respectively in this order. (ES Oy ker D7 denotes the orthogonal complement of
ker Dre in Eg with respect to the Riemann metric || - ||«.)

Proof. By applying Lemma 25 we can find the affine map A, , such that all
the conditions in the conclusion hold true, but for the isometric property. By
pre-composing a simple linear map of the form

CoctoCold:RIGRIGRY @R, -~ RIGRIGRY @R,
we may modify A, so that (Drkg z)o restricted to {0} @RS @ {0} @ {0} and {0} ®
{O}@RZ/@){O} are respectively isometric. Then, from (3) and (5) in Lemma[5.3] we
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see that (Dkq,.)o restricted to {0} @{0}@®{0} @R, and RI@ {0} @ {0} ®{0} are also
isometric and then, from (4), we obtain the isometric property of (Dkg s )o- O

5.5. The local coordinate charts parametrized by w € Z. For each integer
w € Z, we set up a finite system of local charts and an associated partition of unity.
Following the idea explained in the beginning of this section, we define the local
charts as the composition of the charts x4 , introduced in the last subsection with
the partially expanding linear map

(5:5) B RESCO LRI B (g ) (g () (1mP020 0y

Remark 5.7. We will use the numerical relation
(5.6) 1-5)(1/2-0)<(1-p)/2<1/2-106,
which follows from the choice of the constant § > 0 in (G)).
For each a € A and w € Z, we consider the following finite subset of R?:
N(a,w) = {neR* | ne (wy 20 22 np,(Va)}.
For each element n € N(a,w), we define the local chart /q((lw,z by
(5.7) K9 = Kam 0 By : V&) = E ' 0 A7) (Vo) — UL,

where gy, is the local chart k, , defined in Proposition 0.6l for 2 = n.
Next, for each integer w € Z, we introduce a partition of unity associated to the

system of local coordinate charts {m(f%}ae AneN(aw)- First we take and fix a smooth

function po : R?? — [0, 1] so that the support is contained in the cube (—1,1)2¢
and that

(5.8) Z po(x —n) =1 for all x e R?

nez2d

(For instance, set po(z) = H?il(x(xi +1) — x(z; +2)) for z = (2;)?¢, € R?, using
the function x(:) in (&2). ) For a € A and n € N(a,w), we define the function
Pl s REEL 10,1 by

(59) pl(zttjv)z(xa Y, Z) = pa(xlu ylv Z/) : p0(<w>1/279(x’ - n))

where (2/,y',2") = Agn © Ey(x,y, ). From this definition, we have

(5.10) Pl o (KED)THP) = pa o ki (B) - po((w)*~ (pa 0 iy (p) — ).
Hence, from (5.8) and the choice of p,, we have, for each w € Z, that

Z Z P o (k) Z pao ksl = 1 on Ko;.
A N () = 0 on a neighborhood of G\Uyp.

That is, the set of functions
{p) o (KN Uy — [0,1] |a € A,n e N(a,w)}

is a partition of unity on Ky supported on Uy.
For the argument in the later sections, we define an “enveloping” family of
functions, p( )( ) forweZ,aec Aand neN(a,w), by

(5.11) pin(@,y, z) = pala’y',2) - o) >~ (2’ —n))
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where (z',y,2') = Aan o E,(z,y,2) and po : R4 — [0,1] is a C* function sup-
ported on the cube (—1,1)2¢ such that jp = 1 on the support of py. By definition,

we have ﬁ((lw,{(;v, y,z) =1 on the support of pf{“,{

6. MODIFIED ANISOTROPIC SOBOLEV SPACES X™7(K))

We define the function spaces X7 (Ky), called the modified anisotropic Sobolev
spaces, that consist of distributions on the neighborhood K of the attracting section
Ime,. The function spaces in Theorem 2.2 will be obtained from them by a simple
procedure of time averaging of the norm. (See Definition Bl) We will use a simple
periodic partition of unity {q, : R — [0, 1]},ez defined by

(6.1) gu(s) =x(s—w+1)—x(s—w+2).

6.1. The problems caused by the factor F,. A simple idea to define the Hilbert
spaces in Theorem is to patch the anisotropic Sobolev spaces H{T*“(Rmﬂl/“)

using the local charts m(lw% and the partition of unity p((lw% But, proceeding with

this idea, we face one problem caused by the singularity of the local charts fﬁ(f%
This forces us to give a more involved definition of the modified anisotropic Sobolev
space X7 (Kj) in the following subsections.

The difficulty may be explained as follows. (The explanation below may not be

very clear and is not indispensable for the argument in the following subsections.)

For facility of explanation, suppose that M = R?gt)l and G = R?gzdz/;’ L and that
the the local chart to look functions with frequency around w € Z along the flow
direction (or the z-axis) is just the partial expanding map E, in (&3). Then, if
we follow the idea mentioned above, the norm that we consider for a function u on
G = R will look like

|ul = 20" - Bul|p>  with 0"(w,&w, &) = Z‘LA&Z) “W"o D*Ew(wvfwvf»Z)

where D*E,, : R‘(lizid/g)l - R?izid,g)l denotes the pull-back by E,,. The problem

with this norm is that the function 207(-) is rather singular in the limit |§,,| — .
To be more precise, let us consider two integers 0 « w « w’. Since the non-conformal
property of D*E,, depends on w and since the weight function W" is anisotropic,
we can find &, € R24+4" guch that

W05 Eyyw)
(62) SEI-POO QIIT(O, S - §w,w’) N

while the distance between the points (0,s - &,,w) and (0,s - &,,w’) is bounded
uniformly in s. With this singularity.] of 20", even multiplications by moderate
smooth functions will be unbounded with respect to the norm above.

We emphasize that the problem mentioned above does not affect the most es-
sential part of our argument because it happens only for the action of transfer
operators on the wave packets that are very far from the trapped set. (Recall the
explanation at the end of Section ) The modification of the definition of the
Hilbert spaces will be described in the following subsections. The idea is simply to

191 terms of the theory of pseudo-differential operator, this implies that the function 20" does
not belong to an appropriate class of symbols.
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relax the non-conformal property of the factor E, gradually and sufficiently slowly
as we go far from the trapped set.

6.2. Partitions of unity on the phase space. We introduce a few partitions of

i 4d+2d’ +1
unity on the phase space R(w7£w752)-

6.2.1. Interpolating E,, and the identity map. We first construct a family of linear
maps E,, , for m > 0, which interpolates the linear map E,, and the identity map.
To begin with, we introduce two constants

1<@1<®2.

These constants will be used to specify the interval of integers m where we do the
relaxation of the singularity (or non-conformal property) of the local coordinate
charts. The choice of these constant are rather arbitrary. But, to make sure that
the relaxation takes place sufficiently slowly, we suppose

(6.3) Oy — O > 10 Amax - ¢,
X0
so that
(1—B)(1/2—6) + 46 1/2 Xo 1
6.4 = —.
( ) K @2*@1 <®2*@1<20'Xmax<20

For each w € Z, we set

(6.5) no(w):=1[0- loglwy], mni(w):=[01 loglw)], mna(w) :=[O2loglw)]
so that

e~ (), M) ()0 and )~ (w)O2,

Then we define a function e, : Zy — R by

1, if m < ny(w);
(6.6) ew(m) = 3 erlm=—mi(w) if n1(w) < m < na(w);
<w>(17ﬁ)(1/279)+497 ifm > n2(w)'

From the choice of the constants above, this function varies slowly satisfying

ew(m) <eu(|m—m/|+2) < e(lm=—m/+2)/20
ew(m’)

(6.7)

. . . m2d+d +1 2d+d' +1
We define the family of linear maps E, , : R(I7y7z) — R(I7y7z)

m € Zy by

for w € Z and

Ew,m(xayuz) = (,T, ew(m) Y, Z)
From the definition, this family interpolates E, and the identity map in the sense

that By, = Id if m < ny(w) and E,, ,, = E, if m = na(w).
* . Tpdd+2d +1 _, R4d+2d'+1 _ :
Let D*E,, , : R(m7y7£m7£y752) R(w,y,ﬁz,ﬁy,ﬁz) be the natural pull-back action of

E, m on the cotangent bundle:

(6.8) D*EW,m(JZ,y,fz,{y,fz) = (z, ew(m)ilyv &x ew(m)gy, §2)-



40 FREDERIC FAURE AND MASATO TSUJII

6.2.2. A partition of unity on the phase space. We next define partitions of unity
on the phase space R?jfg ’21 e Recall the periodic partition of unity {g, }wez on
sYsSaySysSz

the real line R and also the function x(-), defined in (@) and (52) respectively.
We define a family of functions

(6.9) X : R‘(*Z:;?g; ey =01 formeZy

by
Xon (2,9, &, &y, &) = x(e™ (G &y Ca D))

where ¢, (y, ,&, are coordinates on R‘(lj‘fg/‘gl ¢.) introduced in (#24). Then we
sY,8258y Sz

define the functions

)N(wﬁm : R?j'fg;g e [0,1] for we Z and m € Z with m = ny(w)
by
~ _ Xno(w) " Qo = (Xng) © D*E;ﬁn) o if m = ng(w);
@ XnoD*E-L — X, 1oD*E;L ) .q, if m > ng(w
w,m w,m—1

where (and also in many places in the following) we understand ¢, (-) as a function
of the coordinate &, in (x,y, &, &y, &,). By this construction, the family of functions

(Ko RELHL 0 [0,1] |w e Z,m € Zy with m > no(w)}

R4d+2d’+1

is a partition of unity on (2 g fn)’
YsEasEy L=

Remark 6.1. The index m above is related to the distance of the support of )’Zw,m
from the trapped set Xy, while w indicates the values of the coordinate &,. When
m = ng(w), the support is contained in the e*(w)?-neighborhood of the trapped
set Xj in the standard Euclidean norm in coordinates introduced in (£24). When
no(w) < m < ny(w), it is contained in the region where the distance from the
trapped set X is in between e™~2 and e™*2. When m > n;(w), the situation is a
little more involved because the modification by the family of linear maps D*E;ﬁn
takes effect. (If we look things through the linear map D*E;;n, we have a parallel
description.)

Next, for o € X, we define the functions Z7, Z7 : R?ﬁ;?gzéz)\{O} — [0,1] by

2,000, 60 62) = 51— 00 (G5, G D)D)

and

Zi(%?/afzafya@) = %(Ordg([(gﬂ?é’y’Cq?g)]) + 1)

Obviously we have Z7(-) + Z72(-) = 1. (Recall [@32)) and (£36) for the definition
of the function ord?(-).) For each m € Z with m % 0, we set

2% ym=270D*E,,, and Z° . =Z% o D*E_, .

—,w,m

Again we have Z9 , ,,.(-) + Z2 , ,,(-) = 1 for each integer w and m > 0.
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Remark 6.2. The supports of Z{(-) are contained in some conical subsets in the
coordinates (¢, éy, (g, ) in the stable or unstable direction. For instance, we have
Z9(x,y,&x, &y, &2) # 0 only if (¢, &y, Gy, ) belongs to the cone Cf+d/’d+d/)(2-2*"/2).
This is true also for the supports of Z{ , ,,(-), but the corresponding cones will be
distorted by the factor D*E,, ..

Finally we define the functions

WG, R [0,1], forweZ meZandoe X
? yYrSxsQy Sz

by
~w,no(w)v ifm = O;
(6.10) v 1% if 0 < [m| < no(w);
. w,m w,m "’ Zgr,w,m7 if m > no(w);
)N(w,\m‘ . Zi,w,m’ if m < —ng(w).

For each o € ¥, the family of functions {V7 ,, | w € Z,m € Z} is a partition of

RAd+2d'+1
(1;y;5z;5y;52)
the approximate value of £,, the absolute value of m indicates the distance from

the trapped set, and the sign of m indicates the (stable or unstable) directions from
the trapped set.

o
w,m?

unity on . For the support of the function ¥ the index w indicates

Remark 6.3. In the definitions above, we suppose that the coordinates (w, &, &)
corresponds to those given by the distorted local charts m(lw% in (&7). Note that,
by definition, the supports of the functions W7, ,, in the partition of unity above
will look somewhat regular if m < n1(w) and they become distorted gradually by
the factor D*E,, ,,, as m increase. If m > ny(w) and |w| is large, the supports

of W7  will be strongly distorted. However, if we look things in the usual local

w,m

coordinate charts (say, mg",{ without the factor E,, in its definition (&), they will
look reversely: The supports of W7, for m < ny (w) will look strongly distorted
while those for m > ng(w) will look regular in such coordinates.

6.3. The decomposition of functions. Suppose o € ¥. For each u € C*(Uy),
we assign a countable family of functions
U o = W B () w0 w2)) € O (supp UE,,,) € CF(RUHZI L)

forae A, we Z, n € N(a,w) and m € Z, where p,(f,)l o Ii,(lw% fora € A, w € Z and

n € N(a,w) are those introduced in Subsection 5.5 and V¢ ,, for w,m € Z are those
introduced in the last subsection. For simplicity, we set

d={i=(aq,w,n,m)|a€ A, weZ, neN(a,w), meZst.m=0or |m|>ng(w)}

and write
o

uj =g ynm forj=(a,w,n,m)ed.

We will refer the components of j = (a,w,n,m) € J as
a(j) = a, W(J) = w, n(J) =n, m(j) = m.
Also we set, for j € J,

(6.11) pj:= pfl“()j(i)g(j), P = ﬁg‘()j(i)g(j), Kj i= A and W{:= W7
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Then the assignment mentioned above can be regarded as an operator
17 : C*(Uy) — P L2(supp Ue), T7u= (uf)jeg-
Jjed
This is of course injective on C*(Kj).
Remark 6.4. Since the intersection multiplicities of
{supp WG, o tmez and  {supp p) o (k) 7! [a€ A,n e N(a,w)}
are bounded by absolute constants and since the functions p((lw% are smooth in the
z-direction uniformly a, n and w, it is not difficult to see that

2
Dl <Co | D) wf| <Cr Y () Flulfr for ue C*(U)

j€d weZjegiw(i)=w L2 WEZ

for any R > 0, where | -|| z» denotes the norm on the Sobolev space H(Kj) of order
R. (For the definition of the Sobolev spaces using Bargmann transform, we refer
|34, Ch.1].) Hence the range of I” above is indeed contained in ;.4 L*(supp ¥7).

A left inverse of I is defined as
(1) + @y, LA supp 7)) — L2(Uo),  (17)*((u5)sea) = X, (75 - Brug) o 1)
jed
Note that this is not the L? adjoint of I°. The following is not trivial.
Lemma 6.5. (I7)* o (I7) = Id on C*(Ky) for any o € X.

Proof. From Remark [6:4] we can see also that the composition (I7)* o (I7) is well-
defined from C*(Kj) to itself. To prove the claim, it is enough to show

(6.12) Z (5 - B* (V] - B(p; - (uoky)))) o Hj_l =u

jed
for u € C®(Kp). The proof is simple if we take the sum in an appropriate order.
On the left hand side of (612), we first take the sum over j with a(j) = a, w(j) = w
and n(j) = n € N(a,w) fixed. Then the sum is

3 A o (s ((B* 0 M(gw) 0 B) () - wo ki) ) o (w67

a,w,n
where M(q,,) is the multiplication by the function q,. Recall that the partial
Bargmann transform ‘B is a composition of the Fourier transform in the variable
z and the Bargmann transforms in the variable w with scaling depending on the
frequency £,. From this, we see that the operator B* o M(q,) o B above is a
convolution operator which involves only the variable z and commutes with the
action of the fibered contact diffeomorphism (m({fﬁ)_l 0Kgq. In the definition (&IT)) of
ﬁ,(ﬁ)) (+), the latter factor does not depend on the variable z so that the multiplication
by that factor commutes with the operator B* o M(q,,) o B. Using these facts with
(E3) and (EI0), and taking the sum over n € Ny, we see that the left hand side

of (612) equals
3 (Fa - (B* 0 M(g) © B)(pa - (wo k) 0 iy L.

a,w

Taking sum with respect to w € Z and then to a € A, we see that this equals u. [
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6.4. The modified anisotropic Sobolev space X7 (Kj). We define the Hilbert
space K7 (Ky) for r > 0 and o € ¥ as follows. Though the definition makes sense
for any r > 0, we henceforth assume that r satisfies (L.28]) and

(613) (’F — 1)X0 > 4(d -+ d/)XmaX
which corresponds to (£29]), in order to make use of the results in Section [

Definition 6.6. Let K™ be the completion of @jeg L?(supp WY) with respect to
the norm

lulfre = > Wyl D) 27 ulTa for u= (u)ses.
j€g:m(j)=0 jed:m(j)#0
Then let KX™7(Kj) be the completion of the space C* (K ) with respect to the norm

[ullscr. == 17 () [&cre-
For any compact subset K’ ¢ Ky, X7 (K') denotes the subspace of X™?(Kj) that
consists of elements supported on K.

Remark 6.7. From Remark [6.4] and geometric consideration about the position of
the supports of functions vy = \I/Z(j))m(j), we see that the inequality
Culg-r < |ulxre < Clulgn  for any ue C*(Ko)
holds for some R > r and C > 1. This implies that we have
C*(Koy) c H¥(Ky) ¢ X7 (K,) ¢ H % (Ky) c D'(Ky)
where H(Kj) denotes the (usual) Sobolev space of order R.
For convenience in the argument in the later sections, we give a few related def-

initions. For each j € J, we define the Hilbert space K;** as the space L?(supp ¥9)
equipped with the norm

Wre if m(j) = 0;
(6.14) T i) =0;
TRl i m() £ 0.

Then we have
K" = @KJTU for o € X.
j€d
For each j € J, we define
IJ : X7 (Ko) — L*(supp ¥§), Ifu = U{-B(p; uo k;)
so that the operator I is the direct product of them:
(6.15) I7 = P17 : X" (Ko) - K7 = DK
jed jed
Remark 6.8. We could define the modified anisotropic Sobolev space X" (Kjp) in
the same spirit as in the definition of H" (R24+4"+1)  Let 2077 : R24+d'+1 L R be
the function defined by
1/2
W= [(WHo o)+ > 27w

[m|>no(w)
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Then the norm ||ul|sxr.- is equivalent to the norm

1/2

lulloer = > 12857 - B(pl) - wo w2

a€A,weZ,neN(a,w)

This definition looks a little simpler than the definition given above, since it avoids
the decomposition of functions with respect to the integer m. But the definition
that we gave in the text is more useful in our argument.

Remark 6.9. In this section, we have defined the modified anisotropic Sobolev
spaces X7 (Kj) as a completion of the space of C® functions. This is enough for
the purpose of considering the scalar-valued transfer operators £ = LB,O' When
we consider the vector-valued transfer operators L};) ¢» we have to define the similar
Hilbert spaces as a completion of I'*(Ky, Vi ¢). The extension of the definition
is straightforward once we fix some local trivializations of V4 , subordinate to the
local charts k.

7. PROPERTIES OF THE TRANSFER OPERATOR (!

In order to clarify the structure of the proof of Theorem 2.2 we state several
propositions below in this section and then deduce Theorem from them in the
next section. The proofs of the propositions are deferred to the later sections,
Sections QIT0 and [[1l1 Below we mostly consider the case of scalar-valued transfer
operator L' = Lf ;. For the other cases of vector-valued transfer operators £} ,
with (k, £) # (0,0), we put a remark, Remark [[TH] at the end.

7.1. Constants and some definitions. In addition to the constants xq, 3, 6, ©1
and ©9 that we have fixed in the previous sections, we introduce two more constants
t0>03nd60>0.

We take tp > 0 as the time that we need to wait until the hyperbolicity of the
flow takes sufficiently strong effects. Precisely we take and fix ¢y such that

eXo > 10 and f&(Uy) < Ko.
Also we take ¢g > 0 as a small constant and define
(7.1) t(w) := max{eg log{w), to}.

When we consider functions with frequency around w in the flow direction, we look
them in a small neighborhood of a point with size (w)=/?*% in the transversal
directions to the flow. For each fixed time ¢, if we view the flow f§ in such neigh-
borhood, the effect of non-linearity will decrease as |w| — co. By a little more
precise consideration, we see that such estimates on non-linearity remains true for
t in the range 0 < t < t(w) if t(w) grows sufficiently slowly with respect to |w]|, that
is, if the constant €y is sufficiently small. Roughly this is what we want to realize
by choosing small €y. The choice of ¢y will be given in the course of the argument.

Recall that we took the compact subset Ky @ Uy as a neighborhood of the
section e, satisfying the forward invariance condition (B.4]). We define, in addition,

K() ) K1 = é?(Ko) =) KQ = étU(Ko)
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and take smooth functions pg,, px, : Up — [0,1] such that

1, if pe Ky; (p) =
0, ifpe¢k, W7

1, if pe Ko;

(7.2) P, (P) = { 0, ifp¢ K.

We will use these functions to restrict the supports of functions to Ky and Kj.
We introduce the operator Q, for w € Z, which extracts the parts of functions
whose frequency in the flow direction are around w € Z.

Definition 7.1. For each w € Z, let I1,, : K™? — K™ be the operator defined by

u;, if w(j) =w;
J (J) for u = (UJ)jeg.

(ILyu); = {

Then we define Q,, : C*(Ky) — C*(Ky) by
0 = M(pe) o (I7)* o L o T°.

0, otherwise,

From Lemma [6.5] and the choice of the function pg,, we have

(7.3) D Qu=u forueC®(K).

WEZL

Remark 7.2. Since the operator Q, may enlarge the support of functions, each of
Q,(C*(K1)) will not be contained in C*(Ky).

Remark 7.3. The equality (Z3) is valid for any distribution u € D’(K7) if we regard
the both sides as distributions.

In the next definition, we introduce the operator J,,, which corresponds to Ty in
([#49) on local charts (restricted to the frequency around w)..

Definition 7.4. For w € Z and 0,0’ € Y, let Tg_’a/ : K™ — K™ be the
operator defined by

Xno(w) STy if m(j) = 0 and w(j) = w with?? |w| > 3;

0, otherwise,

(74) (T w); = {

for u = (uj)jeg. See @IN) and (EJ) for the definitions of T and X, (). Then
we define

(7.5) T = M(pr,) o I7)* 0 T77 017 : CP(Ky) — C*(K7).
Notice that the right-hand side actually does not depend on o,0’ € X.

Remark 7.5. The multiplication by X, ) in ([T4) is inserted in order that the
operator Tgﬁ", is well-defined as that from K" to K™ (Note that the operator
TH does not enlarge the support of the function in the ¢, direction.) Similarly
the multiplication operator M(pk,) in (Z5) is inserted so that the image of T, is
supported on K;.

Remark 7.6. Since the definition of T;‘Jﬁ”/ above involves only finitely many com-
ponents in effect (and erase the other components), it is easy to see that T, for
each w is continuous from K™ (Ky) to C*(K7).

7.2. Properties of the operators £?, Q, and T,.
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7.2.1. Boundedness and continuity of the operators Lt. First of all, we give a basic
statement on continuity of the family £!. From the fact noted in the beginning of
Subsection 1.5.2] we unfortunately do not know whether £t : X™°(Ky) — K7 (Kj)
is bounded when ¢ > 0 is small. Instead, we prove the following proposition. Note
that, from ([@39), we have

(76) fKT’Jr(Ko) C iKT(Ko) C iKr’i(Ko).

Remark 7.7. Here and henceforth, we write X"~ (Kj), K" (Kp) and X" (Ky) for
the Hilbert space X" (Ky) with o = —1,0, +1 respectively. Similarly we will write
| llscr—, || - lac» and | - |gr.+ for the norms on them.

Proposition 7.8. Suppose that 0,0’ € X. The operator £t : K™ (Ky) — K™ (K)
is bounded if

(7.7) either ()t=0ando’ <o or (ii)t=1ty (and any o,0’).

In the latter case (i), the image is contained in fKT"’,(Kl). Further there exists a
constant C' > 0 such that

|£F: K™ (Ko) — K™ (Ko)| < Ce*
provided that the condition (7.7) holds true.

7.2.2. The operator Q,,. Since the operator Q,, extracts the parts of functions whose
frequencies in the flow direction is around w, the claims of the next lemma is natural.

Lemma 7.9. Suppose that 0,0’ € ¥ satisfy o’ < o. The operator Q. extends
naturally to a bounded operator Q,, : X7 (Ko) — K™ (Ko). There exists a constant
Co > 0 such that

(7.8) D 1Quul3r0r < Colluliers  for ue K (Ky).
wEZ

Remark 7.10. The claim of the lemma above will not hold for the case ¢ = o’

because of the anisotropic property of our Hilbert spaces. (Note that the operator
Q,, involves the coordinate change transformations.)

7.2.3. The operator T,,. From Lemma [L.T4] the (Schwartz) kernel of the operator
T concentrate around the trapped set if we view it through the weight function
W9, Also the operator T, concerns the part of functions whose frequency in the
flow direction is around w. Hence it is not difficult to see that this is a compact
operator. More precise consideration leads to the following lemma.

Lemma 7.11. Let 0,0’ € ¥y. The operator T, extends to a trace class operator
T : X7 (Ko) — K79 (K1). There is a constant Co > 0 such that, for any subset
Z < 7, we have
(7.9) DTyt KN () — K (Kq)
weZ

Further there exist constants Cy > 1 and wg > 0 such that, for each w € Z with
|w| = wo, we have

< Cy.

(a) the estimate
(7.10) CyHw)? < [T« K7 (Ko) — K77 (K1) e < Colw)?

where || - |c denotes the trace norm of an operator, and
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(b) there exists a subspace V(w) < X7 (K1) with dimV (w) = Cy{w)? such
that
. wl|[geror = O "W Koo or all u € w).
7.11 Toott| e Gyt llueV
Further there exists a constant C, > 0 for v > 0 such that
(7.12) |(Teotty Ter)acre | < Cuw’ = w)™ - ufocro 0] scro
foruwe V(w) and v e V(') provided |w|,|w'| = wo.

7.2.4. The transfer operators £'. We give two propositions on the transfer operators
Lt. The first one below is in the same spirit as Theorem E.I7 in Section [

Proposition 7.12. Let 0,0’ € Xg. There exist constants € > 0 and C,, > 1 for any
v > 0 such that, for w,w’ € Z and 0 < t < 2t(w), we have

(713) [T 0 Llo T, : K" (Ko) — K" (K1)| < Colw’ —wd™,

(7.14)  [(Qu — Tur) 0 L' 0 Ty : K" (Ko) — K™ (Ko)| < Colw)™(w’ — wd ™,
(7.15) [T 0 L8 0 (Qu — T) : K" (Ko) — K™ (K1) || < Cplw) ™ —w)™"
and, under the additional condition (7.7) on t, also

(7.16) |(Qur —Tur) 0L 0(Qu—To) : K" (Ko) — K7 (Ko)|| < Cre X w —w)™".
In particular, from the four inequalities above, it follows that

(7.17) Q0 0 L8 0 Qy + K17 (Kg) — K7 (Ko)| < Cule — 'y

for w,w' € Z and 0 < t < 2t(w) satisfying (7.7) with respect to o and o’.

We need the next proposition when we consider the resolvent of the generator
of £'. This is essentially an estimate on £! for negative ¢ < 0. The transfer
operators £ with negative ¢t « 0 will not be a bounded operator on our modified
anisotropic Sobolev spaces. But, since T,u for u € X™?(Kjy) is a smooth function
as we noted in Remark [T.6 its image £'(T,u) for ¢ < 0 is well defined and smooth.
More precise consideration leads to

Proposition 7.13. Let 0,0’ € ¥y. There exist constants e > 0, Co > 0 and C,, > 0
for any v > 0 such that, for u € X"?(Kp), w € Z and 0 < t < 2t(w), there exists
v, € fKT"’/(Kl) such that

(7.18) L5 0, — Tou|acre < Colw)™|ulscre

and, for w' € Z and 0 < t' < t,

(719) 190 £ vulgrer < Ol — ) ulire,

(7.20) 1(Qur = Tur) 0 £ v lgerer < Cudwr) ™’ — w) ™"t scree

7.2.5. Short-time estimates. The next lemma is a consequence of the fact that the
component Q,u of u € X7 (Ky) has frequency close to w in the flow direction.

Lemma 7.14. Suppose that 0,0’ € X satisfy o' < o. There exists a constant
Coy > 0 such that, for we Z and 0 < t < iy,

(7.21) (e™™t Lt — 1) 0 Q,, : K7 (Ko) — K™ (Ko)| < Cot.
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For the generator A :=limy_, (L' — 1)/t of L', we have, for u e X" (K),

(7.22) D7 lGiw = A) 0 Quul2, . < Colulfere
WEZ

and

(7.23) Z 9y o (iw — A)uH?{N,, < Colu|3cro-
WEZ

Further the claims (7.23) and (7.23) remain valid when Q,, is replaced by T,,.

Remark 7.15. For the vector-valued transfer operators L‘,;Z with (k,¢) # (0,0),
we consider their action on the Hilbert spaces given in Remark and prove the
propositions parallel to those stated in this section, except for Lemma [Z.11] and
Proposition [[. I3l The extensions of the proofs given in later sections to such cases
are straightforward. We will not need Lemma [[TT] and Proposition for the
vector-valued cases.

8. PROOF OF THE MAIN THEOREMS (1): THEOREM

We prove Theorem [2.2] assuming the propositions given in the last section. Below
we consider the case of scalar-valued transfer operator £* = £§,. For the other
cases, we put a remark, Remark B.T1] at the end of Subsection [R.3}

8.1. Strong continuity and the generator. We define the Hilbert space xr (Ko)
in the statement of Theorem as follows.

Definition 8.1. We define the norm | - on C*(Ky) by

[

to 1/2
Jul g, = (L |qu|§<r,dt) |

The Hilbert space X" (Kp) is the completion of the space C*(K) with respect to
this norm.

From Proposition [Z.8] we have
(8.1) K" (Ko) = K" (Ko)
and the transfer operator £? for t > tg extends to
(8.2) L0 K (Ko) — K72 (1K) © KT (K>).

Remark 8.2. The Hilbert space JNC’”(KO) is contained in Sobolev space H % (Kj) of
some negative order —R < 0, since £ (K" (Kp)) < X"(ft(Ko)) = H E(f°(Kp))
from Remark 6.7 and £7% is bounded from H~f(f(Ky)) to H E(K).

Proposition 8.3. The transfer operators L : C*(Kg) — C*(Ky) fort = 0 extend
to a strongly continuous one-parameter semi-group of bounded operators

L:={£': K" (Ko) — X" (Ky), t = 0}.
For some constant C > 0, we have

(8.3) 1LY KT (Ko) — K" (Ko)| < CeCt fort = 0.
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Proof. The claims follow from the definition of | - | 5., and Proposition[Z.8 Indeed,
for 0 <t < tg, we have

to to t
HLWWT=L|w”wﬁmﬂs=j|wwﬁ@4w+Lnﬂwufw&?w
t

to t
<j M%@m@+cfwm@m@<u+mm@w
t 0

Then we use this estimate recursively to get (83)). The correspondence ¢ — L(u) €
C*(Ky) < 5~CT(K0) for u e C*(Ky) is continuous at ¢t = 0 from Remark [6.71 Since
C*(Ky) is dense in JNCT(KO) by definition, we obtain strong continuity of the semi-
group L by approximation argument. ([

We will denote the generator of the one-parameter semi-group L by
A:D(A) c K" (Ko) — K" (Ko).
By general argument (see [33, §1.4 p.51]), this is a closed operator defined on a
dense linear subspace D(A) < K"(Ky) that contains C*(Ky).

8.2. Meromorphic property of the resolvent. In the following, we suppose
that 7 > 0 is that in the statement of Theorem [Z.2] given as an arbitrarily small
positive real number. The resolvent of the generator A is written

R(s) = (s — A)~".
As the second step toward the proof of Theorem 2.2, we prove
Proposition 8.4. The resolvent R(s) is meromorphic on the region
{s e C|Re(s) > —xo + 7, |Im(s)| > so}

if so > 0 is sufficiently large. Further there exists a constant Cy > 0 such that, for
ws € Z with sufficiently large absolute value, there exist at most Colwy|? poles of
the resolvent R(s) (counted with multiplicity) in the region

(8.4) R(wy) ={seC|—x0+ 27 <Re(s) <1, [Im(s) —wy| < 1}.
Remark 8.5. We actually can prove the meromorphic property of the resolvent

R(s) = (s — A)~! on much larger region. (See Remark [B.10lin Appendix [Bl)

Proof. For each integer wy € Z with sufficiently large absolute value, we prove that
the resolvent R(s) is meromorphic on the rectangle
R(ws) := {s € C | Re(s) > —xo0 + 7 [Im(s) — ws| < 2} D R(ws).

Let us consider the operator

~

Tos = Y Tu: K"(EKo) —» X7 ()

|w—wy|<2¢

where the integer £ will be specified in the course of the argument below. (But note
that we will choose ¢ uniformly for w,.) Below we write C for large constants that
are independent of wy and ¢. From Lemma [[.T1] we have

(8.5) H?rw* LK (Ko — iK”’/(Kl)H < G
and also
(8.6) [T + K7 (Kg) = K™ (K1) |1 < Col - |ws|*
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for any 0,0’ € ¥. We regard the generator A as a compact perturbation of
A= A= x0T, : D(A) > X7(Ko).
As the main step of the proof, we prove

Lemma 8.6. The resolvent R'(s) := (s — A)™! of A’ is bounded and satisfies
|R(8)] 5 < Co for s € R(ws) provided that |w| is sufficiently large.

We postpone the proof of Lemma and finish the proof of Proposition 8.4l
From Proposition B3] the resolvent R(s) = (s — A)7! : K"(Ky) — K"(Kp) is a
uniformly bounded holomorphic family of isomorphisms on the region Re(s) = C;
if we take sufficiently large Cy. Let us write the operator s — A as
(8.7) s—A=(s—A)oU(s) where U(s):=1—yxo(s—A)to ‘}w*.

From Lemma [B.6 the operator (s — A’)~! o ‘j'w* belongs to the trace class and is
holomorphic with respect to s on the region R(wy). Thus the resolvent R(s) extends
as a meromorphic family of Fredholm operators of index 0 to the region R(w.). This
gives the former claim of the proposition. Below we provide a more quantitative
argumen to get the latter claim. To begin with, note that the resolvent R(s) has
a pole of order m at sg € R(ws) if and only if
k(s) := det U(s)
has a zero of order m at s = sg.
Remark 8.7. The determinant det U(s) is well-defined since U(s) is a perturbation

of the identity by a trace class operator. We refer [23] for the trace and determinant
of operators on Hilbert (or Banach) spaces.

From (8.6) and Lemma [8.6] we have
(8.8) log |k(s)] < Collws|? uniformly for s € R(ws).
We may write U(s) ™! for s € R(wy) with Re(s) = C} as
Us) ™ = (s — A)"Ys — A") = Td + xo(s — A) "' o T,
Hence, from (86), we obtain that
(8.9) log |k(s)| = —Col|lws|® uniformly for s € R(ws) with Re(s) = C.

By virtue of Jensen’s formula [2, Chapter 5, formula (44) on page 208], the es-
timates (8.8) and (89) imply that there are at most Cp|ws|? poles in the region
R(wy) € R(wx). This proves the latter claim of the proposition. O

Proof of Lemmal[8.06. For the proof, we construct approximate right and left inverse
of (s — A), that is,

Qr = Qr(5), Q1 = Qr(s) : X" (Ko) — D(A) = K" (Ko)

21\We learned the following argument from the paper [39] of Sjostrand.

22By the Riemann mapping theorem, we find a biholomorphic mapping which maps the region
R(ws) onto the unit disk |z| < 1 so that a point ss € E(ws) with Re(ss) > C1 and Im(ss) = ws
is sent to the origin 0. Then we apply Jensen’s formula to the holomorphic function on the unit
disk corresponding to k(s). (See also the proof of Corollary [8:8])
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for s € R(ws) satisfying |Qr| . < Co, |Qr] 4. < Co and
1

1
(810) Hld— (S — A/) OQRHi{T < 5, HId _QL o (S _A/)Hio" < 5

Once we obtain such operators @1, and g, we can prove Lemma [R.6 constructing
the resolvent R'(s) = (s — A’)~! by iterative approximation. Indeed, if we define

0

Qr=Qr Y (ld—(s—A)Qr)* and Qu:= Y (Id—Qu(s—A))*Qr

k=0 k=0
we have |Qr| . < Cf, |Qrl%. < Cf and
(s—A)oQr=1d, Qro(s—A)=1d, Qr=Qro(s—A)oQr=0QL.
Below we construct Qg satisfying (m The construction of @y, is parallel and
will be mentioned later. First, for u e X" (Ky), we put
to

U = e Stogloy — XO‘}w* J e St Lludt.
0

Then we have || xr+ < Collu| 4., from Proposition 7.8 and Lemma[Z.TTl We define
the operator Qp : K"(Ko) — K" (Ko) by setting

to
Qru:=QWa+QWa+QPa+ J et Ltudt
0

where

We have HQ%C)&HJ@‘ < Colul| g, for k = 1,2,3. In the cases k = 1,2, this follows
from Proposition[.T2l In the case k = 3, this follows from Lemma [7.9] and Schwarz
inequality.

Since (d/dt)(e st Ltu) = —(s — A)e **Lu, we have

to ~ to
(s— A" J e "t Lhudt = u— e "ML + x0T, J e ' Lludt = u — 1.
0 0

Therefore, to prove the former claim in [8I0Q) for Qg, it is enough to show
1) ~ ~
(1) (s = ANQR 0~ Xy j<e Tl or < (1/6)]ull ..
2) ~ ~
(2) (s — AVQR 0 — X <0(Qw — Tw)itl 2 < (1/6)]u] 5.,
3) ~ ~
(3) (s = ANQY T — Xy 20 Qi ger < (1/6)]u .-
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To prove the claims (1) and (2), we write
(s = A)QRi = (5 + x0 — QR —xo(l ~ T, ) Qi
- ¥ [ﬂTwa _ e (s+x0)t(ws) gt(ws) j‘wa]

wiw—wyg|<L
t(ws )

+ Y x(l-T.,) J e Lo T dt

wiw—wy <L 0

and, similarly,
(s—AQPa= Y [(Qw LT — emsten) gmten) o (g Tw)ﬁ]
wiw—wy <L
t(wy) -
+ Z XOJ e Ty, 0L 0 (Q, — Ty, )udt.
wiw—wy | <Ll 0
Then using Proposition and the relation
1-Tu) = D>, (Q-T)+ > ,

Jw—wg|<2¢ Jw—wg|>2¢

we can deduce the claims (1) and (2), provided that £ and |w| are sufficiently large.
To prove the claim (3), we write

s —iw S — 1w

(s—ANQPa= 3] (Qwa—A__“"-me Xo -f”rw*ogwa>.

|w—wy|>£
The sum of the second terms on the right-hand side is bounded in the X"-norm by
1/2 1/2

1 . _ ull %
Co| > — > iw = A) - Q5. | < Co 51/55

|Jw—wy|>£ |w—wy|>£

from Lemma [T 14l Hence, if we take sufficiently large ¢ and then let wy be suffi-
ciently large, we obtain the claim (3).
For the construction of QJ1,, we modify the definition of @ as
to N
@ = e Stogloy 4 XOJ e L o T, udt

0
and replace £L'oT,, and L£!o(Q, —T,) in the definitions of Qg) and Qg) respectively
by T, 0L and (Q,—Tw) oLt Then we can follow the argument above with obvious
modifications and obtain the latter claim in (8I0) for Qy. O

From the argument in the proof above, we get the following corollary, which we
will use later in the proof of Proposition B.12]in Subsection 8.4l

Corollary 8.8. There exists a constant Cy > 1 and wy > 0 such that, if wy € Z
satisfies |ws| > wo, there exists some w € R with |w — wy| < 1 such that

(8.11) sup [ R(p + wi) : X" (Ko) — K" (Ko)| < exp(Colws|?).

pe[—7,7]

Remark 8.9. The estimate (BII) seems very coarse. But for the moment we do
not know whether we can give better estimates.
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Proof. Let us recall the subharmonic function®] log |k(s)] = log|det U(s)| and the
constant C in the proof of the last proposition. By the Riemann mapping theorem,
we take a biholomorphic mapping ¢ : int ]Tz(w*) — D which maps the region é(w*)
onto the unit disk D = {|z| < 1} so that the point sy = C} +iwy € R(ws) is mapped
to the origin 0. Let ¢(2) = log|k(¢~1(2))| for z € D and observe that

(1) ¥(2) < Cp|ws|? uniformly on D from (B.S),
(2) 9(z) is a subharmonic function with at most Cp|ws|? points w; for 1 < i < T
(with I < Cp|ws|?) such that

(3) ¥(0) = log |k(s4)| = —Colws|? from (BJ) and the choice of s, above.

Let v;, 1 < i < I, be the Green’s function on D at w;, which is by definition the
subharmonic function satisfying Ay, = d,,, and ¥; = 0 on dD. Then we see

(=) = to(2) + 2 il2)

where 1y is the harmonic function which takes the same boundary values as .
From the property (3) and the subharmonic property of v, it follows

1 1
Gy LD to(2)|dz| = o LD¢(2)|dz| > (0) = _Colw*|d'

From this and the property (1) above,

1

or | Wiz < Colenl
T Jon

Hence, by Poisson’s formula [2], we get
I
¥(2) = —Colws|* + Y %i(2) for z € p(R(ws)) €D.
i=1

Note that the distortion of the Riemann map ¢ on the compact subset R(wy) € D
is bounded uniformly in wy, that is,

Cotls — 8| < |w(s) — @(s")] < Cols — 8’| for s,5" € R(wy)

because the pairs (R(wy), R(wy)) for different w, are translations of each other.
Since v;(z) = log |z — w}| — Cy, we obtain that

I
log [k(s)| = —Colws|* + >_(log|s — wj| — Co)  for s € R(wy),

=1

23We suppose that subharmonic functions can take value —o0 and that log0 = —o0.
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where w = ¢~ !(w;). In particular we have

w41
J inf log k(i + m)|> du

et \uel-7]

I
= _CO|(U*|d + Z (

i=1
= —Co|w*|d —Col = —Co|w*|d.

wx+1
J log |w — Im(w})|dw — Co)

wg—1

Hence we can find w € [wy — 1, wy + 1] such that

(8.12) inf ] |k(p + wi)| = exp(—Colws|?).

pe[—7,7
For a self-adjoint trace class operator X such that 1 + X is positive, we have
11+ X)) < det(1 + X)L exp(| X | + 1)
because, writing o; > —1 for the eigenvalues of X, we havd*]

e’

det(1+ X) " exp(]| X||me) = H

Applying this to U(s)* - U(s) = 1 + X with setting
X=-Y—-Y*4+Y*.Y and Y =1-Us)=xo(s—A) " oT,,,

g Zmaxe” (Lt o) = e (LX)

we obtain that
IU(s)7H? < Coexp(Co|| X ||1y) - | det U(s)| 72 for s € R(wy).

Estimating the trace norm |X |1 by (88) and Claim 3 and recalling the relation
™), we conclude

IR(s)| < ColU(s)™Y| < Coexp(Colws|?) - |k(s)|71 for s € R(ws).
Therefore (8I2]) implies the required estimate. O
8.3. Boundedness of the resolvent. The third step toward the proof of Theorem

is to prove that there are only finitely many eigenvalues of the generator A on
the outside of U(xo, 7). (See (L) for the definition of U(xo,7).)

Proposition 8.10. There exists so > 0 such that the resolvent R(s) is bounded as
an operator on X" (Ky) uniformly for s € C\U(xo0,7) satisfying Re(s) > —xo + T
and |Im(s)| = so.

Proof. We consider s € C\U(xo, 7) satisfying Re(s) > —xo + 7 and [Im(s)| = so
and take wy = wy(s) so that s € R(wy). We show that, for any u € X" (Kj), there
exists w € K" (Ko) such that |ws, < Coluls. and that

1
(8.13) I(s = Aw —ulzr < Flulz-

By iterative approximation as in the proof of Lemma 8.6 this implies that (s — A)
has a right inverse whose operator norm is bounded by Cp. Then, by Lemma
and the relation (871]), we see that the right inverse thus obtained is actually the
resolvent R(s) and therefore obtain the conclusion of the proposition.

24Note that e®/(1 + ) > 1 for z > —1.
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The following argument is mostly parallel to that in the proof of Lemma In
the case Re(s) > 7, we set

to
w = wy + wy + w3 + J e St Cludt
0
where, letting % = e~*% Lo, we set
t(ws)
(8.14) wy = Z J e~ (X0t £t o T adt,
wiw—wy | <l 0
t(w)
(8.15) wy = Y et Lo (Q, — T, )udt,
wiw—wy | <Ll 0
(8.16) wy = Y (s—iw) Qi

|w—wy|>£

where ¢ > 0 is an integer that we will specify later. In the case Re(s) < —7, we
replace the definition of w; above by

t(ws)
wyp = — Z J eStws)=t) oty ¢

wiw—wy|<L 0

where v, € X" (K) is that in Proposition [.13 with setting ¢ = 0, ¢/ = +1 and
letting u in its statement be 4 € K" +2(K3>).
We can check that |w|3.,. < Collul4, as in the proof of Lemma Since

to
(s — A)f e S Ltudt = u — e 0Ly = u — 1,
0

the inequality (8I3) follows if we prove the claims

(1) (s = A)wr = Xy <t Totll ger < (1/6) .

(2) [[(s = Dwa = 2wy <0 (Y — Tt 30 < (1/6) ]t 1.,

(3) (s = Aws = Xpopy g e Wl zr < (1/6)[uz.-
The proofs of the claims (1) and (2) are obtained from that of the corresponding
claims in the proof of Lemma B0l letting xo be 0 in some places. But, in the case
Re(s) < —7, we need to modify the proof of (2) slightly as follows: We write

t(w)
(s — A)w, = — Z eStws)=t) pty, qt
wiw—wy|<L 0
Z [eSt(W*) Uy — Lt(w*)vw]

wiw—wy|<L

and check that the claim follows from the choice of v,. The proof of the claim (3)
is again parallel to that in Lemma O

Remark 8.11. In the cases of vector-valued transfer operators L‘;M with (k,£) #
(0,0), we can get the proof of the corresponding claims of Theorem by the
argument parallel to that in this section for the case Re(s) > 7. (See Remark
and Remark also.) Note that we do not need statements corresponding to
Lemma [T.TT] and Proposition [Z.13] for these cases.
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8.4. Lower bound for the density of eigenvalues. To complet the proof
of Theorem 2.2 it is enough to prove the following lower bound on the density of
eigenvalues of the generator A.

Proposition 8.12. For any 6 > 0, there exist constants Cy > 1 and wg > 0 such
that, for wy € Z with |ws| = wo, it holds
#{ poles of R(s) such that |Re(s)| <7 and [Im(s) — ws| < |ws|® } - |y |
= CO .

|ws |®
Proof. For wy € Z, we consider the rectangle
(8.17) Rect(wy) = {s€ C||Re(s)| <7, —|ws|® + A < Im(s) — wy < |ws|® — A"}

where we choose A, A’ € [0,2] so that the estimate (8I1]) in Corollary B8] holds
true on the horizontal sides of Rect(wy). Then we consider the spectral projector

,, = ! R(s)ds

wx = 5
2mi ORect(ws)

for the spectral set of A in this rectangle. For the proof of the proposition, it is
enough to show that

1
rankI1,,, > F|w*|d+5 when |wy| is sufficiently large.
0

We prove this claim by contradiction. Let £ > 0 be a constant which we will specify
in the course of the argument (independently of w,). We consider an integer wy
with large absolute value and take a sequence

Wi — |we|?/2 < w(1) <w(2) < <wk) < ws + |wel®/2

so that
|ws]®
4¢
We take the subspace V(w(j)) in Lemma [TTT(b) for each 1 < j < k and set

lw(G+1)—w(§)| =2¢ and k>

V(@(7) = T (Vw(5) « K (Kr) X7 (Ky).
From the choice of V(w(j)) in Lemma [L.TT(b), we have
dim V(w(5)) = dim V(w(5)) = C; ws|.

Let us set

k
Wws) = 3 V(wi)) € X7 (K).

From (ZII) and (ZI2) in Lemma [ZI1l the subspaces V(w(j)) for 1 < j < k
are almost orthogonal to each other (and linearly independent) provided that ¢ is

25As we noted in Remark B35l we actually have proved discreteness of the spectral set of the
generator A only on the region Re(s) > —xo + 7 and |Im(s)| = sg for some large sg. We will see
that this is true for the region Re(s) > —rxo/4 in Appendix [Bl
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sufficiently large. More precisely, if we set 0; = T,;)v; € V( (7)) for any given
v; € V(w(j)) for 1 < j < k, we have

(8.18) D 1@ 8)xre| < Co D) (wl(i) )2 villacre ;5o

1,J:0#] 1,J:0#]

< Col™ Y il5ere < Col™ > [185]5cre-
J J

Hence, provided that £ is so large that Col™! < 1, we see

|w* |d+5

k
dim W (wy) = = Z dim V(w(j)) = 1y

I\Mw

From our assumption (for the proof by contradiction), we can take arbitrarily
large wy € Z and an element @ € W(ws) with ||« = 1 that belongs to kerII,,,.
We express w as

k
b= Tumwli)  with w(j) € V(w(j)
j=1
and, for simplicity, set
W(j) 1= Togyw(s) € V(w(j)) © K (Ky).
Note that we have
(8.19) Co Hw(i)lser < () |ser < Collw(5) o

from the choice of V(w(j)) and the uniform boundedness of the operators T, in w.
We choose an integer 1 < ky < k so that |w(ky)|xr is the largest among |w(j)|xr
for1 <j<k.

For further argument, we introduce an entire holomorphic function

(8.20) Q:C— C\{0}, Q(s):=exp(1 — cos(s)).

This function converges to zero rapidly when |s| — oo in the strip |Re(s)| < 7/3.
More precisely, we have

19(5)] = exp(1 — Re(eos(s))) < exp(1 — exp(|Tm(s)))/4)
for s € C with |Re(s)| < 7/3, because, if s = x + iy with = € [—7/3,7/3],
Re(cos(s)) = cos(z) - cosh(y) = exp(|y|)/4.

Also we can check that y — Q(z + iy) for € [—7/3,7/3] is a function in the
Schwartz class 8(R) and uniformly bounded.

Let b > 0 be a small constant, which we will specify in the last part of the proof,
and define the K" (Kj)-valued function

Y : Rect(wy) = K"(Ko), Y(s) = Qb(s —iw(ks))) - R(s)w.

Since w belongs to the kernel of the spectral projector Il , this is holomorphic on
a neighborhood of the rectangle Rect(wy) and hence we have

a1 [
JRect(ws )
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Below we show that this can not be true. In fact, we claim that, if |w| is sufficiently

large, we have
Qy (f 9(3)6[3) — w(ky)
JRect(ws)

Q= > Q.
wiw—w(ky)| <O
Since w(ky) # 0 from the choice of ky and ([8I9), this proves the proposition by
contradiction.
To begin with, note that we have

1,
(8.22) < g lo(ks) e

g(_"r

where

. . 1, .
(8.23) [9w(ks) — D(k)lscr < 70 ) xr
provided that ¢ is sufficiently large. In fact, since w(ky) is supported on K; and

satisfies (T3]), we may write the left hand side as

Q.0 “Tw(k*)w(k*)

w’|w —w (kg )|>£ 5o

Hence, using (ZI3) and (ZI4)) for ¢ = 0 and also ([B19), we can check ([823).
Let us write 0"Rect(ws) and 0"Rect(wy) for the horizontal and vertical sides of

the rectangle Rect(wy). For the integral (821]) restricted to the horizontal sides,
we have, from the choice of A; A’ > 0 in the definition of Rect(wy) and (820), that

J Y(s)ds
ohRect(ws)

Since [w]lscr < Colws|’|w(ks)|acr from the choice of ks, this part of integral is
much smaller than |w(ky)|xr provided |wy| is large.

To evaluate the integral on the vertical sides, we prepare the next lemma. Recall
that € is the constant that appear in the definition (1) of ¢(w).

(8.24)

< exp ( exp(|w*|‘s - 1)/4> - exp (C0|w*|d) @5
j{r

Lemma 8.13. Suppose that p € R satisfies |p — ws| < |wg|® + 1. There exists a
constant Cy > 0, independent of wyx and p, such that, for 1 < j <k, we have

t(ws) )
R(r + ip)i(j) — J e~ (T HIn Lt ) dt
0

< Colws |7 (5) -
xXr

and further that, for the function v, given in Proposition [T.13 for the setting
oc=0=0,u=w(j), w=w(j) and t = t(wy) < 2t(w(j)), we have
t(wx)

R(—7 +ip)w(j) + Jo e(_T”p)tLt(“*)_tvw(j)dt

< Colws |7 @ (5) acr-
Kr

Proof. Since

t(ws)
(r +ip) — A) (J * e—<f+ip>t5tdt> ] e (rHintlen) gilion)
0
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we obtain, by applying R(7 + ip) to the both sides, that

t(ws) ) )
R(T +ip) = (J e_(T‘H”)tLtdt) + e_(Tﬂp)t(“’*)fR(T +ip)o LHws)
0

We apply this operator to @(j). Since £L!“*)4i(5) is supported on K and satisfies
[@3), we may use (CI3) and (ZI4) in Proposition [[.12] and also Proposition R0
to get the estimate

t(wy) )
R(T + ip)(j) — J e~ TRt L () dt
0

< Coe T () e
xXr
< Colws T @ (7) ] cr-

This is the first claim. We can get the second inequality by a similar manner. Since
t(ws) ) )
(= +ip) — A) J e=THIO )t gy | 2 (TP wR) _ i)
0
we have
t(ws) ) )
R(—7 +ip) o Liwx) — J elmmHipt ptlws) =ty | 4 e(_T‘“”)t(‘”*)R(—T +ip).
0

We obtain the second inequality by applying this operator to v,(;) and using the
estimate

|R(=7 +ip) 0 £ 05y = R(=7 + i) ()] < Colwnl ()l

that follows from the condition (ZIS)) in the choice of v ;). (We choose ¢ so small
that 7eg < 6.) O

From Lemma B.I3] above and the choice of k., we have that

Qe J Y(s)ds
JRect(ws)

k 400 t(w*) . .
_ J dpf Q1 (p — w(ke) e O Et(Tiwlh))iQ o £ (5) dt
=1 0

k 4+ t(ws) ) .

N ZJ dpL Q_ (p — wky)) PNt (T riwlbaiq o piles)=ty gt
+ Ogcr (Jws] 7700 (ot ) | )

where we set

Qo+ (p) = Qb(LT + pi))-

Remark 8.14. The last term Oxr (|ws| 7| @(ky)|%c-) denotes an error term
whose K"-norm is bounded by C'lw, |~ (w(ky)||lsc-. We use this notation below.

Note that the integration along the horizontal sides of Rect(wy) and also the
integration with respect to p on the outside of the interval

[wi — |ws|® + A, wy + |ws|® — A']
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is included in the last error term. (The former is small as we have seen in (824).
The latter is also very small because of the property of the function Q(-) in the
integrand.)

Performing integration with respect to p, we get

Q*f s)ds = Z J Qp g (1) - T EDE Qo LH(5) di
OvRect(w*

Y J Oy (—t) - TRt Qo LHew)ty gt

+ Oscr (Jws | 770D () )

where Qb,i(-) is the Fourier transform of £, 1 (-),

L (" i L (" i .
at) = 5 | P sloldp = - [ BT + ip)dp
—0o0 —o0

y

In both of the sums over 1 < j < k on the right-hand side above, the contribution
from the terms other than j = ky is relatively small provided that ¢ > 0 is large
enough (independently of wy). In fact, from Proposition [[. 12 and the choice of ki,
ol Col oDl Cul- (ks ) |-

xS TalG) —wlka) — 07 = i) — wlks)] — 07

for j # ky and 0 < t < t(wy), with arbitrarily large v > 0. Similarly, from (Z.19)
in the choice of v,,, we have

o o £ai(s

H cl

xS Jalg) — k)| — 07
Therefore the sum of contributions from the integrals for j # ks is bounded by
Cl=V 2| (ky )| 5~ in the K"-norm. That is, we have

t(ws) )
Q*J Y(s)ds = Qu J Qp o (1) - T LG (ky) dt
JvRect(wy) 0

tws) )
+ Q, (JO Qb,—(_t) ce(mT (k) Lt(w*)*tvw(k*) dt)

|94 0 Ll

(K ) -

+ Oner (€771 w7700 - (k) | ) -

We (finally) fix the constant ¢ > 0 so that the last error term is bounded by
|W(ky )| 5 /10 when wy is sufficiently large. (Since we have only to prove Proposition
for sufficiently small ¢, we assume ¢ < Teg.)

Now we let the constant b be small. Then the functions Qb74_r(t) concentrate
around 0 (in the L! sense) and, further, S;OO Qp.+ (t)dt and SO_OO Qp.+ (t)dt become
close to 1/2 by symmetry. By (Z2])) in Lemma [T.T4] we have

et Ll (k) — (ks )5 < Colt]|d () -
Similarly, by (C21]) in Lemma [.T4] and (Z.I8)) in the choice of v, ), we have also
He _T+W(k*))t£'t(w*)_tvw(k*) _ w(k* HJO" < Co(|t| + |w*|_9)\|w(k* HJO"'

Therefore each of the integrations on the right-hand side above become close to
Qu(ky)/2 in X" (Kp) as b — +0 uniformly in wy. Recalling (823]), we conclude
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®2Z2) when |wy]| is sufficiently large, provided the constant b > 0 is sufficiently
small. We finished the proof of Proposition [8.12] (I
9. SOME PREPARATORY LEMMAS

In the last section, we have deduced Theorem from the propositions given
in Subsection The remaining task (in proving Theorem [22) is to prove those
propositions. This is done in this section and the following two sections. This
section is devoted to some basic estimates.

9.1. Multiplication by functions. We begin with considering the multiplication
operator by a function ¢ € C§° (R24+d'+1),

M) : COO(R2d+d/+1) _ COO(R2d-b-d/-ﬁ-1)7 MW)u =1 u
and its lift with respect to the partial Bargmann transform,
(9.1) M) = B o M(¥)) 0 B*.

Below we assume the following setting, which abstracts the situations that we will
meet later.

Setting I: For each w € Z, there is a given set X, of C® functions on R2d+d'+1
such that the following conditions hold for all w € Z and % € X,, with uniform
positive constants C' and C j (independent of w and 1):

(C1) the support of ¢ € X, is contained in
D(zd)(c<w>—1/2+0) @D(d’)(c) @D(l)(c) - R2d+d’+1
where D(P)(§) = RP is the disk of radius § with center at the origin.
(C2) v € X, satisfies the uniform estimate
10908 (w, 2)| < Co )(wHE=N2 vy e R24+4 vz e R,

for any multi-indices a € fo”d/ and ke Z,.

Remark 9.1. The conditions (C2) above means that the normalized family

Xo = {$(w,2) = (@)~ "0, 2) | Y € X}
is uniformly bounded in C*-norm for any k, that is, they look very smooth (or

almost constant) in the variable w if we view them in the scale (w)~'/2. This
observation is basic in the following argument.

Remark 9.2. If we set X, = {p;j | j € J with w(j) = w} where p; are those defined
in (B9) and (611, then the conditions (C1) and (C2) above hold. But notice
that a little stronger condition than (C2) holds: we may replace (w)(=9lel/2 by
<w>(1*29)‘“‘/2 & <w>(1*9)‘“‘/2 in (C2).

In the next lemma, we consider the lifted multiplication operator M ()1 for ¢ e
X precomposed by M(q,,) and approximate it by a simpler operator constructed
as follows. For ¢ € X, let ¥ be the Fourier transform of v along the z-axis:

(9.2) D(w, &) = ! fe_igzzw(w, z)dz, we R ¢ cR.

2
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Note that, from the conditions (C1) and (C2) in Setting I, there exists a constant
Ca,v >0 for any a e Zider, and v > 0 such that

(93) 050(w, £)] < Cap)!=VHe)™  for e Xo.

We then define the operator G(¢) : S(RA+24+1) _, g(RAd+2d'+1) by

C(v)ulw €. £) = j D! € — &) ulw, ((E)/(ED)EL £2) dE.

This is essentially the convolution operator in the variable £, but looks a little
more complicated because of the rescaling mentioned in Remark Recall the
Bargmann projection operator B from ([£20). For brevity of notation, we will write
L2(Wr?) for L2(R4d+2d/+1; (Wr2)2) below.

Lemma 9.3. Let 0 € ¥. There exists a constant C, > 0 for each v > 0 such that,
for any w,w’ € Z and any ¢ € X,,, we have

[M(gur) © (M) =B 0 () 0 M(qw) | L2 (wrey < Colw)™ >’ —wy™
and

[ M(gur) o (M) — €(1)) 0 ) 0 M(qu) | L2(wro) < Culw) (W' — w)™.
Proof. Below we prove the first inequality. The second inequality is proved in
a parallel manner. We write the kernel K (w’,&),,&0;w,&,,€&,) of the operator
M (1)l — P o C(vp) explicitly and find
|K(w/5€’l/lj7§,2;w5€w5fz)|

= agara ((€)71)?

y J (G RTINS [67<<;>|w"7w'\2/27<52>\w"fwﬁ/z A(w,w", €, 52)] dw”

where

A(’LU, '(U”, 5;7 gz)
<€Z>(2d+d')/4 R
=\ o Y

The computation to get the expression above is straightforward. We take integra-
tion with respect to z and perform the change of variables ((€.)/{£.))&w — &uw-
Note that we consider the volume form dm in (ZI8) and that we ignored the term
€8, W' 206w w/2 g9 we take absolute value of the both sides.

We claim that, for any v > 0,

/el w//7w2 -~
(w", €L = &) = el oM i, €] —@)) :

—0/2 /21, —v
04) KW € €6 )] < Oy T P vl
Lwy= 20080 — (6= )6w))” - (8L — &)
provided &, € supp q.» and &, € supp q.,, where the constant C,, > 0 is uniform for
1 e X, and w € Z. Once we get this estimate, we obtain the conclusion by Schur
test. (See the remark below and also recall [@.34]).) Notice that v > 0 in ([@.4]) is
arbitrary large and may be different from that in the statement of the lemma.
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Remark 9.4. Schur test mentioned above reads as follows: For an integral operator
T : L*(RP) — L?(RP) of the form T f(z) = { K(x, y)dy, we have

1/2 1/2
7 22®2) — 220 < (s [k G@lay) (s [I@las)
x )
For the proof, see [30, p.50] for instance.

In order to prove the estimate ([@.4]), we apply integration by parts several times,
regarding the term w” > e~ {(E08~ED8)w" 45 the oscillating part and using the
differential operator

D, = LT W)~ (€€ — (€ )kw) - Our

1+ {w)™HELEL — (€8 l?
Remark 9.5. Here and henceforth, we mean, by “integration by parts regarding
(@) as the oscillatory part”, application of the formula

(9.5)

f 2@ P(z)dz — f (D7) (2)B () dz — f ¢i2(0) (1DY™ B () da

which holds when a differential operator D satisfies (De™?)(z) = '),
To get ([@.4), it is enough to show the estimate
(9:6) 1050 A(w, w", €L, &:)| < Cawlw)™2HV2 ()P —w]lel - €L — €)™

when &, € supp q.» and &, € supp q,,. For convenience, we separate the cases where
w and w’ are relatively close and apart, that is, the cases

(9.7) (1) Kw) = WhHl <) and  (ii) [Kw) — W] > Wy
In the case (ii), the proof is easy: We apply (@3] to differentials of the two terms
in A(w,w”,&.,€,) separately and get ([@.0]) using

(98) (€= &)™ < Colw’ —w)™h < Colw) ™2,
In the case (i), the proof is a little more complicated. Note that we have
(9.9) [KEL/<€2) — 1] < Colw)y ™2

in this case. If we replace the coefficient of &(w”, & —&,) in A(w,w”, &L, &) with 1,
the difference made in A(w,w”, £, €,) satisfies ([0.6]) even with the factor (w)~%?2 on
the right hand side replaced with <w>_1/ 2 and is therefore negligible. Also, noting
the factor e~&=)1w"~w*/2 in [(.), we can replace the coefficient of &(w, & —¢,) with
1, producing a negligible term. Therefore it is enough to prove (Q.6]) supposing

~ ~

A(’LU, ’LU”, é.,lza gz) = 1/}(10”’ 5; - gz) - 1/}(10, é-; - gz)
But this is now an easy consequence of (0.3). O
Corollary 9.6. Let o € . There is a constant C, > 0 for each v > 0 such that
[V (gur) © M) 0 M(g) | 2(wroy < Colw’ —w)™
for allw,w’ € Z and v € X,.

Remark 9.7. Lemma @3] and Corollary [0.0] remain true when we consider the oper-
ators on the space L?(R%4+24+1) instead of L?(W"™?), because we have proved the
estimate (@4]) on the kernel.
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9.2. Transfer operator for nonlinear diffeomorphisms. We now assume the
following setting in addition to Setting I.

Setting II: For each w € Z, there is a given set G, of fibered contact diffeo-
morphisms g : U, — R2+4+1 whose domain U, c R2¢+4+1 contains

DED(C(w)2) @ D) (C) @ DY (C)

where C' is the constant in Setting I and, further, the following conditions hold
for w € Z and g € G, with positive constants C’ and C,, uniform for w and g:

(GO) ¢(0,0,0) = (0,ys,0) where y, € RY satisfies |ys| < C'(w)~ /230,
(G1) For the first derivative of g at the origin 0 € R24+4+1 we have
|Dg(0) —1d|| < ¢’ max{{w)y™ #1270, ()= (=M 2=0=203,
(G2) We have
102 g(w, 2)| < Ca<w>((1—6)(1/2—9)+49)(|a|—1)+|a|9/2 on U,
for a € Zider, with |a| = 1. Further, for the base diffeomorphism
defined in Definition G 0w (Uy) = R of g, we have
(z,2)\Yg
Hag,zg(xa Z)H < Oa<w>|a|0/2 on p(m,z)(Ug)

1’
for a € fo”d .

Remark 9.8. From the numerical relation (5.6) given in Remark [5.7] the conditions
above implies that the diffeomorphisms in G, is close to identity including their
derivatives when we look them in the scale (w)~'/? (or even in a little more larger
scale) in the source and target. The exponents in the conditions above are slightly
different from those in the corresponding argument in the previous paper [I8, Ch. 7].
This is because of the involved definition of the partition of unity )N(w,m introduced
in Subsection But the difference is not essential.

Remark 9.9. We will see in Corollary [0.7] that we can set up the sets G, of diffeo-
morphisms satisfying the conditions as above so that each of the diffeomorphisms
/qj_,l o f&okj with w(j) ~ w(j’) ~ w and 0 < ¢ < 2¢(w) is expressed as a composition
of a diffeomorphism in G, with some affine maps.

For a pair of a function ¢ € X, and a diffeomorphism g € G,,, we consider the
transfer operator

(9.10) L(g,»)u=v¢-(uo g_l)
and also its lift with respect to the partial Bargmann transform
L(g, )" =B o L(g,v) o B*.

Remark 9.10. The assumption on the support U, in Setting II is actually not
indispensable for the argument below. In fact, since we will consider the transfer
operator as above, it is enough to assume that U, contains the support of .

In the next lemma, we would like to show that the diffeomorphism ¢ in the oper-
ator L(g, )" will not take much effect in its action and, consequently, L(g, )"t
is well approximated by L(Id, )"t = M())*. But, actually, this conclusion is
not true if we consider the action of the operator L(g,)% on a region far from
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the trapped set Xy. In order to restrict the action of the lifted transfer operator
L(g,¥)"* to a region near the trapped set X, we introduce the C* function

(9.11) YRR S 0,1], YV(w,€w, &) = X(E) T (Gpr €ys Can D))
where (p, (q, U, §~y are the coordinates defined in ([£.24)).

Lemma 9.11. Let o € .. There exist constant C, > 0 for each v > 0 such that,
for any w,w’ € Z, Y € X, and g € Go,, we have

[M(qur) o (L(g, ¥)"™ = M (1)) 0 M(Y) 0 M(gu) | 2wy < Codw)™ 2w’ — w)™
and

[M(gur) © M(Y) 0 (L(g, )™ = M()"™) 0 M) |2 wroy < Culwy™ 2w’ —w)™.

Proof. Below we prove the former inequality. The latter is proved in a parallel
manner. For the proof, it is enough to show that the kernel K (w',&.,, &L, w, &y, &x)
of the operator

M(gur) o (L(g, ) — M(1)" 0 M(Y) 0 M(qw)
satisfies
(W)= - Ly |w! —w]y~
L) 2KELNEL — (€adbul)” - (& — €LY

for arbitrarily large v > 0. Indeed we can deduce the former inequality in the
lemma as a consequence of ([@I2) by Schur test. From the definitions, we have

(913) |K(w/7§'iua€;;w7§’uhé.2)|

< Uew(w”,z”;ﬁ;,f/z;ﬁw,fz) 0w, 2w, &, £ w,s Gu, €2 )dw” dz2”

(9-12) K (', &, &L w, €, &) < G

where

p(w”, 2" €0, €5 €, &) = ((Eo)bw — €00EL) - w" + (& — €0)2"

and
(w”, 2w, &, 5w, €ws €2)
= G (ED™) - agapa (&™) (", ") - e~ (EDIW" —w' 22— (&)l w—w"|?/2
y [71 n ez‘fzf<w">fi<az>5w-<w"79*1<w">>+<sz>\wfw"|2/2f<5z>|wfa*1(w">|2/2>] _

1

In the last line, the function 7(w) and the diffeomorphism g—' are those in the

expression of the fibered contact diffeomorphism ¢~ !,

g—l(w//, Z”) _ (g—l (,w//)7 Z// + T(ZZ?”)) for (U}//, Z//) _ (:17//7 y//7 Z//)

in Definition Note that we neglected the multiplication operators M(q.),
M(Y) and M(q,) on the right-hand side of [@I3)), though we will remember and
use the fact that the kernel K (-) vanishes unless £, € suppq., &, € suppgq, and
(w,&w, &) € supp Y.

For the proof of the estimate (@.12), we apply integration by parts several times
regarding the term (w”, 2") — el :2"€w.€:80.£2) a5 the oscillatory part and using
the differential operators

L (el — )0
14 Dy =
(9-14) S TR
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and D; in [@3F). In order to get the required estimate ([@I2)), it is enough to show
Ca,k:,u<w>_0/2+‘a‘/2

{wDlw = w" v - {w)lw — w"[)¥

for (w',&,,&.) € supp qur, (w,&w, &) € supp (Y - q,) and w” € p(, ) (supp ).

To proceed, it is convenient to consider the two cases in ([O.7)) separately, as in the
proof of Lemma In the case (ii), we have (@) and hence each application of
integration by parts using Dy yields a small factor (¢ —£,)~! < Codw)~ /2. Hence
it is actually enough to prove [@I5) with an extra factor {(w)™ for some m > 0 on
the right-hand side. But such estimate can be obtained by plane estimates using
the conditions in Setting I and II and also noting (58] for the exponents.

We next consider the case (i) in ([@.7), where we need more precise estimate. Let
us write w, w'n” € R2H4 = R2 QR as w = (2,y), w' = (/,y), v’ = (z",y").
The condition w” € p(,,)(supp®) implies that |2”| < C{w)~ 2. Also the con-
dition (w, &,,&.) € supp Y implies that |y| < C{w)~/?*2?. Below we assume that
lw|, |w'], |w"| are bounded by C{w)~/2*2¢ for some large C' > 0 because, otherwise,
the factor e—(EDlw”—w'I*/2=(€)lw—w"*/2 i3 pounded by C,{w)~" for arbitrarily large
v and we can get (@I5) by easy estimate as in the case (ii). Then, under such an
assumption, the condition (w, &, &.) € supp (Y - q,,) implies |, < Clw)=1/2+20,

Let us write ®o(w”;w', &, &L;w, &w, &) for the term in the square bracket [-] in
the expression of ®(-) above. The required estimate (@.15) follows immediately if
we show

(9.16) 108 B (w07, €y, €10, €0 £2)] < i)™/,

From the condition (G2) in Setting II, we have [0%,7(z")| < Calw)®l?/2 for any
multi-index «. Hence, from Lemma [£.21] and Taylor theorem, we get

|02, 7(2")| < C{w)y~B=1aD(/2=0+6/2)0 it ( < |a| < 2

(9.15) |09, 0%, @(w";w' €&, Esw, &u, &)| <

z

provided |2”| < C{w)Y?~%. Also, by Taylor theorem for g~ at the origin and using
the conditions in Setting II, we have

|g—1(w//) . w//| < C<w>_1/2_39 + C<w>max{—,8(1/2—9),—(1—6)(1/2—9)—29}<w>—1/2+20
+ C<w>((1*5)(1/2*9)+49)+9<w>2(*1/2+29)

< Cw)™V230 by B).
The last estimate gives for instance
o — " 2/2 — = 5™ (") P/2] < Oy V232790 = Oy 10
and further, together with the conditions (G1) and (G2) in Setting II,
|05 (lw = w"?/2 = Jw — g7 (") [?/2)] < Calwy=tH1I27°,

It is now straightforward to show the claim (@I6]) by using the estimates above,
[@9) and the conditions in Setting II. O

9.3. The projection operator Ty and its lift. We next consider the lift THf of
the projection operator Ty defined in ([440). Recall from Corollary that the
kernel of the operator THf* concentrates around the trapped set X if we view it
through the weight W™?. The following two lemmas are direct consequences of this
fact and Lemma We omit the proofs since they are straightforward. (Similar
statements and their proofs can be found in [I8, Lemma 5.1.6, Lemma 5.3.1].)
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Lemma 9.12. Let 0,0’ € 3. There is a constant C, > 0 for each v > 0 such that
M (gur) © V)™, T © M)l 22wy 2wty < Culw) ™3 —w)™

forw,w' € Z and ¢ € X,. Here [A, B] denotes the commutator of two operators A
and B, [A,B] = AoB — Bo A.

Lemma 9.13. Let 0,0’ € X.. There is a constant C,, > 0 for each v > 0 such that
[M(gur) © M(L =) 0 Tg™ 0 Mg )| L2 (wro) s 2wty < Cw)™ W —w)™
and
|M(ger) 0 TG o M(1 - Y) 0 M) L2 (wroy 2 (wro'y < Clw) ™' —wy™
for w,w' € Z and 1) € X,.
We prepare the next elementary lemma for the proof of Lemma [.TT(b).

Lemma 9.14. Let 0,0’ € 3. For any e > 0, there exist a constant ¢ > 0 and wg > 0
such that, for w € Z with |w| = wo, we can find a finite dimensional subspace

(9.17) W(w) < C*({(w,2) € R24+d'+1 | lw| < elw) 240 |2] < €})
with

(9.18) dim W (w) = e{w)?®

such that

(919 IM(X,) 0 Th" 0 M(WZ,0) 0 Bl o ygery > MW, ) 0 Bl gaayrry
for all ve W(w).

Proof. Let N > 0 be a large integer and take the lattice points
S ={neR?|neNw) Y27 |n| < (e/2){w)~ 7},

Clearly we have C~1{w)?® < #5 < O{w)?¥ for a constant C' > 0 which depends
on the choice of N but not on w. For each n € S, we let £(n) = (£,,&,) € R24+d'+1
be the unique point such that &, = w and that ((n,0),£(n)) belongs to the trapped

set Xo, where (n,0) € R?g;?/. Then we define v, € C° (R24+d'+1) By

vn(w,2) = x(272]) - x (26712 ] ) - Gn0),em (1, 2)

where x(-) is the function defined in (52). By definition, the partial Bargmann
transform Boy, of vy, concentrates around the point ((n,0),£(n)) € X, in the scale
{w)1/2 in the variable (w, &, ) and the unit scale in the variable £,. Hence, in the
coordinates ([{24]) introduced in Subsection [£4] it concentrates around the point

En = ((,1,§,&) = (0,2V%w)!*n,0,0)
in the unit scale. Note that we have
(9.20) d(En, Zn) = 2Y2(wWH2 - d(n,n’) = 22N

for different points n # n’ € S.

Let W (w) be the linear space spanned by the functions vy, for n € S. Then the
claim (@I7) holds by definition. It is easy to check that the functions v, for n e S
are almost orthogonal in the sense that

|(Un, U )gere| < Cp - d(En,En)”" formn#n'eS
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with arbitrarily large v. Hence we obtain (@.I8):
dim W (w) = #8S > c(w)*®

provided that we take sufficiently large constant N. From the description (£.51))
of the operator Tif* we see that the claim (@.I9) holds for each v = v, with some
small constant ¢ > 0 uniform for n € S and w with |w| > wy. But, since the
kernel of the operator TH is localized as described in Corollary EE51] and since we
have ([@.20), we can extend the estimate to the linear combinations of them, again
provided that we take sufficiently large NV > 0. O

10. COMPONENTS OF LIFTED OPERATORS

10.1. The lifted transfer operators and their components. The semi-group
of (scalar-valued) transfer operators

Lt = LB,O : OOO(K()) e OOO(K()) fort =0
induces the family of lifted operators:
(10.1) L= =T o Lo () : DK - [[K)7, o0 e
jed jed

As we will see, these operators extend to bounded operators Lto—o  Kro — Ko’
provided t > 0 satisfies (T.7)) with respect to o and ¢’. Hence the operators L' :
K7 (Ky) — K7 (Kp) are also bounded and the diagram

Lt,(THd/

Ko K’,‘)g'/
(10.2) Ia[ IC,,]

:KT’U(K()) L) :KT’U/(KQ)

commutes where I7 : X7 (Ky) — K™ is the natural isometric embedding.

The lifted transfer operator L7 in (I0L)) is expressed as an infinite matrix
of operators:

(10.3) L4y Z L7y ) for u = (uj)jes-
j'ed
The components LJt_U)J—)U : L*(supp ¥§) — L?(supp \Ilj’,/) are the operators written
in the form
t,o—o’
(104) LJ*’J = M( ) 9 % 9 L( f,]—h],’ bt/ . pj—h], ) 9 %*

where L(g, %) denotes the transfer operator defined by (@I0). The diffeomorphism
1y and the function pi 5, in ([0.4) are defined by

(10.5) fioy = /qj_/ o f& o Kj

and

(10.6) Py = oy - (i o (Flag) ™).



THE SEMICLASSICAL ZETA FUNCTION 69

(See ([6I1) and also (&7), (59) for the definitions of x; and pj, pj.) The function

by, (-) in (0.4 is defined from b*(-) in (2.4) by
(10.7) b (w, 2) = b'(f5" o Ky (w, 2))  for (w,2) € supp pl ;.

Remark 10.1. If we replace £L! by L' o M(pk,), i = 0,1, in the definitions above,
we obtain slightly different operators. But the difference is only that p; is replaced
by p5- (pr, ©Kj), i = 0,1, and hardly affects the validity of the argument below. In
this section and Section [IT] we suppose that we are discussing about these variants
in parallel.

From the definition of the partial Bargmann transform and its adjoint, given in
(@I1) and ([@I9), the operator L?’U?’ is written as an integral operator

Lj—a;‘]—)g ngé.z J\K;_‘:]—’U ,57/1;75;;w,gw,gz)u(w;fw,fz)dm(wyguné.z)
where dm is the volume form given in (£I7)). The kernel is expressed as the integral
(10.8)  Kj777 (w', €, 6w, 60, E2)

U7 (0,600 [ Ky (050, € €0, € "
where
k}ﬁj/(w//’ Z”; w/’ 57/1)7 §;7 w, §’LU5 fz)
= (b% - Pl ) (W, 2") - Gur er, e (W, 2") - by e (fiog) ™ (W, 2")).
For further argument, it is convenient to write the last function &} ,; (-) in the form

(10.9) KLy (w", 2" w €l €, £2)

— (w2 € 6w Ew E2) ~(I)(w”,Z’/;w/,f;j,ﬁé;w,fw,fz)

with setting
w20, €, €, €, €) = —(EDEL 0"+ (E)kw - (lg) T (W) = (€ = €)%
and
(10.10)  ®(w",2";w', &, &L w, &w, &2)
= azqrar($€:)7") a2aar (62)7") - exp(i(€L)E, - w'/2 — i€ )Ew - w/2)

x (b - Pl ) (", 2") - exp(i€aTiy (2))

x exp(—(EDlw" —w'[*/2 = (EDI(finy) T (W) — w]*/2),
where 2" € R? is the first component of w” = (”,y") € R2+4" and 755 and
( fj:j,)f1 are those in the expression

(Ffog) MW" ") = () H @), 2" + 7 @)

of the fibered contact diffeomorphism (f{_;)~" corresponding to ([E52).

We may then regard the integral (I0.8) as an oscillatory integral and expect
that it becomes small if the term e*?() oscillates fast with respect to w” or z”.
Though we will give precise statements later, it is reasonable to make the following

observations for the kernel K Jt_'fJ_’a (W', &,,& w, &y, &) at this moment:
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Obl) It decays rapidly as the distance [ — &, | gets large. This is because the
y P g g
term e*?() oscillates fast with respect to z” (while the other terms do not).
Ob2) It decays rapidly as the distance fi_(w) — w'| gets large in the scale
(w(§))~1? ~ (£.)71/2 because so is the last term of (IILI0).
(Ob3) Tt decays rapidly as the distance between (¢.)¢/, and (€. )((Df{_; )5/~ €w
gets large (uniformly for w” € supp pj_,j/) in the scale (w(j))/? ~ (&)Y

This is because the term e*?() oscillates fast with respect to w”.

Remark 10.2. Intultlvely, the observations above implies that the operator Lj_ad_’o

is localized in “energy (or the frequency in z)”, posmon and “momentum” and

that the transport of wave packets induced by ijj_’a is described by the canonical

map ((Df{;)*)~". (Recall the discussion at the end of Section 1)

10.2. Distortion estimates on J_,J . We give some estimates on the differentials
of diffeomorphisms fj:j,. The estimates are quite elementary, but may not be
completely obvious. Note that the main point in the estimates below is the effect
of the factor E,j) in the definition of the local charts x;. We henceforth consider

only those diffeomorphisms f? ., for which the function p}_d/ does not vanish. This

=y
. t, !
is of course enough for our consideration on the operators L7

From the definitions in Subsection .5 the dlffeomorphlsm f 5 1s a fibered
contact diffeomorphism and is written in the form

(10.11) fiay = Egfyy 0 hjmy © Bug)
where

t I | t
(10.12) D5y = Ko © & © Fa)m()-

The local charts x4, are composition of the coordinate charts x, and bijective
affine maps whose derivatives and their inverses are bounded uniformly. Hence we
have, for any j,j’ € J and any multi-index «, that

|8aht (w7 Z)| < an|a|Xmax\t\

w'lj—j
for t € R and (w,z) € Rfd“)l *1 at which hi_;(w,z) is defined. In particular, we
have the estimate

(10.13) |02 Rl (w, 2)| < Colw)?IVt for 0 <t < 2t(w)

if we let the constant €y in the definition of ¢(w) be small.

Recall that there was some arbitrariness in the choice of the local coordinate
charts k, : U, — V, and the associated family of functions p, in Subsection5.3l By
modifying them if necessary (so that the supports of the functions p, o k, become
smaller), we may assume the following estimate on the diffeomorphism h;-!j, for
uniformly bounded time, that is, for 0 < t < 2t,.

Lemma 10.3. For 0 <t < 2ty, j,j’ €J and (w, 2) € E, ;) (supp p;), we have
(DR _5) (w0 B~H = 1d| < 1072

-y

with some linear map of the form

(10.14) B:RYHEE S RYEAEL B(g,p,y,2) = (Ag, ATp, Ay, 2).
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depending on t, j, j and (w, z), where
(10.15) X' < JATHTE < A et eTXmat AT T < A < em0!
and AT =tA~1 as we defined in (7). (Recall [53) for the choice of Xmax-)

Proof. Let us recall the construction of the local chart k, : V, — U, in Lemma [5.4]
and that of k4 4 : A;i — U, in Proposition 5.6l Since we are assuming 0 < ¢t < 2tg,
we may let (the diameter of) V, be small so that the conclusion of the lemma holds
true with 1/100 replaced by 1/200 and the matrix B by

B'(¢,p,y,2) = (Ag, ATp, Ay + B(q,p), 2)
where B : R%;lp) — RZ/ is bounded uniformly for 0 < t < to, j,j € J and
(w,z) € E ) (supp pj). In order to suppress the extra term B, we further modify
the local chart , and Kaa by pre-composing the linear map (3: y,z) — (z,ny, 2).

Then the extra term B becomes n_lB while the other conditions remain valid.

Therefore, letting 7 > 1 large and incorporating 7 ~1B in the error term, we obtain
the conclusion of the lemma. O

Let us recall the affine transformation groups As c A1 < Ag in Definition 4.22]
For each f! ., we take and fix an element a!_ ., € Ay whose inverse carries the

J=J J—
point ff;/(0,0,0) = (xx, ys, 24) € R?z;dz;rl to (0,94, 0), so that
(10.16) fly = (al_;) "t o fl,; satisfies f{;(0,0,0) = (0, yx,0).

Recall, from Lemma[£.24] that the transfer operator associated to a}_,j/ is a unitary

operator on H"™? (Rz‘”d/“) and therefore basically negligible.

Lemma 10.4. There exist constants C > 0 and C, > 0 for each multi-index
o e 727 such that, forj J€d and 0 <t < 2t(w(j)), the following hold true:
(1) For (wx,ysx, 2x) = f{5(0,0,0), we have
s < OGN~ Jyal < C<w(")>*(1/2+3"), 2| < C.
(2) The first derivative of fJ_,J = (a}_y) " o f{y defined in [I0.I6) above at the

J=J

origin 0 € R2+T4'+1 g written in the form
_ aip 0 0 / /
(Dfing)o = [a21 a2 0] : R¥@OR! ®R. > RXOR! OR.
0 0 1

and the entries satisfy

laval < w (@),

az,1ll < (G w (i) P07 ang
< e (WD) IR0,

/
22 EFL with o] = 2, we have

1-6)(1/2—6)+46

(3) For any multi-index o €

3 . o . o o/ (
105 fiay oo < Calw@)!V - (@Dl (i) )
Also its base diffeomorphism (a}_;)~" o

Ha (( ai )T 1 O‘]Ejtﬁj’)H < Cﬁ<w(j)>0\a\/4

Jt_,J, satisfies
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for any multi-index B € Z2*T with |B| = 2

Remark 10.5. For the derivatives of fJ—u/ and fJ_>J
have 0. ff 5/ (x,y,2) = ﬁzfj_,j/(x,y, z) = (0,0,1) because f] ; and fJ_,J, are fibered
contact d1ffeomorphisms.

Proof. Since hj_,;, defined in (I0.I2) is a fibered contact diffeomorphism, its Taylor

expansion up to the first order at the origin is of the form

, with respect to z, we always

€T Zo A111 0 0 xT hl(x)
h}_,j, yl=1{wvo |+ |A21 A22 0 y |+ | h2 (3379)
z 20 Ag)l 0 1 z hs JJ)

We have the following estimates when 0 < ¢ < 2t(w(j)):

(1) |zo| < CLw (i)~ 29, Jyol < CCw(§')) P27 and |zo| <

(2) A < WGP, [Aza] < WGP |Azz2] < emxo! anc@

(3) 19ghi 5 llo < Calw(j W/ for o with |a| = 2, from [I0.13),

provided that we take sufficiently small constant ey > 0 in the definition of #(w).
Remark 10.6. For the second estimate on |yp| in (1) above, recall that the origin

of the local chart k; corresponds to a point on the section e" which is S-Hoélder
continuous.

From the relation (I0.IT)) and the choice of a!

j—j» We see that the diffeomorphism

f Jt_,J, is expressed as

~ T 0
fjt_hi/ y | =[G v
z 0
A 0 o\ [z
+ [ @ )> OAs1 (W) (i) ®A22 0|y
0 1 z
g91(z)
+ [ W) - galz, (w(§))® - )
93(x)

where we put © = (1 — 5)(1/2 — 0) + 40 for brevity and the functions g;(-) for
i = 1,2,3 are those obtained from h;(-) by changing the variable z by a translation.
The required estimates follow immediately from this expression. ([

In the case where w(j) and w(j’) are relatively close to each other, we have

Corollary 10.7. Suppose that j,j’ € J satisfies the condition

(10.17) Kwy = (Wl < {w)'?

with w = w(j) and W' = w(j’). Then the diffeomorphism fJ_>J for 0 <t < 2t(w(j))
is expressed as the composition

(10.18) finy = aiy 0giy 0B,

where

(1) aJ’?_,j, € Ag 1is the affine transform that we chose just before Lemma[10.]]

26We do not need the estimate on ||Az 1] as it is determined by zo and Aj 1.
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(2) Bj_; is a linear map of the form (or {#-8) with t = 0) with the linear
maps A :R? - R? and A : RY — R satisfying (I013),

(3) gJ_,J, is a fibered contact diffeomorphism such that the family

Go = {gj_,j, | w(j) =w, W =w(j’) satisfies (I0-17), and 0 <t < 2t(w)}
fulfills the conditions (G0), (G1) and (G2) in Setting II.

Proof. From the choice of the local coordinate charts x; = Ii((l?j(ji)z(j), we see that

the linear map a1 : R24 — R2¢ in Lemma [I0.4] is written in the form

o (£) = (avorem =) (3 3) (1)

where A : R? — R is a linear map satisfying the condition in (I0.I5) and the
term O((w(j))~#1/2-9) denotes a linear map whose operator norm is bounded by
C{w(j))~P1/2=9 with C independent of j,j" and t € [0, 2¢t(w)].

Let B ; : R2d+d'+1 _, R2d+d"+1 be the linear map

q A 0 0 0\ /g

Bt pl [0 A" 0o offp
=y 0 0 a2 Of]y
z 0 O 0 1 z

where ag 2 is that in the claim of Lemma [I0.41 This corresponds to the differential
DfJ_,J, in Lemma [[0.4] (2). But notice that we omitted the term ag 1, which enjoys
the estimate

laza ]l < Cw(§)y~HmPUED=0 < Clw(j)y =
and is incorporated in the nonlinear term
Gimg = (i)™ 0 fiy o (Bjoy) ™
The claims other than (3) are obvious. We can check that Claim (3) follows from
Lemma[I0.4] by elementary estimates usmg the fact that the expansion rate of fJ_,J
and Bf; (and their inverses) for 0 < ¢ < 2t(w(j)) are bounded by Ce?Xmax! @ <
C{w(j)>?/*, provided that we choose suﬁiciently small €y in the definition of t(w). O

We next consider the functions l;t

pJ_,J, that appears as the coefficient in the
definition (I0.4) of Lj_ad_’o As a bound for this function, we define
(10.19) by = max{|l~)§/(x, v, 2)| | (x,y, z) € supp pj }.

Letting €p in the definition of ¢(w) be small if necessary, we may and do assume
Cy 'bly < bly(x,y,2) < Cobly for (z,y,2) € supp py and 0 < ¢ < H(w(j')).

Corollary 10.8. There exists a constant Co,, > 0 for each multi-indices a and
integer k = 0 such that

(1020)  0335E - plog)lloe < Cably - max{(w(i)y, ()} 0lel/2
forO t < 2t(w(j)). In particular, the family

={(®})~ -b’?, Py | w() = w, W = w(i') satisfies (T017), 0 <t < 2t(w)}
for w € Z satisfies the conditions (C1) and (C2) in Setting I.
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Proof. From Remark [0.2] the functions py and p; satisfy the conditions on the
derivatives stronger than that given in the condition (C2). This is also true for
the function l;Jt, o f{; = b' o xj. Hence we can get the corollary by estimating the
distortion of fjt_,j, using Lemma [[0.4] recalling Remark [I0.5for the derivatives with
respect to z and letting €y in the definition of ¢(w) smaller if necessary. O

10.3. Supplementary estimates on the operator L;ﬁ;gl. We finish this sec-

tion by providing two supplementary lemmas on the components L;f);,’al, The first
one below gives a solid bound on their L?-operator norm.

Lemma 10.9. There exists a constant C,, > 0 for any v > 0 such that

|L:927 « L2 (supp ¥§) — L?(supp ¥ )| < b} - (w (i) —w(i)™

i
for any j,j’ € J and t = 0. (See (II9) for the definition of B}.)

Remark 10.10. Notice that this estimate holds for arbitrarily large ¢ > 0 with
uniform constant C,, and also that we consider the L? norm without weight.

Proof. Below we suppose that fj:j, is extended naturally in the variable z as we

noted in Remark A.201 Take a C*® function py : R?g;d;;rl — [0, 1] which does not

depend on the variable z, py(z,y,2z) = 1 if (z,y, 2’) € supp py for some z’ € R and
py(z,y,2) = 0 if py(x,y,2") = 0 for all 2/ € R. Then we may write the operator

t,U*)O',
L%y

as the composition
t,o—o’ / 7 lif A\ lif
ijj’ 7= M3 ) o M(b} ‘ PE-»j/) o L(fjt—>j/7pj/) i
From LemmalL8] the operator norm of L(f{ ,;, Py )M with respect to the L? norm
is bounded by that of L(f{;,py) and hence by some uniform constant C. Note
that, since the function pj (z,y, z) does not depend on z and since jt_,j/ is a fibered
contact diffeomorphism, this operator will not enlarge the support of the function
in the £, direction. Hence, for the proof of the lemma, it is enough to show
[V - iy )™+ L2 (5upp quog)) — L2 (SUpP quo())| < Cubfy - {w (i) — w(@)) ™
for any ¢t > 0 with a uniform constant C,, > 0. Since fjt_)j, is a fibered contact
diffeomorphism and is just a translation in the lines parallel to the z-axis, there
exists a constant Ci > 0 for each k > 0 such that

Hﬁf(l;j/ 'ijeﬁj/)Hoo < Ckl;f]f, for any ¢t > 0.
If we set ¥ = b, - pl_, and let ¢)(w,&.) be that defined in ([@.2), we have
sup [ (w, £.)] < Crbl(E.)

with possibly different constant C > 0. Since the partial Bargmann transform B
is a combination of the Fourier transform in z and the (scaled) Bargmann transform
in w, we see that the L2-operator norm of M(b;?/ . pj?_,j/)lift is bounded by

cf (sup 19w, sm) dé. < Cibu (i) — w(i)y -,
|w(@)—w(@)|—2<|é|<|w(@)—w(@)|+2 \ w

This is the required estimate. O
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In the next lemma, we give a coarse estimate on the component L;f)j—fgl. This
is a crude estimate and will be used to get rough bounds for components that are
far from the trapped set X. (So we do not pursue optimality in any sense for this

lemma and its consequences.) We set

1/2 /
§(w, €)= (wH1F0/2. <<w>1/2*49|§w|> for w e Z and &, € R24+4
so that
<W>(1+«9)/27 if |§w| < <w>71/2+49 :
(WyH=GRP - ((wyleuDM?, if [€w] > (wy™ /240
We actually state the lemma for the operator B o L( f] ., l~)§, Py ) o B*. Recall

t,o’—»a'/ PR . P . ’
from (I0.4) that Ly %, is just this operator followed by the multiplication by W .

6(&),&”) ~ {

Lemma 10.11. The operator B o L( f{;, l;j/ - Py ) 0 B* for any j,j' € I and

0 <t <2t(w(j)) is written as an integral operator of the form

(% © L( fjt—>j/7 Bj/ ! pj—q/ ) © %*)u(wlv g{uv g,lz)

dw" dz"
= J ( K(’UJ”, Z”; ’LU/, 57/417 6;, w, fﬂw fz)wi)Q) u(w, ng §z)dm(w, €w, gz)

supppl_, (wy—@d+d’

and the function K (-) in the integrand satisfies the following estimate: There exists
a constant C, > 0 for each v > 0 (independent of j,j and t), such that

(10.21) |K(w",2"w', &, & 5w, &0, &)
_ O (3 )™ KEN(DFg Vo)™ 60— €DEL)
@A) T @) —wl) - D —w ) (= w)

with setting w = w(j) and W' = w(j), provided

(10.22) w" € Py (supp p}_d/) and  (w,&w,§) € supp V5.

Proof. In (I0.8)), we have a similar expression for the kernel of L;ﬁj_,’a/ as in the
statement above. But the function kJ?_,j,(-) in (I0.8) does not satisfy the required
estimates. Below we apply integration by parts to the integral in (I0.8) to realize
the required estimate. For simplicity, we consider }tﬁj/ given in (I0I6) in the place
of fjt_,j,. This does not violate the validity of the proof because, from Lemma .7
the action of the lift of the transfer operator for ajf_,j, is that for DTa;?_,j/ composed
with the partial Bargmann projection . We write k{ ,; (-) as (ILY) and apply
integration by parts to it several times, viewing ¢*#(") as oscillatory part and using
the differential operator Dy in ([@.I4]) and

1= 6w, 6) 7 (DI )an) " Ew — (€DEL) - ur
1+ 0(w, &) 2 - [KED((DF] )5 " 6w — EDEL 12

To get the required estimate, it is sufficient to prove
(10.23) |05 05 ®(w”, 23w, €y, €, €0 &)] < Caplw)”FCHO2 . 50, )
for the function ®(-) in (ITI0) and that

(10.24) 19505 (DD {3V )b — EDEL| < Cai - 8(w, €)1 if 0 # &)
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To proceed, we again consider the two cases in (@.1) separately. In the case (ii),
we may suppose that we have an extra factor (w)™ with arbitrary m > 0 on the
right-hand side of (I0.23)) and (I0.24)), as we noted in the proof of Lemma
Then such an estimate can be obtained by crude estimates using Lemma [10.4]

In the case (i), we need more precise estimates, but the estimates are still easy.
The condition w” = (2",y") € P(ay)(supp p}_,;) implies that [z”| < Clw)y=1/2+0,
Then, from Lemma 2T and Lemma [I0.4(3), it is easy to see

.02 735 (2")] < Cod(w, &)1 for any multi-index a # .

Ty N7 (w"”) — w| is bounded by
C{w)H'/?+? for some constant C' > 0, because, otherwise, the last factor on the right-
hand side of (I0I0) is bounded by C,{w)~™ for arbitrarily large m and, hence, we
can prove the claims easily as in the case (ii). Then, under such an assumption, it
is straightforward to check the claims (I0.23) and (I0.24) using ([@9), Lemma 0.4
and Corollary [0.8 O

We may and do assume that |[w” — w| and |(f?

For ease of use in the next section, we derive a corollary from the last lemma.
We write A7 for the supremum of the quantity appearing in (I0.21)),

(8().60) - KEND )5 6w — €OEL])
) >1/2|<fj:j,>- (") —wl) - K2 — /]y ) — (i)

under the conditions

(10.25)

w" € Py (supp ;) and (w,&w,&:) € supp ¥, (v, €L) € supp ¥ .
Corollary 10.12. Let 0,0’ € X. There exist constants C, > 0 for each v > 0

and mg > 0 such that the trace norm of ijJ_’a K7 — KjT,’a/ forj,j €d and
0 <t < 2t(w) is bounded by

(10.26) Cu(A%5 ) - maxc{ (i), (w (i), e, emEymo,

=y
Proof. Note first of all that the claim is a crude estimate as we admit the factor
max{(w(j)), w(’)), e™d, emmo - Consider j,j’ € J and 0 < ¢t < 2t(w) and let

H : R‘(li?dgj)l — R be the function

H(w5€w752)
= nf{(€: — €2 - L€V 6w — LD - L&D Plw —w"]) | (w", €1, €Y) € supp UF ),

4d+2d +1
Rwe..e0)

the function 5. We regard the operator Lj_a)J ' as the composition of
(10.27) M(H ") 0B o L(ff 5,0 - pl;) 0 B* 1 K7 — LA(RIH24+1)
and
(10.28) M(¥5) 0B o M(py) 0 B* o M(H") : LA(R*H24+1) — K7
for some large ¢ > 0. We already have estimates on the kernels of
% o L(fjt_,j/, Bj/ . pj-’J/) o %* and % o M(ﬁj') 9] %*
in Lemma [[0.1T] and (in the proof of) Lemma respectively. With using those
estimates, we see that, if £ is sufficiently large, the kernels of these operators are

which measures the distance of a point (w, &, &;) € from the support of
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square-integrable as functions on (R4d+2d/+1i2 and therefore the operators (I0.27)
and (I0.28) are Hilbert-Schmidt operators?]. Their Hilbert-Schmidt norms are
just the L2-norm of their kernels and easy to estimate. Indeed, for a very crude
bound for the volume of the supports of vy and \113.’,,, we may take some power

of max{(w(j)), (w(j’)), e™, ™GV}, Then, from the estimates on the kernels men-
tioned above and the definition of A;ﬁ;g,, the Hilbert-Schmidt norms of the op-
erators above are bounded respectively by

Cu(AT7 ) - maxc{ (i), (i), e, emymor?

J—d’

and

C max{{w(j)), (w(i’)y, e @, emIymos?

for sufficiently large mg. Since the trace norm of L;f);g, is bounded by the product
of the Hilbert-Schmidt norms of (I0.27) and (I0:2]), we obtain the claim. O

11. PROPERTIES OF THE LIFTED OPERATORS

In this section, we prove several propositions for the lifted operators Lto—o

. . . t 4 . . . .
using the estimates on their components Lj’_a)j_,"’ obtained in the previous sections

and then deduce the propositions in Subsection from them. This finishes the
proof of Theorem

11.1. Decomposition of the lifted transfer operator. We classify the com-
ponents Lj_ad_,’o of the lifted operator L*~°" into three classes, namely “low fre-
quency”, “hyperbolic (or peripheral)” and “central” components. The classification
depends on a constant ky > 0 that we will specify in the course of the argument.
Definition 11.1. (1) A component L§ﬁ;0' is a low frequency component if

(LF) either max{|w(j)],|m(j)[} < ko or max{lw(i")[, [m(i")[} < ko.
Li'f,a'—mr/

(2) A component L;

ponent but
(CT) m(G) = m(F') = 0.
(3) The other components are called hyperbolic (or peripheral) components. That

is a central component if it is not a low frequency com-

. t /. . .
is, a component Ly 7" is a hyperbolic component if

(HYP) max{w(j),m{)} > ko, max{w(j’),m(j’)} > ko and (either m(j) # 0 or
m(j') # 0).

The low frequency components are responsible for the action of transfer operators
on low frequency part of functions (in all the directions) and will be treated as a
negligible part in our argument. The central components are of primary importance
in our argument. In the global picture discussed at the end of Section[Z] the central
part is responsible for the action of transfer operators £! on the wave packets
corresponding to points near the trapped set X in ([2.8). We are going to see that
the central components are well approximated by the linear models considered in
Section [l The hyperbolic components are those components which are strongly
affected by the hyperbolicity and non-linearity of the flow. For these components,

2TWe refer [23} Chapter IV, Section 7] for Hilbert-Schmidt operators.
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we will see that the weight 2770 in the definition (GI4) of the norm on K"
takes effect and makes the operator norms small (at least if the constants ko > 0
and r > 0 are sufficiently large).

Correspondingly to the classification of the components above, we decompose
the transfer operator L%~ into three parts:

t,a-—»o" _ t,a’—>cr/ t,a’—>cr' t7U*>O’,
(11.1) L =L, " +L; + Ly

t,a’—>cr'
L

Lt,a’—mr'
low

where the low frequency part otr

t,o—o’
Lhyp .
central, hyperbolic) components of L7 . For instance, the low frequency part

L5777 is defined by

low
Lt,U*)O', _ Lt,a'—mr' . f _ ).
low U< -y Wi or u = (u;)jes,
J'ed

low

(resp. the central part , the hyperbolic

part ) is defined as the operator that consists of only the low frequency (resp.

Lt,o’—»o'/

;55 is alow frequency component.

where Zlow is the sum over j € J such that

Remark 11.2. In some places below, we will let the constant ko be larger to get
preferred estimates. If we let kg be larger, the components classified as central
and hyperbolic components will become fewer and this will enable us to get better
uniform estimates for the corresponding parts. Of course then the components
classified as low frequency components will increase. But, since we need only a few
simple estimates for this part, this will not cause any problem.

11.2. The central part. For the central components, we prove two propositions.
The first one below is a counterpart of Proposition for the lifted operators
and corresponding to Theorem .17 in the linear setting. Let us recall the operator
T2~ from Definition [[4 For simplicity, we write T for T?~° when ¢’ = o.

Proposition 11.3. Let 0,0’ € ¥. There exist constants ¢ > 0 and C,, > 1 for each
v > 0 such that

T, o L5270 T9 : K™ — K| < C\lw’ — w)™",

ctr

I TS o LEZ ™ o (I, — T2) : K™ — K" < Culw) ™' —w)™,

ctr
H (Hw' - Tg’/) o Lég—n—r' ° Tg KT Kr,a’ H < C’U<w>75<w’ - w>7u
for any w,w’ € Z and 0 < t < 2t(w), and further, if the condition (7_7) with respect
to o and o’ holds, then we have
H (Hw’ . Z/’) o Lt,a—»,;/ o (Hw _ TZ) KO K’r‘7o'/ H < Cl,e_Xot<w/ _ w>_”

ctr

for any w,w' € Z and 0 < t < 2t(w).

Proof. We prove the claims assuming that the condition (I0.I7) for w and w’ holds
because, otherwise, the claims follow immediately from Lemma (See Remark
[[T6l) The following lemma is the component-wise version of Proposition [1.3] in
which we write T, for the restrictions of T¢, = T 7 to each K7 with m(j) = 0.

Lemma 11.4. There exist constants € > 0 and C,, > 0 for each v > 0, independent
L?,o’—»o"

o o
5y withw(j) = w, w(j') =w

of w,w' € Z, such that, for any central component



THE SEMICLASSICAL ZETA FUNCTION 79

and m(j) = m(j’) = 0, we have

ITS o LE7, 7 o T K7 — K7 | < Culw’ —w)™,

-y
ITZ o Li7y™ o (1-Tg) K} — Kj7 | < Cudw) ™/ —w)™",
(1= TZ) o L%y o TE K} — K| < o)/ —w)™"

for 0 <t < 2t(w(j)), and further, if the condition (77) with respect to o and o’
holds for t in addition, then
o’ ta—»a o\ . T,0 r,o” —xot / —v
(1= T%) o LT o (1-T%) 1 K] — K7 | < Cpe 0t — w)y ™.

Proof. We first prove the claim that, if 0 < ¢ < 2¢(w) satisfies the condition (7))
with respect to o and o', then
t,o—o’ r,0o r,o’ / —v
L5 KT = Ky < Cudw’ —w)™.

We express the d1ffeomorph1sm ft. asin Corollary [0.7 and correspondingly write

J=J

,o—0’
the operator LJ_>J as

M(Xno(w(j’)) . qw(j/)) o Llift o Mlift(pjﬂl o ajﬂ )o Llift o Llift : KT"’ N KT;",

where Ly, LU and L are the lifts of transfer operators for a . and

i’ g
sy Gimg
BJt Y respectwely We regard that the rightmost factor Lhtt above as an operator
from K7 to L*(W"7) := L2(RA4+2d'+1 (Wro)2) and that the rest is that from
L?(W™7) to KjT,’a/. For the latter, we also note that T : L2(W"7) — L2(W"7")
is bounded for any combination of 0,0’ € ¥ from Theorem EI7 (1).

Recall the function Y defined in ([@I1]) and also Lemma [ and Remark A8 for

the operator L. Then we see
IM(X g Goy) © La o ML= Y) : LHW™) - K57 | < Culw') ™.

From this and Theorem EETT (2) for LU, we see that the difference between the
Lt ,o—0o’
=3

M(X g (@) Go)) @ La' o [MY) oM™ (p_j 0 a5 ) 0 Ly o Lig" : K7 — K7

operator and

is bounded by C,{(w’)~" and hence negligible. By virtue of the factor M(Y"), we
can apply Lemma to the operator in the square bracket [-] above. Since LIt
and ngt preserve supp q,(j) and supp q,;) respectively, Lemma .11 together with
Corollary and Corollary (0.8 yield the estimate that the operator norm of the
operator above other than the rightmost factor LU is bounded by C’UZ;J?,@J’ —w)”.
On the other hand, from Theorem .17, the operator norm of Z;J?, - LM s bounded
by a constant Cy. (For this, recall the definition (&) of the operator L! appearing
in Theorem LT7l) Therefore we obtain the claim.

Now we prove the claims of the lemma. The proofs of the four claims are all
similar to that in the preceding paragraphs. Below we prove the second claim and

mention for the other cases at the end. We write T, o ijJ_’a (1-TY) as

(112) M(Xno(w(J’))) O Tgft o M(Xno(w(J’)) . QW(j’)) O Lgft
oMt (pt L oal )0 LL‘“ o L"Y(B)o (1 - M (X)) © ‘J'(l)‘ft).

Pj—j © Qj—j
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Then, producing error terms bounded by C,{w)«w’ —w)™¥, we may
e introduce the factor M(Y") before M!ft (_;
e replace Llift by the identity, using Lemma [0.1T],
e replace M( (w(i?))) and M(Y') by the identity, using the localized property
of the kernel of Tt given in Lemma LIS, and
e change the order of Tht and MUt (pt . o at

=3
With these deformations, we reach the operator

(11-3) M(Qw(j/)) ° leift o Mlift( , 0 a ) [r‘Thft Llift(B) o (1 _ Tgft)],

p.]—h] Akl i

j’ Oa}]&*}‘] )

P /), using Lemma [0.12]

noting that Th* commutes with M(quyy) and LY. But this operator is null from
Theorem [£171 We therefore obtained the second claim.

The proofs of the other claims are parallel: We deform the operators to the
form corresponding to (IT3)) in the same manner as above, producing error terms
bounded by C,{w) (w’ —w)™", and then use Corollary [0.6] (with Corollary [[0.8)
and Theorem T (2). (For the last claim, we assume e X0!«) » (w)~¢ by letting
the constant €y > 0 in the definition of ¢(w) smaller.) O

Proposition[TT3lis obtained by summing the estimates in Lemmal[IT4l But there
is a small problem. Notice that, for j € J with w(' ) = w and m(j’) = 0, the number

of j € J satisfying w(j) = w, m(j) = 0 and Lj_ad_’o # 0 will grow exponentially with
respect to t. Hence if we just add the inequalities in Lemma 1.4 we will not

get the claims of Proposition TT.3l This problem is resolved by using the localized
properties of the kernels of the operators Th!* and ij " and also the fact that the
intersection multiplicities of the supports of {pj o Y1jed,w(j) = w} is bounded
uniformly for w. The argument is easy but may not be completely obvious. Since
we will use similar argument later, we present it below in some detail.

Recall the deﬁnition ([[.6) of the functions p} ; (and also that of pt(lw% in Sub-

section B.H). Let Dj 5 and Dj ; be the (w)~(1=9/2_peighborhoods of the subsets

J J=J

p(w,u) (Supp pJ—>J/) and p (Supp (pj—>J/ © fJ—>J )) R%g-;l)i
respectively. For each j € J with w(j’) = w’ and m(j') = 0 (resp. j € J with w(j) = w
and m(j) = 0) and for 0 < ¢t < 2t(w), the intersection multiplicity of the subsets in

(11.4) {Di_y 1jed, w() =w, m@G) =0, Di_; + &}

J—j
(resp. {D}_y | €3, w(i') =o', m(i') =0, Di_y # &)
is bounded by a constant C independent of w, w’ and t, provided that the constant
€o in the definition of ¢(w) is small enough.

Remark 11.5. The cardinality of the sets in (IT.4) will not be bounded uniformly
with respect to t and w, as we have noted. But note that, letting the constant ¢g
be small, we may assume that this is bounded by C{w)’.

In order to discuss about the four claims in Lemma [I1.4] in parallel, we write

ijJ ' for either of the operators

S o L% o TS

i—] w(j)’

(1-— Tw(j/)) ° ijj” 0TZ;, (1-Tg

TU(J ) @) Lt o0’ o (1 — Z’(J))’ or

J—d’
/)) e} L?’Uig (1 — TU(J))

w(j i—j



THE SEMICLASSICAL ZETA FUNCTION 81

Let us denote by 15 ., (resp. 1) the indicator function of the subset

(2,9, 60,6y, &) € RPN (2,y) € DYy (vesp. (2,y) € Di_;)}.

We first approximate the operator Mj_g;g by

(115) Mt 7 = M( AR ) Mt i M(]'J—h]/)a

=y =y
by cutting off the tail part. By crude estimates using the localized properties of
the kernels of the operators T¢, ;) and Lo given in Corollary .18 and Lemma

el
[IO.17] together with the definitions of D ; and DJ_U/, we see that
t a'—>0' t O'—>(T r,0 r,o’ —0 / —v

for j,j’ € J with w(j) = w, w(j’) = &’ and m(j) = m(j’) = 0. (The factor (W)=
could be much better but this is enough.) Since the cardinality of the set (IT4) is
bounded by C{w)? as we noted in Remark above, we obtain

2
> Y M N
(i) = m(i) =0 |jw (i) =w.m(§)=0 K7
J
SO @ W - Y gl

Jiw(i)=w,m(j)=0
for (uj)jeg € K. Therefore the claims of Proposition [[T.3] follow if we prove the
required estimates with ijra replaced by ijra )
By boundedness of the intersection multiplicities of (I1.4]), we have

2
Nt oc—o’
Z Z M;Z v
Frew(i)=wrm(i)=0 | j:w(5)=w,m(j) =0 K
12
t,o— s s 2
<C 3 3 HMJ KT = K Il
Jw(i)=w’,m(j")=0 j:w(j)=w,m(j)=0
and also
> ML )usllicre < Clusliere

Jiw(§)=w'm(i’)=0

Hence, applying the claims of Lemma [[T.4] to the term HijJ_"T K7 — KJ.T,’UI [,

we obtain the required estimates. ([l
Remark 11.6. In the case where (I0I7) does not hold, we have
(W' = wy > max{{w)?, W)} /2,

and we can prove Lemma [[T.4] by crude estimate using Lemma 0TIl We do not
need the argument on the intersection multiplicity as above because we have the
factor (W’ — w)™ < max{(w), (W)} /2. (See Remark [[T.5)

The second proposition below is essentially same as Proposition [[.13] but stated
in terms of lifted operators.
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Proposition 11.7. Let 0,0’ € X.. There exist constants € >0, Co > 0 and C, >0
for each v > 0 such that, for ue X7 (Kp), we Z and 0 < t < 2t(w), there exists
vy, € fKT"’/(Kl) such that
(11.7) L7 0170, — 17 0o M(px,) © (I7)* 0 T 0 I7u|grr < Colw) ™ ufscre
and that, for w' € Z and 0 < t' < t, we have
(11.8) ITLy 017 0 L% vy |l gror < Culw’ —w) ™" |ufgcre,  and
(11.9) | = TZ) 017 0 £ vy ggrer < Codw)™ ' = w) ™" uacre.
Proof. For construction of v, we first set

Uy = Tt = M(pr,) o (I7)* o T 0 I7u € X7 (Kp).
(Recall (C4) and (ZH) for the definition of T,,.) As we noted in Remark [(.6] this is
a smooth function and hence so is the function

Vo 1= iy - £ = L7 (K, © fc?t) )

where pg, : G — [0,1] is the smooth function defined in (2] and is thrown in

because the support of £ ‘u,, for 0 < ¢t < 2¢(w) may not be contained in Kj.

Remark 11.8. Beware that we are considering the transfer operator £~¢ for a neg-
ative time —t < 0, which will not be bounded on X™7.

For the proof of (IT7), we write the left hand side of (IT7) as
117 0 M(pic, (prcq © f" = 1)) o (I7)* 0 TF 0 L7uxcro

Since we are assuming 0 < ¢ < 2¢(w), the function pk, (px, o f5* — 1) is supported
on the outside of the C~1{(w)~% neighborhood of the section Ime,,. (To ensure this,
let the constant €p in the definition of ¢(w) be smaller if necessary.) Hence, by the
localized property of the kernel of T given in Corollary I8 we obtain ([I.7]).

For the proof of (IT.8) and (IT.9), we basically follow the argument in the proof
of Proposition [T.3l Below we assume the condition (I0.I7) because, otherwise,
the proof is obtained easily by using crude estimates. (See Remark [T.61) We take
0 <t <t < 2t(w) arbitrarily and write

I7u = (uj)jeg and 17 (L% 0,) = (vj)jeg respectively.
Then vy for j € J with w(j’) = w’ and m(j’) = m' is written as the sum

weo X LG0T e Ty
Few()=wm()=0
where LJ;(?V)’UHU/ is defined in (I0.4)), but we read (I0.6) as
—(t—t' T—(t—t' g o _ .
pjij' - bj'( E ((pry 0 f&" - Pro © £G°) © Kyr) - pyv - B ijt/jj.

Here we have the additional factor (pg, o gt/ “PK, © fgt/) o Ky, but this hardly

affects the argument below as we noted in Remark [0l The following lemma is
the component-wise version of the claims (II.8) and (IT.9).

Lemma 11.9. There exist constants € > 0 and C, > 0 for any v > 0, independent
of w,w' €Z and 0 < t' < 2t(w), such that we have

o’ —(t—t'), 00’ o r,o ro’ —v
(11.10) [T oLy (" oT7 K7 — K7 | < Oy’ — w)

—j’
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and

(11.11) |1 =TZ5) oLy 77 o Tg K7 — K7 || < Cpw)y (W' —w)™
forj,j €d withw(j) =w, w(§') =, m@(§) =m(’) =0 and further

(11.12) IL e o KT S KT < Cpe M (- w)

=y
forj,j’ € J with w(j) = w, w(§’) = ', m(j) =0 and m(j’) # 0.
Proof of Lemma[I1.d. We apply the argument in the proofs of Lemma [I0.4] and

Corollary [[0.7 to the time reversed system Then, for 0 < t < 2t(w), we get the

—t
decomposition fJ_>J a; 5y © gj_d/ o BJﬁJ, corresponding to (I0.I8), such that

(1) aJ__)J, is an affine transform in the group Ao,

(2) the inverse of BJ_,J/ is a hyperbolic linear map of the form (Im) with the

hnear maps A : R? - R? and A : R — RY satisfying (I013), an
(3) gj_d, is a fibered contact diffeomorphism and the family

S = {a5ly | (i) = .o = i) satisfy [ITD, and 0 < ¢ < 24(w)}
fulfills the conditions (GO0), (G1) and (G2) in Setting IT in Section @
Also, in parallel to Corollary [[0.8 we can show that the family

X = {0 )71 by " pity | w(i) = w, W' = w(i') satisfy @@ID), 0 <t < 2t(w)}
satisfies the condltlons (C1) and (C2) in Setting I in Section [@
Remark 11.10. The main point of the argument below is that, though the lift of

the transfer operator associated to Bj__’f)j, will not be bounded as an operator on
K", we have precise description about its inverse in Theorem [£.I71

To prove (II.I0), we suppose m(j) = m(j’) = 0 and write T, oLJ_(:] t),0=0’ oTY
as the composition of

(11.13) M(X () 0 TH 0 M(VS) 0 B o L ( aity o gty p >) o%B*  and
(11.14) B o LB, 1) 0 B* 0 M(X,u0(0)) © TH™.
Below we regard (ILI4) as an operator from K;” to L*(supp ¢, (Wro'+1)2) and
(ITI3) as that from L?(supp qu, (WT"’/Tl)z) to K;}g/.

From Theorem @17 for B = (B~(*~*))~1 we see that the operator norm of

B o L(B; ", 1) 0 B* o TH : L2 (supp W§, (W™)?) — L(supp g, (W7)?)
is bounded by Co| det A|~!| det A|Y/2. The difference of this operator and (ITI4) is
M(X () in the middle of (ITT4). But, by the localized property of the kernel of
Tii in Corollary I8 and also by LemmalLT} we see that the insertion of M( X (w))
makes only a negligible difference bounded by C{w)~?. Hence the operator norm
of (ITI4) is bounded by Co|det A|~!|det A[*/2. The operator norm of ([LIJ) is
bounded by C’l,bj_,t<w (j)—w())~ for any v > 0, by Lemma[@. 1T and Corollary 0.6l
Since B;,t < C|det A|~!| det A|'/2, the claim (II.I0) follows from these estimates.

To prove the claim (IT.ITl), we express the operator on its left-hand side as the
composition of (ILI3) and ([I.14)), with TH" in (TT.I3)) replaced by (1 — TH). The

operator Thit commutes with BoL(B J_(:; *) , 1)oB* and approximately with M(\I/;’/)
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and M(X,, (), i-e. producing negligible terms bounded by C,{w)™«(w’ —w)™",
by the localized property of the kernel of T§f* in Corollary EEI8 Also we see
that TH® commutes approximately with 9B o L(aJ;tJ-, o gj;tj,, p;_(:ift/)) o B* by using
Lemma [017] Lemma[@I21and Lemma[0.I3] Therefore we get (IT.IT)) from the fact
that T4 is a projection operator.

To prove the last claim ([IIT.I2]), we express the operator on its left-hand side as
the composition of (ILI3) and (ILI4), but now without the term M (X, (.)) o Th*
in (TLI3). On the one hand, from the properties of Tif* we have mentioned above,
the image of (IT.I4)) concentrates around the trapped set X if we view it in the scale
(w'y~1/2 and through the weight function W™ On the other hand, since we have
Im(§)| = no(w') = [0 - log{w’)] from the assumption, the distance of the support
of \Iffi’,/ from the trapped set X is not less than /™0 . (w/y=1/2 > (W/y=1/2+0
Therefore we conclude the claim (IT.12]), applying Lemma (and Lemma [0.3))

—t -t —(t=t) *
for the operator B o L(ajﬁj, © G5 Py ) o B*. O

The claims of Proposition [[I.7] are obtained by summing the estimates for the
components in Lemma [[1.9 We actually have to deal with the same problem as
that in deducing Proposition [T.3] from Lemma 1.4 But we omit it because the
argument is exactly same as that in the proof of Proposition 1.3 ([l

11.3. The hyperbolic part. We next consider the hyperbolic part ij’;; 7 We

decompose it further into two parts. For this, we first introduce the new index

m(j) + (1/2)logw(j)), if m(j) > 0;
(11.15) m(j) = { m(@) — (1/2)loglw()), if m(j) <0
0, if m(j) = 0.

Recall that the frequency vector of the wave packet @u ¢, ¢, (+) is ((€:)€w,§,) and
its distance from the trapped set Xy, disregarding the normalization mentioned in
Remark BB is (€.)Y2(((p, €y Cq» 7). The absolute value of 7(j) is directly related
to this distance (without normalization). Indeed, from the definition, we have

el < (E2((Cpr €y Cgr B)| < ™I for (w, &4, €2) € supp U,

provided that 0 < |m(j)| < ni(w). (In the case |m(j)| > ni(w), we can get a similar
estimate but need modification related to the factor E,, , in the definition of \I!j)
Motivated by the observations (Ob3) in Subsection [I0.1] we introduce

Definition 11.11 (The relation —?). We write j —* j’ for j,j € J and t > 0 if
either of the following conditions holds true:

(1) m(j) <0and m(j’) =0, or

2) () - (i) > 0 and (i) = () + [txo] - 10.

Otherwise we write j <! j'.

Remark 11.12. For the argument below, we ask the readers to observe that the
relation j <! j’ implies that ((D J.tﬁj,)*l)*(supp 7) is separated from supp \I/fi’,/
for ¢ satisfying the condition (777), at least if w = w(j) and ' = w(j’) satisfy
[@I0T17) and that |m(j)|, |m({’)| < n1(w). (For this, Remark [6.1] will be useful.) We

will give a related quantitative estimate in Lemma [[1.15]
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Correspondingly to the definition above, we decompose the hyperbolic part

Li;p_’a into two parts as follows. For ¢t > 0 and u = (u;)jeg, we set
t,o—o’ t,o—o’
Lijyp 1= (‘ Z Lisy )
Und jed
and
t,o—o’ o—o’
thp = Z LJ—>J )
=t jed

where the sum >}, .5 (resp. X5 .5) denotes that over j such that LJt_‘T;U is a

hyperbolic component and that j <* j’ (resp. j <! j’) holds. Obviously we have

t,o—o’ t,o—o’ t.o—ao’
(11.16) Lo =Ly, 0 + L0
By geometric consideration based on the observations (Ob1) and (Ob3) discussed
in Subsection [0l and crude estimates using Corollary [0.12] we will see that a

hyperbolic component LJ_: o satisfying j <! j' is (extremely) small in the trace

norm as well as in the operator norm and, consequently, so is the latter part Li;p_’ i .
The former part Lig; i will not be small if we view it in the L? norm. But, recall
from (G.I4) that the norm on K™ counts the component in K;*” with the weight

270 (provided m(j) # 0). This weight and the definition of the relation <
t,a’—>cr'

allow us to show that the latter part L °"

has a small operator norm.

Proposition 11.13. Let 0,0’ € X.. The hyperbolic part Lfl’;;al C K™ — K™ s
bounded for 0 < t < 2ty provided that (7.7) holds with respect to o and o'. There
exist constants C, > 0 and C!, > 0 for each v > 0 such that

(11.17) |TL,, o Lﬁfp_:i OTL,| < Cpe=(T/2x0t (o — ()
and
(11.18)  [TLy o Ly, o T | < MLy o Liy,7 o Ty < Clw) ™o —w)™

for any w,w’ € Z and 0 < t < 2t(w) provided that the condition (77) holds.

Proof. The first claim follows from the claims (ITT7) and (ITI8). Below we first
prove (ILI7) on the part L 79" We restrict ourselves to the case where (i)

hyp,—
holds for w,w’ € Z by the same reason as in the proofs of a few previous propositions.

First we prove the following lemma for the components.

Lemma 11.14. Suppose that w,w’ € Z satisfy (I0.17). There exists a constant

C, > 0 for each v > 0, independent of w and ', such that, if LJt_U)J—)U forj,j el

with w(j) = w and w(j') = W' is a component of Lfl’;;i/ and if 0 < t < 2t(w)
satisfies (7.7), then we have

(11.19) K7 > K

< CVBE’ : Au(m(.])ﬂw(.])7 m(j/),W(j’); t)

Ly
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where l_)g, is that defined in (I019) and we set

e MMy YV, ifm=#0,m #0;
Ay(myw;m/,w'st) = { min{e "Xt e_T(m/_"O(“’))}(w/ —w)y™, ifm=0,m >0;
min{e~"Xot er(mAno(@) ! — YV ifm<0,m =0.

Proof. In the case Where m(j) # 0 and m(j’) # 0, the conclusion is a direct con-
sequence of Lemma [I0.9 and the definition ([G.I4]) of the weight on KJTU Below
we prove the lemma for the case m(j) = 0, but the case m(j’) = 0 is proved in a
parallel manner.

Recall that the image and target spaces of L j are

K7 = L*(supp \IIJ‘-T,/, 9-2rm)y, K7 = L*(supp ¥§, (W"7)?).

If e~"x0t > e_T(m(j/)_"O( «()) | we get the required estimate easily by Lemma [I0.0]
because C~le "m0W) < WT"( ) < Cet™«) on supp Uy = supp V7, . Below we

assume e~ X0t < e*T(m( i)=no(@@)) But this implies
(11.20) e =0@ld) < exot < (i)Y and so ™) < (w(i)H

and hence both of the supports of \IIJE'// and V¢ are contained in that of the func-
tion Y in (@II). This enables us to use the argument we have used in the
proof of Lemma T4 We express fJ_)J, as in Corollary [[0.7 and note that, if
the non-linear diffeomorphism gj_)j/ were identity, we could conclude (ITI9) with
Ay (myw;m! w'st) = e ™0l w’ — w)™¥ immediately from the precise estimate on
the kernel of LJ_)J, in Lemma and Lemma [£7] But, by virtue of Lemma
and the estimate (@I2) in its proof, we may indeed replace gJ?ﬁJ-, by the identity

producing a negligible error term bounded by C,{w)~ %W’ — w)™". O

We deduce the claim (TTI7) from the estimates (ILI9]) by the argument parallel
to that in the latter part of the proof of Proposition [I1.3l To begin with we note
the following estimate; Since b;?/ < e(/9rxot from the choice of r in (GI3), we have

(11.21) supr (m,w;m’,w';t) < Ce”M2xotly — (N7
and
(11.22) supr (m,w;m/,w';t) < C e~ D™ty — )\v,

t,o—o’

We write Lj_y for the j — j' component of Lhyp 2

for brevity. As in the proof
of Proposition I3, we approximate it by Lj_; = M(15_;5) © Liy o M(Lj-y)

where 1J_)J/ and 1j_,5 are those defined in the paragraph preceding (ITH). It is not
difficult to see

|Ljg — Limy : K7 = K57 | < Cudw) ™ - Ay (m(§), w(§); m(i'), w(i'): 1)
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from the proof of Lemma [[T.J4l Hence, from the uniform boundedness of the
intersection multiplicity of the sets (IT.4]) and Remark [[T.5 we obtain

2
>, Ly u;

m  jiw,m

I, o Ly7 =7 oMul?, . <Y )

m’ jw’,m’

K;";"/
+ Cuw) W' = W)V ulr

for u = (uj)jeg € K™, where 33, ., denotes the sum over j € J such that w(j) = w
and m(j) = m and so on. For the sum of the right-hand side, we have

Sy S Y ]

’ HAYRY ’ 1 ’
m’ jhw' m! | m jiw,m K;‘/,(r
2
< Ce ™02y — )Y Z Z v(w,myw’,m';t)) Z Ly u;
m,m’ j:w’,m’ Jiw,m

K7
< C e ™2 )Y Z Z by - Ay (w, msw’,m's t) [ug HKM
m,m’ jiw,m
< C e ™oy — w>72”2 Z |3 3ere = Cre™™0¢w’ — wd™2 |ul
Jllxy v Kro
m jiw,m

where, besides boundedness of the intersection multiplicities of ([T4]), we used
Schwartz inequality and (II.22]) in the first inequality, Lemma [[T.14] in the second,
and (II2I) in the third. We therefore obtain the required estimate (IT.17).

We next prove the claim (ITIT). We deduce it from the following lemma. Recall

the definition of the quantity AJ_U o preceding Corollary [0.12]

Lemma 11.15. Suppose that o,6’ € X and consider a (non-zero) component
L7 of L7 and 0 < t < 2t(w(j)) satisfying (777). Then there exist con-

J—’J hyp,—
stants o > 0 and Cy > 0 (independent of j,j’ and t) such that
(11.23) AL727 < Comax{w(j), w(j'), eI, elm@y =0,

The conclusion of Lemma is just an estimate between the supports of
(Dff. ;)% (‘113’,/) and ¥{ and hence should be obtained by elementary geometric
consideration. Also, from Remark[IT.I2and the construction of E,, ,,, in Subsection
[62] the claim may be intuitively rather obvious. This is indeed the case, however,
because of the involved definition of W, , , we need to separate several cases and go
through cumbersome estimates that are not very essential. Thereby we defer the
proof of Lemma to Section [Alin the appendix.

Once we obtain Lemma [[T.15] we combine it with Corollary I0.12] to bound the
trace norms of the components of Lf];p i . Observe that the term (A;ﬁj_,’a/)” in the
bound thus obtained dominates the latter factor in (I0.26]) provided v is sufficiently
large. Hence we conclude the claim (TTI8) simply by summing such bounds on the

trace norms. O

Remark 11.16. For the proof of Theorem [2.3] in Section [B] in the appendix, we
will actually need a little more information above the constants C, and C/, in the
claims of Proposition [IT.13] Note that the constant C,, in (III7) comes from that
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in Corollary [[0.9 and can be chosen independently of the choice of ¢y > 0 if we

take larger kg according to to. Hence, by letting ¢y be larger if necessary, we may
suppose that HLE;:i K™ — K" | < e (72X for ¢4 < t < 2ty. Also it is easy
to see that, by letting the constant kg in Definition [[T.1] be larger, we may restrict

the sum over (j,j') € §% and let C/, in (IT.I8) be arbitrarily small.

(T—’O'

From the definition of the hyperbolic part Lt i , its components Lt_) . O satisfy
either m(j) # 0 or m(j’) # 0, that is, either |m( )| > no( () or |m(j )| > no(w(j’)).
Hence either of the supports of ¥{ or \113’, are separated from the trapped set Xg
by the distance proportional to {(w(j))~2*% or (w(j’))~/?*?. On the other hand,
from Corollary T8 the kernel of T4 is localized around the trapped set Xg in the
scale (w)~ /2 if we view it through the weight W™“. These observations lead to

Lemma 11.17. Let 0,0’ € . There exists a constant C,, > 0 for v > 0 such that

(11.24) |IT?, o Lﬁg;a oI, | < Clw)y W —w)™ and
(11.25) |TL,, o L;y";c’ T < Clw) %W —w)™

for any w,w' € Z and 0 < t < 2t(w).
Proof. From the observations made above, it is not difficult to see that
| T, o Lj_":" (K7 — KT;"' | < CLe MO ()W — W)™
for j,j’ € d with w(j) = w, m(j) # 0 and w(j’) = &', m(j’) = 0, and also that
HijJ_"T oTY : K.T"T — K.T;U | <C, e~ Im)! Awy N — W)
for j,j’ € J with w(j) = w, m(j) = 0 and w(j’) = w’, m(j’) # 0. Then we obtain the
claims of Lemma [[T.17 adding these estimates for the components by using the
argument parallel to that in the latter part of the proof of Proposition ITT.3 O

11.4. The low frequency part. For the low frequency part, we prove

Lemma 11.18. Let 0,0’ € X. The low frequency part Lfoi/_’a K™ — K" for
0 <t < 2ty are trace class operators. Further, there exists a constant C, > 0 for

each v > 0 such that
ML o LL7 " 0 TL| < [Ty 0 LS 0 TL iy < Gy ™)™

low low

for any w,w’ € Z and 0 <t < 2t(w).

The lemma above is obtained immediately by adding the estimates on the trace
norms of the components of Lt(’)a_’al given by the next lemma and Corollary I0.12
Lemma 11.19. Let 0,0’ € 3. Suppose that Lj_ad_’o forj,j €3 is a low frequency
component of Lv7~7" and that 0 < t < 2t(w(j)) satisfies m) w.r.t. o and o’. Then
there exist constants vo > 0 and Cy > 0 (independent of j,j’ and t but dependent
on the constant ko) such that

(11.26) AP < Comax{(w(j)), (i), e, ey,

3=

Since we can take large constant Cj in the statement above depending on kg, we
can prove the claims above by crude geometric estimates on the supports of V¢,
We omit the proof because it is straightforward and is obtained as an easier case
of the proof of Lemma in the appendix.
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11.5. The operator T% 7 . Let us recall the operator T% " from Definition [[4l
The following is the counterpart of Lemma [.11]

Lemma 11.20. Let 0,0’ € ¥. The operator TZ_’UI : K7 — K™ is bounded and
its operator norm is bounded uniformly in w. There is a constant Cy > 0 such that

(11.27) 117 o M(1 — pg,) o (I7)* 0 T% : K" — K" || < Colw) ™"
for any w € Z. For the trace norm, we have that
(11.28) |17 0 M(px,) o (I9)* 0 TG - K7 — K™ |1 < Colw)*

for any w € Z. Further, for each w € Z with |w| > ko, there exists a finite dimen-
sional vector subspace V (w) < K™ (K1) with dim V (w) = (w)?/Cy such that

(11.29) |17 o M(pk,) o (I7)* o T o I7u| ror = Cytulgcre  for all we V(w).

Proof. Recall the definition (74) of T% 7 and note that we have a precise de-
scription of the kernel of T4t from Corollary EEI8 Then we obtain the uniform
boundedness of the operator norm of Tg*a/ and the claim (IT.27)) as immediate
consequences. To prove (II.28), it is enough to show, for some constant C' > 0
independent of w, that

12 0 M(prc,) © (1) 0 M(Xig ) 0 T K] = K"y < O

for any j € J with w(j) = w and m(j) = 0, because the cardinality of the element
j € J satisfying w(j) = w and m(j) = 0 is bounded by C{w)1/2=9)2¢ To prove
this claim, we express the operator on the left-hand side above as integration of
rank one operators by applying Corollary EI8 to T4, Applying Lemma to
the j — j component of I o M(pg, ) o (I7)* with m(j) = 0, we see that those rank
one operators are uniformly bounded. Therefore we get the required inequality by
using triangle inequality on the trace norm.

We prove the last claim as a consequence of Lemma Suppose that ¢ > 0
is sufficiently small. Then, for each w € Z, we can choose a finite subset g, in
{jed|w(§) =w,m@) =0} so that #J., > c{w)1/2=92d and that the supports of
pjo /qj_l for j € J,, are separated by distance not less than ¢(w)~ /2% By choosing
the points in J,, appropriately (and also p, if necessary), we may and do assume
that, for some € > 0 independent of w, the function p; for each j € J., takes constant
value 1 on the subset

{(w,2) € RPIH | Jw| < edwy™ 2, |2 < e},

Let W (w) be the finite dimensional subspace given in Lemma and put

V(w):= P (ﬁjl)*(W(w)) c C*(Ky).

J€dw

This is a direct sum because the subspaces on the right-hand side are almost or-
thogona from the assumption made above. Hence we have

dim V(w) = dim W (w) - #d = C5 {w)?
for some constant Cy > 0 independent of w. From (@I9), we have (II1.29) for
v E (/qj_l)*W(w) and j € J,. Then it extends to all v € V(w) again by almost
orthogonality between the images of (K;l)* (W (w)) by I7 oM (px, ) o (I7)*oTe. O

28Here and a few lines below, we mean by “almost orthogonal” that we have the estimate
corresponding to (BI3).
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11.6. Short time estimates. Lastly we give an estimate on the lifted operator
L#°~ for small ¢ > 0. This is the counterpart of Lemma [Z.14.

Lemma 11.21. Suppose that 0,0’ € ¥ satisfies o' < o. Then there exist constants
ty > 0 and C, > 0 for each v > 0 such that

(11.30) |TLy o (e L5~ — L0~ ) o II,, : K™ — K" | < Cpt - (W' — w) ™"

for0 <t <ty and w,w’ € Z. The limit

(11.31) A, = Jim % T o (e7™MLb— — L0770 I,
exists and is a bounded operator from K™ to K™ satisfying

(11.32) AW K™ — K| < Cplw —w)™.

Proof. From the expression (I0.4]), we can write the j — j' component of
(11.33) % Mo (e”™t. L — L% o II,,

with w(j) = w and w(j’) = ' as
1 —iw 7 7
MWy 5),m@)) © B o (; (e t L(fjt_,j'ab} 'P}—»j/) _ L(fjo_,j/,b?/ 'PJQ_,J'/)>) o B*.

Note that we have jt_,j,(x, Y, z) = jo_,j/(ac, y, z +t) for sufficiently small ¢, provided
that the both sides are defined. Therefore, setting Ti(x,y,2) = (x,y,z + t), we

rewrite the operator above in the middle as

1 —iw 7 7
(11.34) N (‘5 tL(f;—»j’a b}/ ) PJ?_,J") - L(fj0—>j/a bJQ/ ) PJQ—U'/))
1

= g(efm —eTh). L(fjtﬁj/v b}/ : Pfﬁj/)

—iw’ 1 /- g
+e WL (fjt—d” n (b} Py — (0 - piy) o T—t))

e*lw't ~
+< . -L(Tt,l)Id)oL(fjoﬁj,,b?/-pgﬁj/).

Correspondingly we decompose ([I1.33)) into three parts Ly, L; and Lo, which have
the first, the second and the third operators on the right-hand side above respec-
tively in their (j — j’)-components.

To prove the former claim in the lemma, it is enough to prove

(11.35) L : K7 - K" | < C{w’ —w)™ for k=0,1,2

uniformly for small ¢ > 0. The case k = 0 is obvious, because we have the same
estimate for IL, o Lt~ o IL, by Proposition [[1.3] Proposition [T.I3 and Lemma
ITIR and because ¢~ (e~ — ¢~'t) is bounded by 2(w’ —w). For the case k = 1,
we note that the only difference between the operators Il o Lto~ o IT, and Ly
is that the multiplication by IS}, . p}_d/ in each component is replaced with that by
(l;j/ Py — (l;J(-J/ -p)_y)oT—;)/t. Since the last function satisfies the similar estimates
for the derivatives and the support as lN)Jt, - pi_5, we can follow the argument in the

previous subsections to get (IT34) for £ = 1. For the case k = 2, we regard the
L9,0—>UI

Ty post-composed by the lift

components of the operator Lo as the operators
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of t71(e7**L(T}, 1) —1d). Since the supports of the functions in K3, is contained
in [w' — 1,0’ + 1] in the coordinate &, the operator norm of

lift
1 —iw’ —1/ i(é.—w' ro’ ro
<¥(e CL(Ty, 1) — Id)) = PoM(t (& 1)) KT - K]

is bounded by 2. Therefore we obtain (IT3H) in the case k = 2.
To prove the latter claim on A, ., we consider the limit ¢ — +0 in the argument
above. Convergence of (II.3T]) is clear from the expression (IT334). Then the

estimate (IT.32) follows from (IT30)). O

11.7. Proof of propositions in Subsection Finally we deduce the propo-
sitions given in Subsection Below we keep in mind that the diagram (I0:2)
commutes and that I7 : X% — K" is an isometric embedding.

Proof of Proposition [7.8. Applying Proposition[IT.3] Proposition[IT.13]and Lemma
IT.I8 to the central, hyperbolic and low frequency parts of L~ respectively, we
see that there exists a constant C,, > 0 for any v > 0 such that

(11.36) I, oL! oML, : K™ — K| < C\dw’ —w)™

for 0 < t < 2t satisfying (T7). (Note that t(w) = to by definition.) By the
definition of the norm on K™ this implies

(11.37) ILE K™ - K" | < C for 0 <t < 2ty satisfying (7).
Then, in view of the commutative diagram (10.2)), we get
1LY K7 (Ko) — K77 (Ko)| < C for 0 < t < 2t satisfying (T7).
We obtain the last claim of Proposition [[.§] by iterative use of this estimate. O

Proof of Lemma[7.9 We consider the inequality (II.36) for the case ¢ = 0, but
with £! replaced by £!oM(pk,), i = 0,1. (Recall Remark [[0.1l) Then we have

(11.38)  [TLy oI o M(pg,) 0 (I7)* o I, : K" — K" || < C,w’ — w) ™
and hence
(11.39) |17 0 M(px,) 0 (I7)* : K™ — K" < C

provided ¢’ < o. From the definition of the norm | - || in Definition [6:6, we have
|u|3cre =X, [T, o I7u| kv and

HQwuHim” = Z |(TL, o I” o M(px,) o (I7)* oI1,) o II,, 0 IUUH?{NX"

Therefore the inequality (Z.8) follows from (IT.38). O

Proof of Lemma[7.11] We deduce the claims from Lemma From uniform
boundedness of T%°" given in Lemma [IT.200 and the fact that T9~°" for different
w acts on different components in effect, there exists a constant C' > 0 such that
the operator norm of

Z TZ—»UI+1 1 N Kr,o'/-f-l

weZ
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for any subset Z < Z is bounded uniformly by C. The claim (Z9) follows from this
and (I1.39) because the operator norm in ([Z.9]) is bounded by that of

Icr' o M(pKl) o (Ia'Jrl)* ° (Z TZ—>U'+1> KT KT’U,.

weZ

We next prove the latter claims (a) and (b) in Lemma [Z.TTl Since
[T 2 577 (o) = K7 (o) < |17 © M(prc,) o (I7)* 0 T - K™ — K s,

the upper bound in (.I0) follows from (II.28). The claim (b) is basically a literal
translation of the latter claim in Lemma The estimates (CII)) and (TI12)
are immediate consequences of (IT.29) and (IT.38)). Finally we see that the lower
bound in (ZI0) is a consequence of the claim (b). O

Proof of Proposition [7.19 We first prove the claim (C.I3). From (II1.39) and the
commutative diagram (I0.2), we have that

|Turolt 0 Ty + K77 (Ko) — K™ (Ko))|
< CI17" o M(pge, ) o (17 +1)* 0 T7 120 1 o Lo~ 1 o T K7 — K7 |
< C|To 1 o Lo o T K — KR
= CHTZ’,H oLt~ +1 o T . K™ — KW/HH
where L7771 is to be read as the lift of £ o M(pk,). (Recall Remark [0.11) We

decompose L7~ +1 a5 in (ITI) and apply Proposition IT.3, Lemma ITI7 and
Lemma [IT.18 to each part, noting uniform boundedness of T?, and the relation

(11.40) M, 0T =T%° oI, = T% " .
Then we obtain the first claim:
|Turol? 0 Ty : K77 (Ko) — K™ (Ko)|
< Cw — W)™ 4+ Clw) W —w)™ + C Y W)™ < O’ — w)™.
We can prove ((.14), (CI3), (CI4) in a parallel manner. Just note that, in proving

the last inequality, we apply Proposition [1.13] instead of Lemma [I1.17 for the
hyperbolic part. (I

11.7.1. Proof of Proposition[7.13 The statements are direct consequences of those

in Proposition [T.7 In proving (ZI9) and (Z20), we use (IL27) and (I1.39) to

deal with the multiplication operators M(pg,) and M(px, ).

11.7.2. Proof of Lemma[7.14 The statements are direct consequences of those in
Lemma [[T.2T] but with £* replaced by £! o M(pg,). (Recall Remark [[0.1] again.)
For the last statement on replacement of Q,, with T,,, we use the relation (T.40).

APPENDIX A. PrROOF OoF LEMMA [TT.T5

As we noted in the text after the statement of Lemma[IT.15] the proof is obtained
by elementary geometric estimates about diffeomorphisms with some hyperbolicity.
We begin with preliminary argument. For definiteness, we assume that

(*1) the condition (ii) in (Z7) holds, that is, ¢ > to, and

(%2) the condition (I0.I7) holds.
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The cases where these conditions do not hold are treated in a parallel and simpler
manner. (See Remark [A2) Further we may and do assume

(*3) min{max{e\m(j | <w(-)>}7max{e\m(j/)|,<w(j/)>}} is large, and
(k) eXmax2tw) < <w>9/10

by choosing large constant kg in the definition of the low-frequency part and small
constant €y > 0 in the definition of ¢(w) in (Z) respectively.

For simplicity, we set w = w(j), w’ = w(j’), m = m(j), m’ = m(j’). Below we
consider points

(A1) w” € supp pi_y,
(A2) p= (wugwugz) = (q7p7y7§q7§p7§y7§z) € supp \I]f]j and
(A3) p = (w,€,.6) = (d.0.y.&.6. &, ) € supp T

and estimate the quantity (I0:25). By changing the coordinates by a transformation
in Ag, we may and do assume

(%5) Pz, (w”) = 0 and pee 2 ((ff_y) 7 (")) = 0

without loss of generality. From the assumption that L! ol

;75 1s a component of

Lt ,o—0’

hyp.—» » We have m - m' # 0 and hence

(A.4) emadImlImly 5 gno(@) 5 C=1¢\e,

We can get the conclusion of the lemma for small g easily by using (A4 if either
1/2 max{|m|,|m’|}/3 1/2 max{|m|,|m’ 3

WP —w"| = emaxlimbIm /3 or (/2| — (fJ—>J) Yaw™)| = emaxtiml il

Therefore we will assume

(%6) max{ ()2 [w —w|, @) jw = (f_5) 7 (w")] } < emlbmbim i,

We prove the following claim under the additional assumptions above.

Sublemma A.1. There exists a constant Cy > 0 such that

(A5) (D Buin) ™ (g (), (Do o) ™ 6w, 62) = (W', (EHENEE) )|
- O 2/3 max{|m|,|m’ |}< > 1/2

where D*E,, , is the linear map defined in (6.3).

We defer the proof of this sublemma for a while and finish the proof of Lemma
We show that w-component of the quantity on the left hand side of (A,
ie. E%m(fvjt_,j/(w) — w'), is much smaller than the right-hand side of (AF). In
the case |m| < n1(w), we have D*E,, ,,, = Id and |fjt_,j, (w) — w'| is much smaller
than the right-hand side of (AJ]) from (%4), (%5), (*6) and (A4). In the case
|m| > n1(w), we have el™ > Cy*(w)®* and hence
| B n (fiy () =w)] < ewo(m) | fiy (w) —w'| < ()t =AO2=0+40

’
J=J

=¥ (w) —w

is again much smaller than the right-hand side of (AJ5).
Comparing Sublemma [A.]] with what we proved in the last paragraph, we see

(A6) (D)) ™ (D) = (€0€L| > (2Cg) ™ el/B maxtimbim’ly (12,
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To finish, we prove
(AT) Gy RO )20, [y (D i)™ (6 ) — <60
> (C) " max{w,w’, el™!, e|m/\}%

for a small constant vy > 0. Clearly the required estimate in Lemma [IT.15] follows
from this claim. In the case (w)/?7%%|¢,| < 2, we may neglect the second factor
on the left hand side and hence obtain (A7) immediately using (A.4) and (A.6).

Thus we consider the case (w)/?~%¢|¢,| > 2 below. In this case, we have
<w>1/2|§w| < emax{|m|,\m'|}+2 ew(|m|)
from (AZ2), (x5) and (*6). Hence it holds
<<w>1/2740|§w|>71/2 _ <w>71/4+29|§w|71/2 > efmax{\m\,|m"}/271<w>20 . ew(|m|)71/2
and the left-hand side of (A7) is bounded from below by
(eCh) N wHB/20.. emax{imhIm /6 ¢ (|m|)~1/2.
Since e,,(|m|) < ermaxtlmlim’ly < gmax{|mlm[}/20 e obtain (A7) again.
Proof of Sublemma[Adl For the points p and p’ in (A2]) and (A3)), we set
(A8)  (#:9:&:&y,&) i= (D*Eun) "' (P) = (D* Eupyn) ™ (w, €, £2),
(Ag) (57,7 gl, é/zv éflya gz) = (D*Ew,m/)il(p/) = (D*Ew%m/)il(w/a 57/1)7 gz);
and also set
(Alo) (‘%7 ga 5:67 gya é-z) = (D*Ew,m)_l (fjjt—j’ (’LU), ((ijjt—j’)i;”)_lgw7 é-z)
= (Ew,m © fjt*)j/ © Ec;,ln(ﬁ))a (Ej,m)il o ((ijtﬁj’):)”)il © Ecj,m(fw)v 62)
The claim of Sublemma [A.T] follows if we prove
(All) |(g’ £m7€u) _ (gl’ (<€;>/<€Z>)élm’ é;)' > 0616(2/3) maX{|m|,|m/|}<w>*1/2-

Here we note that (£.)/{(£.) is bounded because of the assumption (%2).

For the proof of (AIIl), we investigate the conditions on the points (AS]) and
(A1) that come from the choice [(A2)) and (A3) of p and p’. Then we look into
the correspondence from the point (Ag) to (ATIQ).

From the assumptions (%5) and (%6), the points p and p’ satisfy respectively

(A12) (g, p)| < emUImbIm DAY (g ph)| < mexmbIm DSy,

Recall that the function U{ is defined in (€.10) using the coordinates [£24). We

let (Cq, Cps §,€,) and ( » ;,,g’,é;) be the coordinates ([{24]) for the points p and p’
in (A2) and (A.3) respectively. Then, from (A12), we have

(A.13) 160, &)1 = 2420 21(Cy, Go)I | < Cemmelimbim i/ =12
and

(A.14) 1667, 61 — 2120 21(¢, )| < Cemmslimbim s gry-1/2,
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From the former estimate and the condition ([A2), we see that the point (AS)
satisfies the following conditions up to errors bounded by Cemax{imhim’[}/3((,\=1/2.
For the distance from the origin,

(A.15) MWy < (6, 9,65 6y) < MW ifm £ 0,
(A.16) (€09, &p &)l < e )™ iftm =0

where we write &, = (ép, éq); For the direction from the origin,

(A.17) i)l < 2277216 €] iEm >0,
(A.18) 2-272)(0,9)| > |(6,6,) ifm <.

We have the parallel estimates on the point (A9)) as a consequence of (A3).
Next we consider the correspondence from the point (A.8]) to the point (AI0).
By contracting property of fj:j, along the y-axis and Lemma [[0.4(1), we have

(A.19) 7] < e X0 g| + Clew(m) - (w)~(1/2+30),

Recall the diffeomorphism £} ;, in ([0.I2), which is roughly the flow f§ viewed in
the local charts without the factor E,, ,,,. By the relation (I0.11]), we have

(A2O) (gwagyvgz) = (Ej,m)_l © i’ © ((Dhjﬁ‘]’)fb) © (Ejj)_l © Ej,m(éwaéyvgz)

where W is chosen so that (w,z) = E,(w”, 2).

To proceed, let us first consider the case where |m| < ni(w) and |m/| < ny(w').
In this case, we have e, (m) = ey (m') =1, Eym = Ey m = Id and therefore the
correspondence (A.20)) is given by nothing but the map fjt_,j,. Then, by Lemmal[10.4]
we get (AT1)) by simple geometric estimates. Indeed, if we ignore

o the difference between jt_)j, and its linearization at the origin,
e the errors mentioned about the estimates (AI5) — (AI8) and the corre-
sponding estimates on (7', £}, &} ), and

o the difference between (¢ )/(¢,) and 1,

then the conclusion (A1) is an easy consequence of hyperbolicity of
can check easily that the differences above are negligible in fact.

Next we consider the case |m| = n2(w) and |m/| = na(w’), the other extreme. In
this case, we have E,, ,, = E, and E. ., = E. and therefore the correspondence
(A20) is given by the map hi ;. Note that A} ,; is given as iteration of the
maps satisfying the conditions in Lemma [[0.3] and therefore have nice hyperbolic
property. (Note that Lemma [[0.3]is valid only for 0 < ¢ < 2ty.) Then we can get
the conclusion (A1) by essentially same manner as in the previous case.

The situations in the middle, i.e. the case where either nj(w) < |m| < na(w) or
ny(w') < |m'| < no(w’) is slightly more complicated. If ||m| — |m/|| = 2xmaxt, it is
easy to get the conclusion (AII) because the ratio between e!™! and el™'l is much
larger (or smaller) than the expansion (or contraction) given by the correspondence
(A.20). So we may assume |[m| — |m'|| < 2xmaxt. If we have e, (m) = e (m’) and
Eym = Eu m, we can see that the correspondence (A.20) has good hyperbolic
property in the same manner as in the proof of Lemma [I0.4] and hence we can get
the conclusion (A20) again. But, from the slowly varying property (6.7) of e, (m),
it is clear that the conclusion remains true without this assumption. ([l

t

j—i But we
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Remark A.2. In the case where the condition (i) in (7)) holds and 0 < ¢ < to,
we can follow the argument given in the proof above. The only difference is that,
instead of the condition ¢ > ¢ that ensure enough hyperbolicity of f£, we use the
fact that ¢’ < o in the estimates. In the case where the condition (I0IT) does not
hold, the proof is much simpler. We can obtain the conclusion immediately unless
both of |m(j)| and |m(j’)| satisty |m(j)| > na(w) and |m(j")| > n2(w’). But, in such
case, the conclusion is again easy to obtain as we mentioned in the proof above.

APPENDIX B. PROOF OF THE MAIN THEOREM (2): THEOREM 23]

In this section, we prove Theorem[2.3] using the propositions given in Section [0
Below we continue to consider the case £* = Lf ; as in the previous sections. But
we can proceed in parallel in the case of vector-valued transfer operators L}“ ¢, with
(k,£) # (0,0) by regarding them as matrices of scalar valued transfer operators,
as we have noted in Remark 24l (See also Remark [.9, Remark and Remark
BIIl) The argument in this section is essentially parallel to that in [5], where
dynamical zeta functions for hyperbolic diffeomorphisms are considered. The main
idea is to decompose the operators in consideration into two parts: a trace class
part and a “upper-triangular” part whose flat trace is zero. To realize this idea,
we will consider the lifted operator L rather than £!. Below we suppose that the
operators are acting on X" (Kj) or K" if we do not specify otherwise.

B.1. Analytic extension of the dynamical Fredholm determinant. The dy-
namical Fredholm determinant d(s) of the one-parameter group of transfer oper-
ators IL = {L' = L} is well-defined if the real part of s is sufficiently large. In
fact, the sum in the definition (Z6]) of d(s) converges absolutely if Re(s) is larger
than the topological pressure Py, 1= Piop(f*, —(1/2)log|det Df*|g,]). (See [29,
Theorem 4.1] for instance.) Hence d(s) is a holomorphic function without zeros on
Re(s) > Pyop. We take a constant P > Py, such that

(B.1) 1LY < C|LY| < CePt for t = tg
and consider the function logd(s) in the disk
(B.2) D(sp,r0) ={z€C| |z —so| <10}

for s € C with Re(sg) > P and 79 := Re(so) + mx0/4. The n-th coefficient of the
Taylor expansion of log d(s) at the center sg is

I (s0) = (—1)Hi - et LTy otdt
nT T \dsn 8 o= n! Jio '
Since we have
R(s0)" = ; Jw (n—1o—sot ot gy
CE ’
we may write the coefficient a,, as
-1 n—1
ap = = T’ (R(so)™) forn > 1.
n

We are going to relate the asymptotic behavior of flat trace Tr”(R(so)™) as n — o0
with the spectrum of the generator A. Precisely we prove
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Proposition B.1. The spectral set of the generator A of £ : KX7(Kq) — K" (Ko) in
the disk D(sg,70) consists of finitely many eigenvalues x; € C, 1 < i < m, counted
with multiplicity. We have the asymptotic formula
i 1
T (R(s0)") = Y ———— + Qn
i; (80— xi)™

where the remainder term @, satisfies
(B.3) |Qn| < Crg™  form =0
with a constant C > 0 which may depend on sg.

Theorem 2.3 is an immediate consequence of this proposition. In fact, we have

8
S
3
N
3

log d(so + z) = logd(so) +

n=1
m 0 -1 n—lzn 0 -1 nQn N
=logd(so) + Z Z 75,(50))( ) + Z ( 21
i=1n=1 4 n=1
S z o (=D)"Q
=logd(sg) + ¥, lo (1+ )+ i
g d(s0) 2; g pr—— 2; -

and hence

d(so + 2) = d(sg) - Dm0 D) 200) ( $ 10, )

[TiZi(s0 — xi) n

for z € C with sufficiently small absolute value. The right-most factor on the right-
hand side extends holomorphically to the disk D(sg, 7o) and has no zeros on it.
So the dynamical Fredholm determinant d(s) extends to the disk D(sg,r) as a
holomorphic function and the zeros in D(sg, rg) are exactly x;, 1 < i < m, counted
with multiplicity. Note that this conclusion holds for any so € C with Re(s) > P,
so that the imaginary part of sg is arbitrary. Therefore, taking r, > 0 so large that
r+X0/4 > ¢, we obtain the conclusion of Theorem

n=1

B.2. The flat trace of the lifted transfer operators. To proceed, we discuss
about the flat trace of the lifted operators and averaging with respect to time.
Suppose that L : K™ — K" is a bounded operator, expressed as

(B.4) L(Uj)jeg = ZLj_,j/Uj> .
j'ed

7
If the diagonal components Lj,j : Ki' — Kj for j € J are trace class operators and
if the sum of their traces converges absolutely, we set
T L= ) TrLj; = > T L;
jed jed
and call it the flat trace of the operator L : K™ — K.

Remark B.2. In this definition, we assume that each L;_,; is a trace class operator
and hencd?] that its trace coincides with the flat trace.

29 1f L;_,; is a trace class operator, it is expressed as Lj_,j = >, v ® v,’: with vy € Kjr,

v e (KJT)* satisfying D, vy ”KJT v H(K}‘)* < . Then the Schwartz kernel of L;_,; is Y}, vp ® v}

and the flat trace equals Y (vg)* vy = TrLj_,;.
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Definition B.3. An operator L as above is upper triangular (with respect to the
index m(-)) if the components Lj_,; vanishes whenever m(j’) < m(j). (Recall
(ITI13) for the definition of the index m(-).)

The next lemma is obvious from the definitions.

Lemma B.4. If L is upper triangular, its flat trace vanishes. If L and L’ are upper
triangular, so are their linear combinations oL + BL' and their composition LoL/.

Since the flat trace of £! is a distribution as a function of ¢, it takes values against
smooth functions ¢(t) with compact support. Hence, rather than evaluating the
flat trace of £ itself, it is natural and convenient to consider the flat trace of the
integration of £¢,

£(p) = fgo(t) Lt

against a smooth function ¢ : R, — R compactly supported on the positive part
of the real line. We will also consider the corresponding lifted operator

(B.5) L(yp) := J:O @(t) -Lidt =To L(yp) o T*.

Recall the decomposition of the operator L,
L Llow hyp + Lctr Llow + Lhyp - t+ Lhyp — t Lctrv
that we introduced in Section [Tl

Lemma B.5. Suppose that P is a set of C* functions supported on [0,2] € R and
uniformly bounded in the C* sense. Then there exists a constant C > 0 such that
the following holds true: For any o € P, the operator L(p) o Lt = Lt o L(y) for
to < t < 2ty is decomposed into two parts

~

L= f@(s —t) Ly, ds and

i - f (s — 1) - (L + Liyp.o. + Liyy) ds;

The former L is upper triangular and satisfies |L| < C, while the latter L is a trace
class operator and satisfies |L|1. < C; Further the operator

(Lt Lhyp H) L( ) (Llow + Lhyp - T Lctr) L(SD) fOT tO <t< 2t0

is a trace class operator and we have |[(L* —L{ ) oL(¢)|n < C.

Proof. The part L is upper triangular and satisfies |L| < C by the definition of
the relation <! in Definition [T.11] and Proposition I1.13l From Lemma [IT.18 and
Proposition IT.13, we know that the operators L;  and L, . are trace class
operators and their trace norms are bounded uniformly forP] s e [to,2to + 2]. Tt
remains to show that {¢(s—t)-Lg,ds and Lt o L(y) are trace class operators and
that their traces are uniformly bounded for ¢y < ¢t < 2¢p and ¢ € P. These claims

follow if we show
(B.6) [(L(p) o LY)jmy : Kj — K|l < Cudw(3))™"w (i) —w(G) ™ m@)[™"

3OActuaHy we proved this for s € [to, 2tp]. But it is easy to see that the estimates remain true
for [to, 2to + 2].
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for j,j’ € d with m(j') = 0 and tg < t < 2ty. Note that, if we apply the argument
in the proofs of Lemma [[0.11] and Corollary to (L(p) o L');_,5, we obtain
the required estimate (B.6]) without the term {(w(j))™" on the right-hand side. To
retain the term (w(j))~", we make use of the additional integration with respect
to time in L(p). Since fjtij.: (w,2) = f{y(w,2) + (0,t') when [t'| is sufficiently
small, such integration will reduce the j’-components of the image with large w(j’).
Indeed, if we (additionally) apply integration by parts to that integral with respect
to time using the differential operator D = (1 — i€.0;)(1 + |£.]?) for several times,
we obtain the extra factor (w(j))~". O

Corollary B.6. If ¢ : [tg,0) — R be a smooth function with compact support, we
have TP’ L(p) = TY" L ().

Proof. From the proof of Lemma above, we see that TrbL(cp) is well-defined,
that is, the sum over j € J in the definition converges absolutely. Hence we obtain

TL! = T (I7 0 £ o (I7)*) = T (Lt o (I7)* o I7) = TY’ L*
by rotating the order of composition in the middle. ([l

B.3. The flat trace of the iteration of the resolvent. Let us put

n e tnfleftso .
(B.7) R = [0 =t/ @) - et
and

(n) 0 n—le—tso .
(B3) RO = [t/ L

where the function x(-) is that in (52)).

Remark B.7. The operator R above is defined as an approximation of R(so)"
and the difference is

oe] n—1 —tso

B9) =) - R = [/ S

0 (n—1)!
We put the part R(™ aside because we can not treat the operators £ with small
t > 0 in the same way as those with large ¢ > 0. Since the flat trace and also
the operator norm of RM on KT (Ko) converges to zero super-exponentially fast
as n — o0, this does not cause any essential problem, though it introduces some
complication in a few places below.

- Lt

We take constants (|, < r{ such that
ro = Re(so) + (1/4)rxo < 1o < 14 < Re(so) + (1/2)rxo-

Lemma B.8. There exists a constant C > 0, independent of n, such that the
operator R is expressed as a sum R(™ = R + R™ and

(1) R(™ : K" — K" is a trace class operator, while

(2) RM™ : K" — K7 is upper triangular and satisfies

IR < C(rf) ™.
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Proof. Using the periodic partition of unity {q,}wez defined in ([@1]), we set?]

n—le—sot

(n—1)"
so that 25~ o011 q&n)(t) = (1 —x(t/(2tg)) - (t""te=%0!)/(n — 1)! and that

o¢]
RO = 3 L)

w:[Qto]fl

g5 (1) = qu(t) - (1 = x(t/(2t0))

from the definition (B.5). We deduce the claims of the lemma from

Claim 1. For arbitrarily small T > 0, there exists a constant C > 0, independent

of n, such that the operators L(q&")) forn =1 are decomposed as

L(¢™) = L(¢®) + L(g™)

where I:(q&n)) are upper triangular and satisfy

wnfl

(B.10) L@ < Co—;

. e*(RC(SQ)%»(l/Q)TXQ)erTn,

while I:(qfun)) are trace class operators satisfying

0
(B.11) S ) | < +oo.
w:[2t0]—1

From the claim above, we set

o¢] 0
RO -3 B ad BO- 3 L)
w:[2t0]—1 w:[2t0]—1

Then the first claim (1) of the lemma follows from (B.I1)). The second claim (2)
also follows because R(™ is upper triangular from Lemma [B.4] and because

© ) n—1
R < (g™ < w . o—(Re(s0)+(1/2)rx0)w+Tn
RO 3 EE@I<C Y
w:[Qto]fl w:[2t0]71
Q0 tnfl
< OJ . e*(RC(SU)Jr(l/Q)TXo)tJrTHdt
o (n—1)!
o0 n
=Ce™ . <J e—(Re(so)+(1/2)rX0)tdt) < C(Tg)—n
0
from (B.I0). We give the proof of Claim [Il below to complete the proof. O

Proof of Claim [ We first note that the family

(B.12) P = {(n — 1)L Relsowmmn )y ()

n=1w = [2t)] —1}

31Note that the variable w € Z does not indicate the frequency as in the previous sections but
the range of time, now and henceforth.
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satisfies the assumption in Lemma[B.5l To proceed, we write an integer w > [2to]—1
as a sum of real numbers in [tg, 2¢0]:

w= Yt to < t; < 2to.

Then we decompose L(q&n)) as follows: First we write

L(g™) = L(G™) oL = Ltkw) oL(g™) o L1 o... o L2 o Lt
+ (L — L;k(“)(_)) oL@-10...0L"2 0 L(g (")) oLh

Yp,

where we set U (t) = ¢ (t +w) for brevity. Since the first term on the right-hand

side other than the first factor is of the same form as L(q (")) o L¥, we apply the

parallel operation to it. If we continue this procedure, we can express L(q&")) as

(B.13) Lit% o---oLf2 _ oL(@™)oL"
k(w) . .
+ Z L ooyt o (L Ly, )oL(@") oL oo LM

Note that, from Lemma [B.5] and the estimate noted in the beginning, we see
(n _ 1)| .w—n-ﬁ-l Re(so)w ™ L( ~(n )) Lt1 _ f: + i

where L is upper triangular and |L| < C while L is in the trace class and | L] < C,
with C' > 0 a constant independent of n and w. So we may rewrite the first term
on the right-hand side of (B13) as

n—1
w —Re(s Jw+Tn | tk(w) t T
n—1
w —Re(so)w+tn | tr(w) t T
oo e L o..oLi oL,

Let L(¢{") in Claim [ be the first term of (B1d) above and L(¢J”) be the
remainder, that is, the sum of the second term in (B:I4) and the sum on the second

line of (B13). By Lemma [B.4] i(q&n)) is upper triangular. Since
(B.15) L}

hpl < e for t < t < 2t

from Remark[IT.J6, we obtain the estimate (B.I0) immediately. Also, for the second
term in (B.14), we have

wn—le—Re(So)w-H'n . tio) . Lt2 E
(n—1)! hyp,— © hyp,— T
wnflech(so)erTn ¢ - Cwn 1 7(Rc(50)+(1/2)r>(0)w+7'n
[ P R i | A B
YP; YP;

(n—1)! (n—1)!
and this bound is summable with respect to w. To look into the sum in (B.I3),

note that the operator (L% — Lff&pﬁcﬁ) o L(G") satisfies

n—1_ o—Re(so)w+Tn

(n—1)!

t; w

) oL@ | < €

|(L" - L

hyp,—
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for a constant C' > 0 independent of n and w, from the latter claim of Lemma [B.5]
and uniform boundedness of . Hence we have

ZHtW) coLb* o (L — LY

hyp,— hyp,— hyp,—

)oL(q (")) oLli-to...o L |py

k(w)
Ltk t:
Z [T | D - IS =Ly ) o L(GSY) e - Lt o - 0 L

n—1 . g—(Re(so)—P)w+7n

<C- by (B) and (BI5).
(n—1)! Y an
This bound is again summable with respect to w, provided 7 is sufficiently small.
Therefore we obtain the estimate (BI). O

Corollary B.9. The essential spectral radius of R(so) : K"(Ko) — K"(Ko) is
bounded by (r§) .

Proof. We consider the decomposition of R(se)™ : K" (Ko) — K7 (Kj) into
RO RO o RM 0T and R™ =T*oRM o1

where R(™ is that in (B.9). From the last lemma, the operator norm of R on
X" (Ky) is bounded by C(rf)~™ with C' > 0 independent of n, and R(™) on K" (Ky) is
a trace class operator. Further it is not difficult to see that these remain true when
we regard R(™ and R(™ as operators on K" (Kj), because £t : K" (Ko) — X" (Kj)
is bounded from Proposition [[.8l Therefore, recalling Remark [B.7 for IJNQ("), we
obtain that the essential spectral radius of R(sg)™ is bounded by C(r{)~™ and
hence by (r§)~"™ from the multiplicative property of essential spectral radius. O

Corollary [B0] implies that the spectral set of R(so) : K" (Ko) — X"(Ko) on the
outside of the disk |2| < (r))~! consists of discrete eigenvalues p;, 1 < i < m,
counted with multiplicity. Since AR(sg) = soR(s0) + 1, we have

pr—=R(s0) = pu- ((s0 —p~1) = A) - R(s0).
This implies that u;’s are in one-to-one correspondence to the eigenvalues x;, 1 <
i < m, of the generator A in the disk D(sg,ry) by the relation

1 o0
i = = J e~ SoteXit gy,
S0 — Xi 0

Remark B.10. Since the argument above holds for any sg satisfying Re(sg) > P,
the spectrum of the generator A on the half-plane Re(s) > —(1/4)rxo consists of
discrete eigenvalues with finite multiplicity and the resolvent R(s) is meromorphic
on that half-plane.

Let 7 : K" (Ko) — X" (Kj) be the spectral projector of R(sq) for the spectral set
{ui}, on the outside of the disk |z| < ral This is also the spectral projector of
the generator A for the spectral set {x;}", and its image is contained in X"(Ky)
from Proposition [[.8 We set F(sg) = 7 o R(sp), so that

TrF(so)" = Tr Zy‘z Z !

1= 1 SO*Xi)n'
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Our task is to prove (B3) in Proposition [B] for
Qu = Tr" (R(s0)" = F(s0)") = T (1 = 7) 0 R(s0)") .

To continue, let Ny > 0 be a large integer constant which will be specified later in
the course of the argument. Consider large integer n and write
R(s0)™ — Fs0)" = (Id — ) 0 R(s0)""™ 0 -+ 0 R(s0)" D).

where n = n(1) + n(2) + -+ + n(I) with Ny < n(i) < 2Nyg. We decompose each
term R(s0)™® on the right-hand side as

R(s0)"D = RO 4 Rln(®)

in the same manner as (B9). From Remark [B7 the part R(®) is very small in
the operator norm if we let the constant Ny be sufficiently large. (And note that
the following argument is much simpler if we ignore this part.)

Since the operators R and R™@) for 1 < i < I commute each other and
also with the projection operator m, we can express R(so)™ — F(s9)™ as the sum of
the 2 terms of the form

I// I,
(B.16) (1—m) (H R z>>> o (H y(n/(i)))
i=1

where {n"(1),---, ”(I”),n (1) -,n'(I")} with I = I’ + I"” ranges over all the
rearrangements of {n(1),n(2),--- ,n(I)}. Hence our task is reduced to show

Claim 2. There exists a constant C' > 0 such that

g I
T’ ( (1—7) (H R l>>> o (H y(n/(i))))
i=1

Proof of Claim[2. Below we prove the claim in the case I’ > I” because, otherwise,
we can get the conclusion by a similar but much easier argument using Remark [B-9l
We translate the claim to that on the lifted operators. Let us put

alift . Jomol* : KW — K.

(B.17) <Crg™-271

We write
N( ) o0 t 1e—t80 .
B.18 R\ = t/(2tg)) ——— - L dt
(B.19) | ey Tt
so that
(n) N(n) I :R n I* * tn71 “teo Lt d
R"™ + R"™ =ToR(sg)" o I* = JO W . t.

Then, from Corollary [B.6] the inequality in Claim [2is equivalent to

I r
T hft R(™" (@) ROV ()
(e g ({e))

Since we are assuming I’ > I” and since the operators on the left hand side above
commute, we may write the operator on the left-hand side above as

(B.19) <COrgm-271

I

(B20) J]((1—="")oR;) setting R, ={

i=1

R @) o R @), ifl<ig I
R(™'(@) ifI"<i<TI.
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From the choice of the spectral projector 7w and the fact that R™ has small operator
norm by the same reason as noted in Remark [B7] we get the estimate

(B.21) 11 —m") oR; : K" — K| < (ro) "W/4 for1<i<Tl,
provided that the constant Ny is sufficiently large, where we set
3(3) n'(i) + n"(3), ifl<i< I
n(i) =
n'(i), if 1" <i<I.

By Lemma [B.8] the operators R; are decomposed as R; = f{i + l:v{l where

(1) R, is a trace class operator and va{zHTr < C, and

(2) R, is upper triangular and satisfies |R;| < ro_ﬁ(i)/él
provided that the constant Nj is sufficiently large. (For the case 1 < i < I”, we
need a slight modification of Lemma [B.8 but the proof goes as well.) In (B:20)), we
consider the decomposition

1 -7t o R, = R, + (R; — 7l o Ry)

and apply the development it in the parallel manner as we used to obtain (B.13).
Then, noting that Tr” (Ry o --- o Ry) = 0 from Lemma [B4] we obtain

’I‘I'b ((1 — TI']ift) o Rl O-++-0 RI’)

I/
-2 (ﬁlo"'o R;-10(R; —m™oRy)o (1 -7"") o Ry O"'ORI’)>'

Jj=1

This is bounded in absolute value by
I/
DTIR[ - [Ry |- [(Ry = w0 Ry) e - (1 = 7)o R 1 0+~ o Ry .
j=1

The trace norm | (R; — 7' o R;)||1y is bounded by a constant C' independent of j

and n. Therefore, using the condition on R; and (B:21)), we conclude (B.I19). This
completes the proof of Claim 2 and hence that of Proposition [B.1l O
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