
HAL Id: hal-01655848
https://hal.science/hal-01655848

Submitted on 5 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Speculation in commodity futures markets: A simple
equilibrium model

Bertrand Villeneuve, Delphine Lautier, Ivar Ekeland

To cite this version:
Bertrand Villeneuve, Delphine Lautier, Ivar Ekeland. Speculation in commodity futures markets: A
simple equilibrium model. séminaire Hotelling (RITM – ENS CACHAN), Feb 2014, Cachan, France.
pp.37. �hal-01655848�

https://hal.science/hal-01655848
https://hal.archives-ouvertes.fr


Speculation in commodity futures markets:
A simple equilibrium model∗
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Abstract

We propose a simple and yet comprehensive equilibrium model of the interaction between the
physical and the derivative markets of a commodity. To represent all basic economic functions,
we take three types of agents: industrial processors, inventory holders and speculators. Only the
two first of them operate in the physical market. All of them, however, may initiate a position
in the paper market, for hedging and/or speculation purposes. First, we give the necessary and
sufficient conditions on the fundamentals of this economy for a rational expectations equilibrium
to exist and we show that it is unique. Second, we propose a generalized framework for the
analysis of price relationships: the model exhibits a surprising variety of behaviors at equilibrium
which connects the normal backwardation theory and the storage theory. Third, the model
addresses the regulatory issues of speculators’ presence in the market and their influence on
prices.

JEL Codes: D40; D81; D84; G13; Q00.

1 Introduction

In the field of commodity derivative markets, some questions are as old as the markets themselves,
and they remain open today. Speculation is a good example: in his famous article about speculation
and economic activity, Kaldor (1939) wrote: “Does speculation exert a price-stabilising influence, or
the opposite? The most likely answer is that it is neither, or rather that it is both simultaneously.”
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More than 70 years later, in June 2011, the report of the G20 (FAO et al. (2011)) states: “The
debate on whether speculation stabilizes or destabilizes prices resumes with renewed interest and
urgency during high price episodes. [. . . ] More research is needed to clarify these questions and
in so doing to assist regulators in their reflections about whether regulatory responses are needed
and the nature and scale of those responses.” Our simple (perhaps the simplest possible) model of
commodity trading provides insights into this question. It also proposes a way to understand how
these markets function and how the futures and spot prices are formed. Finally, it illustrates the
interest of a derivative market in terms of the welfare of the agents.

In this model, the financial market interacts with the physical market. There are two periods,
a single commodity, a numéraire and two markets: the spot market at times t = 1 and t = 2, and
the futures market, where contracts are traded at t = 1 and settled at t = 2. The spot market is
physical (there is a non negativity constraint on inventories), while the futures market is financial
(shorting is allowed). There are three types of traders: inventory holders and industrial processors
of the commodity, both of which operate on the two markets, and speculators who operate on
the futures market only. All of them are utility maximizers and have mean-variance utility (this
choice is discussed in the presentation of the model). There is also a price sensitive background
demand (or supply) attributed to spot traders, which helps clear the spot market. The sources of
uncertainty are the amount of commodity produced and the demand of the spot traders at t = 2.
Their realization is unknown at t = 1, but their law is common knowledge. All decisions are taken
at t = 1 conditionally on expectations about t = 2.

Our main contributions are three: existence and uniqueness of the equilibrium, extended com-
parative statics, and regulatory implications. They are the consequences of the tractability of the
model.

Despite nonlinear equilibrium equations, we give necessary and sufficient conditions on the
fundamentals of this economy for a rational expectations equilibrium to exist, and we show that it
is unique. Moreover, it provides a unified framework for the theory of price relations in commodity
futures markets, whereas in the literature this analysis is usually split into two strands: the storage
theory and the normal backwardation theory (also named the hedging pressure theory after De Roon
et al. (2000)). The former focuses on the cost of storage of the underlying asset, the latter on the
risk premium. Although they are complementary, to the best of our knowledge these two strands
have remained apart up to now.

We characterize the four possible equilibrium regimes. While each of these four regimes is
simple to relate to concrete facts, we believe that our model is the first comprehensive analysis to
give explicit conditions on the fundamentals of the economy determining which one will actually
prevail in equilibrium. We also give explicit formulas for the equilibrium prices. This enables us to
characterize regimes in detail and to perform complete and novel comparative statics. For instance,
as is done in the storage theory, we can explain why there is a contango (in such a case, the “current
basis”, defined as the difference between the futures price and the current spot price, is positive) or
a backwardation (the current basis is negative) on the futures market, and how this could change.
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Towards this analysis, we give insights into the question of the informational content of the futures
price and the price discovery function of futures markets.

As done in the normal backwardation theory, we can also compare the futures price with the
expected spot price and ask whether or not there is a bias in the futures price (we define the
“expected basis” as the difference between the futures price and the expected spot price). The
sign and the level of the bias depend directly on which regime prevails. For example, the futures
price can be predicted to be lower (resp. higher) than the expected spot price if a synthetic index
(denoted by γ) says that there are relatively more (resp. less) storers compared to processors and
that they are relatively more (resp. less) risk averse. The precise thresholds depend on the number
of speculators and their risk aversion. So the model depicts the way futures markets are used to
reallocate risk between operators, the price to pay for such a transfer, and thus provides insights
into the main economic function of derivative markets: hedging.1

Our model allows for new types of comparative statics. For example, we show that when the
number of speculators increases, say because access to the futures market is relaxed, the volatility of
spot prices at date 2 goes up. This effect sounds undesirable. Our interpretation is that speculation
increases the informativeness of prices: volatility brings more efficiency. The mechanism is quite
simple. As the number of speculators increases, the cost of hedging decreases and demand for
futures grows along with physical positions. Smaller hedging costs make storers and processors
amplify the differences in their positions in response to different pieces of information, implying
that their market impact increases. This increases in turn the volatility of prices.

Beyond these descriptive predictions, we use our model to perform a welfare analysis and to
draw regulatory implications. This question, again, is as old as derivatives markets. Newbery (2008)
summarizes well the usual yet dual appreciation of the impact of derivatives markets on welfare.
The author makes a difference between what he calls the “layman” and “the body of informed
opinion.” He explains that to the first, “the association of speculative activity with volatile markets
is often taken as proof that speculators are the cause of the instability,” whereas to the second,
“volatility creates a demand for hedging or insurance.” Our model also exhibits a dual conclusion
about welfare, but it is differently stated. First, the model allows for a clear separation between the
utility of speculation and that of hedging. Then, the analysis of the impact of an increasing number
of speculators shows that, storers and processors, as far as their hedging activities are concerned,
have opposite views on the desirability of speculators. They are useless when the positions of storers
and processors match exactly; but when one type of agents has needs higher than what the other
type can supply, then the former wants more (the latter wants less) speculators because this reduces
his costs of hedging. To the best of our knowledge, such an effect has never been clarified before.

Literature review. Of course, the questions we have raised have been investigated before. Con-
trary to what is done in this paper, the literature on commodity prices however separates the
question of the links between the spot and the futures prices and that of the bias in the futures

1It is worth noticing that our model operates even without any risk-aversion at all: if we assume that all operators
(or even a single one) are risk-neutral, then our model is still valid and gives the four regimes described earlier.
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price. The latter has been investigated first by Keynes (1930) through the theory of normal back-
wardation whereas the former is usually associated to the theory of storage, initiated by Kaldor
(1940), Working (1949) and Brennan (1958). The same separation is true for the equilibrium models
developed so far.

An important number of equilibrium models of commodity prices focuses on the bias in the
futures price and the risk transfer function of the derivative market. This is the case, for example,
of Anderson and Danthine (1983a), Anderson and Danthine (1983b), Hirshleifer (1988), Hirshleifer
(1989), Guesnerie and Rochet (1993), and Acharya et al. (2013). Anderson and Danthine (1983a)
is an important source of issues and modeling ideas.

Compared with this work, ours is simpler (the producers are not directly modeled) and com-
pletely specified. This gives us the possibility to obtain explicit formulas for the equilibrium prices
and to investigate further economics issues, like welfare for example. The models developed by
Hirshleifer (1988) and Hirshleifer (1989) are also inspired by Anderson and Danthine (1983a). In
these papers, Hirshleifer analyzes a point which is interesting for our model but that we leave aside:
the coexistence of futures and forward markets. Hirshleifer (1989) also asks whether or not vertical
integration and futures trading can be substitute means of diversifying risk.

Let us also mention that, contrary to Anderson and Danthine (1983b), Hirshleifer (1989) and
Routledge et al. (2000), we do not undertake an inter-temporal analysis in the present version of the
model. Anderson and Danthine (1983b) is the “inter-temporal” extension of Anderson and Danthine
(1983a): they allow the futures position to be revised once within the cash market holding period.
To obtain results while keeping tractable equations, the authors however must simplify their model
so that only one category of hedger remains in the new version. When equilibrium analysis stands
at the heart of all concerns (which is our case), this is a strong limitation.

Routledge et al. (2000) give another interesting example of inter-temporal analysis. It is related
to the literature on equilibrium models which focuses on the current spot price and the role of
inventories in the behavior of commodity prices, as in Deaton and Laroque (1992), and in Chambers
and Bailey (1996). In these models, however, there is no futures market: markets are complete and
there is in fact a single type of representative agent. Risk allocation being optimal, these models
are not fit for the political economy of regulatory changes.

Beyond the question of the risk premium, equilibrium models have also been used in order to
examine the possible destabilizing effect of the presence of a futures market and to analyze welfare
issues. This is the case of Guesnerie and Rochet (1993), Newbery (1987), and Baker and Routledge
(2012). As the model proposed by Guesnerie and Rochet (1993) is devoted to the analysis of mental
(“eductive”) coordination strategies, it is more stripped down than ours. As in Newbery (1987),
our explicit formulas for equilibrium prices allows for interesting comparisons depending on the
presence or absence of a futures market. Finally, contrary to Baker and Routledge (2012), we are
not primarily interested in Pareto optimal risk allocations: we focus instead on comparative market
performance as measured by utilities per head.

Apart from the specific behavior of prices, the non-negativity constraint on inventories raises
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another issue. Empirical facts indeed testify that there is more than a non-negativity constraint
in commodity markets: the level of inventories never falls to zero, leaving thus unexploited some
supposedly profitable arbitrage opportunities. The concept of a convenience yield associated with
inventories, initially developed by Kaldor (1940) and Brennan (1958) is generally used to explain
such a phenomenon, which has been regularly confirmed, on an empirical point of view, since
Working (1949) 2. In their model, Routledge et al. (2000) introduce a convenience yield in the form
of an embedded timing option associated with physical stocks. Contrary to these authors, we do
not take into account the presence of a convenience yield in our analysis. While this would probably
constitute an interesting improvement of our work, it is hardly compatible with a two-period model.

Recent attempts to test equilibrium models must also be mentioned, as they are rare. The tests
undertaken by Acharya et al. (2013) could be used as in fruitful source of inspiration for further
developments. As far the analysis of the risk premium is concerned, the empirical tests performed
by Hamilton and Wu (2012) and Szymanowska et al. (forth.), as well as the simulations proposed
by Bessembinder and Lemmon (2002) are other possible directions.

2 The model

This is a two-period model. There is one commodity, a numéraire, and two markets: the spot market
at times t = 1 and t = 2, and a futures market, in which contracts are traded at t = 1 and settled
at t = 2. It is important to note that short positions are allowed on the futures market. When an
agent sells (resp. buys) futures contracts, his position is short (resp. long), and the amount f he
holds is negative (resp. positive). On the spot market, short positions are not allowed. In other
words, the futures market is financial, while the spot markets are physical.

There are three types of traders.

• Processors (P ), or industrial users, who use the commodity to produce other goods which they
sell to consumers. Because of the inertia of their own production process, and/or because all
their production is sold forward, they decide at t = 1 how much to produce at t = 2. They
cannot store the commodity, so they have to buy all of their input on the spot market at
t = 2. They also trade on the futures market.

• Storers (I for inventory), who have storage capacity, and who can use it to buy the commodity
at t = 1 and release it at t = 2. They trade on the spot market at t = 1 and at t = 2. They
also operate on the futures market.

• Speculators (S), or money managers, who use the commodity price as a source of risk, to
make a profit on the basis of their positions in futures contracts. They do not trade on the
spot market.

In addition, we think of these markets as operating in a partial equilibrium framework: in the
background, there are other users of the commodity, and producers as well. These additional agents

2For a recent and exhaustive study on this question, see for example Symeonidis et al. (2012)
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will be referred to as spot traders, and their global effect will be described by a demand function.
At time t = 1, the demand is µ1 − mP1, and it is µ̃2 − mP̃2 at time t = 2. Pt is the spot price
at time t and the demand can be either positive or negative; the superscript ∼ indicates a random
variable.

All decisions are taken at time t = 1, conditionally on the information available for t = 2. The
timing is as follows:

• For t = 1, the commodity is in total supply ω1, the spot market and the futures market open.
On the spot market, there are spot traders and storers on the demand side, the price is P1.
On the futures markets, the processors, the storers and the speculators all initiate a position,
and the price is F . Note that the storers have to decide simultaneously how much to buy on
the spot market and what position to take on the futures market.

• For t = 2, the commodity is in total supply ω̃2, to which one has to add the inventory carried
by the storers from t = 1, and the spot market opens. The processors and the spot traders
are on the demand side, and the price is P̃2. The futures contracts are then settled at that
price, meaning that every contract brings a financial result of P̃2 − F .

There are NP processors, NS speculators, NI storage companies (I for inventories). We assume
that all agents (except the spot traders) are risk averse inter-temporal utility maximizers. To take
their decisions at time t = 1, they need to know the distribution of the spot price P̃2 at t = 2. We
will show that, under mean-variance specifications of the utilities, there is a unique price system
(P1, F, P̃2) such that all three markets clear.

Uncertainty is modeled by a probability space (Ω,A, P ). Both ω̃2, µ̃2 and P̃2 are random
variables on (Ω,A, P ). At time t = 1, their realizations are unknown, but their distributions are
common knowledge.

Before we proceed, some clarifications are in order.

• Production of the commodity is inelastic: the quantities ω1 and ω̃2 which reach the spot
markets at times t = 1 and t = 2 are exogenous to the model. Traders know ω1 and µ1, and
share the same priors about ω̃2 and µ̃2.

• A negative spot demand can be understood as extra spot supply: if for instance P1 > µ1/m,
then the spot price at time t = 1 is so high that additional means of production become
profitable, and the global economy provides additional quantities to the spot market. The
number µ1 (demand when P1 = 0) is the level at which the economy saturates: to induce
spot traders to demand quantities larger than µ1, one would have to pay them, that is, offer
negative price P1 < 0 for the commodity. The same remark applies to time t = 2.

• We separate the roles of the industrial user and the inventory holder, whereas in reality
industrial users may also hold inventory. It will be apparent in the sequel that this separation
need not be as strict, and that the model would accommodate agents of mixed types. In all
cases, agents who trade on the physical markets would also trade on the financial market for
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two separate purposes: hedging their risk, and making additional profits. In the sequel, we
will see how their positions reflect this dual purpose.

• Note also that the speculators would typically use their position on the futures market as part
of a diversified portfolio; our model does not take this into account.

• We also suppose that there is a perfect convergence of the basis at the expiration of the futures
contract. Thus, at time t = 2, the position on the futures markets is settled at the price P̃2

then prevailing on the spot market.

• For the sake of simplicity, we set the risk-free interest rate to 0.

In what follows, as we examine an REE (rational expectation equilibrium), we look at two
necessary conditions for such an equilibrium to appear: the maximization of the agent’s utility,
conditionally on their price expectations, and market clearing.

3 Optimal positions and market clearing

3.1 Utilities

All agents have mean-variance utilities. For all of them, a profit π̃ brings utility:

E[π̃]− 1
2αiVar[π̃] (1)

where αi is the risk aversion parameter of a type i individual.
Beside their mathematical tractability, there are good economic reasons for using mean-variance

utilities. They are not of von Neumann-Morgenstern type, i.e. formula (1) cannot be put in the
form Eu(X̃) for some function u. However, Mean-variance utilities capture well the behavior of
firms operating under risk constraints. The capital asset-pricing model (CAPM) in finance, for
instance, consists in maximizing E[R̃] under the constraint Var[R̃] ≤ ν, where R̃ is the return on
the portfolio, which is equivalent to maximizing E[R̃]−λVar[R̃], where λ is the Lagrange multiplier.
In financial markets, as in commodities markets, agents are mostly firms, not individuals, and they
have risk constraints imposed on them from inside (managers controlling traders) and from outside
(regulators controlling the firm). This is what formula (1) captures. For the sake of simplicity, we
have kept the variance as a measure of risk, but we expect that our results could be extended to
more sophisticated ones (coherent risk measures), at the cost of mathematical complications.

3.2 Profit maximization

Speculator. For the speculator, the profit resulting from a position in the futures market fS is
the r.v.:

π̃S(fS) = fS (P̃2 − F ),
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and the optimal position is:

f?S = E[P̃2]− F
αSVar[P̃2]

. (2)

This position is purely speculative. It depends mainly on the level and on the sign of the bias
in the futures price. The speculator goes long whenever he thinks that the expected spot price is
higher than the futures price. Otherwise he goes short. Finally, he is all the more inclined to take
a position as his risk aversion and volatility of the underlying asset are low.

Storer. The storer can hold any non-negative inventory. However, storage is costly: holding a
quantity x between t = 1 and t = 2 costs 1

2Cx
2. Parameters C (cost of storage) and αI (risk

aversion) characterize the storer. He has to decide how much inventory to buy at t = 1, if any, and
what position to take in the futures market, if any.

If he buys x ≥ 0 on the spot market at t = 1, resells it on the spot market at t = 2, and takes a
position fI on the futures market, the resulting profit is the r.v.:

π̃I(x, fI) = x (P̃2 − P1) + fI (P̃2 − F )− 1
2Cx

2.

The optimal position on the physical market is:

x? = 1
C

max{F − P1, 0}. (3)

The storer holds inventories if the futures price is higher than the current spot price. This
position is the only one, in the model, that directly links the spot and the futures prices. This is
consistent with the theory of storage and, more precisely, its analysis of contango and the informa-
tional role of futures prices.

The optimal position on the futures market is:

f?I = E[P̃2]− F
αIVar[P̃2]

− x?. (4)

This position can be decomposed into two elements. First, a negative position −x?, which
simply hedges the physical position: the storer sells futures contracts in order to protect himself
against a decrease in the spot price. Second, a speculative position, structurally identical to that of
the speculator, which reflects the storer’s risk aversion and his expectations about the relative level
of the futures and the expected spot prices.

Processor. The processor decides at time t = 1 how much input y to buy at t = 2, and which
position fP to take on the futures market. The revenue from sales at date t = 2 is (y − β

2 y
2)Z,

where Z is our convention for the forward price of the output, and the other factor reflects decreasing
marginal revenue. Due to these forward sales of the production, this revenue is known at time t = 1.
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The resulting profit is the r.v.:

π̃P (y, fP ) =
(
y − β

2 y
2
)
Z − yP̃2 + fP (P̃2 − F ).

An easy computation then gives his optimal decisions, namely:

y? = 1
βZ

max{Z − F, 0}, (5)

f?P = E[P̃2]− F
αPVar[P̃2]

+ y?. (6)

The futures market is also used by the processor to plan his production, all the more so if the
price of his input F is below that of his output Z. The position on the futures market, again, can
be decomposed into two elements. First, a positive position y?, which hedges the position on the
physical market: the processor goes long on futures contracts in order to protect himself against an
increase in the spot price. Then, a speculative position reflecting the processor’s risk aversion and
his expectations about the level of the expected basis.

Remarks on optimal positions. In this framework, all agents have the possibility to undertake
speculative operations. After having hedged 100 percent of their physical positions, they adjust this
position according to their expectations. The separation of the physical and the futures decisions
was derived by Danthine (1978). As shown by Anderson and Danthine (1983a), this property does
not hold if the final good price is stochastic, unless a second futures market for the final good is
introduced. Note also that in the scenario where there is no futures market, as depicted in appendix
E, the quantities hold on the physical market necessarily have a speculative dimension.
As we shall see, this separation result is very convenient for equilibrium analysis. This is one of the
reasons why we choose, for the processor, not to introduce uncertainty on the output price and/or
on the quantities produced.

Although we assume that all individuals are identical in each category of agents, more subtle
assumptions could be retained without much complication. For example, remark that if the storers
had different technologies, say, storer i (with i = 1, . . . , NI) had technology Ci, then, instead of
NI
C max{F − P1, 0}, total inventories would be (

∑
i 1/Ci) max{F − P1, 0}. In other words, storers

are easily aggregated. In the following, when relevant, we shall use the index nI representing a
synthetic number of storage units, and per-unit inventories X? defined by:

nI :=
{
NI/C if storers are identical,∑
i 1/Ci otherwise,

X? := max{F − P1, 0}.

Similarly, if processors had different technologies, say, processor i (with i = 1, . . . , NP ) had
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technology βi, then total input demand would be (
∑
i 1/(βiZ)) max{Z−F, 0} instead of NPβZ max{Z−

F, 0}. Thus, when relevant, we shall use the index nP representing a synthetic number of processing
units, and per-unit demand Y ? defined by:

nP :=


NP
βZ if processors are identical,
1
Z

∑
i

1
βi

otherwise,

Y ? := max{Z − F, 0}.

3.3 Market clearing

The spot market at time 1. On the supply side we have the harvest ω1. On the other side
we have the inventory nIX? bought by the storers, and the demand of the spot traders. Market
clearing requires:

ω1 = nIX
? + µ1 −mP1,

hence:
P1 = 1

m
(µ1 − ω1 + nIX

?) . (7)

The spot market at time 2. We have, on the supply side, the harvest ω̃2, and the inventory
nIX

? sold by the storers; on the other side, the input nPY ? bought by the processors and the
demand of the spot traders. The market clearing condition is:

ω̃2 + nIX
? = nPY

? + µ̃2 −mP̃2,

with X? and Y ? as above. We get:

P̃2 = 1
m

(µ̃2 − ω̃2 − nIX? + nPY
?) . (8)

The futures market. Market clearing requires:

NSf
?
S +NP f

?
P +NIf

?
I = 0.

Replacing the f?i by their values, we get:

F = E[P̃2]− Var[P̃2]
NP
αP

+ NI
αI

+ NS
αS

(nIX? − nPY ?)() (9)

Remark that if different agents of the same type K (K = P, I, S)) had different risk aversions
αKj (for j = 1, . . . , NK), then we would see

∑
j 1/αKj instead of NK/αK in Equation (9). This is

an illustration of a more general fact: we sum up the inverse of the risk aversions of all agents to
represent the inverse of the overall (or market) risk aversion. See our synthetic index γ below.
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Summary and definition The equations characterizing the equilibrium result from the optimal
choices on the physical market, (Equations (3) and (5)), the clearing of the spot market at dates 1
and 2 (Equations (7) and (8)), as well as the clearing of the futures market (9):

X? = max{F − P1, 0} (3)
Y ? = max{Z − F, 0} (5)
P1 = 1

m(µ1 − ω1 + nIX
?) (7)

P̃2 = 1
m(µ̃2 − ω̃2 − nIX? + nPY

?) (8)
F = E[P̃2]− Var[P̃2]

NP
αP

+NI
αI

+NS
αS

(HP) (9)

where the Hedging Pressure, HP, represents the unbalance of the paper market and is defined
as follows:

HP := nIX
? − nPY ?. (10)

Equation (9) gives a formal expression for the bias in the futures price, which confirms and refines
the findings of Anderson and Danthine (1983a). It shows indeed that the bias depends primarily on
fundamental economic structures (storage and production costs embedded in the hedging pressure
and the number of operators), secondarily on subjective parameters (agents’ risk aversions), and
thirdly on the volatility of the underlying asset. Note also that the sign of the bias depends only on
the sign of HP, which of course is endogenous. As the risk aversion of the operators only influences
the speculative part of the futures position, it does not impact the sign of the bias, at least in this
partial equilibrium equation. Finally, when HP = 0, there is no bias in the futures price, and the
risk transfer function of markets is entirely undertaken between hedgers, because their positions on
the futures market are opposite and matching exactly. Thus the absence of bias is not exclusively
the consequence of risk neutrality but may have other structural causes.

4 Existence and uniqueness of the equilibrium

4.1 Notations

We first focus on the equilibrium of the spot markets and set:

ξ1 := µ1 − ω1,

ξ̃2 := µ̃2 − ω̃2,

ξ2 := E[µ̃2 − ω̃2],

Note that ξ1, ξ̃2 and ξ2 represent scarcity, i.e. excess basic demand with respect to basic supply,
and remember that the distribution of (µ̃2 − ω̃2) is common knowledge. In what follows, it turns
out that only the expectation and the variance of this quantity will be needed. We also assume
that Var[ξ̃2] > 0. Thus there is uncertainty on the future availability of the commodity, and it is
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the only source of uncertainty in the model.
In addition, remark that from (8), we can easily derive the expectation and the variance of P̃2:

E[P̃2] = 1
m

(ξ2 − nIX? + nPY
?), (8E)

Var[P̃2] = Var[ξ̃2]
m2 . (8V)

Finally, we introduce the following notation, where m is the price sensitivity of the demand:

γ := 1 + 1
m

Var[ξ̃2]
NP
αP

+ NI
αI

+ NS
αS

This parameter encodes a lot of information about the market structure and will be very helpful
in what follows. We have 1 ≤ γ ≤ +∞. If one of the agents, the processor for instance, is risk-
neutral, then αP = 0, so that γ = 1. If all the agents are pure arbitrageurs, so that αK = +∞ for
all K, then γ = +∞. In what follows, we assume that αP , αI and αS all are non-zero numbers, a
restriction that is readily lifted.

4.2 Definitions

Definition 1. An equilibrium is a family (X?, Y ?, P1, F, P̃2) such that processors, storers and spec-
ulators act as price-takers, all markets clear, and all prices are non-negative in all states of the
world:

X? ≥ 0, Y ? ≥ 0 (11)

P1 ≥ 0, F ≥ 0 (12)

P̃2(ω) ≥ 0 for almost every ω ∈ Ω. (13)

We will need an intermediary notion, where positivity of P̃2 is no longer required:

Definition 2. A quasi-equilibrium is a family (X?, Y ?, P1, F, P̃2) such that all prices, except possibly
P̃2, are non-negative, processors, storers and speculators act as price-takers and all markets clear.

Technically speaking, a quasi-equilibrium is a family

(X?, Y ?, P1, F, P̃2) ∈ R4
+ × L0(Ω,A, P )

such that Equations (3), (5), (7), (8) and (9) are satisfied.
We now give two existence and uniqueness results, the first one for quasi-equilibria and the

second one for equilibria.
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4.3 Quasi-equilibrium

Theorem 1. There is a quasi-equilibrium if and only if (ξ1, ξ2) verifies:

ξ2 ≥ −nPγZ if ξ1 ≥ 0, (14)

ξ2 ≥ −nPγZ −
m+ (nI + nP )γ

nI
ξ1 if − nIZ ≤ ξ1 ≤ 0, (15)

ξ2 ≥ −
m+ nIγ

nI
ξ1 if ξ1 ≤ −nIZ, (16)

and then it is unique.

Proof. To prove this theorem, we begin by substituting Equation (8E) in Equation (9). We get:

mF − γ(nPY ? − nIX?) = ξ2. (17)

We now have two equations, (7) and (17) for P1 and F . Replacing X? and Y ? by their values, given
by (3) and (5), we get a system of two nonlinear equations in two variables:{

mP1 − nI max{F − P1, 0} = ξ1, (18)

mF + γ (nI max{F − P1, 0} − nP max{Z − F, 0}) = ξ2. (19)

Remark that if we can solve this system with P1 > 0 and F > 0, we get P̃2 from (8). So the
problem is reduced to solving (19) and (18). Consider the mapping ϕ : R2

+ → R2 defined by:

ϕ(P1, F ) =
(

mP1 − nI max{F − P1, 0}
mF + γ (nI max{F − P1, 0} − nP max{Z − F, 0})

)
.

In R2
+, take P1 as the horizontal coordinate and F as the vertical one, as depicted by Figure 1.

There are four regions, separated by the straight lines F = P1 and F = Z:

• Region 1, where F > P1 and F < Z. In this region, both X? and Y ? are positive.

• Region 2, where F > P1 and F > Z. In this region, X? > 0 and Y ? = 0.

• Region 3, where F < P1 and F > Z. In this region, X? = 0 and Y ? = 0.

• Region 4, where F < P1 and F < Z. In this region, X? = 0 and Y ? > 0

Moreover, in the regions where X? > 0, we have X? = F −P1 and in the regions where Y ? > 0, we
have Y ? = Z − F . So, in each region, the mapping is linear, and it is obviously continuous across
the boundaries.

To prove the theorem, we have to show that the system (19) and (18) has a unique solution. It
can be rewritten as:

ϕ(P1,F ) =
(
ξ1

ξ2

)
,
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Figure 1: Physical and financial decisions in space (P1, F ): the 4 regions.

and it has a unique solution if and only if the right-hand side belongs to the image of F , which is
depicted by Figure 2, and developed in appendix A. This leads to the conclusion of the proof.

4.4 Equilibrium

A quasi-equilibrium is an equilibrium if P̃2 is positive in all futures states of the world. Clearly, if
some realizations of ξ̃2 are sufficiently low, there will be no equilibrium: states of extreme abundance
are inconsistent with positive prices. By equation (8), the exact condition is:

inf{ξ̃2} ≥ nIX? − nPY ?

Theorem 2. An equilibrium obtains if and only if (ξ1, ξ2) satisfies (14), (15), (16), plus the addi-
tional condition:

inf{ξ̃2} ≥ m
mnI

(
ξ2
m −

ξ1
m

)
− nP (m+ nI)

(
Z − ξ2

m

)
m(m+ nI + (nI + nP )γ) + nInPγ

in Region 1,

inf{ξ̃2} ≥
mnI

(
ξ2
m −

ξ1
m

)
m+ nI(1 + γ) in Region 2,

inf{ξ̃2} ≥ 0 in Region 3,

inf{ξ̃2} ≥ −
mnP (Z − ξ2

m )
m+ nPγ

in Region 4.

and it is then unique.

The proof of this theorem is given in appendix A.
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Figure 2: Physical and financial decisions in space (ξ1, ξ2): the 4 regions.

To be complete, we must ask a complementary question: for a given (ξ1, ξ2), is there a distribu-
tion of ξ̃2 such that an equilibrium exists?

Theorem 3. If (ξ1, ξ2) supports a unique quasi-equilibrium under the terms of Theorem 1, there is
a distribution of ξ̃2 supporting an equilibrium if and only if

ξ2
m
≥ − nIξ1 + (m+ nI)nPZ

m(m+ (γ − 1)nP ) + nI(mγ + (γ − 1)nP ) in Region 1,

ξ2
m
≥ − nI

m+ nIγ

ξ1
m

in Region 2,

ξ2
m
≥ 0 in Region 3,

ξ2
m
≥ − nPZ

m+ (γ − 1)nP
in Region 4.

The proof can be found in appendix A.

These additional constraints also have two characteristic points, which are denoted by convention
ϕ′(O) and ϕ′(A) (see appendix A).

The whole set of constraints is pictured in Figure 3. For a low ξ1, the constraint P1 ≥ 0 matters
more (excessive abundance at t = 1 must be avoided), whereas for a low ξ2, the constraint P̃2 ≥ 0
is the most restrictive one (excessive abundance at t = 2 should be avoided). Remark that, in
the absence of a futures market (see appendix E), the existence conditions for an equilibrium are
restricted: the four regions, in this scenario, are included in those of the basic scenario.
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Figure 3: Theorem 3’s existence conditions in space (ξ1, ξ2): zoom on region 1.

5 Equilibrium analysis

In this section we analyze the equilibrium in two steps. First, we examine the four regions depicted
in Figure 1. They correspond to very different types of interactions between the physical and the
financial markets. Second, we turn to Figure 2 on which we read directly the impact of “initial net
scarcity” (ξ1) and “expected net scarcity” (ξ2).

5.1 Prices, physical and financial positions

A first general comment on Figure 1 is that in Regions 1 and 2 where X? > 0, the futures market is
in contango: F > P1. Inventories are positive and they can be used for inter-temporal arbitrages.
In Regions 3 and 4, there is no inventory (X? = 0) and the market is in backwardation: F < P1.
These configurations are fully consistent with the theory of storage.

The other meaningful comparison concerns F and E[P̃2]. From Equation (9), we know that
hedging pressure HP gives the sign and magnitude of E[P̃2]− F , i.e. the price paid by the hedgers
to transfer their risk in the futures market. The analysis of the four possible regions, with a focus on
Region 1 (it is the only one where all operators are active and it gathers two important subcases),
enables us to unfold the reasons for the classical conjecture: backwardation on the expected basis,
i.e. F < E[P̃2]. More interestingly, we show why the reverse inequality is also plausible, as mentioned
by several empirical studies.3

The equation HP = 0 cuts Region 1 into two parts, 1U and 1L. It passes through M as can be
3For extensive analyses of the bias in a large number of commodity markets, see for example Fama and French

(1987), Kat and Oomen (2007) and Gorton et al. (2013).
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Figure 4: Physical and financial decisions in space (P1, F ) (zoom on Region 1).

seen in Figure 4. This frontier can be rewritten as:

∆ : nI(F − P1)− nP (Z − F ) = 0. (20)

• Along the line ∆, there is no bias in the futures price, and the risk is exchanged between
hedgers: storers and producers have perfectly matching positions and they insure each other.

• Above ∆, HP > 0 and F < E[P̃2]. This concerns the upper part of Region 1 (Subregion 1U)
and Region 2.

The net hedging position is short and speculators in long position are indispensable to the
clearing of the futures market. In order to induce their participation, there must be a prof-
itable bias between the futures price and the expected spot price. This backwardation on
the expected basis corresponds to the situation depicted by Keynes (1930) as the normal
backwardation theory.

• Below ∆, HP < 0 and F > E[P̃2]. This concerns the lower part of Region 1 (Subregion 1L)
and Region 4.

The net hedging position is long and the speculators must be short, which requires that
expected spot price be lower than the futures price.

Table 1 summarizes for each region the relationships between the prices and the physical and
financial positions. Attentive scrutiny of the table shows very contrasted regimes.

For example, in Region 2, we have simultaneously a contango on the current basis and a back-
wardation on the expected basis (or a positive bias). In short, P1 < F < E[P̃2]. In Region 3, in the
absence of hedging of any sort, the futures market is dormant, and this is no bias on the expected

17



2 P1 < F F < E[P̃2] F > Z

X? > 0 fS > 0 Y ? = 0
1U P1 < F F < E[P̃2] F < Z

X? > 0 fS > 0 Y ? > 0
∆ P1 < F F = E[P̃2] F < Z

X? > 0 fS = 0 Y ? > 0
1L P1 < F F > E[P̃2] F < Z

X? > 0 fS < 0 Y ? > 0
4 P1 > F F > E[P̃2] F < Z

X? = 0 fS < 0 Y ? > 0
3 P1 > F F = E[P̃2] F > Z

X? = 0 fS = 0 Y ? = 0

Table 1: Relationships between prices, physical and financial positions.

basis. Region 4 is the opposite of Region 2: the market is in backwardation and, as X? = 0, the
net hedging position is long, the net speculative position is short and the bias is negative. In short,
P1 > F > E[P̃2].

5.2 Supply shocks

In Figure 2, (ξ1, ξ2) measure scarcity, not abundance: ξ1 is the extent to which current production ω1

fails short of the demand of spot traders, and ξ2 is the (expected) extent to which future production
will fall short of the demand of spot traders.

Assume that no market is open before ξ1 is realized, and that ξ1 brings no news about ξ2. We
can take ξ2 as fixed, and see what happens on equilibrium variables, depending on the value of ξ1.
To fix ideas, suppose that we expect a moderate scarcity at date 2 (ξ2 = ξ2 in Figure 5). In the case
of a low ξ1 (abundance in period 1), we are in Subregion 1U. If ξ1 is bigger, we are in Subregion
1L, and if ξ1 is even bigger, the equilibrium is in Region 4.

The interpretation is straightforward. If period 1 experiences abundance (Subregion 1U), there
is massive storage: the current price is low and expected profits are attractive, since a future scarcity
is expected. Storers need more hedging than processors, first because inventories are high, second
because the expected release of stocks reduces the processors’ needs. Thus, there is a positive bias
in the futures price and speculators have a long position. For a less marked abundance (Subregion
1L), storage is more limited. The storers’ hedging needs diminish while that of the processors
increases. So the net hedging position is long, the bias in the futures price becomes negative and
the speculators have a short position. If the commodity is even scarcer (Region 4), there is no
storage, only the processors are active and they hedge their positions.

This example illustrates quite simply why, when there is a contango on the current basis, we
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Figure 5: Physical and financial decisions in space (ξ1, ξ2) (zoom on Region 1).

can have either an expected backwardation or an expected contango.

6 The impact of speculation

The impact of speculation can be studied in two ways.
First, the difference between having and not having speculators. This is the approach taken in

particular by Newbery (1987). We propose results in this vein in Appendix E. (Summary of existing
and new results to be written.)

Second, one can analyze the effect of “increasing speculation.” One may think either of a relaxed
access to the futures markets, or of a sudden rise in risk appetite. We can translate these changes
as an increase in the number NS , or as a decrease of the risk aversion αS , or even via the decrease
of the risk aversion of any of the other actors (αI or αP ). The key observation is that all these
possible causes impact the synthetic index γ in the same way: it decreases. Indeed, NS , αP , αI and
αS and Var[ξ̃2] appear only through the single parameter γ. This suggests us a simple strategy to
perform the comparative statics of speculation.

In the following, we mean by “increased speculation” any of the above mentioned causes de-
creasing γ. This expression is used for convenience, but the reader should keep in mind that this
means several slightly different things.

Subsection 6.1 shows the impact on prices and quantities; Subsection 6.2 prolongs with detailed
welfare analysis and the political economy of speculation.
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6.1 Speculators’ impact on prices and quantities

Increased speculation has equilibrium effects, so that the causal relationships between speculation,
prices and quantities must be used with care. We propose however a sequence of concomitant
theoretical facts that are easy to understand and memorize. This subsection must be seen as a big
proposition, the proofs being given in Appendix D.1.

The equilibrium analysis assumes that ξ1 is known when markets open, namely at date 1. But
for the observer, ξ1, or rather ξ̃1, can be seen as random at a previous stage, say date 0. In order to
analyze variance, we consider now that prices are functions of two random factors ξ̃1 and ξ̃2, with
ξi = E[ξ̃i] (i = 1, 2). We assume that the two factors are independent. We focus in particular on
Var0[·] instead of Var1[·| ξ1], as was done implicitly up to now. (The subscript gives the date at
which the statistics are calculated; given the absence of ambiguity in the sequel, the subscript will
be dropped.)

The analysis of an increase of speculation is studied as a decrease of γ. A topical case is an
increase of NS but other causes via the above mentioned parameters are also worth considering.

We study first Regions 2 and 1U, where E[P̃2] > F̃ , and where the physical agents are sellers in
aggregate in period 2 (they prefer the sure—as of date 1—F̃ to the random P̃2). References below
are to the columns of Table 2. Remark that in the table the absolute value |E[P̃2] − F̃ | gives the
(equilibrium) cost of risk coverage to physical agents. This cost is the starting point of our economic
analysis.

Let’s see first prices and quantities in level.

• Increasing speculation increases in fact the overall capacity to absorb risk. In our competi-
tive setting, this means that hedging becomes cheaper: the expected margin E[P̃2] − F̃ > 0
decreases (see column |E[P̃2]− F̃ |).

• As risk management becomes cheaper for storers, they increase their inventories, whatever
the shock observed in period 1 (see column X̃?).

• For the processors, hedging was a double win: it was reducing risk and was profitable. The
rent (or subsidy) they were receiving is diminished by an increased speculation; thus they
reduce their takes (see column Ỹ ?).

• Increased inventories means an increased demand in period 1, thus a price increase (see
columns P̃1). Quite logically, the effect is a lower price in period 2, due to the extra units
drawn from inventories (sSee column P̃2).

Let’s now turn to the variances.

• The decrease in the hedging cost enables storers to be more reactive to first-period prices, so
that overall their opportunistic purchases attenuate even more production or demand shocks
on prices: the covariance of inventories and price is negative and it increases in absolute value
with speculation. This explains the lower variance of P̃1 (see column Var[P̃1]).
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• The consequence of the previous effect is that there is more variance of the quantity of the
commodity delivered in period 2. This adds noise to the current shocks and thus the variance
of P̃2 increases. (See column Var[P̃2].)

• F̃ and P̃2 get closer as speculation increases (see columns F̃ and P̃2). This convergence means
that their variances have the same sense of variation with respect to speculation. (see columns
Var[F̃ ] and Var[P̃2]).

Whenever E[P̃2] < F̃ , the effects are similar but reverse. Processors are the agents who need
the more speculators, and they increase they position as speculation increases. Storers in contrast
lose on the rent they draw from being structurally contrarians.

|E[P̃2]− F̃ | F̃ X̃? Ỹ ? P̃1 P̃2 Var[F̃ ] Var[P̃1] Var[P̃2]

2 ↘ ↗ ↗ 0 ↗ ↘ ↘ ↘ ↗
}

E[P̃2]− F̃ > 0
1U ↘ ↗ ↗ ↘ ↗ ↘ ↘ ↘ ↗

1L ↘ ↘ ↘ ↗ ↘ ↗ ↘ ↘ ↗
}
F̃ − E[P̃2] > 0

4 ↘ ↘ 0 ↗ ←→ ↗ ←→ ←→ ←→

3 ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ F̃ = E[P̃2]

Table 2: Impact of speculators on prices and quantities

Speculation, prices and quantities in summary. Table 2 shows that Regions 2 and 4 can
be viewed as mere subcases of Subregions 1U and 1L. Remark for example that P̃1 decreases in
Subregion 1L whereas it is constant in Region 4. This is due to the fact that the storers are active in
Subregion 1L but not in Region 4, and underlines how important the stocks are for the functioning
of a commodity market. Inventories indeed appear as the transmission channel for shocks in the
space (between the paper and the physical markets) and in the time (between dates 1 and 2). For
this is through inventories that a shock appearing in the paper market (i.e. the rise of speculation)
impacts the level and variances of the physical quantities and the prices. This result is close to the
analysis of Newbery (1987).

As far as the level of the different variables is concerned, our model shows that the impact of
an increase of speculation depends, in the end, on which side of the hedging demand dominates.
The physical quantities, for example, increase for the operators benefiting from lower hedging costs
whereas they decrease for the others. This amplifies the difference in the positions of the operators
and consequently their market impact.

The analysis of the variances is less straightforward. The most simple effect is the impact on
Var[F̃], which always diminishes under the pressure of a more intense speculative activity (provided
that there are stocks in the economy). As regards to the spot prices, an increase of speculation has
a stabilizing effect at time 1 and a destabilizing one at time 2. The latter result however might
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be modified in a three-period model, where the quantities at time 2 would be influenced by the
futures price of a contract expiring at time 3. It could also be changed if the price of the output, Z,
could be adjusted as an answer to a shock. Up to now, indeed, there is nothing in the model that
could absorb a shock at time 2. This version of the model illustrates the fact that financial markets
may “destabilize” the underlying markets, though the term is inappropriate since it only refers to
a statistical property. Of course a higher price volatility doesn’t mean a lower welfare, quite the
contrary: more volatility means that prices are more effective/informative signals. The impact of
markets on prices volatilities is often a naïve aspect of welfare analysis. We will go further on this
point in the next subsection.

Note finally that Appendix E completes this analysis with comparisons based on another scenario
where the futures market is closed.

6.2 Speculators’ impact on utilities

In this section, we express the equilibrium indirect utilities of the various types of agents, and we
compute their sensitivities with respect to the parameters, in particular the number of speculators.
We proceed in two steps. First, we compute the indirect utilities as functions of equilibrium prices
P1 and F . Second, we compute the elasticities of P1 and F to deduce the elasticities of the indirect
utilities.

We restrict ourselves to the richer case, i.e. Region 1, where all agents are active. For the sake
of simplicity, we return to an analysis where ξ1 is known when markets open. Recall that then we
have F < Z and P1 < F .

The speculators’ indirect utility is given by:

US = f?S(E[P̃2]− F )− 1
2αSf

?2
S Var[P̃2],

where we have to substitute the value of f?S and and Var[P̃2], which leads to:

US =

(
E[P̃2]− F

)2

2αS Var[ξ̃2]
m2

. (21)

The storers’ indirect utility is given by:

UI = (x? + f?I )E[P̃2]− x?P1 − f?I F −
1
2Cx

?2 − 1
2αI(x

? + f?I )2Var[P̃2],

where we substitute the values of f?I , x? and Var[P̃2]:

UI =

(
E[P̃2]− F

)2

2αI Var[ξ̃2]
m2

+ X?2

2C . (22)
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Simarly, the processors’ indirect utility is:

UP =

(
E[P̃2]− F

)2

2αP Var[ξ̃2]
m2

+ Y ?2

2βZ . (23)

For all agents, we see a clear separation between the two components of the indirect utilities. The
speculative component is associated with the level of the expected basis. The hedging component
changes with the category of agent considered. For the storers, it is positively related to the current
basis F − P1, and for the processors, it rises with the margin on the processing activity Z − F .

We can use directly Table 2 to produce Table 3, in which there are relatively few ambiguities
left.

US UI UP

2 ↘ See App. ↘ }
E[P̃2]− F̃ > 01U ↘ See App. ↘

1U near ∆ ↘ ↗ ↘

1L near ∆ ↘ ↘ ↗ }
F̃ − E[P̃2] > 01L ↘ ↘ See App.

4 ↘ ↘ See App.

3 ←→ ←→ ←→ F̃ = E[P̃2]

Table 3: Impact of increasing speculation on welfare. Effects of 1U and 1L are expressed close to
line ∆.
See App. = See Appendix for complete results.

To conclude, all agents are speculators in their ways. Quite intuitively, the speculative com-
ponent is all the more important as the futures market is biased, whatever the sign of the bias.
All agents lose on this part of their utilities from having more speculators. Consequently, the pure
speculator always loses from more competition.

As far as storers and processors are concerned, remark that the second (hedging-related) terms
go in strictly opposite directions in Region 1, and weakly opposite directions in Regions 2 and 4.
Agents lose (gain) on the hedging terms from having more speculators when they have the smaller
(bigger) physical position; namely, storers in Regions 4 and 1L, processors in Regions 2 and 1U.

All terms considered, Table 3 gives unambiguous cases and those where terms draw in opposite
directions.

A case is worthy of mention. Around line ∆ separating Subregions 1U and 1L, speculation is
small since physical positions of storers and processors almost match.4 In that case, agents with
the smaller physical position see their privileged position (they play the best part in the physical

4In the neighborhood of the frontier ∆ cutting Region 1 into two parts, the speculation term is of second order
with respect to the hedging term.
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market) eroded by an increased number of speculators. Hence the difference between 1U and 1L
around ∆.

In terms of political economy (in the sense that economic interests may determine political
positions), we can simplify the message as follows: the interests of storers and processors are
systematically opposed. Thus, we cannot assign a pro or con position to either of these groups, the
prediction is that in a given position, they will take opposite positions.

7 Conclusion

Our model, although extremely simple (perhaps the simplest possible), shows the interaction be-
tween spot markets and a futures market, and exhibits a surprising variety of behaviors. In equilib-
rium, there may be a contango or a backwardation, the futures price may be higher or lower than
the expected spot price, inventory holders may or may not hold inventory, industrial processors
may or may not sell forward, adding speculators may increase or decrease the hedging benefits of
inventory holders and of industrial processors. All depends, in a way we determine, on market
fundamentals and the realization of shocks in the physical market. This rich variety of behaviors
can be found in commodities markets as they go, and we have not found in the literature another
model which encompasses them all.

Of course, our model is too simple to capture some important effects; for instance, we would
like to understand the so-called convenience yield, which is usually explained as the option value
of holding stock. This cannot be understood within a two-period model. For this reason, and
also because we want to take into account possible differences in the investment horizons of the
operators, developing an inter temporal approach is the next step. It would be interesting to see
how the conclusions of the two-period model fare in a multi-period or even in a infinite-horizon
models.
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A Demonstrations associated to the existence and the uniqueness
of the equilibrium

A.1 Quasi-equilibrium

This paragraph gives the images of Regions 1 to 4, depicted by Figure 2 and used in the proof of
Theorem 1.

In Figure 1, we denote by O the origin in R2
+, by A the point (0, Z), and by M the point (Z,Z)

(so, for instance, Region 1 is the triangle OAM). In Region 1, we have:

ϕ(P1, F ) =
(

mP1 − nI(F − P1)
mF + γ(nI(F − P1)− nP (Z − F ))

)
.

The images ϕ(O), ϕ(A), and ϕ(M) are easily computed:

ϕ(O) = (0,−γnPZ),

ϕ(A) = Z (−nI ,m+ γnI),

ϕ(M) = mZ (1, 1).

From this, one can find the images of all four regions (see Figure 2). The image of Region 1 is the
triangle ϕ(O)ϕ(A)ϕ(M).

The image of Region 2 is bounded by the segment ϕ(A)ϕ(M) and by two infinite half-lines, one
of which is the image of {P1 = 0, F ≥ Z}, the other being the image of {P1 = F, F ≥ Z}. In Region
2, we have:

ϕ(P1, F ) =
(

mP1 − nI(F − P1)
mF + γnI(F − P1)

)
.
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The first half-line emanates from ϕ(A) and is carried by the vector (−nI , m + γnI). The second
half-lines emanates from ϕ(M) and is carried by the vector (1, 1). Both of them (if extended in the
negative direction) go through the origin.

The image of Region 4 is bounded by the segment ϕ(O)ϕ(M) and by two infinite half-lines, one
of which is the image of {F = 0}, the other being the image of {P1 ≥ Z,F = Z}. In Region 4, we
have:

ϕ(P1, F ) =
(

mP1

mF − γnP (Z − F )

)
,

so the first half-line emanates from ϕ(O) and is horizontal, with vertical coordinate −γnPZ, and
the second emanates from ϕ(M) and is horizontal.

The image of Region 3 is entirely contained in R2
+, where it is the remainder of the three images

we described.

A.2 Equilibrium

Theorem 2

Proof. In Region 1, given Equation (26) in Appendix B, P̃2 ≥ 0 is equivalent to

0 ≤ ξ̃2
m

+
mnI

ξ1
m − ((m+ nI)nP +mnI) ξ2

m + (m+ nI)nPZ
mnIγ +m(m+ nI) + (m+ nI)nPγ

,

which gives the expression of the Theorem after rearrangement.
Remark that the condition for Region 1 implies the other three. Indeed, taking nP = 0 yields

the condition for Region 2, nI = 0 yields the condition for Region 4, and nI = nP = 0 yields the
condition for Region 3. This simple shortcut works for other analytical results.

Theorem 3 We first give the proof of theorem 3:

Proof. Starting from Theorem 2, and remarking that the limit case allowing us to draw the frontier
is when inf{ξ̃2} = ξ2, we find the conditions above after rearrangement.

We then give precisions about the additional constraints added by this theorem, which are
depicted by Figure 3:

ϕ′(O) =
(

0,− mnP
m+ nP (γ − 1)Z

)
;

ϕ′(A) =
(
−nIZ,

n2
I

m+ nIγ
Z

)
.

Remark that ϕ′(O) is above ϕ(O) (both have the same negative abscissa), and that ϕ′(A) is below
ϕ(A) (both have the same positive abscissa). The intersection point Ψ of the two sets of constraints
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is in Region 1, with:

Ψ =
(
− nInP (γ − 1)Z
m+ (nI + nP )(γ − 1) ,−

mnPZ

m+ (nI + nP )(γ − 1)

)
.

B Prices and quantities: explicit expressions

Note that ξ1 := µ1 − ω1, ξ̃2 := µ̃2 − ω̃2, ξ2 := E[µ̃2 − ω̃2], nI := NI/C and nP := NP
βZ , and

γ = 1 + 1
m

Var[ξ̃2]
NP
αP

+ NI
αI

+ NS
αS

.

The regime is determined by (ξ1, ξ2), and the final expressions of equilibrium prices are as follows.

Region 1.

P1 =
m(m+ (nI + nP )γ) ξ1

m +mnI
ξ2
m + nInPγZ

m(m+ (nI + nP )γ) +mnI + nInPγ
, (24)

F =
mnIγ

ξ1
m +m(m+ nI) ξ2

m + (m+ nI)nPγZ
mnIγ +m(m+ nI) + (m+ nI)nPγ

, (25)

P̃2 = ξ̃2
m

+
mnI

ξ1
m − ((m+ nI)nP +mnI) ξ2

m + (m+ nI)nPZ
mnIγ +m(m+ nI) + (m+ nI)nPγ

, (26)

Remark that all denominators are equal. They are written in different ways only to show that P1

and F are convex combinations of ξ1
m , ξ2

m and Z.
Note that

E[P̃2]− F = (γ − 1)
mnI

(
ξ2
m −

ξ1
m

)
− nP (m+ nI)

(
Z − ξ2

m

)
m(m+ nI + (nI + nP )γ) + nInPγ

. (27)

Quantities:

X? =
m(m+ nPγ)

(
ξ2
m −

ξ1
m

)
+mnPγ

(
Z − ξ2

m

)
m(m+ nI + (nI + nP )γ) + nInPγ

, (28)

Y ? =
mnIγ

(
ξ2
m −

ξ1
m

)
+m(m+ nI(1 + γ))

(
Z − ξ2

m

)
m(m+ nI + (nI + nP )γ) + nInPγ

. (29)

Note that starting from Region 1, setting nI or nP to 0 in the expressions to get the prices for
any other region works perfectly. For example, the prices for Region 2 can be directly retrieved by
posing nP = 0 in Equations (24)-(29).
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Region 2.

P1 =
(m+ nIγ) ξ1

m + nI
ξ2
m

m+ nI(1 + γ) ; F =
nIγ

ξ1
m + (m+ nI) ξ2

m

m+ nI(1 + γ) ; P̃2 = ξ̃2
m

+
nI
(
ξ1
m −

ξ2
m

)
m+ nI(1 + γ) ;

X? =
m
(
ξ2
m −

ξ1
m

)
m+ nI(1 + γ) ; Y ? = 0.

Remark that

E[P̃2]− F̃ = (γ − 1)
nI
(
ξ2
m −

ξ̃1
m

)
m+ nI(1 + γ) > 0. (30)

Region 3.

P1 = ξ1
m

; F = ξ2
m

; P̃2 = ξ̃2
m

; X? = 0 ; Y ? = 0 ; E[P̃2]− F̃ = 0.

Region 4.

P1 = ξ1
m

; F =
m ξ2
m + nPγZ

m+ nPγ
; P̃2 = ξ̃2

m
+
nP
(
Z − ξ2

m

)
m+ nPγ

; X? = 0 ; Y ? =
m
(
Z − ξ2

m

)
m+ nPγ

.

Remark that

F̃ − E[P̃2] = (γ − 1)
nP
(
Z − ξ2

m

)
m+ nPγ

> 0. (31)

C Comparative statics on the existence of the equilibrium

This appendix depicts what happens with the existence of an equilibrium when γ increases.
See Figure 3 for a starting point. Figure 6 illustrates how characteristic points move as γ

increases. Point ϕ(M) remains fixed, ϕ(O), ϕ′(O), ϕ(A) and ϕ′(A) move vertically, as easy calcu-
lations show. Note that the most relevant points as identified in Subsection 4.4, namely ϕ′(O) and
ϕ(A), move vertically upwards. This means that existence conditions are restrained in Regions 2
and 4.

Effects on Region 1 are mixed. The segment ϕ(A)ϕ(O) rotates clockwise around point

Ω =
(
− nInPZ

nI + nP
,
mnPZ

nI + nP

)
which is in the NW quadrant, and whose value doesn’t depend on γ.

The segment ϕ′(A)ϕ′(O) rotates anticlockwise aroung point

Ω′ =
(
−(m+ nI)nPZ

nI
, 0
)
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which is on the horizontal axis, and whose value doesn’t depend on γ. This proves that Region 1
enlarges on one side, as far as existence is considered.

  

ξ2

ξ1

ϕ(A )

ϕ ' (A)

ϕ ' (O)

ϕ(O)

Ω '

Ω

Ψ

Point move

As γ increases :

Straight line
Rotation

Figure 6: Existence conditions of the equilibrium: comparative statics on γ.

Overall, speculation facilitates existence of an equilibrium in space (ξ1, ξ2), except for side of
Region 1, namely (Ω,Ψ).

The comparative on γ is now clear: the more frictious the markets, the tighter the existence
conditions in Region 2 and Region 4, where only one type of actors actually has a physical position.
In Region 1 where physical positions of storers and processors compensate (more or less) each other,
the conclusion is not clear cut.

D Prices’ and utilities’ sensitivities in Section 6

D.1 Speculators’ impact on prices and quantities

To perform the comparative statics, we focus first on Regions 2 and 4, in order to examine simple
mechanisms, then discuss Region 1, in which the previous effects are mixed in interesting ways. The
equilibrium prices are drawn from Appendix B.

Region 2. The facts that P̃1 and F̃ are weighted averages of ξ̃1/m and ξ2/m, and that ξ2
m ≥

ξ̃1
m

in Region 2, determine immediately the variations of the 3 prices given in Table 2.
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Moreover

Var[P̃1] =
(

m+ nIγ

m+ nI(1 + γ)

)2 Var[ξ̃1]
m2 , Var[F̃ ] =

(
nIγ

m+ nI(1 + γ)

)2 Var[ξ̃1]
m2 ,

Var[P̃2] = Var[ξ̃2]
m2 +

(
nI

m+ nI(1 + γ)

)2 Var[ξ̃1]
m2 , Var[X̃?] =

( −1
m+ nI(1 + γ)

)2
Var[ξ̃1],

with obvious comparative statics.
Remark that we can conclude directly from (30) that E[P̃2]−F̃ decreases as speculation increases.

Region 4. Again, P̃1 and F̃ are weighted averages of ξ̃1/m and ξ2/m. This, in addition to the
fact that ξ2

m ≤ Z in Region 4, determine the comparative statics on the 3 prices.
Remark that we can conclude directly from (31) that F̃−E[P̃2] decreases as speculation increases.

Region 1. The two Subregions 1U and 1L are separated by the line ∆, already encountered,
defined by nIX̃? − nP Ỹ ? = 0⇔ E[P̃2]− F = 0 (see Equation 27).

Taking into account the fact that prices and quantities have the form A+Bγ
C+Dγ , with positive

numerators and denominators, and that such expressions are increasing with respect to γ if BC −
DA ≥ 0, it is easy (but tedious) to show that 1U and 1L are the relevant subregions, the former
resembling Region 2 and the latter Region 4. This is true for the levels of P̃1, F̃ , P̃2, X̃?, and Ỹ ?,
whose changes are summarized in Table 2.

Note that

Var[P̃1] =
(

m(m+ (nI + nP )γ)
m(m+ nI + (nI + nP )γ) + nInPγ

)2 Var[ξ̃1]
m2 ,

Var[P̃2] =
(

mnI
m(m+ nI + (nI + nP )γ) + nInPγ

)2 Var[ξ1]
m2 + Var[ξ̃2]

m2 ,

Var[F̃ ] =
(

mnIγ

m(m+ nI + (nI + nP )γ) + nInPγ

)2 Var[ξ̃1]
m2 .

The position with regard to ∆ is not relevant for the variances, which are monotonic in the same
way whatever subcase is concerned. See Table 2.

D.2 Utilities

We will now particularize formulas (21), (22) and (23) to the case when the markets are in equilib-
rium. In that case, P̃2 becomes a function of (P1, F ), and the formulas become (after replacing the
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ni by their values in terms of the Ni):

US = Var[ξ̃2]

2m2αS
(∑ Ni

αi

)2

(
NI

C
(F − P1)− NP

βZ
(Z − F )

)2
; (32)

UI = Var[ξ̃2]

2m2αI
(∑ Ni

αi

)2

(
NI

C
(F − P1)− NP

βZ
(Z − F )

)2
+ (F − P1)2

2C ; (33)

UP = Var[ξ̃2]

2m2αP
(∑ Ni

αi

)2

(
NI

C
(F − P1)− NP

βZ
(Z − F )

)2
+ (Z − F )2

2βZ . (34)

Formulas (32), (33) and (34) give us the indirect utilities of the agents at equilibrium in terms
of the equilibrium prices P1 and F . These can in turn be expressed in terms of the fundamentals of
the economy, namely ξ1 and ξ̃2 (see Appendix B): substituting formulas (24), (25) and (26), we get
new expressions, which can be differentiated to give the sensitivities of the indirect utilities with
respect to the parameters in the model.

To investigate whether an increase in the number of speculators increases or decreases the welfare
of speculators, of inventory holders, and of industry processors, we found simpler to work directly
with formulas (32), (33) and (34) and to take the sensitivities of P1 and F with respect to the varying
parameter NS . The calculations follow. In contrast, the complete substitution of equilibrium values
seems unworkable.

Sensitivity of US. Differentiating formula (32) yields:

dUS
dNS

= Var[ξ̃2]

m2αS
(∑ Ni

αi

)2 (nI(F − P1)− nP (Z − F ))
(
m+ nP

(
1 + m

nI

))
dP1
dNS

− Var[ξ̃2]

m2α2
S

(∑ Ni
αi

)3 (nI(F − P1)− nP (Z − F ))2

=− Var[ξ̃2]

m2α2
S

(∑ Ni
αi

)3

1− Var[ξ̃2]
m
∑ Ni

αi

(
m+ nP

(
1 + m

nI

))
(
m
nI

+ 1
)

(m+ γnP ) + γm


× (nI(F − P1)− nP (Z − F ))2 .

=− Var[ξ̃2]

m2α2
S

(∑ Ni
αi

)3
m2 + nInP +m(2nI + nP )

m2 +mnI + γ(nInP +m(nI + nP )) (35)

× (nI(F − P1)− nP (Z − F ))2 .

The sign of dUS
dNS

is constant in Region 1: it is negative. Adding speculators decreases the
remuneration associated to risk bearing.
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Sensitivity of UI . Differentiating formula (33) yields:

dUI
dNS

=− Var[ξ̃2]

m2αSαI
(∑ Ni

αi

)3
m2 + nInP +m(2nI + nP )

m2 +mnI + γ(nInP +m(nI + nP ))

× (nI(F − P1)− nP (Z − F ))2 + F − P1
C

(
dF

dNS
− dP1
dNS

)
=− Var[ξ̃2]

m2αSαI
(∑ Ni

αi

)3
m2 + nInP +m(2nI + nP )

m2 +mnI + γ(nInP +m(nI + nP )) (36)

× (nI(F − P1)− nP (Z − F ))2

+ F − P1
C

1
nIαS

Var[ξ̃2](∑ Ni
αi

)2
nI(F − P1)− nP (Z − F )(
m
nI

+ 1
)

(m+ γnP ) + γm
.

As mentioned before, the utility due to speculative activities decreases when NS increases. As
far as the utility of hedging is concerned, the effect depends on the sign of: nI(F − P1)− nP (Z − F ).
Remind that this line separates Region 1 into two subcases. In Subregion 1U, the utility of hedging
increases for the storers, because they need more hedging than processors. The opposite conclusion
arises in Subregion 1L.

As far as the total utility is concerned, we will not pursue the calculations further, noting simply
that nI(F − P1)− nP (Z − F ) factors, so that the result is of the form:

dUI
dNS

= A(nI(F − P1)− nP (Z − F ))(K1(F − P1) +K2(Z − F )),

for suitable constants A, K1, and K2. This means that the sign changes across

• the line ∆, already encountered, defined by nI (F − P1) + nP (Z − F ) = 0;

• the line D, defined by the equation K1(F − P1) +K2(Z − F ) = 0.

Both ∆ and D go through the point M where P1 = F = Z. If K2/K1 < 0, the line D enters
Region 1, if K2/K1 > 0, it does not. So, if K2/K1 < 0, Region 1 is divided in three subregions by
the lines D and ∆, and the sign changes when one crosses from one to the other. If K2/K1 > 0,
Region 1 is divided in two subregions by the line ∆, and the sign changes across ∆. In all cases,
the response of inventory holders to an increase in the number of speculators will depend on the
equilibrium.
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Sensitivity of UP . Differentiating formula (34) yields:

dUP
dNS

=− Var[ξ̃2]

m2αSαP
(∑ Ni

αi

)3
m2 + nInP +m(2nI + nP )

m2 +mnI + γ(nInP +m(nI + nP ))

× (nI(F − P1)− nP (Z − F ))2 + F − Z
βZ

dF

dNS

=− Var[ξ̃2]

m2αSαP
(∑ Ni

αi

)3
m2 + nInP +m(2nI + nP )

m2 +mnI + γ(nInP +m(nI + nP )) (37)

× (nI(F − P1)− nP (Z − F ))2

+ F − Z
βZ

(
m

nI
+ 1

) 1
mαS

Var[ξ̃2](∑ Ni
αi

)2
nI(F − P1)− nP (Z − F )(
m
nI

+ 1
)

(m+ γnP ) + γm
.

Again, the utility due to speculation decreases and that linked with hedging depends on the sign
of: nI(F − P1)− nP (Z − F ). In Subregion 1U, the utility of hedging decreases for the processors,
and it increases in Subregion 1L.

We will not pursue the calculations further, noting simply that nI(F −P1)−nP (Z −F ) factors
again, so that:

dUP
dNS

= A?(nI(F − P1)− nP (Z − F ))(K?
1 (F − P1) +K?

2 (Z − F ))

As in the preceding case, there will be a line D? (different from D), which enters Region 1 if
K?

1/K
?
2 < 0 and does not if K?

1/K
?
2 > 0. In the first case, Region 1 is divided into three subregions

by D and ∆?, in the second it is divided into two subregions by ∆, and the sign of dUI
dNP

changes
when one crosses the frontiers.

E Comparison with the no-futures scenario (NF)

This appendix is devoted to the case where there is no futures market (scenario NF): speculators
are inactive and there remains three kinds of operators: storers, processors, and spot traders. The
optimal position of the storer becomes:

x?NF = 1
C + αI

Var[ξ̃2]
m2

max{E[P̃2]− P1, 0}. (38)

The storer holds inventory if the expected price is higher than the current spot price. The processor’s
activity depends on the fact that the forward price of the output is higher than the expected spot
price of the commodity:

y?NF = 1
βZ + αP

Var[ξ̃2]
m2

max{Z − E[P̃2], 0}. (39)
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When there is no futures market, uncertainty on the future spot price determines the decisions
undertaken in the physical market. In this scenario, the latter necessarily have a speculative aspect.

Theorem 4 (Existence conditions). Existence conditions on (ξ1, ξ2) are stricter in the scenario NF
than in the basic case.

Proof. To prove this theorem, we begin by taking Equation (8) depicting the expected equilibrium
at date 2:

E[P̃2] = 1
m

(ξ2 −NIx
?
NF +NP y

?
NF) .

Hence Var[P̃2] is a constant Var[ξ̃2]
m2 . This allows us to follow the same line of reasoning as in the

basic scenario.
This gives the mapping ϕNF : R2

+ → R2 defined by:

ϕNF(P1,E[P̃2]) =

 mP1 − nIC

C+αI
Var[ξ̃2]
m2

max{E[P̃2]− P1, 0}

mE[P̃2] + nIC

C+αI
Var[ξ̃2]
m2

max{E[P̃2]− P1, 0} − nP βZ

βZ+αP
Var[ξ̃2]
m2

max{Z − E[P̃2], 0}

 .
Formally, the analysis is identical to the one done in the basic case. We reuse previous calculations
by applying on variables and parameters the transposition given in Table 4.

Basic scenario: F γ nI nP

↓ ↓ ↓ ↓

NF scenario: E[P̃2] 1
︷ ︸︸ ︷
nNF
I = nI ×

C

C + αI
Var[ξ̃2]
m2

︷ ︸︸ ︷
nNF
P = nP ×

βZ

βZ + αP
Var[ξ̃2]
m2

Table 4: Variables and parameters transposition.

We can now turn to existence conditions, the proof is in three steps.5 We use the complete
conditions of existence from Theorem 3 in Subsection 4.4.

1. Remark that ϕ′NF(O) is above ϕ′(O), where we use the obvious convention that ϕ′NF(O) is the
equivalent in the NF scenario of ϕ′(O) in the basic model. We will use similar conventions in
the following. Calculations are a bit tedious, but unambiguous.

2. Note that the slope of the left frontier of region 2 is steeper (in absolute value) in the case NF
than in the basic model. This also restricts existence possibilities in case NF. Another tedious
but unambiguous calculation.

3. ϕNF(A) has a higher abscissa and a lower ordinate than ϕ(A), leading also to more restrictive
conditions in scenario NF. This calculation is immediate.

The three properties are pictured in Figure 7.
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2
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4

ϕ ' (O)

ξ2

ϕ(M )

ϕ(A)

ξ1
ϕNF ' (O )

ϕNF(A)

Figure 7: Existence conditions: comparison between and without futures market.

The four regions in the NF scenario are included in those of the basic scenario. Region 1
diminishes. Region 2 gains on the basic Region 1 and it is cut on its left border. Region 3 doesn’t
change. Region 4 gains on the basic Region 1 and it is cut on its bottom border.

Prices and volatility. The absence of a futures market also impacts price levels and volatilities.
For instance Equations (7) and (8) suggest that lower values for inventories and production lead to
lower levels of the spot price at date 1, and also, possibly, at date 2.

In order to analyze the variances, we will consider ξ1 as random, as we did in Section 6. Other
things equal, having futures or not can change the region in wich the equilibrium is. Yet, for
simplicity we compare variances region by region.

Prices in the NF scenario are the following (they can be retrieved directly, or with Table 4 and
the equations of Appendix B):

P̃NF
1 =

m(m+ nNF
I + nNF

P ) ξ̃1
m +mnNF

I
ξ2
m + nNF

I nNF
P Z

m(m+ nNF
I + nNF

P ) +mnNF
I + nNF

I nNF
P

, (40)

E[P̃NF
2 ] =

mnNF
I

ξ̃1
m +m(m+ nNF

I ) ξ2
m + (m+ nNF

I )nNF
P Z

mnNF
I +m(m+ nNF

I ) + (m+ nNF
I )nNF

P

, (41)

P̃NF
2 = ξ̃2

m
+
mnNF

I
ξ̃1
m − ((m+ nNF

I )nNF
P +mnNF

I ) ξ2
m + (m+ nNF

I )nNF
P Z

mnNF
I +m(m+ nNF

I ) + (m+ nNF
I )nNF

P

. (42)

5Calculations have been verified with a formal calculator. A copy of the file is available upon request.
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Let us compare the variance of P̃1 in Region 1 in the two scenarios, i.e.:

Var[P̃1] =
(

m(m+ (nI + nP )γ)
m(m+ nI + (nI + nP )γ) + nInPγ

)2 Var[ξ̃1]
m2 .

with :

Var[P̃NF
1 ] =

(
m(m+ nNF

I + nNF
P )

m(m+ 2nI + nNF
P ) + nNF

I nNF
P

)2 Var[ξ̃1]
m2 .

After tedious calculations, it appears that the latter is unambiguously bigger than the former.6

Markets are stabilizing the price in period 1, as we saw in Subsection 6.1, because purchases are
countercyclical. In the absence of a futures market, the stabilizing effect is attenuated.

Concerning period 2, we have to compare:

Var[P̃2] =
(

mnI
m(m+ nI + (nI + nP )γ) + nInPγ

)2 Var[ξ̃1]
m2 + Var[ξ̃2]

m2 .

with

Var[P̃NF
2 ] =

(
mnNF

I

m(m+ 2nNF
I + nNF

P ) + nNF
I nNF

P

)2 Var[ξ̃1]
m2 + Var[ξ̃2]

m2 .

In region 4, they are identical: due to the absence of storage, the absence of futures leaves the
two periods independent statistically. Yet, quantities are higher if there are futures.

In region 2, the variance is bigger in the base scenario. This is the effect underlined in Newbery
(1987): the facilitation of storage transports shocks from the first period to the second one.

The comparison is ambiguous in region 1, and our attemps to factorize the difference has not
produced particularly interesting conditions. One reason is that passing from one scenario to the
other is a qualitative step that doesn’t have smooth effects on mathematical expression.

6We analyzed the numerator after reduction of the difference to the same denominator. All terms have the same
sign. Calculations have been verified with a formal calculator. A copy of the file is available upon request.
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