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Introduction

In the field of commodity derivative markets, some questions are as old as the markets themselves, and they remain open today. Speculation is a good example: in his famous article about speculation and economic activity, [START_REF] Kaldor | Speculation and Economic Stability[END_REF] wrote: "Does speculation exert a price-stabilising influence, or the opposite? The most likely answer is that it is neither, or rather that it is both simultaneously." 1 More than 70 years later, in June 2011, the report of the G20 [START_REF] Fao | Price Volatility in Food and Agricultural Markets: Policy Responses[END_REF] states: "The debate on whether speculation stabilizes or destabilizes prices resumes with renewed interest and urgency during high price episodes. [. . . ] More research is needed to clarify these questions and in so doing to assist regulators in their reflections about whether regulatory responses are needed and the nature and scale of those responses." Our simple (perhaps the simplest possible) model of commodity trading provides insights into this question. It also proposes a way to understand how these markets function and how the futures and spot prices are formed. Finally, it illustrates the interest of a derivative market in terms of the welfare of the agents.

In this model, the financial market interacts with the physical market. There are two periods, a single commodity, a numéraire and two markets: the spot market at times t = 1 and t = 2, and the futures market, where contracts are traded at t = 1 and settled at t = 2. The spot market is physical (there is a non negativity constraint on inventories), while the futures market is financial (shorting is allowed). There are three types of traders: inventory holders and industrial processors of the commodity, both of which operate on the two markets, and speculators who operate on the futures market only. All of them are utility maximizers and have mean-variance utility (this choice is discussed in the presentation of the model). There is also a price sensitive background demand (or supply) attributed to spot traders, which helps clear the spot market. The sources of uncertainty are the amount of commodity produced and the demand of the spot traders at t = 2.

Their realization is unknown at t = 1, but their law is common knowledge. All decisions are taken at t = 1 conditionally on expectations about t = 2.

Our main contributions are three: existence and uniqueness of the equilibrium, extended comparative statics, and regulatory implications. They are the consequences of the tractability of the model.

Despite nonlinear equilibrium equations, we give necessary and sufficient conditions on the fundamentals of this economy for a rational expectations equilibrium to exist, and we show that it is unique. Moreover, it provides a unified framework for the theory of price relations in commodity futures markets, whereas in the literature this analysis is usually split into two strands: the storage theory and the normal backwardation theory (also named the hedging pressure theory after De Roon et al. (2000)). The former focuses on the cost of storage of the underlying asset, the latter on the risk premium. Although they are complementary, to the best of our knowledge these two strands have remained apart up to now.

We characterize the four possible equilibrium regimes. While each of these four regimes is simple to relate to concrete facts, we believe that our model is the first comprehensive analysis to give explicit conditions on the fundamentals of the economy determining which one will actually prevail in equilibrium. We also give explicit formulas for the equilibrium prices. This enables us to characterize regimes in detail and to perform complete and novel comparative statics. For instance, as is done in the storage theory, we can explain why there is a contango (in such a case, the "current basis", defined as the difference between the futures price and the current spot price, is positive) or a backwardation (the current basis is negative) on the futures market, and how this could change.

Towards this analysis, we give insights into the question of the informational content of the futures price and the price discovery function of futures markets.

As done in the normal backwardation theory, we can also compare the futures price with the expected spot price and ask whether or not there is a bias in the futures price (we define the "expected basis" as the difference between the futures price and the expected spot price). The sign and the level of the bias depend directly on which regime prevails. For example, the futures price can be predicted to be lower (resp. higher) than the expected spot price if a synthetic index (denoted by γ) says that there are relatively more (resp. less) storers compared to processors and that they are relatively more (resp. less) risk averse. The precise thresholds depend on the number of speculators and their risk aversion. So the model depicts the way futures markets are used to reallocate risk between operators, the price to pay for such a transfer, and thus provides insights into the main economic function of derivative markets: hedging. 1Our model allows for new types of comparative statics. For example, we show that when the number of speculators increases, say because access to the futures market is relaxed, the volatility of spot prices at date 2 goes up. This effect sounds undesirable. Our interpretation is that speculation increases the informativeness of prices: volatility brings more efficiency. The mechanism is quite simple. As the number of speculators increases, the cost of hedging decreases and demand for futures grows along with physical positions. Smaller hedging costs make storers and processors amplify the differences in their positions in response to different pieces of information, implying that their market impact increases. This increases in turn the volatility of prices.

Beyond these descriptive predictions, we use our model to perform a welfare analysis and to draw regulatory implications. This question, again, is as old as derivatives markets. [START_REF] Newbery | Futures markets, hedging and speculation[END_REF] summarizes well the usual yet dual appreciation of the impact of derivatives markets on welfare.

The author makes a difference between what he calls the "layman" and "the body of informed opinion." He explains that to the first, "the association of speculative activity with volatile markets is often taken as proof that speculators are the cause of the instability," whereas to the second, "volatility creates a demand for hedging or insurance." Our model also exhibits a dual conclusion about welfare, but it is differently stated. First, the model allows for a clear separation between the utility of speculation and that of hedging. Then, the analysis of the impact of an increasing number of speculators shows that, storers and processors, as far as their hedging activities are concerned, have opposite views on the desirability of speculators. They are useless when the positions of storers and processors match exactly; but when one type of agents has needs higher than what the other type can supply, then the former wants more (the latter wants less) speculators because this reduces his costs of hedging. To the best of our knowledge, such an effect has never been clarified before.

Literature review. Of course, the questions we have raised have been investigated before. Contrary to what is done in this paper, the literature on commodity prices however separates the question of the links between the spot and the futures prices and that of the bias in the futures price. The latter has been investigated first by [START_REF] Keynes | A Treatise on Money[END_REF] through the theory of normal backwardation whereas the former is usually associated to the theory of storage, initiated by [START_REF] Kaldor | A Note on the Theory of the Forward Market[END_REF][START_REF] Szymanowska | An Anatomy of Commodity Futures Risk Journal of Finance Forthcoming[END_REF] and [START_REF] Brennan | The Supply of Storage[END_REF]. The same separation is true for the equilibrium models developed so far.

An important number of equilibrium models of commodity prices focuses on the bias in the futures price and the risk transfer function of the derivative market. This is the case, for example, of Anderson and Danthine (1983a), Anderson and Danthine (1983b), [START_REF] Hirshleifer | Risk, Futures Pricing and the Organization of Production in Commodity Markets[END_REF][START_REF] Hirshleifer | Futures, Trading, Storage and the Division of Risk: A Multiperiod Analysis[END_REF], [START_REF] Guesnerie | De)stabilizing Speculation on Futures Markets: An Alternative View Point[END_REF][START_REF] Guesnerie | De)stabilizing Speculation on Futures Markets: An Alternative View Point[END_REF][START_REF] Acharya | Limits to Arbitrage and Hedging: Evidence from Commodity Markets[END_REF]. Anderson and Danthine (1983a) is an important source of issues and modeling ideas.

Compared with this work, ours is simpler (the producers are not directly modeled) and completely specified. This gives us the possibility to obtain explicit formulas for the equilibrium prices and to investigate further economics issues, like welfare for example. The models developed by [START_REF] Hirshleifer | Risk, Futures Pricing and the Organization of Production in Commodity Markets[END_REF] and [START_REF] Hirshleifer | Futures, Trading, Storage and the Division of Risk: A Multiperiod Analysis[END_REF] are also inspired by Anderson and Danthine (1983a). In these papers, Hirshleifer analyzes a point which is interesting for our model but that we leave aside: the coexistence of futures and forward markets. [START_REF] Hirshleifer | Futures, Trading, Storage and the Division of Risk: A Multiperiod Analysis[END_REF] also asks whether or not vertical integration and futures trading can be substitute means of diversifying risk.

Let us also mention that, contrary to Anderson and Danthine (1983b), [START_REF] Hirshleifer | Futures, Trading, Storage and the Division of Risk: A Multiperiod Analysis[END_REF] and [START_REF] Routledge | Equilibrium Forward Curves for Commodities[END_REF], we do not undertake an inter-temporal analysis in the present version of the model. Anderson and Danthine (1983b) is the "inter-temporal" extension of Anderson and Danthine (1983a): they allow the futures position to be revised once within the cash market holding period.

To obtain results while keeping tractable equations, the authors however must simplify their model so that only one category of hedger remains in the new version. When equilibrium analysis stands at the heart of all concerns (which is our case), this is a strong limitation. [START_REF] Routledge | Equilibrium Forward Curves for Commodities[END_REF] give another interesting example of inter-temporal analysis. It is related to the literature on equilibrium models which focuses on the current spot price and the role of inventories in the behavior of commodity prices, as in [START_REF] Deaton | On the Behaviour of Commodity Prices[END_REF], and in [START_REF] Chambers | A Theory of Commodity Price Fluctuations[END_REF]. In these models, however, there is no futures market: markets are complete and there is in fact a single type of representative agent. Risk allocation being optimal, these models are not fit for the political economy of regulatory changes.

Beyond the question of the risk premium, equilibrium models have also been used in order to examine the possible destabilizing effect of the presence of a futures market and to analyze welfare issues. This is the case of [START_REF] Guesnerie | De)stabilizing Speculation on Futures Markets: An Alternative View Point[END_REF], [START_REF] Newbery | When do Futures Destabilize Spot Prices?[END_REF], and [START_REF] Baker | The Price of Oil Risk[END_REF]. As the model proposed by [START_REF] Guesnerie | De)stabilizing Speculation on Futures Markets: An Alternative View Point[END_REF] is devoted to the analysis of mental ("eductive") coordination strategies, it is more stripped down than ours. As in [START_REF] Newbery | When do Futures Destabilize Spot Prices?[END_REF], our explicit formulas for equilibrium prices allows for interesting comparisons depending on the presence or absence of a futures market. Finally, contrary to [START_REF] Baker | The Price of Oil Risk[END_REF], we are not primarily interested in Pareto optimal risk allocations: we focus instead on comparative market performance as measured by utilities per head.

Apart from the specific behavior of prices, the non-negativity constraint on inventories raises another issue. Empirical facts indeed testify that there is more than a non-negativity constraint in commodity markets: the level of inventories never falls to zero, leaving thus unexploited some supposedly profitable arbitrage opportunities. The concept of a convenience yield associated with inventories, initially developed by [START_REF] Kaldor | A Note on the Theory of the Forward Market[END_REF] and [START_REF] Brennan | The Supply of Storage[END_REF] is generally used to explain such a phenomenon, which has been regularly confirmed, on an empirical point of view, since [START_REF] Szymanowska | An Anatomy of Commodity Futures Risk Journal of Finance Forthcoming[END_REF] 2 . In their model, [START_REF] Routledge | Equilibrium Forward Curves for Commodities[END_REF] introduce a convenience yield in the form of an embedded timing option associated with physical stocks. Contrary to these authors, we do not take into account the presence of a convenience yield in our analysis. While this would probably constitute an interesting improvement of our work, it is hardly compatible with a two-period model.

Recent attempts to test equilibrium models must also be mentioned, as they are rare. The tests undertaken by [START_REF] Acharya | Limits to Arbitrage and Hedging: Evidence from Commodity Markets[END_REF] could be used as in fruitful source of inspiration for further developments. As far the analysis of the risk premium is concerned, the empirical tests performed by [START_REF] Hamilton | Risk Premia in Crude Oil Futures Prices[END_REF] and Szymanowska et al. (forth.), as well as the simulations proposed by [START_REF] Bessembinder | Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets[END_REF] are other possible directions.

The model

This is a two-period model. There is one commodity, a numéraire, and two markets: the spot market at times t = 1 and t = 2, and a futures market, in which contracts are traded at t = 1 and settled at t = 2. It is important to note that short positions are allowed on the futures market. When an agent sells (resp. buys) futures contracts, his position is short (resp. long), and the amount f he holds is negative (resp. positive). On the spot market, short positions are not allowed. In other words, the futures market is financial, while the spot markets are physical.

There are three types of traders.

• Processors (P ), or industrial users, who use the commodity to produce other goods which they sell to consumers. Because of the inertia of their own production process, and/or because all their production is sold forward, they decide at t = 1 how much to produce at t = 2. They cannot store the commodity, so they have to buy all of their input on the spot market at t = 2. They also trade on the futures market.

• Storers (I for inventory), who have storage capacity, and who can use it to buy the commodity at t = 1 and release it at t = 2. They trade on the spot market at t = 1 and at t = 2. They also operate on the futures market.

• Speculators (S), or money managers, who use the commodity price as a source of risk, to make a profit on the basis of their positions in futures contracts. They do not trade on the spot market.

In addition, we think of these markets as operating in a partial equilibrium framework: in the background, there are other users of the commodity, and producers as well. These additional agents will be referred to as spot traders, and their global effect will be described by a demand function.

At time t = 1, the demand is µ 1 -mP 1 , and it is μ2 -m P2 at time t = 2. P t is the spot price at time t and the demand can be either positive or negative; the superscript ∼ indicates a random variable.

All decisions are taken at time t = 1, conditionally on the information available for t = 2. The timing is as follows:

• For t = 1, the commodity is in total supply ω 1 , the spot market and the futures market open.

On the spot market, there are spot traders and storers on the demand side, the price is P 1 .

On the futures markets, the processors, the storers and the speculators all initiate a position, and the price is F . Note that the storers have to decide simultaneously how much to buy on the spot market and what position to take on the futures market.

• For t = 2, the commodity is in total supply ω2 , to which one has to add the inventory carried by the storers from t = 1, and the spot market opens. The processors and the spot traders are on the demand side, and the price is P2 . The futures contracts are then settled at that price, meaning that every contract brings a financial result of P2 -F .

There are N P processors, N S speculators, N I storage companies (I for inventories). We assume that all agents (except the spot traders) are risk averse inter-temporal utility maximizers. To take their decisions at time t = 1, they need to know the distribution of the spot price P2 at t = 2. We will show that, under mean-variance specifications of the utilities, there is a unique price system (P 1 , F, P2 ) such that all three markets clear.

Uncertainty is modeled by a probability space (Ω, A, P ). Both ω2 , μ2 and P2 are random variables on (Ω, A, P ). At time t = 1, their realizations are unknown, but their distributions are common knowledge.

Before we proceed, some clarifications are in order.

• Production of the commodity is inelastic: the quantities ω 1 and ω2 which reach the spot markets at times t = 1 and t = 2 are exogenous to the model. Traders know ω 1 and µ 1 , and share the same priors about ω2 and μ2 .

• A negative spot demand can be understood as extra spot supply: if for instance P 1 > µ 1 /m, then the spot price at time t = 1 is so high that additional means of production become profitable, and the global economy provides additional quantities to the spot market. The number µ 1 (demand when P 1 = 0) is the level at which the economy saturates: to induce spot traders to demand quantities larger than µ 1 , one would have to pay them, that is, offer negative price P 1 < 0 for the commodity. The same remark applies to time t = 2.

• We separate the roles of the industrial user and the inventory holder, whereas in reality industrial users may also hold inventory. It will be apparent in the sequel that this separation need not be as strict, and that the model would accommodate agents of mixed types. In all cases, agents who trade on the physical markets would also trade on the financial market for two separate purposes: hedging their risk, and making additional profits. In the sequel, we will see how their positions reflect this dual purpose.

• Note also that the speculators would typically use their position on the futures market as part of a diversified portfolio; our model does not take this into account.

• We also suppose that there is a perfect convergence of the basis at the expiration of the futures contract. Thus, at time t = 2, the position on the futures markets is settled at the price P2 then prevailing on the spot market.

• For the sake of simplicity, we set the risk-free interest rate to 0.

In what follows, as we examine an REE (rational expectation equilibrium), we look at two necessary conditions for such an equilibrium to appear: the maximization of the agent's utility, conditionally on their price expectations, and market clearing.

Optimal positions and market clearing

Utilities

All agents have mean-variance utilities. For all of them, a profit π brings utility:

E[π] - 1 2 α i Var[π] (1) 
where α i is the risk aversion parameter of a type i individual.

Beside their mathematical tractability, there are good economic reasons for using mean-variance utilities. They are not of von Neumann-Morgenstern type, i.e. formula (1) cannot be put in the form Eu( X) for some function u. However, Mean-variance utilities capture well the behavior of firms operating under risk constraints. The capital asset-pricing model (CAPM) in finance, for instance, consists in maximizing E[ R] under the constraint Var[ R] ≤ ν, where R is the return on the portfolio, which is equivalent to maximizing

E[ R] -λVar[ R],
where λ is the Lagrange multiplier.

In financial markets, as in commodities markets, agents are mostly firms, not individuals, and they have risk constraints imposed on them from inside (managers controlling traders) and from outside (regulators controlling the firm). This is what formula (1) captures. For the sake of simplicity, we have kept the variance as a measure of risk, but we expect that our results could be extended to more sophisticated ones (coherent risk measures), at the cost of mathematical complications.

Profit maximization

Speculator. For the speculator, the profit resulting from a position in the futures market f S is the r.v.:

πS (f S ) = f S ( P2 -F ),
and the optimal position is:

f S = E[ P2 ] -F α S Var[ P2 ] . ( 2 
)
This position is purely speculative. It depends mainly on the level and on the sign of the bias in the futures price. The speculator goes long whenever he thinks that the expected spot price is higher than the futures price. Otherwise he goes short. Finally, he is all the more inclined to take a position as his risk aversion and volatility of the underlying asset are low.

Storer. The storer can hold any non-negative inventory. However, storage is costly: holding a quantity x between t = 1 and t = 2 costs 1 2 Cx 2 . Parameters C (cost of storage) and α I (risk aversion) characterize the storer. He has to decide how much inventory to buy at t = 1, if any, and what position to take in the futures market, if any.

If he buys x ≥ 0 on the spot market at t = 1, resells it on the spot market at t = 2, and takes a position f I on the futures market, the resulting profit is the r.v.:

πI (x, f I ) = x ( P2 -P 1 ) + f I ( P2 -F ) - 1 2 Cx 2 .
The optimal position on the physical market is:

x = 1 C max{F -P 1 , 0}. (3) 
The storer holds inventories if the futures price is higher than the current spot price. This position is the only one, in the model, that directly links the spot and the futures prices. This is consistent with the theory of storage and, more precisely, its analysis of contango and the informational role of futures prices.

The optimal position on the futures market is:

f I = E[ P2 ] -F α I Var[ P2 ] -x . ( 4 
)
This position can be decomposed into two elements. First, a negative position -x , which simply hedges the physical position: the storer sells futures contracts in order to protect himself against a decrease in the spot price. Second, a speculative position, structurally identical to that of the speculator, which reflects the storer's risk aversion and his expectations about the relative level of the futures and the expected spot prices.

Processor. The processor decides at time t = 1 how much input y to buy at t = 2, and which position f P to take on the futures market. The revenue from sales at date t = 2 is (yβ 2 y 2 ) Z, where Z is our convention for the forward price of the output, and the other factor reflects decreasing marginal revenue. Due to these forward sales of the production, this revenue is known at time t = 1.

The resulting profit is the r.v.:

πP (y, f P ) = y - β 2 y 2 Z -y P2 + f P ( P2 -F ).
An easy computation then gives his optimal decisions, namely:

y = 1 βZ max{Z -F, 0}, (5) 
f P = E[ P2 ] -F α P Var[ P2 ] + y . ( 6 
)
The futures market is also used by the processor to plan his production, all the more so if the price of his input F is below that of his output Z. The position on the futures market, again, can be decomposed into two elements. First, a positive position y , which hedges the position on the physical market: the processor goes long on futures contracts in order to protect himself against an increase in the spot price. Then, a speculative position reflecting the processor's risk aversion and his expectations about the level of the expected basis.

Remarks on optimal positions. In this framework, all agents have the possibility to undertake speculative operations. After having hedged 100 percent of their physical positions, they adjust this position according to their expectations. The separation of the physical and the futures decisions was derived by [START_REF] Danthine | Futures Markets and Stabilizing Speculation[END_REF]. As shown by Anderson and Danthine (1983a), this property does not hold if the final good price is stochastic, unless a second futures market for the final good is introduced. Note also that in the scenario where there is no futures market, as depicted in appendix E, the quantities hold on the physical market necessarily have a speculative dimension.

As we shall see, this separation result is very convenient for equilibrium analysis. This is one of the reasons why we choose, for the processor, not to introduce uncertainty on the output price and/or on the quantities produced.

Although we assume that all individuals are identical in each category of agents, more subtle assumptions could be retained without much complication. For example, remark that if the storers had different technologies, say, storer i (with i = 1, . . . , N I ) had technology C i , then, instead of

N I C max{F -P 1 , 0}, total inventories would be ( i 1/C i ) max{F -P 1 , 0}.
In other words, storers are easily aggregated. In the following, when relevant, we shall use the index n I representing a synthetic number of storage units, and per-unit inventories X defined by:

n I := N I /C if storers are identical, i 1/C i otherwise, X := max{F -P 1 , 0}.
Similarly, if processors had different technologies, say, processor i (with i = 1, . . . , N P ) had technology β i , then total input demand would be ( i 1/(β i Z)) max{Z-F, 0} instead of N P βZ max{Z-F, 0}. Thus, when relevant, we shall use the index n P representing a synthetic number of processing units, and per-unit demand Y defined by:

n P :=    N P βZ if processors are identical, 1 Z i 1 β i otherwise, Y := max{Z -F, 0}.

Market clearing

The spot market at time 1. On the supply side we have the harvest ω 1 . On the other side we have the inventory n I X bought by the storers, and the demand of the spot traders. Market clearing requires:

ω 1 = n I X + µ 1 -mP 1 ,
hence:

P 1 = 1 m (µ 1 -ω 1 + n I X ) . ( 7 
)
The spot market at time 2. We have, on the supply side, the harvest ω2 , and the inventory n I X sold by the storers; on the other side, the input n P Y bought by the processors and the demand of the spot traders. The market clearing condition is:

ω2 + n I X = n P Y + μ2 -m P2 ,
with X and Y as above. We get:

P2 = 1 m (μ 2 -ω2 -n I X + n P Y ) . ( 8 
)
The futures market. Market clearing requires:

N S f S + N P f P + N I f I = 0.
Replacing the f i by their values, we get:

F = E[ P2 ] - Var[ P2 ] N P α P + N I α I + N S α S (n I X -n P Y )() (9) 
Remark that if different agents of the same type K (K = P, I, S)) had different risk aversions α Kj (for j = 1, . . . , N K ), then we would see j 1/α Kj instead of N K /α K in Equation ( 9). This is an illustration of a more general fact: we sum up the inverse of the risk aversions of all agents to represent the inverse of the overall (or market) risk aversion. See our synthetic index γ below.

Summary and definition

The equations characterizing the equilibrium result from the optimal choices on the physical market, (Equations ( 3) and ( 5)), the clearing of the spot market at dates 1 and 2 (Equations ( 7) and ( 8)), as well as the clearing of the futures market (9):

                     X = max{F -P 1 , 0} (3) 
Y = max{Z -F, 0} (5) 
P 1 = 1 m (µ 1 -ω 1 + n I X ) (7) P2 = 1 m (μ 2 -ω2 -n I X + n P Y ) (8) F = E[ P2 ] - Var[ P2 ] N P α P + N I α I + N S α S (HP) (9)
where the Hedging Pressure, HP, represents the unbalance of the paper market and is defined as follows:

HP := n I X -n P Y . ( 10 
)
Equation ( 9) gives a formal expression for the bias in the futures price, which confirms and refines the findings of Anderson and Danthine (1983a). It shows indeed that the bias depends primarily on fundamental economic structures (storage and production costs embedded in the hedging pressure and the number of operators), secondarily on subjective parameters (agents' risk aversions), and thirdly on the volatility of the underlying asset. Note also that the sign of the bias depends only on the sign of HP, which of course is endogenous. As the risk aversion of the operators only influences the speculative part of the futures position, it does not impact the sign of the bias, at least in this partial equilibrium equation. Finally, when HP = 0, there is no bias in the futures price, and the risk transfer function of markets is entirely undertaken between hedgers, because their positions on the futures market are opposite and matching exactly. Thus the absence of bias is not exclusively the consequence of risk neutrality but may have other structural causes.

4 Existence and uniqueness of the equilibrium

Notations

We first focus on the equilibrium of the spot markets and set:

ξ 1 := µ 1 -ω 1 , ξ2 := μ2 -ω2 , ξ 2 := E[μ 2 -ω2 ],
Note that ξ 1 , ξ2 and ξ 2 represent scarcity, i.e. excess basic demand with respect to basic supply, and remember that the distribution of (μ 2 -ω2 ) is common knowledge. In what follows, it turns out that only the expectation and the variance of this quantity will be needed. We also assume that Var[ ξ2 ] > 0. Thus there is uncertainty on the future availability of the commodity, and it is the only source of uncertainty in the model.

In addition, remark that from (8), we can easily derive the expectation and the variance of P2 :

E[ P2 ] = 1 m (ξ 2 -n I X + n P Y ), (8E) Var[ P2 ] = Var[ ξ2 ] m 2 . (8V)
Finally, we introduce the following notation, where m is the price sensitivity of the demand:

γ := 1 + 1 m Var[ ξ2 ] N P α P + N I α I + N S α S
This parameter encodes a lot of information about the market structure and will be very helpful in what follows. We have 1 ≤ γ ≤ +∞. If one of the agents, the processor for instance, is riskneutral, then α P = 0, so that γ = 1. If all the agents are pure arbitrageurs, so that α K = +∞ for all K, then γ = +∞. In what follows, we assume that α P , α I and α S all are non-zero numbers, a restriction that is readily lifted.

Definitions

Definition 1. An equilibrium is a family (X , Y , P 1 , F, P2 ) such that processors, storers and speculators act as price-takers, all markets clear, and all prices are non-negative in all states of the world:

X ≥ 0, Y ≥ 0 (11)

P 1 ≥ 0, F ≥ 0 (12) P2 (ω) ≥ 0 for almost every ω ∈ Ω. ( 13 
)
We will need an intermediary notion, where positivity of P2 is no longer required: Definition 2. A quasi-equilibrium is a family (X , Y , P 1 , F, P2 ) such that all prices, except possibly P2 , are non-negative, processors, storers and speculators act as price-takers and all markets clear.

Technically speaking, a quasi-equilibrium is a family

(X , Y , P 1 , F, P2 ) ∈ R 4 + × L 0 (Ω, A, P )
such that Equations (3), ( 5), ( 7), ( 8) and ( 9) are satisfied.

We now give two existence and uniqueness results, the first one for quasi-equilibria and the second one for equilibria.

Quasi-equilibrium

Theorem 1. There is a quasi-equilibrium if and only if (ξ 1 , ξ 2 ) verifies:

ξ 2 ≥ -n P γZ if ξ 1 ≥ 0, ( 14 
)
ξ 2 ≥ -n P γZ - m + (n I + n P )γ n I ξ 1 if -n I Z ≤ ξ 1 ≤ 0, ( 15 
)
ξ 2 ≥ - m + n I γ n I ξ 1 if ξ 1 ≤ -n I Z, ( 16 
)
and then it is unique.

Proof. To prove this theorem, we begin by substituting Equation (8E) in Equation ( 9). We get:

mF -γ(n P Y -n I X ) = ξ 2 . ( 17 
)
We now have two equations, ( 7) and ( 17) for P 1 and F . Replacing X and Y by their values, given by ( 3) and ( 5), we get a system of two nonlinear equations in two variables:

mP 1 -n I max{F -P 1 , 0} = ξ 1 , ( 18 
) mF + γ (n I max{F -P 1 , 0} -n P max{Z -F, 0}) = ξ 2 . ( 19 
)
Remark that if we can solve this system with P 1 > 0 and F > 0, we get P2 from (8). So the problem is reduced to solving ( 19) and ( 18). Consider the mapping ϕ : R 2 + → R 2 defined by:

ϕ(P 1 , F ) = mP 1 -n I max{F -P 1 , 0} mF + γ (n I max{F -P 1 , 0} -n P max{Z -F, 0}
) .

In R 2 + , take P 1 as the horizontal coordinate and F as the vertical one, as depicted by Figure 1. There are four regions, separated by the straight lines F = P 1 and F = Z:

• Region 1, where F > P 1 and F < Z. In this region, both X and Y are positive.

• Region 2, where F > P 1 and F > Z. In this region, X > 0 and Y = 0.

• Region 3, where F < P 1 and F > Z. In this region, X = 0 and Y = 0.

• Region 4, where F < P 1 and F < Z. In this region, X = 0 and Y > 0 Moreover, in the regions where X > 0, we have X = F -P 1 and in the regions where Y > 0, we have Y = Z -F . So, in each region, the mapping is linear, and it is obviously continuous across the boundaries.

To prove the theorem, we have to show that the system (19) and ( 18) has a unique solution. It can be rewritten as: and it has a unique solution if and only if the right-hand side belongs to the image of F , which is depicted by Figure 2, and developed in appendix A. This leads to the conclusion of the proof.

ϕ(P 1, F ) = ξ 1 ξ 2 , P 1 F 1 2 3 4 X * >0 Y * =0 X * =0 Y * =0 X * =0 Y * >0 X * >0 Y * >0 45°A O M

Equilibrium

A quasi-equilibrium is an equilibrium if P2 is positive in all futures states of the world. Clearly, if some realizations of ξ2 are sufficiently low, there will be no equilibrium: states of extreme abundance are inconsistent with positive prices. By equation ( 8), the exact condition is:

inf{ ξ2 } ≥ n I X -n P Y
Theorem 2. An equilibrium obtains if and only if (ξ 1 , ξ 2 ) satisfies ( 14), ( 15), ( 16), plus the additional condition:

inf{ ξ2 } ≥ m mn I ξ 2 m -ξ 1 m -n P (m + n I ) Z -ξ 2 m m(m + n I + (n I + n P )γ) + n I n P γ in Region 1, inf{ ξ2 } ≥ mn I ξ 2 m -ξ 1 m m + n I (1 + γ) in Region 2, inf{ ξ2 } ≥ 0 in Region 3, inf{ ξ2 } ≥ - mn P (Z -ξ 2 m ) m + n P γ in Region 4.
and it is then unique.

The proof of this theorem is given in appendix A.

ϕ (O) ϕ ( A ) 2 X * >0 Y * =0 3 X * =0 Y * =0 1 X * >0 Y * >0 4 X * =0 Y * >0 ξ 2 ϕ ( M )  1
Figure 2: Physical and financial decisions in space (ξ 1 , ξ 2 ): the 4 regions.

To be complete, we must ask a complementary question: for a given (ξ 1 , ξ 2 ), is there a distribution of ξ2 such that an equilibrium exists?

Theorem 3. If (ξ 1 , ξ 2 ) supports a unique quasi-equilibrium under the terms of Theorem 1, there is a distribution of ξ2 supporting an equilibrium if and only if

ξ 2 m ≥ - n I ξ 1 + (m + n I )n P Z m(m + (γ -1)n P ) + n I (mγ + (γ -1)n P ) in Region 1, ξ 2 m ≥ - n I m + n I γ ξ 1 m in Region 2, ξ 2 m ≥ 0 in Region 3, ξ 2 m ≥ - n P Z m + (γ -1)n P in Region 4.
The proof can be found in appendix A.

These additional constraints also have two characteristic points, which are denoted by convention ϕ (O) and ϕ (A) (see appendix A).

The whole set of constraints is pictured in Figure 3. For a low ξ 1 , the constraint P 1 ≥ 0 matters more (excessive abundance at t = 1 must be avoided), whereas for a low ξ 2 , the constraint P2 ≥ 0

is the most restrictive one (excessive abundance at t = 2 should be avoided). Remark that, in the absence of a futures market (see appendix E), the existence conditions for an equilibrium are restricted: the four regions, in this scenario, are included in those of the basic scenario. 

Equilibrium analysis

In this section we analyze the equilibrium in two steps. First, we examine the four regions depicted in Figure 1. They correspond to very different types of interactions between the physical and the financial markets. Second, we turn to Figure 2 on which we read directly the impact of "initial net scarcity" (ξ 1 ) and "expected net scarcity" (ξ 2 ).

Prices, physical and financial positions

A first general comment on Figure 1 is that in Regions 1 and 2 where X > 0, the futures market is in contango: F > P 1 . Inventories are positive and they can be used for inter-temporal arbitrages.

In Regions 3 and 4, there is no inventory (X = 0) and the market is in backwardation: F < P 1 .

These configurations are fully consistent with the theory of storage.

The other meaningful comparison concerns F and E[ P2 ]. From Equation ( 9), we know that hedging pressure HP gives the sign and magnitude of E[ P2 ] -F , i.e. the price paid by the hedgers to transfer their risk in the futures market. The analysis of the four possible regions, with a focus on Region 1 (it is the only one where all operators are active and it gathers two important subcases), enables us to unfold the reasons for the classical conjecture: backwardation on the expected basis, i.e. F < E[ P2 ]. More interestingly, we show why the reverse inequality is also plausible, as mentioned by several empirical studies.3 

The equation HP = 0 cuts Region 1 into two parts, 1U and 1L. It passes through M as can be

P 1 1U 45°A O M 2 3 n I X * -n P Y * < 0 n I X * -n P Y * > 0 1L 4 Δ F Figure 4
: Physical and financial decisions in space (P 1 , F ) (zoom on Region 1).

seen in Figure 4. This frontier can be rewritten as:

∆ : n I (F -P 1 ) -n P (Z -F ) = 0. (20) 
• Along the line ∆, there is no bias in the futures price, and the risk is exchanged between hedgers: storers and producers have perfectly matching positions and they insure each other.

• Above ∆, HP > 0 and F < E[ P2 ]. This concerns the upper part of Region 1 (Subregion 1U)

and Region 2.

The net hedging position is short and speculators in long position are indispensable to the clearing of the futures market. In order to induce their participation, there must be a profitable bias between the futures price and the expected spot price. This backwardation on the expected basis corresponds to the situation depicted by [START_REF] Keynes | A Treatise on Money[END_REF] as the normal backwardation theory.

• Below ∆, HP < 0 and F > E[ P2 ]. This concerns the lower part of Region 1 (Subregion 1L)

and Region 4.

The net hedging position is long and the speculators must be short, which requires that expected spot price be lower than the futures price.

Table 1 summarizes for each region the relationships between the prices and the physical and financial positions. Attentive scrutiny of the table shows very contrasted regimes.

For example, in Region 2, we have simultaneously a contango on the current basis and a backwardation on the expected basis (or a positive bias). In short, P 1 < F < E[ P2 ]. In Region 3, in the absence of hedging of any sort, the futures market is dormant, and this is no bias on the expected 2

P 1 < F F < E[ P2 ] F > Z X > 0 f S > 0 Y = 0 1U P 1 < F F < E[ P2 ] F < Z X > 0 f S > 0 Y > 0 ∆ P 1 < F F = E[ P2 ] F < Z X > 0 f S = 0 Y > 0 1L P 1 < F F > E[ P2 ] F < Z X > 0 f S < 0 Y > 0 4 P 1 > F F > E[ P2 ] F < Z X = 0 f S < 0 Y > 0 3 P 1 > F F = E[ P2 ] F > Z X = 0 f S = 0 Y = 0
Table 1: Relationships between prices, physical and financial positions.

basis. Region 4 is the opposite of Region 2: the market is in backwardation and, as X = 0, the net hedging position is long, the net speculative position is short and the bias is negative. In short,

P 1 > F > E[ P2 ].

Supply shocks

In Figure 2, (ξ 1 , ξ 2 ) measure scarcity, not abundance: ξ 1 is the extent to which current production ω 1 fails short of the demand of spot traders, and ξ 2 is the (expected) extent to which future production will fall short of the demand of spot traders.

Assume that no market is open before ξ 1 is realized, and that ξ 1 brings no news about ξ 2 . We can take ξ 2 as fixed, and see what happens on equilibrium variables, depending on the value of ξ 1 .

To fix ideas, suppose that we expect a moderate scarcity at date 2 (ξ 2 = ξ 2 in Figure 5). In the case of a low ξ 1 (abundance in period 1), we are in Subregion 1U. If ξ 1 is bigger, we are in Subregion 1L, and if ξ 1 is even bigger, the equilibrium is in Region 4.

The interpretation is straightforward. If period 1 experiences abundance (Subregion 1U), there is massive storage: the current price is low and expected profits are attractive, since a future scarcity is expected. Storers need more hedging than processors, first because inventories are high, second because the expected release of stocks reduces the processors' needs. Thus, there is a positive bias in the futures price and speculators have a long position. For a less marked abundance (Subregion 1L), storage is more limited. The storers' hedging needs diminish while that of the processors increases. So the net hedging position is long, the bias in the futures price becomes negative and the speculators have a short position. If the commodity is even scarcer (Region 4), there is no storage, only the processors are active and they hedge their positions.

This example illustrates quite simply why, when there is a contango on the current basis, we

2 3 1U 4 1L ξ 2 = ξ2 Δ ξ 2 ϕ ( M ) ϕ (O) ϕ ( A )  1
Figure 5: Physical and financial decisions in space (ξ 1 , ξ 2 ) (zoom on Region 1).

can have either an expected backwardation or an expected contango.

The impact of speculation

The impact of speculation can be studied in two ways.

First, the difference between having and not having speculators. This is the approach taken in particular by [START_REF] Newbery | When do Futures Destabilize Spot Prices?[END_REF]. We propose results in this vein in Appendix E. (Summary of existing and new results to be written.)

Second, one can analyze the effect of "increasing speculation." One may think either of a relaxed access to the futures markets, or of a sudden rise in risk appetite. We can translate these changes as an increase in the number N S , or as a decrease of the risk aversion α S , or even via the decrease of the risk aversion of any of the other actors (α I or α P ). The key observation is that all these possible causes impact the synthetic index γ in the same way: it decreases. Indeed, N S , α P , α I and α S and Var[ ξ2 ] appear only through the single parameter γ. This suggests us a simple strategy to perform the comparative statics of speculation.

In the following, we mean by "increased speculation" any of the above mentioned causes decreasing γ. This expression is used for convenience, but the reader should keep in mind that this means several slightly different things. Subsection 6.1 shows the impact on prices and quantities; Subsection 6.2 prolongs with detailed welfare analysis and the political economy of speculation.

• The consequence of the previous effect is that there is more variance of the quantity of the commodity delivered in period 2. This adds noise to the current shocks and thus the variance of P2 increases. (See column Var[ P2 ].)

• F and P2 get closer as speculation increases (see columns F and P2 ). This convergence means that their variances have the same sense of variation with respect to speculation. (see columns

Var [ F ] and Var[ P2 ]).

Whenever E[ P2 ] < F , the effects are similar but reverse. Processors are the agents who need the more speculators, and they increase they position as speculation increases. Storers in contrast lose on the rent they draw from being structurally contrarians.

|E[ P2 ] -F | F X Ỹ P1 P2 Var[ F ] Var[ P1 ] Var[ P2 ] 2 0 E[ P2 ] -F > 0 1U 1L F -E[ P2 ] > 0 4 0 ←→ ←→ ←→ ←→ 3 ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ F = E[ P2 ]
Table 2: Impact of speculators on prices and quantities Speculation, prices and quantities in summary. Table 2 shows that Regions 2 and 4 can be viewed as mere subcases of Subregions 1U and 1L. Remark for example that P1 decreases in Subregion 1L whereas it is constant in Region 4. This is due to the fact that the storers are active in Subregion 1L but not in Region 4, and underlines how important the stocks are for the functioning of a commodity market. Inventories indeed appear as the transmission channel for shocks in the space (between the paper and the physical markets) and in the time (between dates 1 and 2). For this is through inventories that a shock appearing in the paper market (i.e. the rise of speculation)

impacts the level and variances of the physical quantities and the prices. This result is close to the analysis of [START_REF] Newbery | When do Futures Destabilize Spot Prices?[END_REF].

As far as the level of the different variables is concerned, our model shows that the impact of an increase of speculation depends, in the end, on which side of the hedging demand dominates.

The physical quantities, for example, increase for the operators benefiting from lower hedging costs whereas they decrease for the others. This amplifies the difference in the positions of the operators and consequently their market impact.

The analysis of the variances is less straightforward. The most simple effect is the impact on Var[ F], which always diminishes under the pressure of a more intense speculative activity (provided that there are stocks in the economy). As regards to the spot prices, an increase of speculation has a stabilizing effect at time 1 and a destabilizing one at time 2. The latter result however might be modified in a three-period model, where the quantities at time 2 would be influenced by the futures price of a contract expiring at time 3. It could also be changed if the price of the output, Z, could be adjusted as an answer to a shock. Up to now, indeed, there is nothing in the model that could absorb a shock at time 2. This version of the model illustrates the fact that financial markets may "destabilize" the underlying markets, though the term is inappropriate since it only refers to a statistical property. Of course a higher price volatility doesn't mean a lower welfare, quite the contrary: more volatility means that prices are more effective/informative signals. The impact of markets on prices volatilities is often a naïve aspect of welfare analysis. We will go further on this point in the next subsection.

Note finally that Appendix E completes this analysis with comparisons based on another scenario

where the futures market is closed.

Speculators' impact on utilities

In this section, we express the equilibrium indirect utilities of the various types of agents, and we compute their sensitivities with respect to the parameters, in particular the number of speculators.

We proceed in two steps. First, we compute the indirect utilities as functions of equilibrium prices P 1 and F . Second, we compute the elasticities of P 1 and F to deduce the elasticities of the indirect utilities.

We restrict ourselves to the richer case, i.e. Region 1, where all agents are active. For the sake of simplicity, we return to an analysis where ξ 1 is known when markets open. Recall that then we have F < Z and P 1 < F .

The speculators' indirect utility is given by:

U S = f S (E[ P2 ] -F ) - 1 2 α S f 2 S Var[ P2 ],
where we have to substitute the value of f S and and Var[ P2 ], which leads to:

U S = E[ P2 ] -F 2 2α S Var[ ξ2 ] m 2 . ( 21 
)
The storers' indirect utility is given by:

U I = (x + f I )E[ P2 ] -x P 1 -f I F - 1 2 Cx 2 - 1 2 α I (x + f I ) 2 Var[ P2 ],
where we substitute the values of f I , x and Var[ P2 ]:

U I = E[ P2 ] -F 2 2α I Var[ ξ2 ] m 2 + X 2 2C . ( 22 
)
Simarly, the processors' indirect utility is:

U P = E[ P2 ] -F 2 2α P Var[ ξ2 ] m 2 + Y 2 2βZ . ( 23 
)
For all agents, we see a clear separation between the two components of the indirect utilities. The speculative component is associated with the level of the expected basis. The hedging component changes with the category of agent considered. For the storers, it is positively related to the current basis F -P 1 , and for the processors, it rises with the margin on the processing activity Z -F .

We can use directly Table 2 to produce Table 3, in which there are relatively few ambiguities left.

U S U I U P 2 See App. E[ P2 ] -F > 0 1U See App. 1U near ∆ 1L near ∆ F -E[ P2 ] > 0 1L See App. 4 See App. 3 ←→ ←→ ←→ F = E[ P2 ]
Table 3: Impact of increasing speculation on welfare. Effects of 1U and 1L are expressed close to line ∆. See App. = See Appendix for complete results.

To conclude, all agents are speculators in their ways. Quite intuitively, the speculative component is all the more important as the futures market is biased, whatever the sign of the bias.

All agents lose on this part of their utilities from having more speculators. Consequently, the pure speculator always loses from more competition.

As far as storers and processors are concerned, remark that the second (hedging-related) terms go in strictly opposite directions in Region 1, and weakly opposite directions in Regions 2 and 4.

Agents lose (gain) on the hedging terms from having more speculators when they have the smaller (bigger) physical position; namely, storers in Regions 4 and 1L, processors in Regions 2 and 1U.

All terms considered, Table 3 gives unambiguous cases and those where terms draw in opposite directions.

A case is worthy of mention. Around line ∆ separating Subregions 1U and 1L, speculation is small since physical positions of storers and processors almost match. 4 In that case, agents with the smaller physical position see their privileged position (they play the best part in the physical market) eroded by an increased number of speculators. Hence the difference between 1U and 1L around ∆.

In terms of political economy (in the sense that economic interests may determine political positions), we can simplify the message as follows: the interests of storers and processors are systematically opposed. Thus, we cannot assign a pro or con position to either of these groups, the prediction is that in a given position, they will take opposite positions.

Conclusion

Our model, although extremely simple (perhaps the simplest possible), shows the interaction between spot markets and a futures market, and exhibits a surprising variety of behaviors. In equilibrium, there may be a contango or a backwardation, the futures price may be higher or lower than the expected spot price, inventory holders may or may not hold inventory, industrial processors may or may not sell forward, adding speculators may increase or decrease the hedging benefits of inventory holders and of industrial processors. All depends, in a way we determine, on market fundamentals and the realization of shocks in the physical market. This rich variety of behaviors can be found in commodities markets as they go, and we have not found in the literature another model which encompasses them all.

Of course, our model is too simple to capture some important effects; for instance, we would like to understand the so-called convenience yield, which is usually explained as the option value of holding stock. This cannot be understood within a two-period model. For this reason, and also because we want to take into account possible differences in the investment horizons of the operators, developing an inter temporal approach is the next step. It would be interesting to see how the conclusions of the two-period model fare in a multi-period or even in a infinite-horizon models.

The first half-line emanates from ϕ(A) and is carried by the vector (-n I , m + γn I ). The second half-lines emanates from ϕ(M ) and is carried by the vector (1, 1). Both of them (if extended in the negative direction) go through the origin.

The image of Region 4 is bounded by the segment ϕ(O)ϕ(M ) and by two infinite half-lines, one of which is the image of {F = 0}, the other being the image of {P 1 ≥ Z, F = Z}. In Region 4, we have:

ϕ(P 1 , F ) = mP 1 mF -γn P (Z -F ) ,
so the first half-line emanates from ϕ(O) and is horizontal, with vertical coordinate -γn P Z, and the second emanates from ϕ(M ) and is horizontal.

The image of Region 3 is entirely contained in R 2 + , where it is the remainder of the three images we described.

A.2 Equilibrium

Theorem 2

Proof. In Region 1, given Equation ( 26

) in Appendix B, P2 ≥ 0 is equivalent to 0 ≤ ξ2 m + mn I ξ 1 m -((m + n I )n P + mn I ) ξ 2 m + (m + n I )n P Z mn I γ + m(m + n I ) + (m + n I )n P γ ,
which gives the expression of the Theorem after rearrangement.

Remark that the condition for Region 1 implies the other three. Indeed, taking n P = 0 yields the condition for Region 2, n I = 0 yields the condition for Region 4, and n I = n P = 0 yields the condition for Region 3. This simple shortcut works for other analytical results.

Theorem 3 We first give the proof of theorem 3:

Proof. Starting from Theorem 2, and remarking that the limit case allowing us to draw the frontier is when inf{ ξ2 } = ξ 2 , we find the conditions above after rearrangement.

We then give precisions about the additional constraints added by this theorem, which are depicted by Figure 3:

ϕ (O) = 0, - mn P m + n P (γ -1) Z ; ϕ (A) = -n I Z, n 2 I m + n I γ Z .
Remark that ϕ (O) is above ϕ(O) (both have the same negative abscissa), and that ϕ (A) is below ϕ(A) (both have the same positive abscissa). The intersection point Ψ of the two sets of constraints is in Region 1, with:

Ψ = - n I n P (γ -1)Z m + (n I + n P )(γ -1)
, -mn P Z m + (n I + n P )(γ -1) .

B Prices and quantities: explicit expressions

Note that ξ 1 := µ 1 -ω 1 , ξ2 := μ2 -ω2 , ξ 2 := E[μ 2 -ω2 ], n I := N I /C and n P := N P βZ , and

γ = 1 + 1 m Var[ ξ2 ] N P α P + N I α I + N S α S .
The regime is determined by (ξ 1 , ξ 2 ), and the final expressions of equilibrium prices are as follows.

Region 1.

P 1 = m(m + (n I + n P )γ) ξ 1 m + mn I 2 m + n I n P γZ m(m + (n I + n P )γ) + mn I + n I n P γ , ( 24 
)
F = mn I γ ξ 1 m + m(m + n I ) ξ 2 m + (m + n I )n P γZ mn I γ + m(m + n I ) + (m + n I )n P γ , ( 25 
) P2 = ξ2 m + mn I ξ 1 m -((m + n I )n P + mn I ) ξ 2 m + (m + n I )n P Z mn I γ + m(m + n I ) + (m + n I )n P γ , ( 26 
)
Remark that all denominators are equal. They are written in different ways only to show that P 1 and F are convex combinations of ξ 1 m , ξ 2 m and Z. Note that

E[ P2 ] -F = (γ -1) mn I ξ 2 m -ξ 1 m -n P (m + n I ) Z -ξ 2 m m(m + n I + (n I + n P )γ) + n I n P γ . ( 27 
)
Quantities:

X = m(m + n P γ) ξ 2 m -ξ 1 m + mn P γ Z -ξ 2 m m(m + n I + (n I + n P )γ) + n I n P γ , ( 28 
) Y = mn I γ ξ 2 m -ξ 1 m + m(m + n I (1 + γ)) Z -ξ 2 m m(m + n I + (n I + n P )γ) + n I n P γ . ( 29 
)
Note that starting from Region 1, setting n I or n P to 0 in the expressions to get the prices for any other region works perfectly. For example, the prices for Region 2 can be directly retrieved by posing n P = 0 in Equations ( 24)-(29).

Region 2.

P 1 = (m + n I γ) ξ 1 m + n I ξ 2 m m + n I (1 + γ) ; F = n I γ ξ 1 m + (m + n I ) ξ 2 m m + n I (1 + γ) ; P2 = ξ2 m + n I ξ 1 m -ξ 2 m m + n I (1 + γ) ; X = m ξ 2 m -ξ 1 m m + n I (1 + γ) ; Y = 0.
Remark that

E[ P2 ] -F = (γ -1) n I ξ 2 m -ξ1 m + n I (1 + γ) > 0. ( 30 
)
Region 3.

P 1 = ξ 1 m ; F = ξ 2 m ; P2 = ξ2 m ; X = 0 ; Y = 0 ; E[ P2 ] -F = 0.
Region 4.

P 1 = ξ 1 m ; F = m ξ 2 m + n P γZ m + n P γ ; P2 = ξ2 m + n P Z -ξ 2 m m + n P γ ; X = 0 ; Y = m Z -ξ 2 m m + n P γ .
Remark that

F -E[ P2 ] = (γ -1) n P Z -ξ 2 m m + n P γ > 0. ( 31 
)

C Comparative statics on the existence of the equilibrium

This appendix depicts what happens with the existence of an equilibrium when γ increases.

See Figure 3 for a starting point. which is on the horizontal axis, and whose value doesn't depend on γ. This proves that Region 1 enlarges on one side, as far as existence is considered.

ξ 2 ξ 1 ϕ ( A ) ϕ ' ( A ) ϕ ' (O) ϕ (O) Ω' Ω Ψ Point move
As γ increases :

Straight line Rotation

Figure 6: Existence conditions of the equilibrium: comparative statics on γ.

Overall, speculation facilitates existence of an equilibrium in space (ξ 1 , ξ 2 ), except for side of Region 1, namely (Ω, Ψ).

The comparative on γ is now clear: the more frictious the markets, the tighter the existence conditions in Region 2 and Region 4, where only one type of actors actually has a physical position.

In Region 1 where physical positions of storers and processors compensate (more or less) each other, the conclusion is not clear cut.

D Prices' and utilities' sensitivities in Section 6

D.1 Speculators' impact on prices and quantities

To perform the comparative statics, we focus first on Regions 2 and 4, in order to examine simple mechanisms, then discuss Region 1, in which the previous effects are mixed in interesting ways. The equilibrium prices are drawn from Appendix B.

Region 2. The facts that P1 and F are weighted averages of ξ1 /m and ξ 2 /m, and that ξ 2 m ≥ ξ1 m in Region 2, determine immediately the variations of the 3 prices given in Table 2.

Moreover

Var[ P1 ] = m + n I γ m + n I (1 + γ) 2 Var[ ξ1 ] m 2 , Var[ F ] = n I γ m + n I (1 + γ) 2 Var[ ξ1 ] m 2 , Var[ P2 ] = Var[ ξ2 ] m 2 + n I m + n I (1 + γ) 2 Var[ ξ1 ] m 2 , Var[ X ] = -1 m + n I (1 + γ) 2 Var[ ξ1 ],
with obvious comparative statics.

Remark that we can conclude directly from (30) that E[ P2 ]-F decreases as speculation increases.

Region 4. Again, P1 and F are weighted averages of ξ1 /m and ξ 2 /m. This, in addition to the fact that ξ 2 m ≤ Z in Region 4, determine the comparative statics on the 3 prices. Remark that we can conclude directly from (31) that F -E[ P2 ] decreases as speculation increases.

Region 1. The two Subregions 1U and 1L are separated by the line ∆, already encountered, defined by n I X -n P Ỹ = 0 ⇔ E[ P2 ] -F = 0 (see Equation 27).

Taking into account the fact that prices and quantities have the form A+Bγ C+Dγ , with positive numerators and denominators, and that such expressions are increasing with respect to γ if BC -DA ≥ 0, it is easy (but tedious) to show that 1U and 1L are the relevant subregions, the former resembling Region 2 and the latter Region 4. This is true for the levels of P1 , F , P2 , X , and Ỹ , whose changes are summarized in Table 2.

Note that

Var[ P1 ] = m(m + (n I + n P )γ) m(m + n I + (n I + n P )γ) + n I n P γ 2 Var[ ξ1 ] m 2 , Var[ P2 ] = mn I m(m + n I + (n I + n P )γ) + n I n P γ 2 Var[ξ 1 ] m 2 + Var[ ξ2 ] m 2 , Var[ F ] = mn I γ m(m + n I + (n I + n P )γ) + n I n P γ 2 Var[ ξ1 ] m 2 .
The position with regard to ∆ is not relevant for the variances, which are monotonic in the same way whatever subcase is concerned. See Table 2.

D.2 Utilities

We will now particularize formulas (21), ( 22) and ( 23) to the case when the markets are in equilibrium. In that case, P2 becomes a function of (P 1 , F ), and the formulas become (after replacing the n i by their values in terms of the N i ):

U S = Var[ ξ2 ] 2m 2 α S N i α i 2 N I C (F -P 1 ) - N P βZ (Z -F ) 2 ; ( 32 
) U I = Var[ ξ2 ] 2m 2 α I N i α i 2 N I C (F -P 1 ) - N P βZ (Z -F ) 2 + (F -P 1 ) 2 2C ; ( 33 
) U P = Var[ ξ2 ] 2m 2 α P N i α i 2 N I C (F -P 1 ) - N P βZ (Z -F ) 2 + (Z -F ) 2 2βZ . ( 34 
)
Formulas ( 32), ( 33) and ( 34) give us the indirect utilities of the agents at equilibrium in terms of the equilibrium prices P 1 and F . These can in turn be expressed in terms of the fundamentals of the economy, namely ξ 1 and ξ2 (see Appendix B): substituting formulas ( 24), ( 25) and ( 26), we get new expressions, which can be differentiated to give the sensitivities of the indirect utilities with respect to the parameters in the model.

To investigate whether an increase in the number of speculators increases or decreases the welfare of speculators, of inventory holders, and of industry processors, we found simpler to work directly with formulas (32), ( 33) and ( 34) and to take the sensitivities of P 1 and F with respect to the varying parameter N S . The calculations follow. In contrast, the complete substitution of equilibrium values seems unworkable.

Sensitivity of U S . Differentiating formula (32) yields:

dU S dN S = Var[ ξ2 ] m 2 α S N i α i 2 (n I (F -P 1 ) -n P (Z -F )) m + n P 1 + m n I dP 1 dN S - Var[ ξ2 ] m 2 α 2 S N i α i 3 (n I (F -P 1 ) -n P (Z -F )) 2 = - Var[ ξ2 ] m 2 α 2 S N i α i 3   1 - Var[ ξ2 ] m N i α i m + n P 1 + m n I m n I + 1 (m + γn P ) + γm   × (n I (F -P 1 ) -n P (Z -F )) 2 . = - Var[ ξ2 ] m 2 α 2 S N i α i 3 m 2 + n I n P + m(2n I + n P ) m 2 + mn I + γ(n I n P + m(n I + n P )) (35) × (n I (F -P 1 ) -n P (Z -F )) 2 .
The sign of dU S dN S is constant in Region 1: it is negative. Adding speculators decreases the remuneration associated to risk bearing.

Sensitivity of U I . Differentiating formula (33) yields:

dU I dN S = - Var[ ξ2 ] m 2 α S α I N i α i 3 m 2 + n I n P + m(2n I + n P ) m 2 + mn I + γ(n I n P + m(n I + n P )) × (n I (F -P 1 ) -n P (Z -F )) 2 + F -P 1 C dF dN S - dP 1 dN S = - Var[ ξ2 ] m 2 α S α I N i α i 3 m 2 + n I n P + m(2n I + n P ) m 2 + mn I + γ(n I n P + m(n I + n P )) (36) × (n I (F -P 1 ) -n P (Z -F )) 2 + F -P 1 C 1 n I α S Var[ ξ2 ] N i α i 2 n I (F -P 1 ) -n P (Z -F ) m n I + 1 (m + γn P ) + γm .
As mentioned before, the utility due to speculative activities decreases when N S increases. As far as the utility of hedging is concerned, the effect depends on the sign of: n I (F -P 1 ) -n P (Z -F ).

Remind that this line separates Region 1 into two subcases. In Subregion 1U, the utility of hedging increases for the storers, because they need more hedging than processors. The opposite conclusion arises in Subregion 1L.

As far as the total utility is concerned, we will not pursue the calculations further, noting simply that n I (F -P 1 ) -n P (Z -F ) factors, so that the result is of the form:

dU I dN S = A(n I (F -P 1 ) -n P (Z -F ))(K 1 (F -P 1 ) + K 2 (Z -F )),
for suitable constants A, K 1 , and K 2 . This means that the sign changes across

• the line ∆, already encountered, defined by n I (F -P 1 ) + n P (Z -F ) = 0;

• the line D, defined by the equation K 1 (F -P 1 ) + K 2 (Z -F ) = 0.

Both ∆ and D go through the point M where

P 1 = F = Z. If K 2 /K 1 < 0, the line D enters Region 1, if K 2 /K 1 > 0, it does not. So, if K 2 /K 1 < 0, Region 1 is divided in three subregions by
the lines D and ∆, and the sign changes when one crosses from one to the other.

If K 2 /K 1 > 0,
Region 1 is divided in two subregions by the line ∆, and the sign changes across ∆. In all cases, the response of inventory holders to an increase in the number of speculators will depend on the equilibrium.

Sensitivity of U P . Differentiating formula (34) yields:

dU P dN S = - Var[ ξ2 ] m 2 α S α P N i α i 3 m 2 + n I n P + m(2n I + n P ) m 2 + mn I + γ(n I n P + m(n I + n P )) × (n I (F -P 1 ) -n P (Z -F )) 2 + F -Z βZ dF dN S = - Var[ ξ2 ] m 2 α S α P N i α i 3 m 2 + n I n P + m(2n I + n P ) m 2 + mn I + γ(n I n P + m(n I + n P )) (37) × (n I (F -P 1 ) -n P (Z -F )) 2 + F -Z βZ m n I + 1 1 mα S Var[ ξ2 ] N i α i 2 n I (F -P 1 ) -n P (Z -F ) m n I + 1 (m + γn P ) + γm .
Again, the utility due to speculation decreases and that linked with hedging depends on the sign of: n I (F -P 1 ) -n P (Z -F ). In Subregion 1U, the utility of hedging decreases for the processors, and it increases in Subregion 1L.

We will not pursue the calculations further, noting simply that n I (F -P 1 ) -n P (Z -F ) factors again, so that:

dU P dN S = A (n I (F -P 1 ) -n P (Z -F ))(K 1 (F -P 1 ) + K 2 (Z -F ))
As in the preceding case, there will be a line D (different from D), which enters Region 1 if

K 1 /K 2 < 0 and does not if K 1 /K 2 > 0.
In the first case, Region 1 is divided into three subregions by D and ∆ , in the second it is divided into two subregions by ∆, and the sign of dU I dN P changes when one crosses the frontiers.

E Comparison with the no-futures scenario (NF)

This appendix is devoted to the case where there is no futures market (scenario NF): speculators are inactive and there remains three kinds of operators: storers, processors, and spot traders. The optimal position of the storer becomes:

x NF = 1 C + α I Var[ ξ2 ] m 2 max{E[ P2 ] -P 1 , 0}. ( 38 
)
The storer holds inventory if the expected price is higher than the current spot price. The processor's activity depends on the fact that the forward price of the output is higher than the expected spot price of the commodity:

y NF = 1 βZ + α P Var[ ξ2 ] m 2 max{Z -E[ P2 ], 0}. ( 39 
)
When there is no futures market, uncertainty on the future spot price determines the decisions undertaken in the physical market. In this scenario, the latter necessarily have a speculative aspect.

Theorem 4 (Existence conditions). Existence conditions on (ξ 1 , ξ 2 ) are stricter in the scenario NF than in the basic case.

Proof. To prove this theorem, we begin by taking Equation (8) depicting the expected equilibrium at date 2:

E[ P2 ] = 1 m (ξ 2 -N I x NF + N P y NF ) .
Hence Var[ P2 ] is a constant Var[ ξ2 ] m 2 . This allows us to follow the same line of reasoning as in the basic scenario.

This gives the mapping ϕ NF : R 2 + → R 2 defined by: Formally, the analysis is identical to the one done in the basic case. We reuse previous calculations by applying on variables and parameters the transposition given in Table 4. Table 4: Variables and parameters transposition.

We can now turn to existence conditions, the proof is in three steps. 5 We use the complete conditions of existence from Theorem 3 in Subsection 4.4.

1. Remark that ϕ NF (O) is above ϕ (O), where we use the obvious convention that ϕ NF (O) is the equivalent in the NF scenario of ϕ (O) in the basic model. We will use similar conventions in the following. Calculations are a bit tedious, but unambiguous.

2. Note that the slope of the left frontier of region 2 is steeper (in absolute value) in the case NF than in the basic model. This also restricts existence possibilities in case NF. Another tedious but unambiguous calculation.

3. ϕ NF (A) has a higher abscissa and a lower ordinate than ϕ(A), leading also to more restrictive conditions in scenario NF. This calculation is immediate.

The three properties are pictured in Figure 7. Prices and volatility. The absence of a futures market also impacts price levels and volatilities.

For instance Equations ( 7) and (8) suggest that lower values for inventories and production lead to lower levels of the spot price at date 1, and also, possibly, at date 2.

In order to analyze the variances, we will consider ξ 1 as random, as we did in Section 6. Other things equal, having futures or not can change the region in wich the equilibrium is. Yet, for simplicity we compare variances region by region.

Prices in the NF scenario are the following (they can be retrieved directly, or with Table 4 and the equations of Appendix B): After tedious calculations, it appears that the latter is unambiguously bigger than the former.6 

P
Markets are stabilizing the price in period 1, as we saw in Subsection 6.1, because purchases are countercyclical. In the absence of a futures market, the stabilizing effect is attenuated.

Concerning period 2, we have to compare: In region 4, they are identical: due to the absence of storage, the absence of futures leaves the two periods independent statistically. Yet, quantities are higher if there are futures.

In region 2, the variance is bigger in the base scenario. This is the effect underlined in [START_REF] Newbery | When do Futures Destabilize Spot Prices?[END_REF]: the facilitation of storage transports shocks from the first period to the second one.

The comparison is ambiguous in region 1, and our attemps to factorize the difference has not produced particularly interesting conditions. One reason is that passing from one scenario to the other is a qualitative step that doesn't have smooth effects on mathematical expression.

Figure 1 :

 1 Figure 1: Physical and financial decisions in space (P 1 , F ): the 4 regions.

Figure 3 :

 3 Figure 3: Theorem 3's existence conditions in space (ξ 1 , ξ 2 ): zoom on region 1.

  Figure 6 illustrates how characteristic points move as γ increases. Point ϕ(M ) remains fixed, ϕ(O), ϕ (O), ϕ(A) and ϕ (A) move vertically, as easy calculations show. Note that the most relevant points as identified in Subsection 4.4, namely ϕ (O) and ϕ(A), move vertically upwards. This means that existence conditions are restrained in Regions 2 and 4. Effects on Region 1 are mixed. The segment ϕ(A)ϕ(O) rotates clockwise around point Ω = -n I n P Z n I + n P , mn P Z n I + n P which is in the NW quadrant, and whose value doesn't depend on γ. The segment ϕ (A)ϕ (O) rotates anticlockwise aroung point Ω = -(m + n I )n P Z n I , 0

Figure 7 :

 7 Figure 7: Existence conditions: comparison between and without futures market.

  the variance of P1 in Region 1 in the two scenarios, i.e.: Var[ P1 ] = m(m + (n I + n P )γ) m(m + n I + (n I + n P )γ) + n I n P γ

  Var[ P2 ] = mn I m(m + n I + (n I + n P )γ) + n I n P γ 2 Var[ ξ1 ]

It is worth noticing that our model operates even without any risk-aversion at all: if we assume that all operators (or even a single one) are risk-neutral, then our model is still valid and gives the four regimes described earlier.

For a recent and exhaustive study on this question, see for example[START_REF] Symeonidis | Futures Basis, Inventory and Commodity Price Volatility: An Empirical Analysis[END_REF] 

For extensive analyses of the bias in a large number of commodity markets, see for example[START_REF] Fama | Commodity Futures Prices: Some Evidence on Forecast Power, Premiums and the Theory of Storage[END_REF],[START_REF] Kat | What Every Investor Should Know About Commodities, Part I[END_REF] and[START_REF] Gorton | The Fundamentals of Commodity Futures Returns[END_REF].

In the neighborhood of the frontier ∆ cutting Region 1 into two parts, the speculation term is of second order with respect to the hedging term.

Calculations have been verified with a formal calculator. A copy of the file is available upon request.

We analyzed the numerator after reduction of the difference to the same denominator. All terms have the same sign. Calculations have been verified with a formal calculator. A copy of the file is available upon request.

Speculators' impact on prices and quantities

Increased speculation has equilibrium effects, so that the causal relationships between speculation, prices and quantities must be used with care. We propose however a sequence of concomitant theoretical facts that are easy to understand and memorize. This subsection must be seen as a big proposition, the proofs being given in Appendix D.1.

The equilibrium analysis assumes that ξ 1 is known when markets open, namely at date 1. But for the observer, ξ 1 , or rather ξ1 , can be seen as random at a previous stage, say date 0. In order to analyze variance, we consider now that prices are functions of two random factors ξ1 and ξ2 , with

). We assume that the two factors are independent. We focus in particular on

as was done implicitly up to now. (The subscript gives the date at which the statistics are calculated; given the absence of ambiguity in the sequel, the subscript will be dropped.)

The analysis of an increase of speculation is studied as a decrease of γ. A topical case is an increase of N S but other causes via the above mentioned parameters are also worth considering.

We study first Regions 2 and 1U, where E[ P2 ] > F , and where the physical agents are sellers in aggregate in period 2 (they prefer the sure-as of date 1-F to the random P2 ). References below are to the columns of Table 2. Remark that in the table the absolute value |E[ P2 ] -F | gives the (equilibrium) cost of risk coverage to physical agents. This cost is the starting point of our economic analysis.

Let's see first prices and quantities in level.

• Increasing speculation increases in fact the overall capacity to absorb risk. In our competitive setting, this means that hedging becomes cheaper: the expected margin E

• As risk management becomes cheaper for storers, they increase their inventories, whatever the shock observed in period 1 (see column X ).

• For the processors, hedging was a double win: it was reducing risk and was profitable. The rent (or subsidy) they were receiving is diminished by an increased speculation; thus they reduce their takes (see column Ỹ ).

• Increased inventories means an increased demand in period 1, thus a price increase (see columns P1 ). Quite logically, the effect is a lower price in period 2, due to the extra units drawn from inventories (sSee column P2 ).

Let's now turn to the variances.

• The decrease in the hedging cost enables storers to be more reactive to first-period prices, so that overall their opportunistic purchases attenuate even more production or demand shocks on prices: the covariance of inventories and price is negative and it increases in absolute value with speculation. This explains the lower variance of P1 (see column Var[ P1 ]).

A Demonstrations associated to the existence and the uniqueness of the equilibrium

A.1 Quasi-equilibrium

This paragraph gives the images of Regions 1 to 4, depicted by Figure 2 and used in the proof of Theorem 1.

In Figure 1, we denote by O the origin in R 2 + , by A the point (0, Z), and by M the point (Z, Z) (so, for instance, Region 1 is the triangle OAM ). In Region 1, we have:

The images ϕ(O), ϕ(A), and ϕ(M ) are easily computed:

From this, one can find the images of all four regions (see Figure 2). The image of Region 1 is the triangle ϕ(O)ϕ(A)ϕ(M ).

The image of Region 2 is bounded by the segment ϕ(A)ϕ(M ) and by two infinite half-lines, one of which is the image of {P 1 = 0, F ≥ Z}, the other being the image of {P 1 = F, F ≥ Z}. In Region 2, we have:

mF + γn I (F -P 1 ) .