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Homogenization of Periodic Structured Materials
with Chiral Properties

Ouail Ouchetto, Badr Abou El Majd, Hassania Ouchetto, Brahim Essakhi and Said Zouhdi, Senior Member, IEEE

Abstract—This paper presents a new and efficient method to
compute the quasi-static homogenized constitutive parameters of
biperiodic chiral artificial material. In this method, the studied
domain is reduced to an elementary cell with pseudo-periodic
conditions on the lateral sides and the local electromagnetic
properties are computed by using the finite element method. This
chiral media is decomposed into two equivalent isotropic media
and each one is treated separately. Indeed, the homogenized
constitutive parameters of each isotropic media are expressed as a
function of the macroscopic electromagnetic properties which are
obtained by averaging the local electromagnetic properties. The
homogenized constitutive parameters of the initial chiral material
are expressed using the two equivalent isotropic materials. The
validation of the numerical results is presented in the case of the
lattices with 3D inclusions. In addition, the obtained results are
compared to existing results in literature. Finally, the incidence
wave angle impact on the homogenized parameters is studied.

Index Terms—Homogenization, metamaterials, homogenized
constitutive parameters, finite element method (FEM), chirality.

I. INTRODUCTION

N the last decade there has been a growing interest in the

investigation of artificial materials known as metamaterials.
This is due to their exotic electromagnetic properties such
as negative refraction, backward propagation, reverse Doppler
effect, cloaking, diffraction-limit breaking imaging, reverse
Vavilov-Cerenkov effect, etc [1]-[3]. These materials have
shown a great potential in many applications like superres-
olution lenses, slow light, data storage, optical switching,
transformation optics, optical activity, circular dichroism, and
so on [4]-[6]. They are made of large number of metallic or
dielectric particles, periodically distributed, in a homogeneous
host medium. Their electromagnetic properties depend on the
shape, size, material composition and density of inclusions.

If the period of the studied composite material is small com-
pared to the wavelength of the incident electromagnetic wave,
this material can be seen as a homogeneous material. The
aim of homogenization theory is to establish the macroscopic
behaviour of such structure. This means that the heterogeneous
structure is substituted by a homogeneous fictitious one (the
homogenized structure). Within the electromagnetic commu-
nity, homogenization of composite materials has a huge litera-
ture and proposed theories therein. It is to be noted that some
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of the suggested theories, for predicting the effective prop-
erties, are based on analytical calculation such as Maxwell-
Garnett, Bruggeman, Clausius-Mossotti mixing formulas, etc.
[7]-[9]. However, other approaches are based on the principle
of retrieval. Indeed, the homogenized constitutive parameters
are obtained from the scattering properties of the medium by
assuming the equivalence between a heterogeneous material
and a uniform slab with unknown constitutive parameters [10]-
[12]. The Floquet-Bloch method is a different approach of
homogenization and is based on the resolution of an eigenvalue
problem in unit cell [13]-[14]. It is to be underlined that the
Floquet-Bloch waves were introduced by Floquet [15] and
Bloch [16] and their properties are presented in [17] and
[18]. The homogenized relative permittivity is given by the
Hessian of the lowest eigenvalue at the Floquet-Bloch wave
vector k = 0 representing the mismatch of the wavelength
with the lattice. The Floquet-Bloch method is shown to be a
good alternative to the classical homogenization method, when
the contrast is modest. In the other side, an explicit expression
of the effective permeability was defined by D. Felbacq et al.
[19]. Their approach is a renormalization-based scheme that
authorizes a completely general theory. In 2007, Silveirinha
[20] proposed a source-driven approach to homogenization,
leading to an integral equation that can be solved in closed
form for the effective dielectric tensor. Recently, the effective
constitutive parameters are defined from first-principles [21].
The proposed theory combines the approach of Floquet-based
homogenization theories with the advantages of locality and
general applicability of less accurate retrieval techniques.
Among mathematical proof based approaches is the multi-
scale homogenization method. It consists of solving an elliptic
problem in a unit cell with periodic boundary conditions [22]-
[32]. The asymptotic analysis is called for in order to obtain
an asymptotic expansion of the solution in terms of a small
parameter which is the ratio of the two length-scales. The
classical multi-scale homogenization technique are reconsid-
ered by giving a new approach which based upon the periodic
unfolding method [33]-[34]. The justification of the limiting
homogeneous constitutive law is rigorously performed in the
frequency and the time domains. The analysis and numerical
study of this approach is presented for different cases [35]-
[40]. For the multi-scale homogenization method, the studied
domain is represented by an infinite triperiodic structure which
is reduced to an elementary cell with triperiodic boundary
conditions. This method can homogenize a structure with
arbitrarily shaped inclusions and takes into account the effect
of inclusions on the homogenized constitutive parameters. But
it cannot evaluate directly the local fields in the elementary cell
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or in the whole studied structure. These fields can be evaluated
only in the other bounded domain having different boundary
conditions and the additional treatments are required. The mo-
tivation of this work is to present a new and efficient method
to compute the homogenized constitutive parameters of the
biperiodic chiral artificial structure having finite thickness.

This paper introduces a new homogenization method of the
chiral periodic media. Compared to [41], this work has two
novelties. The first one is a generalization and an extension
of our previous work on lossy anisotropic periodic material to
chiral periodic material. The second one is an improvement
of the employed method by changing the boundary conditions
used to evaluate the local fields. This change allows having a
better precision in the chiral case. This technique is based
on the reduction of the studied domain to an elementary
cell with pseudo-biperiodic conditions on the lateral sides.
The chiral elementary cell is decomposed into two isotropic
equivalent cells, each cell is treated separately. Indeed, the
computation of the local fields is performed by using the
Finite Element Method (FEM) after choosing an appropriate
boundary conditions on the different sides. The homogenized
constitutive parameters of each cell are expressed as function
of the macroscopic electromagnetic properties. These last are
obtained from the local electromagnetic properties. Finally, the
homogenized constitutive parameters of the initial chiral cell
are expressed from those of the two equivalent isotropic cells.
We note that the present method allows homogenizing the
structures containing complex inclusions and also takes into
account the effect of the geometry and the interaction of inclu-
sion. In addition, it gives all electromagnetic properties as local
and macroscopic fields, furthermore, it determines inductions
in the initial studied domain. By comparison with Unfolding
Finite Element Method (UFEM), the present method gives
the direct information about the local electromagnetic field
and it significantly reduces the computing time of both the
constitutive effective parameters and the local fields.

This paper is organized as follows. The second section
is devoted to define the studied domain and the adequate
boundary conditions to compute the local properties. The third
and the fourth section are dedicated to compute the local
fields and to express the macroscopic properties respectively.
The fifth section gives the expressions of the homogenized
constitutive parameters of the chiral media. The sixth section
presents the numerical validation of the present method and
we compare the obtained results to those of the literature [42]-
[44]. Finally, our conclusions are drawn in the last section.

II. STUDIED DOMAIN

As shown in Fig. 1, the artificial structure €2 is modeled as
a biperiodic array containing two constituents and obtained by
suspending the identical chiral inclusions in a homogeneous
chiral background. The periods of this structure are noted
by « and (3 along the axes (ox) and (oy) respectively, and
the thickness is noted by d. The constitutive parameters, i.e.,
permittivity e, permeability u, and chirality « of the structure,
are biperiodic.

Y(u+ae;) = y(u+pPex) = y(u) ¢))

(‘Se! nue!’ce)

Fig. 1. Infinite biperiodic artificial material

0‘“ Su

St

Fig. 2. Elementary cell.

where v € {¢,u,x}, eg = (1,0,0), e = (0,1,0) and e3 =
(0,0,1) are the vectors of the canonical basis B for three-
dimensional space, and u = (z,y, 2).

The electromagnetic properties of the chiral medium, as-
suming time dependency is e/“?, are described by the consti-
tutive relations which are expressed as follow:

D = €E - jr/eouoH ?)
B = pH+ jr /eopoE

where E is the electric field, H is the magnetic field, D is the
electric induction, B is the magnetic displacement, €y and g
are the permittivity and the permeability of the vacuum.

The structure is illuminated by an incidence electromagnetic
wave having an arbitrary incidence. This last is defined by
the angles 6; and ¢;, and the wavelength is considered large
enough compared to the periods « and 3. For arbitrary incident
plane wave, the direction of incidence is:

di = sinﬁicosqﬁiel + SZn0151n¢262 — 60591'03 (3)

The electric and the magnetic field depend on the electro-
magnetic properties of the material and verify the Helmholtz
equations of chiral media. These equations are obtained by
combining the Maxwell equations and the constitutive rela-
tions (2), and they are given by:

V x 71V X E = 26V x E + w?(k?eopo — €)E = —jw]
V X e 'V x H+ 25V x H + w?(k2eopo — p)H =

(V X —wk/eopg)e T
“)

where VX is the curl operator and J is the excitation source.
We use the decomposition scheme which consists in trans-
forming the chiral medium into their two equivalent isotropic
media. Each one can be treated separately. This separation
represents an important advantage. It reduces the complexity
of the computation of the electromagnetic fields by removing
the terms of V x E and V x H from (4). We note that
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these two isotropic media are characterized by four equivalent
permittivity/permeability parameters of €1 and p1 as follows:
D, =
B. =

e+Eq4
pu+Hy

By — jr/eopoHy =
JeyveopoEs + pHy =
where the symbols + and — denote, respectively, the right-
hand and the left-hand side circular polarized eigenwaves
inside the chiral medium. We can easy verify that the re-
spective equivalent permittivity e, and permeability py of
the eigenmodes should obey the following relation:

®)

(€ —ex)(p— pa) = KPeopo (6)

The permittivity e+ and the permeability p4 are expressed as
function of €, i and x as follow:

e = e(ltn/om)
. )
pr = plEr, /<L)

According to the Floquet’s theorem, the local fields E4 and
H. are pseudo-periodic and perform the following relations:

f(u)eIkos-

flu+oe;) =
f(u)e7hou-B (®)

fu+ pey) =

where ko, koy and &, are the components of k wave vector.
The decomposition of the chiral media into two fictional
isotropic achiral materials and the Floquet’s theorem allow
transforming the study into two elementary cell, noted C
and C_, characterized, respectively, by (e, ) and (e_, ).
Instead of resolving the Helmholtz equations (4) in C, we
resolve the Helmholtz ones for the isotropic media in Cy:

V x ,u,:T:lv X Eyf — wzeiEi =
V x €£1V x Hy — MQ/.LiHi =

jwl
oty ©

III. COMPUTATION OF THE ELECTROMAGNETIC FIELD

In order to resolve the equations (9), we use the FEM and
its ability to treat the domains containing complex shapes
of inclusions. This method requires to impose the boundary
conditions on the different sides of the unit cell C. Firstly,
the upper surface Sy of unit cell is the excitation surface (see
Fig. 2). Secondly, according to Floquet’s theorem, we impose
the pseudo-periodicity conditions on the lateral sides. Thirdly,
it remains to determine the boundary conditions to impose on
lower surface S. In [41], we added an infinite vacuum layer
under the elementary cell, we introduced a fictitious boundary
to delineate the studied extended cell on the one hand and to
obtain a suitable approximation of the original problem, the
Silver-Miiler absorbing boundary conditions must be located
sufficiently far from the obstacle on the other hand. We also
imposed the pseudo periodicity conditions on the lateral sides
of the vacuum layer. Choosing this boundary conditions has
given good results in the lossy media case. However, in this
configuration of the chiral media with a cascade of numerical
results, the Silver-Miiler absorbing conditions give just an
average results. Then to improve the numerical results in
the chiral media, we propose another configuration of the
boundary conditions on the lower surface S. After removing
the added vacuum layer, we impose the Neumann conditions

directly on the lower surface Sp. In fact, we can see the
elementary cell as an open circuit.

The electric field solution of the first equation of (9) depends
on the excitation source. To obtain this field according to TE
and T'M modes, we excite the upper surface Sy of the cell
(see Fig. 2) by the normalized magnetic fields hrg,, and
hr s, respectively. They are the fundamental Floquet modes
and their expressions are given as follows:

hTE — cap(—jkosr—jkoyy)
00 (T,y) (,ﬁ ) (
hIM (3, y) = Rikosz—ikoyy) o
00 ( y) \/ﬁ (

cospie1 + sinp;es)

—siny;e1 + cosp;es)

(10
To compute the magnetic field according to the T'F and T'M
modes, we use the same way. For this purpose, we excite the
surface Sy by the normalized electric field erg,, and ey,
and we resolve the second equation of (9).

The weak formulation of the local field is obtained by
multiplying the associate equation (9) by a test function and
integrating over C. The elementary cell is decomposed to
tetrahedral elements and we use the edge finite elements for
the electric field.

[As](ex) = (b)

where A is the matrix system of order n x n, (e4) is the
unknown vector of order n which contains the degrees of
freedom e, on the edges of the mesh of Cy, and (b) is n x 1
column vector describing the known values of the field on the
boundary conditions.

Building the matrix system is very important element in the
computation of the local fields. For example, to compute E
and E_, we have to construct the associate matrices A and
A_ where just the permittivity and the permeability which are
different. For this, we propose optimizing the construction of
these matrices. In fact, instead of constructing these matrices
for the elementary cell, we construct the matrices associated to
the inclusion C; and the host media C. by keeping the same
edges’ numbering of C for the edges of C; and C.. We note
that the n x n associated matrices are given as follows:

(1)

M. (v, p) Jo. V xwy(u).V x w,(u)du
M;(v,p) = fc V x wy(u).V X w,(u)du (12)
and
Ne(/yv p) fce W’Y(u)‘wﬂ(u)du 13
Ni(v,p) = Jg, Wy(u).w,(u)du (13

We use the tetrahedral mesh for the elementary cell and we
represent the set of the tetrahedral elements of C; and C.
by 7; and 7. respectively. We note 1 and ¢ two edges of a
tetrahedron 7' in the mesh.

Vn,(eT CTi = M(n,¢)=Nc(n,¢) =0
Vn,(eTCT. = M1, =N =0

The matrices M;, M., N; and N, dependent only on the
domain’s mesh. They do not depend on constitutive param-
eters and on frequency. Since the constitutive parameters are
constant in the inclusion and in the host media. Then, the

(14)
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matrices A, and A_ can be expressed as a function of these
four matrices and they are given as follows:

Ay

A_ =

He, +M€ + u; +Ml —w (66,+N6 + 6i7+Ni)
,_Me + uliMl —w?(ee,-N®+¢;,_N?)
15)
where €; 1, €; _, 4; +, 11;,— are the parameters of the inclusion,
and €.y, €c _, fle, 4, Me,— are the parameters of the host media.
For the magnetic field Hy, we use the same mesh with the
facet elements. To optimize the construction of the matrices
system B, and B_ which associated to H; and H_, we
employ the same method used for A, and A_.

IV. MACROSCOPIC ELECTROMAGNETIC PROPERTIES

The local electromagnetic response, which takes into ac-
count the different specificities of the structure on a micro-
scopic scale, are encapsulated in the macroscopic electromag-
netic response. This last is described by the macroscopic fields
(E+ , Hy ;) and the macroscopic inductions (D4 ,,, B+ ).

In the case of the isotropic and anisotropic heterogeneous
media, the homogenized permittivity and permeability are in-
dependent respectively of the value of the permeability and the
permittivity of the cell constituents. Then, for the computation
of €1 j, we take 4 = pp. The same, for the computation of
[+ p, We take €4 = €g. In addition, the resolution of the
equations (9) allows obtaining the local fields (E.,H.), and
the use of the constitutive relationship (5) enables to evaluate
the local inductions (D, By).

We underline that the local fields are pseudo-periodic. Thus,
the macroscopic fields (Ey ,,,, Hy ,,,) can be obtained by
averaging (E1,H.) over the C'y and their expressions are:

a,@dfo fo fo E:(u
aﬁdfo fo fo H (u

where a.(3.d represents the volume of C'y.
The permittivities e+ are biperiodic because the constitutive
parameters €, ¢ and x are biperiodic:

Ei, = Ydxdydz (16)

Hy ,, )dxdydz (17

er(u+ cey) =
1+ k(u+aey), /et ——~ | =
e(U+a€)u(U+aly)

e(u) (1 + k(u) W) — e, (u)

e(u+ ae)

(18)
e+(u+ fey) =
e(u+ Ges) (1 +r(u+ ﬁeg)\/WZ?Mﬂez)) -
e(u) (1 + w(u) W) — e, (u)
(19)
Also the permeabilities p are biperiodic:
px(u+ aer) = pi(u) (20)
it (u+ Bez) = pg (u) 21

The local inductions D1 and B are pseudo-periodic because
the parameter €4 and p4 are periodic and the local fields E
and H. are pseudo-periodic:

Di(ll + ozel) = Ei(ll + Oéel)Ei(ll + Oéel)
= er(u)Eg(u)e e (22)
= D4 (u)e‘j"'io‘
D:I: (ll + Beg) = €4 (ll + 582)]‘2:‘:'(“ + ﬁeg)
= ex(0)Ey(u)e kb (23)
= Dy(u)e /P
and
Bi(u+oae) = Bi(ue ko (24)
Bi(u+fBe;) = Byi(u)e7kif (25)

Then, the macroscopic inductions (D ,,, Bt ,,) can be
deduced by averaging the local inductions over the cell C'y
and their expressions are giving by:

Dim = fo fo Dy (u da:dydz
’ (26)
= aﬁd 0 fo fo e+(u (u)dzdydz
B:t,m = ozﬁdfo fO fO Bi dxdydz (27)

(u)dzdydz

= aﬁdfo fo fo pi+(u

V. HOMOGENIZED CONSTITUTIVE PARAMETERS

The homogenization can be seen as a process of averaging
of the Maxwell’s equations, with rapidly varying coefficients,
over the initial studied media. This process allows obtaining
the macroscopic (or homogenized) version of Maxwell’s equa-
tions with constant coefficients.

The computation of the volume integrals (16), (17), (26) and
(27) permits to obtain the macroscopic fields (E+ ,,,, Hy 1)
and macroscopic inductions (D ,,,, By ,,,). Now, we assume
that these macroscopic quantities satisfy the constitutive re-
lationship (D4 ,, = €+ 3E4 ,, and By ,, = g Hy ). In
the first time, we write the components of each macroscopic
quantity as the sum of the real (Re) and imaginary part
(Im). In the second time, we multiply the first equation by
Re(EY ,,,) —jIm(EY ,,) and the second one by Re(HY ,,) —
JIm(HY ,,), we obtain the expressions of the homogenized
permittivity and permeability as diagonal matrices:

(Re(DY ) Re(EL ) +ImDL ), 1mEL )
IrRe(EY )12+ 1mEL )12

=uu

€+ n =

(28)
—yu _ (Re(BY ) ReHL, ) +Im®BL ) rmMHL )
+h lBeHY )2+11mHE )12

where u € {z,y,z}, uu € {zx,yy, 2z}, (.,.) represents the
scalar product and ||.|| represents the Euclidean norm.

We have decomposed the initial inhomogeneous chiral cell
C to two isotropic cells CL (C; and C_). Thus, we have
proceeded to homogenize each one separately by computing
the homogenized constitutive parameters € 5 and jiy 5. From
these parameters, we can express the homogenized constitutive
parameters €y, [, and iy, of the initial chiral cell C.

The homogenized cells of the chiral elementary cell C' and
their isotropic cells C. are noted respectively by C} and
C4 .. The homogenized cell C}, is a chiral media and it
can be also regarded as the sum of two separate isotropic
and homogeneous media. In addition, these two separate
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homogenous isotropic media are nothing more than Cy j
which characterized by €+ j, and jiy . Then, these last can
be expressed as a function of €, , p1;, and kp:

=uUu

E:i:,h = _uu(l + K/

=UuUu

Mt h

€o M0 )
7uu uw

g
€040

7uu uu

29
o (29)

where uu € {zz,yy, 2z}

The known parameters €+, and jiy j are expressed as a
function of the unknown parameters €p, fi;, and kKp. Then,
by adding €, ; to € and fi, ), to fi_j, we eliminate the
chirality term and we obtain the expressions of the €, and f;,:

= _ 1/= =
Eh = (E-‘r,h + i—ﬁ) (30)
= g, +i_yp)
From the equations (29), the expressions of &y, are:
R = e (B~ &
“ u 31
Kp = Eomﬁuu (B — )

We multiply the equations (31) term by term and we replace
€," and [i," by their expressions, we obtain:

R = e @ — SO — A (G2)
The matrices €y, [, and kKj, are diagonal. Thus, we can
express the matricial equation of the homogenized chirality:

Rr (33)

Kp = m(a,h - E,h)(l:hr,h - /:L,h)

VI. NUMERICAL VALIDATION AND RESULTS

In this section, we present the numerical results of different
types of structures. The computation of the parameters is done
for an incidence wave defined by 6; = 7/4 and ¢; = /3,
and the ratio of wavelength A on period o is A\/a = 15.
The obtained results are compared to Maxwell-Garnett (MG)
formalism and UFEM [42]-[43]. We recall that the UFEM
suppose that the studied structure is an infinite tri-periodic
structure in the one hand; on the other hand, the homogenized
parameters are computed in unit cell with tri-periodic condi-
tions and they are expressed in terms of a sub-corrector.

A. Lattice with circular cylinder inclusions

We consider an infinite biperiodic lattice of chiral identical
inclusions suspended in free space. The inclusions are char-
acterized by the relative permittivity €; . = 15, the relative
permeability p; = 15 and the chirality x; = 7. The periods
are & = 8 = lem and the thickness is d = 1em. We mention
that the thickness of inclusions is also equal to lem.

Fig. 3 plots the components ", and €, (&, = &) of
the homogenized relative permittivity €, , as a function of the
volume fraction f. The present method and UFEM produce
the same results for different values of f and a good agreement
is shown throughout the curve. Indeed, the difference between
these methods is less than 2%. For the large values of f,
MG provides different values compared to other two methods.
Indeed MG does not take into account the effect of the shape

7
—UFEM

6 -
_,E- --#-- Present Method
=
£ 5. === Maxwell-Garnett
E
g, d
- -
[
o
§ 3
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£
s 21
==

1 ‘ ‘ '

0 0,2 0,4 0.6 0.8

Volume fraction

Fig. 3. Component € of &, , of a lattice with circular cylinders.

29 ——UFEM
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E 15 - === Maxwell-Garnett
=
=}
-
]
N
2 ]
]
1]
)
g
= 05
0 e ; ; ;
0 0,2 0,4 0,6 0,38
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T

Fig. 4. Component ;% of &}, of a lattice with circular cylinders.

of inclusions and the interactions between inclusions on the
homogenized constitutive parameters.

Fig. 4 represents the components =" and &Y (k3" = K}”)
of the homogenized chirality 55,. We have the same behaviour,
and the present method and UFEM give the same results.
As we can see, from 0.5, the difference between the present
method and MG increases as function of f.

B. Lattice with cubic inclusions

We consider an infinite biperiodic lattice of identical chiral
cubic inclusions characterized by the relative permittivity
€;,» = 10, the relative permeability j1;,, = 8 and the chirality
k; = 5. The host medium is also a chiral media and has
the same relative permittivity €., = 10 and the same relative
permeability p., = 8 but with an opposite chirality k. = —5.
The periods and the thickness of this lattice are respectively
a=f3=1ecm and d = lem.

Fig. 5 and Fig. 6 represent the component Ehr
of €, and nh - Tespectively. We note that &, = ezyr =&,
and jiy,". = i’ = [ij,7.. As we can observe, €, , and fi, , are
very close to UFEM’s results. We underline that, although both
€; = €. and p; = 1., the homogenized parameters €;, and [,
are not constant. This phenomena is due to the presence of the
chirality. As in the first structure and for the same reasons, the
results of the MG are different of those of the present method.

In Fig. 7, we present the component Kj." of Kp. As can
be seen, the UFEM and the present method give the same
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Fig. 7. Component <37, of K, of a lattice with cubic inclusions.

results for different values of f. We note that the homogenized
material is left-handed (x;, < 0) for the small value of f and
is right-handed (x5, > 0) for the large value of f.

C. Layered structure

We consider an infinite biperiodic lattice having different
periods o = 1l.dem, B = lem and thickness d = lem.
The unit cell is composed by two layers parallel to x-axis
and perpendicular to y-axis. The thickness of these layers
are dy and do with d; + dy = 8 = lem. The first layer is
characterized by the relative permittivity €1, = 5, the relative
permeability j11, = 2 and the chirality x; = 0. The second
one is characterized by the relative permittivity e , = 20, the
relative permeability jio, = 10 and the chirality o = 5.
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Fig. 8. Components €% and & _of &, , of a lattice with two layers.
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Fig. 9. Components £7" and K77 of Ky, of a lattice with two layers.

Fig. 8 represents the components €, and €". of €, as
a function of f = dy/(d1 + dz2), and Fig. 9 represents the
components &y, and ;" of Ku,. We note that f varies
between 0 and 1 whichyrepresent di = 0and do = 0
respectively. The obtained results are compared to UFEM and
as we can see, the good agreement is obtained between these
methods for different values of f.

D. Lattice with hollow inclusions

Another type of infinite biperiodic lattice is studied in this
subsection. The periods and the thickness of this structure are
o = = 10mm and thickness is d = 12mm. The inclusions
are a circular hollow cylinder having an inner diameter r; =
6mm, an outer diameter o = 8mm and a height h = 2.5mm.
The parameters of the inclusions are €;, = p;, = 13 and
k; = 6. The parameters of the host media are €. . = p; , = 59
and k. = 2n with 7 is a real.

Fig. 10 and Fig. 11 plot the components €. and &, of

=rxT

€n,r and Kj, respectively. We underline that &% = E}fr and
Rpy = Rp.- The different components of the effective param-
eters are computed as function of 7 which varies between 1
and 10. As we can see from these figures, the present method

and the UFEM produce the same results.

E. Homogenized parameters as a function of incidence angle

The incidence angle is defined by 6; and ; which are used
in the expressions of the fundamental Floquet modes. These
modes are used to determinate the local fields according TF
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TABLE 1
?ffT FOR DIFFERENT VALUES OF 0; AND ¢;.

®; =0 ¢ =7/6 ¢i =7/3 ¢ =7/2
0; =0 2.55 2.55 2.55 2.55
0, =7/6 2.55 2.55 2.55 2.54
0, =m/3 2.54 2.55 2.55 2.53

TABLE II
Eﬁfr FOR DIFFERENT VALUES OF THE 6; AND ¢;.

¢ =0 pi=7/6 | pi=7/3 | ¢y =7/2
0; =0 0.241 0.241 0.240 0.240
0, =7/6 0.243 0.243 0.242 0.242
0, =7/3 0.248 0.248 0.247 0.245

and TM modes. In this subsection, we study the influence
of the incidence angle on the homogenized parameters. For
this, we retake the lattice with circular cylinder inclusions
by keeping the same electromagnetic properties of inclusions
and host media (see subsection VI. A). In addition, we take
f = 0.502 which corresponds to radius r = 0.4cm. Then, we
compute (€, fiy,, k) for different values of 6; and ;.

Table 1 represents €. for different values of ¢; =
0,7/6,7/3,7/2, and of 6; = 0,7/6,7/3. Each line of this
table gives the values of & at fixed §; and each column
gives the values of &, at fixed ¢;. As we can see, we obtain
the same results and the relative error is less than 1%.

Table 2 shows the <" values for different values of ¢; and
0;. As we can see, we have also the same results of ;. The

numerical results, presented by Table 1 and Table 2, show that
even when we change the values of the angle of incidence,
the homogenized parameters remain constants. The obtained
results confirm that the present method does not depend on the
angle of incidence to compute the homogenized parameters.

VII. CONCLUSION

In this paper, we have presented a new method to homoge-
nize the biperiodic bi-isotropic artificial lattices. The accuracy
and the effectiveness of the presented method has been shown
by homogenizing an artificial structure with circular cylinder
inclusions. The numerical results produced by the present
method are compared with UFEM and the good agreement
has been obtained.
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