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Stability analysis of output feedback control systems
with memory-based event-triggering mechanism

Miguel A. Davó, Christophe Prieur, and Mirko Fiacchini

Abstract—This work is concerned with the stability analysis
of an output feedback control system possibly influenced by
unknown disturbances, where both the plant output and the
controller output are subject to event-triggered sampling. We
propose a new event-triggering mechanism based on the history
of the measured outputs instead of the current outputs only. This
novel feature provides a simple link between the parameters of
the sampling criterion and the speed of convergence. Accumu-
lation of sampling times is prevented by enforcing a minimum
inter-event time. The effectiveness of the proposed event-triggered
scheme is illustrated by several numerical examples, including
nonlinear and linear systems.

I. INTRODUCTION

Sampled-data control for continuous-time dynamical sys-
tems is a very active research topic, in which a continuous-
time plant is controlled with a digital device. Traditionally,
the control task has been assumed to be executed periodically,
which simplifies the implementation of the control system.
However, the periodic sampling schemes may produce unnec-
essary updates of the sampled signals, which will cause high
utilization of resources (e.g. computation time, communication
bandwidth, etc.). To overcome that limitation, the event-
triggering approach was proposed, where the sampling actions
are determined by some function of the system state, rather
than by progression of time. Several experimental results, see
[9], [19], [13], have shown the potential of the event-triggered
control to reduce the number of samplings.

In the past few years, a multitude of strategies for event-
triggered control have been proposed, see [8], [15]. Some
strategies are based on the difference between the current value
of the state and the previous sample, see [14], [21], assuming
in particular Input-to-State stability (ISS). Other more recent
approaches require less strong assumptions and update the
measure of the state only when a Lyapunov function has a
sufficiently negative derivative, as the solution approaches to
the equilibrium (see [18], [20]). Other techniques are based on
an observer (or a norm-observer) and require the knowledge
of the (sampled) output only, see [22] and [23]. Most of
the work in the literature assumes that the full plant state is
available, which is a strong assumption for many practical
applications where only a part of the state can be directly
measured. Generalizing event-triggered control techniques to
output feedback control is definitively non-trivial, the simple
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strategy [21] leads to Zeno phenomenon as shown in [3],
[1]. Different event-triggering mechanisms have been proposed
to solve this problem. For instance [12], [4] are based on
state observers which lead to more complex event-triggering
schemes. In [3], [17], the authors modified the triggering
condition to guarantee an ultimate boundedness property
instead of asymptotic stability. Another approach linked to
time regularization technique is presented in [1], where time-
triggered control and event-triggered control are combined to
rule out Zeno phenomenon while asymptotic stability and ISS
property are preserved.

In this note, we focus on the analysis of the internal stability
and the input-to-output stability (IOS), under unknown distur-
bances, of nonlinear output feedback even-triggered control
systems. In addition, we provide a procedure to upper bound
the L∞-gain of linear time-invariant (LTI) systems. We con-
sider the scenario in which the sensor and the actuator are
co-located, and both plant output and controller output are
sampled synchronously. To provide asymptotic stability and
IOS, we propose an event-triggering mechanism, where the
sampling times are computed from the difference between the
current plant output and controller output, and the last sample.
A novel feature of the proposed mechanism is that the history
of the outputs is used to determine the sampling times. Inspired
by the results in [1], [16], the proposed triggering mechanism
enforces a minimum inter-event time in order to avoid accu-
mulation of the sampling times. Our stability analysis exploits
techniques inspired by Lyapunov-Razumikhin theorem and
Halanay’s inequality (see e.g. [5]). For the particular case
of LTI systems, the proposed exponential stability conditions
and the procedure for computing the L∞-gain upper bound
are written in terms of Linear Matrix Inequalities (LMI).
In addition, less conservative results in terms of the inter-
event times are developed by considering piecewise quadratic
Lyapunov functions. The main advantage of our approach is
the relation of the parameters of the sampling algorithm with
the speed of convergence. Moreover, several examples suggest
that these parameters are related with the inter-event times,
leading to a tradeoff between the speed of convergence and
the number of needed updates. A preliminary version of this
work is [2], where a more restricted scenario is analyzed and
no disturbances are considered.

The rest of the paper is organized as follows. First the
problem under consideration and the event-triggered setup are
introduced in Section II. Section III contains the stability anal-
ysis of nonlinear control systems. The results are particularized
for LTI systems in Section IV. The proposed technique is
illustrated by numerical examples in Section V.
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Notation: The sets Sn and Sn+ denote the sets of symmetric
matrices of dimension n×n and the set of symmetric positive
definite matrices of dimension n×n, respectively. The notation
P > 0 for P ∈ Sn means that P is positive definite (P < 0
means negative definite). For a matrix A ∈ Rn×n, the notation
He(A) refers to A+A>. For a symmetric matrix A ∈ Rn×n,
λm(A) and λM (A) stand for the minimum and maximum
eigenvalue, respectively. The notation ‖x‖ is the Euclidean
norm for x ∈ Rn and, for a function f : [a, b] → Rn, a
norm is defined as ‖f‖ := sups∈[a,b] ‖f(s)‖. A function
f : R+ → R+ is of class K if it is continuous, strictly
increasing, and f(0) = 0. The function f is of class K∞,
if f ∈ K and lims→∞ f(s) = ∞. A continuous function
f : R+ × R+ → R+ is of class KL if for each fixed
s, the function r 7→ f(r, s) belongs to class K and for
each fixed r, the function s 7→ f(r, s) is nonincreasing
and lims→∞ f(r, s) = 0. The space of essentially bounded
measurable functions is denoted by L∞.

II. PROBLEM STATEMENT

Consider an output-based control system formed by the
feedback interconnection of a plant P and a controller C. The
plant is given by

P :

{
ẋp(t) = fp(xp(t), up(t), w(t)),
yp(t) = gp(xp(t)),

(1)

where xp ∈ Rnp is the state of the plant, up ∈ Rnup the
control input applied to the plant, w(t) ∈ Rnw an unknown
disturbance and yp ∈ Rnyp the output of the plant. The
controller is given by

C :

{
ẋc(t) = fc(xc(t), uc(t)),
yc(t) = gc(xc(t)),

(2)

where xc ∈ Rnc is the state of the controller, uc ∈ Rnuc the
input of the controller, and yc ∈ Rnyc the control signal. In
addition, let assume that the feedback interconnection between
the plant and the controller is affected by an exogenous signal
e(t) :=

[
e>y (t), e>u (t)

]> ∈ Rne with ne := nyp + nyc, such
that the interconnection is given by up(t) = yc(t) + eu(t) and
uc(t) = yp(t)+ey(t). Considering the state x := [x>p , x

>
c ]> ∈

Rn with n := np+nc, the closed-loop system is described by{
ẋ(t) = f(x(t), e(t), w(t)),
z(t) = g(x(t)),

(3)

where z(t) ∈ Rnz is a performance variable and

f(x, e, w) :=

[
fp(xp, gc(xc) + eu, w)
fc(xc, gp(xp) + ey)

]
. (4)

The function f is assumed to be continuous in all its arguments
and f(x, e, w) = 0 if x = 0, e = 0, w = 0. The functions gp
and gc are assumed be continuously differentiable, and there
exists a function ξ ∈ K such that

‖
[
g>p (xp), g

>
c (xc)

]> ‖ ≤ ξ(‖x‖). (5)

The function g is assumed to be continuous, and in addition,
there exists a function ξz ∈ K such that ‖g(x)‖ ≤ ξz(‖x‖).

In order to derive the results in this work, the following
assumption is considered:

Assumption 1: There exist a locally Lipschitz positive
definite function V : Rn → R+, functions α, α, α,
β1w ∈ K∞, a locally Lipschitz positive semi-definite function
βe : Rne → R+, a real number θ > 0, a continuous function
H : Rn → R+, and a continuous, nonnegative function
δ : Rnyp → R+ such that, for all x ∈ Rn,

α(‖x‖) ≤ V (x) ≤ α(‖x‖), (6)

and for all e ∈ Rne , and w ∈ Rnw

〈∇V (x), f(x, e, w)〉 ≤ −α(V (x))−H2(x)− δ(yp)
+ θ2β2

e (e) + β1w(‖w‖).
(7)

Remark 1: Assumption 1 is a L2-gain stability property1 of
(3), which has been used for instance in [1], [16] with slight
changes. ?

Consider the feedback interconnection of the plant (1)
and the controller (2), where both the plant output and the
controller output are made through a sampling mechanism.
Therefore, the input of the plant and the controller are updated
at some instants tk, k ∈ N, referred to as sampling times (or
triggering times in the context of event-triggered control). In
this way, the interconnection is given by

uc(t) = yp(tk), up(t) = yc(tk) (8)

for all t ∈ [tk, tk+1), k ∈ N.
The sampling times can be generated in several ways.

In event-triggered control the sampling times are governed
by event-triggered mechanisms, that continuously monitor
the behavior of the plant and the controller, and generate
events when some condition is satisfied. This work focuses
on the emulation-based approach, where first the controller is
designed to get some desired behavior for the continuous loop,
and second, an event-triggering scheme is designed to provide
a bounded deviation of the event-triggered implementation
from the continuous one under Assumptions 1. Therefore, the
problem is to design a sampling algorithm, i.e. the computation
of the sequence (tk), k ∈ N, in order to guarantee stability
properties of the system and at the same time to prevent Zeno
solutions.

Let us define ζ(t) :=
[
y>p (t), y>c (t)

]>
, where yp(t) and

yc(t) are the output of the plant and the controller of the
system (3). The dynamics of the event-triggered closed-loop
system can be described by (3) and (4), where now the
exogenous signal e : R+ → Rne represents the sampling-
induced error given by

e(t) = −ζ(t) t ∈ [0, t1),
e(t) = ζ(tk)− ζ(t) t ∈ [tk, tk+1), k ∈ N, (9)

and whose evolution is governed between two consecutive
sampling instants by ė(t) = fe(e(t), x(t), w(t)) with

fe(e, x, w) :=

[
− ∂
∂xp

gp(xp)fp(xp, gc(xc) + eu, w)

− ∂
∂xc

gc(xc)fc(xc, gp(xp) + ey)

]
.

(10)

1Function β1w in Assumption 1 can be defined as a continuous positive
semi-definite function, but no improvement has been found for the purpose
of this work.
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In order to develop the main results of this work, we extend
the initial condition of the system (3) on the interval [−h, 0]
as follows: x(t) = x(0), t ∈ [−h, 0], where h > 0 will be a
design parameter of the proposed event-triggered mechanism.
The error signal is extended similarly, e(t) = e(0), t ∈ [−h, 0].
In addition, for the sake of simplicity, we define the function
Vt : [−h, 0]→ R+ given by Vt(s) = V (x(t+s)), s ∈ [−h, 0],
where V (x(t)) is the value of the Lyapunov function in
Assumption 1 along the solution to the system for some initial
condition x(0) and disturbance w.

In order to force a minimum inter-event time in the line of
[1], [16], an exponential growth condition on the sampling-
induced error e is assumed.

Assumption 2: There exist β2w ∈ K∞ and real numbers
L1, L2 ≥ 0 such that for all x ∈ Rn, e ∈ Rne , and w ∈ Rnw

〈∇βe(e), fe(e, x, w)〉 ≤ L1βe(e) + L2H(x) + L2β2w(‖w‖).
(11)

Remark 2: The technique proposed in this work is also
applicable to a control system with a static output controller
given by yc(t) = gc(uc(t)) where uc ∈ Rnuc and yc ∈ Rnyc .
In this case, for analysis purpose, it can be assumed that the
controller is directly connected to the plant. Hence, the event-
triggered control system is modeled by (3) with f(x, e, w) :=
fp(xp, gc(gp(xp)+e), w), where the error signal is given by (9)
with ζ(t) := yp(t) and its evolution between sampling instants
is governed by fe(e, x, w) := − ∂

∂xp
gp(xp)fp(xp, gc(gp(xp) +

e), w). ?

III. MAIN RESULTS

In this section, we first present the proposed triggering
mechanism. Second, asymptotic, exponential, and Input-to-
Output stability criteria are provided for nonlinear systems.

A. Memory-based event-triggered mechanism
The proposed triggering condition is based on the results in

[1], and the idea of memory-based event-triggering proposed
in our recent work [2]. The sampling algorithm consists in
checking when the sampling-induced error exceeds a bound
involving a moving window of the history of the plant output
and control signal. In addition, the algorithm prevents from
Zeno phenomenon by imposing a minimum inter-event time.
Consider a continuous positive definite function σ : Rne →
R+, which is assumed to satisfy

σ(ζ) ≤ βV (V (x)) (12)

for all x ∈ Rn and some function βV ∈ K, then we propose
the following sampling algorithm

tk+1 := inf{t > tk + T such that

θ2β2
e (e(t)) ≥ δ(yp(t)) + max

s∈[t−h,t]
σ(ζ(s))} (13)

with 0 < T ≤ T (η, θ, λ, L), where βe, θ and L = [L1, L2]
are from Assumptions 1 and 2, η > 0, λ ∈ (0, 1), h > 0 and

T (η, θ, λ, L) :=


1

L1r1
arctan(r2), (1 + η)θL2 > L1,

1
L1

1−λ
1+λ , (1 + η)θL2 = L1,

1
L1r1

arctanh(r2), (1 + η)θL2 < L1

(14)

with

r1 :=

√∣∣∣∣( (1+η)θL2

L1

)2

− 1

∣∣∣∣, r2 := r1(1−λ2)
1
L1
λ(1+η)θ(L2

2+1)+1+λ2 .

(15)
The parameters η, λ, and h are design parameters of the event-
triggering mechanism. The function T (η, θ, λ, L) is based on
a combination of the functions proposed in [1], [16]. The
main difference is the constant L2, which allows us to easily
encompass the linear case by the nonlinear theory. In addition,
note that the event-triggering algorithm proposed in [1] is
directly obtained by setting σ(ζ) = 0, L2 = 1 and λ = 0.
Moreover, if L2 = 1, then as η → 0, T (η, θ, λ, L) approaches
the maximum allowable transmission interval (MATI) given in
[16]. In previous results based on ISS property, the sampling
algorithm aims at keeping sufficiently small the sampling-
induced error to guarantee that the Lyapunov function is
strictly decreasing. However, the proposed algorithm aims at
guaranteeing that the maximum of the Lyapunov function
in a moving time window is decreasing. This allows local
increments of the Lyapunov function while still ensuring the
asymptotic convergence to zero.

B. Stability analysis of nonlinear systems

Definition 1: The trivial solution to the event-triggered
control system (3) with (9), (13) and w = 0 is
• stable if ∀ε > 0, there exists a δ = δ(ε) > 0 such that
‖x(0)‖ ≤ δ implies ‖x(t)‖ ≤ ε for all t ≥ 0;

• attractive if there exists a δa > 0 such that for any ηa > 0
there exists T := T (δa, ηa) such that ‖x(0)‖ ≤ δa implies
‖x(t)‖ ≤ ηa for all t ≥ T ;

• asymptotically stable if it is stable and attractive;
• exponentially stable with decay rate γ if there exist δe > 0

and ηe > 0 such that ‖x(0)‖ ≤ δe implies ‖x(t)‖ ≤
ηee
−γt‖x(0)‖ for all t ≥ 0;

• globally asymptotically (respectively exponentially) sta-
ble if δa (respectively δe) can be an arbitrarily large,
finite number.

Definition 2: The event-triggered control system (3) with
(9) and (13) is Input-to-Output stable if there exist functions
β ∈ KL and κ ∈ K such that

‖z(t)‖ ≤ max(β(‖x(0)‖, t), κ(‖w‖∞)) (16)

for all t ≥ 0, where z is the performance variable along the
solution to the system with initial condition x(0) ∈ Rn, and
disturbance w ∈ L∞.

Theorem 1: Under Assumptions 1 and 2, suppose there
exist a continuous, nondecreasing function ρ(s) > s and a
function % ∈ K∞ satisfying %(s1 + s2) ≤ α(s1) + ηθλs2 for
all s1, s2 ≥ 0, such that the function υ defined by

υ : s 7→ %(s)− βV (ρ(s)) (17)

is of K-class, then the event-triggered control system (3)
with (9), (13), and w = 0 is globally asymptotically stable.
Moreover, if % and βV are Lipschitz continuous functions then
system (3) is Input-to-Output stable.
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Proof: The first part of the proof is based on [1], [16], and
some details are omitted. Consider a function R(q) = V (x)+
max(0, θφ(τ)β2

e (e)) where q = (x, e, τ), τ ∈ [tk, tk+1) for
all k ∈ N is a clock variable introduced to describe the time
elapsed since the last sampling instant, and φ is the solution
to φ̇ = −2L1φ − (1 + η)θ(L2

2φ
2 + 1) with φ(0) = λ−1.

Consider the case φ(τ) ≥ 0, then Assumptions 1 and 2, and
the sampling algorithm (13) imply2

Ṙ(q) ≤ −α(V (x))−H2(x)− δ(yp) + θ2β2
e (e)

+ β1w(‖w‖) + θβ2
e (e)

(
− 2L1φ− (1 + η)θ(L2

2φ
2 + 1)

)
+ 2θφβe(e)

(
L1βe(e) + L2H(x) + L2β2w(‖w‖)

)
.

(18)

Consider that δ(yp) ≥ 0, then applying twice the fact that
2ab ≤ 1

κa
2 + κb2 for any a, b ≥ 0, and κ > 0, it follows

Ṙ(q(t)) ≤ −α(V (x(t)))− ηθ2β2
e (e(t)) + βw(‖w(t)‖), (19)

where βw(s) = max(βw1(s), 1
ηβ

2
w2(s)). Considering the func-

tion % in (17), and the fact that φ(τ) ≤ λ−1 for all τ ≥ 0, it
is obtained

Ṙ(q(t)) ≤ −%(R(q(t)) + βw(‖w(t)‖). (20)

Now let us consider the case φ(τ) ≤ 0 then τ > T with T
from (13)-(15). First, we get R(q) = V (x), then Assump-
tion 1 and H2(x) ≥ 0 imply Ṙ(q(t)) ≤ −%(R(q(t))) −
δ(yp)+θ2β2

e (e(t))+βw(‖w(t)‖). Using the sampling mecha-
nism (13), equation (12), the notation Vt, and the fact that
V (x) ≤ R(q), it is obtained Ṙ(q(t)) ≤ −%(R(q(t))) +
βV (‖Rt‖) + βw(‖w(t)‖), where Rt : [−h, 0] → R+ is given
by Rt(s) = R(q(t − s)), s ∈ [−h, 0]. Since βV (‖Rt‖) ≥ 0,
the term βV (‖Rt‖) can be added to the term on the right of
equation (20), and thus, we get

Ṙ(q(t)) ≤ −%(R(q(t)) + βV (‖Rt‖) + βw(‖w(t)‖), (21)

for all t ≥ 0.
The rest of the proof is organized in two parts: first

we prove the global asymptotic stability and second the
Input-to-Output stability.

1) Proof of global asymptotic stability: Let consider
w = 0 and deal with stability and attractivity, separately.
• Stability: First, note that (5) implies that
‖(x(0), e(0))‖ ≤ ω(‖x(0)‖) with ω ∈ K given by
ω(s) :=

√
s2 + ξ(s)2. In addition, the fact that βe is

continuous positive semi-definite and the inequality (6)
imply that there exists a function αR ∈ K∞ such that
R(q) ≤ αR(‖(x, e)‖). Now, for any given ε > 0, pick
δ > 0 such that 0 < δ ≤ ω−1(α−1

R (α(ε))). Function
υ satisfies the conditions in Proposition 3 (given in the
appendix), and thus, Proposition 3 can be applied to
function R(q(t)) with µ < R(q(0)), which leads to
R(q(t)) ≤ R(q(0)) ≤ αR(ω(δ)) ≤ α(ε) for all t ≥ 0. There-
fore, it is obtained α(‖x(t)‖) ≤ V (x(t)) ≤ R(q(t)) ≤ α(ε)
for all t ≥ 0 and the proof of stability is complete.

2The notation Ṙ(q) should be understood as the generalized directional
derivative of Clarke (see [1]).

• Attractivity: For any given δa, ηa > 0, let µ = α(ηa) and
ϑ = αR(ω(δa)), then ‖x(0)‖ ≤ δa implies R(q(0)) ≤ ϑ.
The application of Proposition 3 guarantees that there
exists T (ϑ, µ) such that R(q(t)) ≤ µ for all t ≥ T (ϑ, µ).
Therefore, it follows V (x(t)) ≤ R(q(t)) ≤ µ = α(ηa) for
all t ≥ T (αR(ω(δa)), α(ηa)), which completes the proof of
attractivity.

The stability and the attractivity imply the asymptotic
stability of the system. Since δa can be chosen arbitrarily
large, the global asymptotic stability is proved.

2) Proof of Input-to-Output stability: Let define the func-
tion χ(s) := ευ(s), where υ is as in (17), for some ε satisfying
0 < ε < 1. For a given initial condition x(0) and a disturbance
w, let t̂ := inf{t > 0 : R(q(t)) ≤ χ−1(βw(‖w‖∞))} with
t̂ =∞ if R(q(t)) > χ−1(βw(‖w‖∞)) for all t > 0. Then (21)
leads to Ṙ(q(t)) ≤ −%(R(q(t))) + βV (‖Rt‖) + χ(R(q(t)))
for all t ∈ [0, t̂). Lemma 2 with µ = χ−1(βw(‖w‖∞))
(note that %(s) − βV (ρ(s)) − χ(s) = (1 − ε)υ(s) ∈ K)
guarantees that there exists a function β ∈ KL such that
R(q(t)) ≤ max(β(R(q(0), t), χ−1(βw(‖w‖∞))) for all t ≥ 0.
The bound of R and the facts that V (x) ≤ R(q) and
‖z(t)‖ ≤ ξz(‖x(t)‖) ≤ ξz(α

−1(V (x(t)))) lead to ‖z(t)‖ ≤
ξz(α

−1(max(β(αR(ω(‖x(0)‖, t), κ(‖w‖∞)))) with κ(s) =
χ−1(βw(s)), and that completes the proof.

Theorem 2: Under Assumptions 1 and 2, for a given δ > 0,
assume there exist positive scalars k, k, ke, kξ and λ1 > λ2

such that

ks2 ≤ α(s), ks2 ≥ α(s), βe(e) ≤ ke‖e‖,
ξ(s) ≤ kξs, λ1s ≤ α(s), λ2s ≥ βV (s)

(22)

for all 0 ≤ s ≤ δ and e ∈ Rne with ‖e‖ ≤ δ, where βV is as
in (12), then the event-triggered control system (3) with (9),
(13), 0 < T ≤ T (η, θ, λ, L) with ηθλ ≥ λ1, and w = 0 is
locally exponentially stable with decay rate γ > 0 given as
the unique solution of

2γ = λ1 − λ2e
2γh. (23)

In addition, if (22) holds for all s ∈ [0,∞) and all e ∈ Rne ,
then the system is globally exponentially stable.

Proof: Let δ2
e = 2

k+k2ek
2
ξ

min(kδ2, δ) and take %(s) =

λ1s. Considering inequality (21) with w = 0 and the bounds
(22), it follows Ṙ(q(t)) ≤ −λ1R(q(t))+λ2‖Rt‖ for all t ≥ 0
and ‖x(0)‖ ≤ δe. Since λ1 > λ2, then Lemma 1 (Halanay’s
inequality) can be applied to the above inequality. Hence, there
exists γ > 0 being the unique solution to (23) such that
R(q(t)) ≤ R(q(0))e−2γt. The bounds (22) lead to k‖x(t)‖2 ≤
V (x(t)) ≤ R(q(t)) ≤ (k + θλ−1k2

ek
2
ξ)‖x(0)‖2e−2γt. There-

fore, the system (3) with (9) and (13) is exponentially stable
with decay rate γ.

Remark 3: Theorem 2 provides a relation between the
parameters of the sampling algorithm and the decay rate.
First, note that from (23), the decay rate decreases when
the parameter h increases. In addition, 0.5(λ1 − λ2) is the
supremum of γ, that is limh→0 γ(h) = 0.5(λ1 − λ2), where
γ(h) is the solution of (23) as a function of h. In addition,
function σ is related with γ through the function βV and λ2.
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On the other hand, small values of η and λ may be desirable
to increase the minimum of the inter-event times, however this
leads to small values of λ1, and thus, small values of the decay
rate through equation (23). ?

IV. APPLICATION TO LTI SYSTEMS

In this section, we focus on a closed-loop system formed
by an LTI plant given by

P :

{
ẋp(t) = Apxp(t) +Bpup(t) +Bpww(t),
yp(t) = Cpxp(t),

(24)

and an LTI controller described as follows:

C :

{
ẋc(t) = Acxc(t) +Bcuc(t),
yc(t) = Ccxc(t),

(25)

where Ap, Bp, Cp, Bpw, Ac, Bc, and Cc are matrices of
appropriate dimensions. The dynamics of the event-triggered
closed-loop system can be described as{

ẋ(t) = (A+BC)x(t) +Be(t) +Bww(t),
z(t) = Czx(t),

(26)

where Cz is some nonzero matrix of appropriate dimensions
that defines the performance variable, e(t) is given by (9), and

A :=

[
Ap 0
0 Ac

]
, B :=

[
0 Bp
Bc 0

]
,

C :=

[
Cp 0
0 Cc

]
, Bw :=

[
Bpw

0

]
.

(27)

For the analysis of the above system, the general Assumptions
1 and 2 are replaced by an asymptotic stability assumption on
the LTI system.

Assumption 3: The controller C renders the system (26)
with e(t) = 0 and w(t) = 0 for all t ≥ 0 asymptotically
stable, and thus, for every matrix Q ∈ Sn+ there exists a matrix
P ∈ Sn+ such that

−Q = (A+BC)>P + P (A+BC). (28)

Definition 3: The L∞-gain of the event-triggered control
system (26) with (9) and (13) is defined as

κ := inf{κ̂ ∈ R+ : ∃ϕ ∈ K s.t.‖z‖∞ ≤ κ̂‖w‖∞ + ϕ(‖x(0)‖),
∀x(0) ∈ Rn,∀w ∈ L∞},

(29)

where z is the performance variable of the solution to (26)
with initial condition x(0) ∈ Rn, and disturbance w ∈ L∞.

Henceforth, the functions σ and βe for the sampling algo-
rithm (13) will be given by σ(ζ) := σcζ

>Uσζ and β2
e (e) :=

e>Uee with σc > 0 and Uσ , Ue ∈ Sne+ .
Proposition 1: For given scalars γ, h, σc, η > 0, λ ∈

(0, 1), with ηλ ≥ 2γ + σce
2γh and matrices Uσ , Ue ∈ Sne+ ,

assume there exist matrices P ∈ Sn+, and Uw ∈ Snw+ , and real
numbers ς1, ς2 > 0 such that

C>UσC − P ≤ 0, (30)

(2γ + σc(e
2γh − 1))P − ς1C>z Cz ≥ 0, (31)

Ψ + diag((2γ + σce
2γh)P + ς2Π, 0, 0) < 0 (32)

hold, where Π = (A+ BC)>C>C(A+ BC), Q is given by
(28), and

Ψ :=

[
−Q PB PBw
? −Ue 0
? ? −Uw

]
, (33)

then for all positive real value 0 < T ≤ T (η, 1, λ, L) and

L1 =

√
‖Ue‖‖CB‖√
λm(Ue)

, L2 = max

(√
‖Ue‖
ς2

,

√
‖Ue‖‖CBw‖√
η‖Uw‖

)
, (34)

the event-triggered control system given by (26), (9), and (13)
with w = 0 is globally exponentially stable with decay rate γ.
Moreover, the L∞-gain of the system is smaller than or equal
to
√

1
ς1
‖Uw‖.

Proof: Consider the Lyapunov function V (x) = x>Px,
with time-derivative along the solutions to (26) given by
V̇ (x(t)) = −x>(t)Qx(t) + He

(
x>(t)P (Be(t) +Bww(t))

)
.

Adding e>(t)Uee(t) − e>(t)Uee(t) and w>(t)Uww(t) −
w>(t)Uww(t) with Ue ∈ Sne+ , Uw ∈ Snw+ , it is obtained
V̇ (x(t)) ≤ ϕ>Ψϕ + e>Uee + ‖Uw‖‖w‖2, where ϕ :=[
x> e> w>

]>
. In addition, condition (32) implies

V̇ (x(t)) ≤ −λ1V (x)−ς2x>x+e>Uee+‖Uw‖‖w(t)‖2 (35)

with λ1 = (2γ + σce
2γh). Note that condition (30) leads to

σ(ζ) ≤ βV (V (x)) with βV (s) = σcs. Moreover, Assumptions
1 and 2 are satisfied by considering the following functions
and real numbers: α(s) = λ1s, H(x) =

√
ς2‖C(A+BC)x‖,

θ = 1, β1w(s) = ‖Uw‖s2, β2
2w(s) = η‖Uw‖s2, δ(yp) = 0.

Therefore, the exponential stability with decay rate γ > 0 is
concluded by applying Theorem 2.
In order to obtain an upper bound of the L∞-gain, let us
consider equation (21) from the proof of Theorem 1, with the
above functions and real numbers:

Ṙ(q(t)) ≤ −(2γ+σce
2γh)R(q(t))+σc‖Rt‖+‖Uw‖‖w(t)‖2.

(36)
Consider some ε such that e2γh > ε > 1, then equation
(21) leads to Ṙ(q(t)) ≤ −εσcR(q(t)) + σc‖Rt‖, whenever
R(q(t)) ≥ ‖Uw‖

2γ+σc(e2γh−ε)‖w‖
2
∞. Applying Proposition 3 with

υ1(s) = εσcs, υ2(s) = σcs, and ρ(s) = 1+ε
2 s, it is obtained

R(q(t)) ≤ max
(

‖Uw‖
2γ+σc(e2γh−ε)‖w‖

2
∞, R(q(0))

)
. (37)

Choosing ε > 1 sufficiently close to 1, it follows that
(31) implies (2γ + σc(e

2γh − ε))P − ςC>z Cz ≥ 0, and in
addition, ‖z(t)‖2 ≤ 1

ς1

(
2γ + σc(e

2γh − ε)
)
R(q(t)) for all

t ≥ 0, which yields to the upper bound of the L∞-gain,
κ ≤

√
1
ς1
‖Uw‖ , since 2γ+σc(e

2γh−1) > 2γ+σc(e
2γh−ε).

Remark 4: Note that for any system (26) satisfying As-
sumption 3, we can always find γ, σc, h, Uσ and Ue, such the
LMIs (30), (31), and (32) are feasible. For instance, let us set
Uσ = λm(P )

‖C>C‖ then the LMI (30) is feasible. In addition, LMI

(31) is feasible for ς1 ≤ (2γ + σc(e
2γh − 1) λm(P )

‖C>
z Cz‖

. Finally,
by taking Ue = αeI and Uw = αwI with αe, αw > 0, and
applying the Schur complement twice on (32), it follows that
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the LMI (32) is feasible if

Q− (2γ + σce
2γh)P − ς2Π− 1

αe
PBB>P > 0,

Q−(2γ+σce
2γh)P− ς2Π− 1

αe
PBB>P− 1

αw
PBwB

>
wP > 0,

(38)
with Π = He(C(A+BC)), which hold for sufficiently large
αe and αw, and sufficiently small γ, σc, and ς2. ?

The conditions in Proposition 1 are obtained by using a
quadratic Lyapunov function, which leads to a conservative
stability criterion, specially for unstable open-loop systems. A
simple relaxation of the quadratic Lyapunov functions consists
in dividing the state space in different regions and considering
a quadratic Lyapunov function for each region, leading to a
piecewise quadratic Lyapunov function (see [10]). In order
to divide the state space, we consider a uniform partition of
the R2 subspace which leads to a partition of the Rn space
through an orthogonal projection defined by a matrix Υ ∈
R2×n (the results may depend on the election of Υ). For the
sake of the simplicity, the following result only deals with the
exponential stability, although the estimation of the L∞-gain
can be tackled with the same approach.

Proposition 2: For given scalars γ, h, σc, η > 0, λ ∈
(0, 1), with ηλ ≥ 2γ + σce

2γh, matrices Uσ , Ue ∈ Sne+ , and
Υ ∈ R2×n, assume there exist matrices Pi ∈ Sn+, scalar ς > 0,
and scalars %1i , %2i ≥ 0, i = 1, . . . , N such that

C>UσC − Pi + %1iSi < 0, (39)[
−Qi + (2γ + σce

2γh)Pi + ςΠ + %2iSi PiB
? −Ue

]
< 0

(40)
for i = 1, . . . , N , Γ>1 (PN − P1)Γ1 = 0, and

Γ>i (Pi − Pi−1)Γi = 0, i = 2, . . . , N (41)

hold, where Π = (A + BC)>C>C(A + BC), Qi is
given by (28) for each Pi, Γi is a basis of the null space
of ΘiΥ with Θi :=

[
sin
(
iπ
N

)
− cos

(
iπ
N

) ]
and Si :=

−Υ>(Θ>i Θi−1 + Θ>i−1Θi)Υ, then for all positive real value

0 < T ≤ T (η, 1, λ, L) with L1 =

√
‖Ue‖‖CB‖√
λm(Ue)

, L2 =
√
‖Ue‖
ς ,

the event-triggered control system given by (26), (9), and (13)
with w = 0 is globally exponentially stable with decay rate γ.

Proof: The proof follows as the proof of Proposition 1
by considering the Lyapunov function

V (x) = x>Pix, if x>Six ≥ 0, i = 1, . . . , N, (42)

and by adapting [10].

V. EXAMPLES

A. Nonlinear example

In this example, we consider the controlled Lorenz
equations (see [24]) given by the functions fp(xp) =

[−ax1 + ax2, bx1 − x2 − x1x3 + up, x1x2 − cx3]
> and

gp(x) = x1 with a, b, c > 0 and xp = [x1, x2, x3]>. The
plant is controlled by a static output feedback controller
given by gc(uc) = −(p1p2 a + b)uc (see Remark 2),
where p1, p2 > 0. Consider the ISS Lyapunov function
V (x) = p1x

2
1 + p2x

2
2 + p2x

2
3. By taking suitable values of

σc
h 0.5 1 2

0.5 0.0095 (0.26, 2.69) 0.0187 (0.24, 2.68) 0.0287 (0.19, 1.77)
1 0.0112 (0.17, 2.68) 0.0193 (0.15, 2.66) 0.0315 (0.11, 1.64)
2 0.0151 (0.03, 2.68) 0.0213 (0.02, 2.53) 0.0317 (0.01, 1.47)

TABLE I
EFFECT OF σc AND h ON THE INTER-EVENT TIMES AND THE DECAY RATE
(LOWER BOUND AND NUMERICAL ESTIMATION OF THE DECAY RATE ARE

IN BRACKETS).

p1 and p2, Assumptions 1 and 2 are satisfied with functions
α(s) = min(p1, p2)s, α(s) = max(p1, p2)s, α(s) = λ1s,
λ1 := min(2c, 2a(1 − 2p1

5p2
) − 18, 2 − 4p1a

5p2
− 25a

6p1p2
),

β2
e (e) = 2p1

5a |e|
2, H(x) =

√
2p1a

5 (|x1|+ |x2|), δ(yp) = 18y2
p,

θ2 = 0.6(p1a + p2b)
2, L1 = 0, L2 = 1. Due to the

static controller, it is sufficient to consider the error
signal e(t) = yp(tk) − yp(t). The function σ of the
sampling algorithm (13) is given by σ(ζ) = σcζ

2 with
0 < σc < λ1 min(p1, p2), and we select βV (s) = σc

min(p1,p2)s.
Therefore, the global exponential stability of the event-
triggered implementation of the control system follows from
Theorem 2. The decay rate γ is obtained by solving the
equation 2γ = λ1 − σc

min(p1,p2)e
2γh for a given h > 0. Let

consider the parameter values a = 10, b = 28, c = 8/3 used
in [24], then we set p1 = 3, p2 = 3a, η = 0.03, λ = 0.04
and it is obtained T (η, θ, λ, L) = 0.0021. Table I provides
the average of all the inter-event times of 100 executions of
the system with random initial conditions3 ‖x(0)‖ ≤ 10, a
simulation time of 10s, T = 0.002, and several values of
the design parameters. In addition, the lower bound of the
decay rate is also shown in Table I. It can be observed that
an increment on both σc and h leads to an increment of the
inter-event times at the expense of reducing the speed of
convergence. It should be pointed out that the event-triggering
condition proposed in [1] can be directly recovered by setting
σc = 0. In this case, the decay rate is lower bounded by
λ1 = 0.73 and the average of all the inter-event times of the
100 executions of the system is 0.0078. As Table I illustrates,
the main advantage of the proposed algorithm is that it allows
to obtain greater inter-event times in average at the expense
of reducing the decay rate.

B. LTI example with stable plant

In this example, we consider a control system studied in
[3], where the matrices are given by

Ap =

[
0 1
−2 −3

]
, Bp = Bw =

[
0
1

]
, Cp =

[
1 0

]
,

Ac =

[
−2 1
−13 −2

]
, Bc =

[
−2
−5

]
, Cc =

[
5 2

]
.

(43)
The system is affected by a disturbance w and in order to

measure its impact on the system, the performance variable z
is defined by the matrix Cz = [1 0 0 0].

3The initial conditions are taking inside a ball for the sake of the repro-
ducibility of the results.
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‖w‖∞ 0.5 1 5 10

[3], τavg of yp 0.488 0.200 0.042 0.025
[3], τavg of yc 0.169 0.093 0.025 0.017
[3], Nτ 237 429 1898 2884
Proposed, τavg 0.12
Proposed, Nτ 496

TABLE II
SIMULATION COMPARISON WITH [3].

Let set the matrix Us =
[

1−u 0
0 u

]
with u ∈ (0, 1), then it can

be expected that for a given σc higher inter-event times can
be obtained by minimizing ‖Ue‖. Hence, let set the following
minimization problem with decision variables P , Ue and Uw{

minα‖Uw‖+ (1− α)‖Ue‖
subject to (30), (31), and (32),

(44)

where ς1 = 1 and ς2 = 1 · 10−5 in (31) and (32). The
parameter α allows to indirectly balance between the inter-
event times and the L∞-gain. Considering the value α = 0.9,
γ = 0.402, σc = 0.132, h = 1, and u = 0.01, the optimization
problem is solved with Ue = 1.56I , Uw = 0.21. Using the
results from the optimization problem, and taking η = 10 and
λ = 0.11, Proposition 1 applies. Therefore, the event-triggered
control system is globally exponentially stable and the L∞-
gain is smaller or equal to 0.46. The minimum inter-event
time is given by T (η, 1, λ, L) = 5.19 · 10−6. For comparison
purpose, we consider the results in [3], which provides the
same upper bound of the L∞-gain. In order to compare both
triggering mechanism, let consider the disturbance w(t) =
‖w‖∞ sin(π2 t), zero initial condition and a simulation time of
30s. Table II provides the obtained average inter-event times
and the number of triggering events, respectively denoted as
τavg and Nτ , for several values of ‖w‖∞. The number of the
triggering events is considered as the sum of the sampling
of yp and yc. We notice that the number of triggering events
significantly increases with the increment of ‖w‖∞ for the
sampling mechanism in [3], while it remains constant for the
proposed mechanism.

C. LTI example with unstable plant

Let now consider a control system (Example 2 in [3])
composed by a plant and a controller with matrices

Ap =

[
0 1
−2 3

]
, Bp =

[
0
1

]
, Cp =

[
−1 4

]
,

Ac =

[
0 1
0 −5

]
, Bc =

[
0
1

]
, Cc =

[
1 −4

]
.

(45)

Let set the matrix Us = [ 0.01 0
0 0.99 ]. As aforementioned, we

can expect that the maximization of σc and minimization of
‖Ue‖ lead to greater inter-event times, and thus, it is of interest
to maximize J := σc

‖Ue‖ . Table III provides the maximum
J and T (10, 1, 0.024, L) as a function of N obtained by
Proposition 2 with Υ = [ 1 0 0 0

0 1 0 0 ]. In addition, it is shown the
average of the inter-event times from 100 executions of the
system with random initial conditions and a simulation time

N 2 10 20 40

max J 7 · 10−4 35 · 10−4 40 · 10−4 41 · 10−4

T 1.1 · 10−7 6.33 · 10−7 6.58 · 10−7 6.66 · 10−7

τavg 0.0269 0.0472 0.0489 0.0494

TABLE III
EFFECT OF THE NUMBER OF REGIONS N ON THE INTER-EVENT TIMES.

of 40s, where the parameters of the proposed algorithm h = 2,
Ue is set to provide the maximum J and σc is set with the
greatest value that provides a decay rate γ = 0.005. It can be
seen that greater values of J are obtained by increasing the
number of regions, which indirectly entails an improvement
of the inter-event times.

VI. CONCLUSIONS

This work proposed an event-triggering mechanism that
guarantees the asymptotic/exponential stability and the input-
to-output stability of event-triggered control systems, where
both the plant output and control output are subject to sam-
pling. The proposed sampling criterion mixes a condition
based on the history of the outputs and a dwell-time constraint.
Both nonlinear and linear systems are analyzed. For LTI
systems the conditions for exponential stability are given in
the form of LMI, and in addition, we provided a procedure
to obtain un upper bound of the L∞-gain. Several numerical
examples showed how the inter-event times can be increased
by a suitable design of the parameters, but at the price of
reducing the convergence rate of the trajectories. For the
future work, it could be interesting to consider asynchronous
sampling and to apply the proposed mechanism to multi-agent
systems.

APPENDIX

Lemma 1: (Halanay’s Inequality [7]) Let ψ : [−h,∞)→
R+ be bounded on [−h, 0], h > 0 and continuous on [0,∞).
Assume that for some positive constants λ2 < λ1 the following
inequality holds:

ψ̇ ≤ −λ1ψ(t) + λ2 max
s∈[t−h,t]

ψ(s), t ≥ 0 (46)

then ψ(t) ≤ e−γt maxs∈[−h,0] ψ(s), t ≥ 0, where γ > 0 is the
unique positive solution of the equation γ = λ1 − λ2e

γh.
Proposition 3: Consider a continuous and differentiable

almost everywhere function ψ : [−h,∞)→ R+ satisfying

ψ̇(t) ≤ −υ1(ψ(t)) + υ2(‖ψt‖), (47)

whenever ψ(t) ≥ µ and t ≥ 0, for some µ > 0 and functions
υ1 and υ2. In addition, assume there exists a continuous,
nondecreasing function ρ(s) > s such that υ(s) := υ1(s) −
υ2(ρ(s)) is nondecreasing and υ(s) > 0 for all s > 0, then

1. ψ(t) ≤ max(µ, ψ(0), ρ−1(‖ψ0‖)), t ≥ 0,
2. there exists T = T (ϑ, µ) such that if ‖ψ0‖ ≤ ϑ then

ψ(t) ≤ µ for all t ≥ T and for all ϑ > 0.
Proof: First we prove the Statement 1. To do so, let

consider the following three cases for some ť ≥ 0:
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Case 1: suppose that ψ(ť) < µ then there exists t̂ > ť such
that ψ(t) ≤ µ for all t ∈ [ť, t̂].

Case 2: suppose that ψ(ť) < ρ−1(‖ψť‖) then there exists
t̂ > ť such that ψ(t) < ρ−1(‖ψť‖) for all t ∈ [ť, t̂].

Case 3: suppose that ρ−1(‖ψť‖) ≤ ψ(ť) and µ ≤ ψ(ť) then
(47) leads to ψ̇(ť) ≤ −υ(ψ(ť)) ≤ 0. Hence, it is impossible
for ψ(t) to exceed ψ(ť), impliying ψ(t) ≤ ψ(ť) for all t ≥ ť.

The rest of the proof follows from the combination of the
three cases for all t ≥ 0.

Now let focus on the Statement 2. For given ϑ, µ > 0,
suppose that µ < ϑ, otherwise Statement 1 implies Statement
2 with T (ϑ, µ) = 0. The continuity of ρ implies that there
exists an a > 0, such that a < s − ρ−1(s) for µ ≤ s ≤ ϑ.
In addition, let ν := minµ≤s≤ϑ υ(s). Now consider the time
τ0 ∈ [−h, 0] such that ψ(τ0) = ‖ψ0‖, then there are two cases:

Case 1: If ρ−1(ψ(τ0)) > ψ(0), then Statement 1 implies
ψ(t) ≤ max(ρ−1(ψ(τ0)), µ) ≤ max(ψ(τ0)− a, µ), ∀t ≥ 0.

Case 2: suppose that ρ−1(ψ(τ0)) ≤ ψ(0). If ψ(0) > µ,
then there exists a scalar d with 0 < d ≤ a

ν such that ψ(t) ≤
ρ(ψ(t)) for all ψ ∈ [0, d], and thus (47) leads to ψ̇(t) ≤
−υ(ψ(t)) ≤ −ν, t ∈ [0, d]. From Statement 1, it follows
ψ(t) ≤ max(ψ(τ0) − a, µ), ∀t ≥ d. Hence, both cases lead
to ψ(t) ≤ max(ψ(τ0) − a, µ), ∀t ≥ a

ν . If ψ(τ0) − a ≤ µ
then Statement 2 is proved, otherwise let pick a time τ1 ∈
[τ0 + a

ν , τ0 + a
ν + h] such that ψ(τ1) = ‖ψτ0+ a

ν+h‖. Note
that τ1 ≥ τ0 + a

ν . Following the reasoning of τ0 we obtain
ψ(t) ≤ max(ψ(τ1)− a, µ), ∀t ≥ τ0 + a

ν +h. The process can
be repeated for a sequence of times τ0 < τ1 < τ2 < · · · < τk
as long as ψ(τk) ≥ µ. Therefore, for a large enough k, there
exists time T ≥ τk such that ψ(T ) ≤ µ and Statement 1
implies ψ(t) ≤ µ for all t ≥ T .

Lemma 2: For each pair of Lipschitz continuous functions
υ1 and υ2 such that there exists a continuous, nondecreasing
function ρ(s) > s satisfying that υ(s) := υ1(s) − υ2(ρ(s))
is a nondecreasing function and υ(s) > 0 for all s > 0,
there exists a function β ∈ KL with the following property: if
ψ : [−h,∞)→ R+ is a continuous and differentiable almost
everywhere function that satisfies (47) for some given µ > 0,
then it holds that ψ(t) ≤ max(β(‖ψ0‖, t), µ) for all t ≥ 0.

Proof: The proof is divided in five steps:
1) Existence of a global solution to ẏ(t) = −υ1(y(t)) +

υ2(‖yt‖). The proof follows from the Lipschitz conti-
nuity of υ1 and υ2 and the results in [6].

2) Existence of T (ϑ, µ) such that if ‖y0‖ ≤ ϑ then y(t) ≤
µ, ∀t ≥ T (ϑ, µ). It follows by Proposition 3.

3) Comparison principle: y0 = ψ0 implies ψ(t) ≤ y(t),
∀t ≥ 0. In order to prove it, let define the continuous
function d(t) := ψ(t) − y(t). Assume y0 = ψ0 then
d(t) = 0, ∀t ∈ [−h, 0]. By way of contradiction,
suppose that d(t) > 0 for all t ∈ (0, ε) for some ε > 0.
Considering ε small enough, it follows ḋ(t) > 0 for
all t ∈ (0, ε). Let now define t̄ := sup{t ∈ [−h, 0] :
y(t) = y0}. If t̄ < 0 then ‖yt‖ = ‖ψt‖ for all t ∈ [0, ε).
On the contrary, if t̄ = 0 then Proposition 3 implies
ẏ(t) < 0 and ψ̇(t) < 0 for all t ∈ [0, ε), and thus,
‖yt‖ = ‖ψt‖ = ‖y0‖ for all t ∈ [0, ε). Therefore, from
(47), it is obtain ḋ(t) ≤ −υ1(ψ(t)) + υ1(y(t)) < 0,
which is a contradiction. Therefore, d(t) ≤ 0 for all

t ∈ [0, ε). Repeating the same procedure, it can be
proved that d(t) ≤ 0 for all t ∈ [0,∞).

4) Steps 2 and 3 lead to ψ(t) ≤ y(t) ≤ µ for all t ≥
T (ϑ, µ) whenever ‖ψ0‖ = ‖y0‖ ≤ ϑ.

5) Construction of the function β ∈ KL from T (ϑ, µ). The
proof follows as the proof in [11] (Appendix C.6).
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