
HAL Id: hal-01655416
https://hal.science/hal-01655416

Submitted on 4 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Differential phase extraction in dual interferometers
exploiting the correlation between classical and quantum

sensors
Mehdi Langlois, Romain Caldani, Azer Trimeche, Sébastien Merlet, Franck

Pereira dos Santos

To cite this version:
Mehdi Langlois, Romain Caldani, Azer Trimeche, Sébastien Merlet, Franck Pereira dos Santos. Dif-
ferential phase extraction in dual interferometers exploiting the correlation between classical and
quantum sensors. Physical Review A : Atomic, molecular, and optical physics [1990-2015], 2017, 96
(5), �10.1103/PhysRevA.96.053624�. �hal-01655416�

https://hal.science/hal-01655416
https://hal.archives-ouvertes.fr


Differential phase extraction in dual interferometers exploiting the correlation

between classical and quantum sensors

M. Langlois, R. Caldani, A. Trimeche, S. Merlet, and F. Pereira dos Santos∗

LNE-SYRTE, Observatoire de Paris, PSL Research University,

CNRS, Sorbonne Universités, UPMC Univ. Paris 06,

61 Avenue de l’Observatoire, 75014 Paris, France

We perform the experimental demonstration of the method proposed in [Phys. Rev. A 91, 063615
(2015)] to extract the differential phase in dual atom interferometers. From a single magneto-optical
trap, we generate two atomic sources, vertically separated and free-falling synchronously, with the
help of an accelerated lattice. We drive simultaneous Raman interferometers onto the two sources,
and use the correlation with the vibration signal measured by a seismometer to extract the phase
of each interferometer. We demonstrate an optimal sensitivity of the extracted differential phase
between the two interferometers, free from vibration noise and limited by detection noise, when the
two interferometers are in phase.

I. INTRODUCTION

Quantum sensors based on light pulse atom interfer-
ometry [1], such as gravimeters and gyrometers, have
demonstrated high level of sensitivities and accuracies,
comparable or better than conventional sensors [2–5].
They find today applications in various fields, from fun-
damental physics to geophysics, and the transfer of this
technology to the industry led in the last years to the de-
velopment of commercial atomic gravimeters. The sensi-
tivity of these sensors is limited in most cases by vibra-
tion noise, whose influence can be mitigated using pas-
sive isolation techniques [6], or auxiliary classical sensors
for active isolation [7–9], noise correction [6, 10] or hy-
bridization [11]. Nevertheless, when the measurand is
derived from a differential measurement, performed on
two interferometers interrogated at the same time, the
vibration noise, which is then in common mode, can be
efficiently suppressed. This technique has been used for
the measurement of gravity gradients [12, 13] and the
precise determination of G [14, 15], for the measurement
of rotation rates [16–18], for the test of the universality
of free fall with cold atoms [19–21]. It is also of interest
for the detection of gravitational waves [22–25].

The differential phase, which is the phase difference be-
tween the two simultaneous interferometers, can be ex-
tracted simply from a fit to the ellipse obtained when
plotting parametrically the output signals of the two in-
terferometers [26]. This method rejects the vibration
noise efficiently but introduces in general large errors
in the determination of the differential phase. Meth-
ods based on Bayesian statistics, which require an a pri-
ori knowledge of the phase noise of the interferometer,
have been proven more accurate [27–29]. Other methods,
which use a simultaneous third measurement [30], or di-
rect extraction of the individual phases [31], also allow
for the retrieval of the differential phase with negligible
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bias.

In this paper, we perform the experimental demon-
stration of the alternative method proposed in [32]. The
correlation between the individual interferometer mea-
surements and the vibration phase estimated from the
measurement of an auxiliary seismometer allows us to
recover the visibility of the interferometer fringes in the
presence of large vibration phase noise and to extract
the phase of each interferometer. The differential phase
is then simply obtained by subtracting these two phases.
This method of phase extraction, which was first demon-
strated in [10] for a single interferometer, has been em-
ployed recently in [33] for simultaneous interferometers
performed on two different atomic species. In the lat-
ter case, and by contrast with the situation we study
here, the difference in the scale factors between the two
interferometers reduces the correlation between the two
extracted phases, degrading the rejection efficiency of the
vibration noise. Here, we operate a dual atom interferom-
eter on a single atomic species in a gradiometer configu-
ration, with two interferometers separated along the ver-
tical direction. Having the same scale factors, the better
correlation between those two simultaneous interferome-
ters enables us to reject more efficiently the common vi-
bration noise. We demonstrate an optimal sensitivity in
the differential phase extraction, limited by the detection
noise, for in-phase operation of the two interferometers.

II. PRINCIPLE OF THE EXPERIMENT

The experimental setup and the time chart of the mea-
surement sequence are displayed in figure 1. We start by
loading with a 2D magneto-optical trap (2D MOT) a 3D
mirror MOT, realized with four independent beams, two
of them being reflected by the surface of a mirror placed
under vacuum. We trap about 3×108 87Rb atoms within
480 ms, and cool them down to about 1.8 µK with a far
detuned molasses before releasing them from the cool-
ing lasers in the |F = 2〉 hyperfine ground state. Right
after, they are launched upwards using a Bloch elevator
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FIG. 1: Scheme of the experimental setup and measurement
sequence. Clouds displayed as open circles are in the state
|F = 1〉, clouds displayed as full circles in |F = 2〉. MW: mi-
crowave antenna, SEL: selection, INT: interferometer, DET:
detection.

[34]. They are first loaded in a co-moving lattice, realized
with two counterpropagating laser beams, whose inten-
sity is adiabatically ramped up to a lattice depth of about
40 Er within 200 µs, and whose acceleration follows the
Earth gravity acceleration g. The lattice acceleration is
then set to about 80g upward by ramping the frequency
difference between the two lattice beams up to 4.5 MHz
within 2.25 ms. The lattice intensity is then adiabati-
cally switched off, leaving the atoms in free fall with an
initial velocity of 1.76 m/s. The efficiency of the launch
is about 50 %. The launched atoms are then selected in
the |F = 1,mF = 0〉 state with a 0.8 ms long microwave
pulse followed by a laser pushing pulse which removes
the atoms remaining in |F = 2〉 state. To lift the de-
generacy between the different Zeeman sublevels, a bias
field of 400 mG is applied. While these atoms are moving
upwards, we load a second atomic cloud in the 3D mirror
MOT for 100 ms. This second cloud is then cooled down
to 1.8 µK and gets released from the molasses beams at
the very moment when the first one reaches its apogee.
We then apply the same selection sequence to prepare the
second cloud in the |F = 1,mF = 0〉 state. We arranged
the second sequence so that the preparation of the second
cloud does not affect significantly the first one: the first
cloud being in the |F = 1〉 state is merely perturbed by
the scattered light from the MOT lasers (the repumping
light in the second MOT is adjusted so as not to be sat-
urated), and remarkably, for the launch velocity we use,
the second microwave pulse, of 1.8 ms duration, drives a
close to 2π pulse on the first atomic cloud. This is due
to a favourable variation of the microwave coupling with
vertical position. Most of the atoms of the first cloud
thus remain in the |F = 1,mF = 0〉 state.

At a delay of 32 ms after the release of the second
cloud, we apply a sequence of three counterpropagat-
ing Raman pulses, equally separated in time, onto the
two free falling atomic clouds. The Raman transitions
couple the two hyperfine states |F = 1〉 and |F = 2〉
via a two photon transition, and impart a momentum

transfer ~keff to the atoms. keff = k1 − k2 is the ef-
fective wavevector of the Raman transition, with k1 and
k2 the wavevectors of the two Raman lasers. The pulse
sequence allows to separate, deflect and recombine the
atomic wavepackets, creating simultaneously two verti-
cally separated Mach Zehnder atom interferometers. The
atomic phase-shift at the output of each interferometer
is then given by: ∆Φ = φ1 − 2φ2 + φ3, where φi is the
phase difference between the two counterpropagating Ra-
man lasers at the position of the atoms at the i-th Raman
pulse. The Raman beams are vertically aligned, which
makes these interferometers sensitive to the local grav-
ity accelerations [35]. The interferometer phase shifts
are given by keffg1T

2 and keffg2T
2, where g1 and g2

are the gravity accelerations at the altitudes of the two
clouds, where T is the time separation between consecu-
tive Raman pulses. The duration of the π Raman pulse is
8 µs, which corresponds to a Rabi frequency of 62.5 kHz.
The size of the vacuum chamber limits the maximum
duration of the interferometers 2T to about 160 ms. Af-
ter the interferometer sequence, the two atomic clouds
are detected one after the other by fluorescence, using a
state selective detection which measures the populations
in each of the two output ports of the interferometers,
corresponding to the two hyperfine states |F = 1〉 and
|F = 2〉.

The laser system we use for cooling, detecting and driv-
ing the interferometer pulses is based on semiconductor
laser sources, and is described in detail in [36]. For the
Bloch elevator, we generate a lattice laser using frequency
doubling techniques (see figure 2). A DFB diode laser
at 1560 nm is first amplified by a fiber amplifier up to
5 W, and seeds a high power resonant frequency doubling
module (from the company Muquans) which delivers up
to 3 W at 780 nm. The frequency of the seed is adjusted
such that the frequency doubled light is blue detuned
from the 87Rb D2 transition by 50 GHz. The output of
the doubler is then split into two beams, each one being
frequency shifted with a double pass acousto-optic mod-
ulator (AOM) before being recombined with orthogonal
linear polarisations using a polarizing beam splitter cube.
The combined beam is diffracted by a last AOM, which
is used for switching and controlling the intensity of the
lattice beams. The Raman beams, which are derived
from the first laser system, have the same linear polari-
sation. They are overlapped with the lattice beams using
the very same AOM, into which they are injected at an
angle, along the direction of the first diffracted order.
This arrangement allows to overlap the diffracted lattice
beams with the non-diffracted Raman beams in order to
inject them into the same fiber, and takes advantage of
the fact that the two beams are not used at the same
time. As for the switching of the Raman beams, it is
performed with the combination of an AOM and a me-
chanical shutter (an optical scanner), both located in the
first laser system.

Raman and lattice beams are injected into a common
polarization maintaining fiber, out of which we get a total
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FIG. 2: Scheme of the lattice beams laser setup. The lattice
beams generated by a frequency doubled fiber telecom laser
are combined with the Raman beams using an AOM.

power of 500 mW for the lattice beams (for a doubler
output of 2 W), and 26 mW for the Raman beams. The
ratio between the intensities of the two Raman beams is
adjusted to cancel the differential light shift. The beams
get collimated to a 1/e2 radius of 3.75 mm and enter the
vacuum chamber through the top of the experiment. The
polarization configuration for these beams is displayed in
figure 3.
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FIG. 3: Polarization configuration of lattice (left) and Raman
(right) beams in the vacuum chamber. The combination of a
quarter-wave plate and an adjustable retarding plate (LCVR)
with a polarizing beamsplitter cube allows to obtain the re-
quired polarizations for realizing an accelerated lattice along
one direction only and for driving counterpropagating Raman
transitions.

A fixed quarter wave plate converts the linear polari-
sations into circular ones : σ+ − σ− or σ− − σ− for the
lattice or Raman beams, propagating downwards. At the
bottom of the chamber, the beams pass through a liq-
uid crystal variable retarder plate (LCVR), a polarizing
beamsplitter cube (PBC) with proper axes at 45◦ with
respect to the axes of the LCVR and finally get retrore-
flected onto a mirror. The retardance of the LCVR plate

is set to λ/4 during the lattice launch, such that one of the
two downward lattice beams gets trashed by the PBC.
Without the cube, this retroreflecting geometry would
result in two lattices accelerated in opposite directions.
During the interferometer phase, the retardance is set to
zero, so that the Raman upward beams are linearly po-
larized. This polarization arrangement allows to drive
σ− − σ− transitions between the two |F = 1,mF = 0〉
and |F = 2,mF = 0〉 states. As a side effect, σ− − σ+

transitions are allowed, which couple |F = 1,mF = 0〉
to |F = 2,mF = −2〉 or |F = 2,mF = +2〉 depend-
ing on the direction of the Raman effective wavevector.
This forces us to operate the interferometers with large
bias fields of hundreds of mG, for which these parasitic
transitions are non resonant.
With such a retroreflected geometry, the phase differ-

ence between the Raman lasers is linked to the position
of the mirror. Without isolation, fluctuations of this po-
sition due to ground vibrations can induce significant in-
terferometer phase noise, washing out the interferometer
fringes, in the urban environment of the center of Paris.
This vibration noise is recorded with a low noise seis-
mometer (Guralp 40T), placed next to the mirror, dur-
ing the interferometer sequence. This allows to calculate
an estimate of the common mode phase shift induced by
parasitic vibrations onto the two interferometers. The
correlation between the classical signal provided by the
seismometer and the phase shifts of the quantum sensor
can be exploited to post-correct the atomic measurement
[6], to recover the interferometer fringes in the presence
of a large noise [6, 10], or to correct the interferometer
phase in real-time in order to keep the interferometer
operating at mid-fringe where its sensitivity is maximal
[11]. Given that our measurements are performed with-
out any vibration isolation, the vibration noise quickly
dominates over all sources of interferometer phase noise
and can amount to several radians, even for the rela-
tively short interferometer times we use here (2T is at
most equal to 120 ms).

III. RESULTS

We start by illustrating the effect of the vibration noise
onto the interferometer signal. Figure 4 displays the
fringes recorded for two different interferometer times
2T = 2 ms and 2T = 70 ms. Here, the interferome-
ter phase is scanned by varying the frequency chirp one
needs to apply to the Raman laser frequency difference
in order to compensate for the increasing Doppler effect
and keep the Raman transitions resonant at each pulse.
While the fringes are clearly visible for 2T = 2 ms, they
are washed out by the vibration noise for 2T = 70 ms.
The contrast of the fringes is significantly better for the
second cloud than for the first one, and gets lower for
larger T . This loss of contrast results mostly from the
expansion of the cloud and from its convolution with the
transverse intensity profile of the Raman lasers: coupling
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FIG. 4: Interferometer fringe patterns for the two simultaneous interferometers, for two different interferometer times 2T = 2 ms
(a) and 2T = 70 ms (c). The interferometer phases are scanned by varying the frequency chirp applied to the Raman lasers.
The parametric plot of the transition probabilities for in phase (b) (resp. out of phase (d)) interferometers gives a line (resp.
an ellipse).

inhomogeneities get larger for larger atomic cloud sizes,
and are thus larger for the launched cloud which has been
expanding for much longer times compared to the sec-
ond cloud. In the presence of large vibration noise, the
phase fluctuations of the two interferometers are strongly
correlated. This is evidenced by plotting the transition
probabilities parametrically, which, in general and in par-
ticular here for 2T = 70 ms, gives an ellipse (as illustrated
in figure 4 (d)). Yet, when the two interferometers are
in phase, the parametric plot gives a straight line as dis-
played in figure 4 (b). A direct fit of the ellipse gives
access to the differential phase, but the adjustment is
in general biased, except when the differential phase is
exactly π/2. In addition, such a fit cannot retrieve a
null differential phase. In our experiment, the differen-
tial phase between the two interferometers can easily be
tuned by changing the amplitude of the bias magnetic
field, as both interferometers have large, but different,
phase shifts due to gradients of the applied magnetic
field. Indeed, the magnetic field profiles are different
across the atom trajectories of the two interferometers.
It varies for the first cloud from about 400 mG to 200 mG
in between the first and last pulse of the interferometer,
and for the second cloud oppositely from 200 mG to 400
mG.

Instead of the ellipse fitting method, we use here an-
other method for the extraction of the differential phase.
Knowing the well calibrated scale factor of the seismome-
ter and the transfer function of the interferometers versus
acceleration noise [37], we calculate out of its signal an
estimate of the common mode vibration phase shift ex-
perienced by the two interferometers. We plot the mea-
sured transition probabilities of the two interferometers
as a function of this vibration induced phase shifts.

Figure 5 displays such plots, for given values of the bias
magnetic fields and 2T = 120 ms. Here, visible fringe
patterns are recovered, with the interferometer phase be-
ing randomly scanned by the vibration noise. We can
then fit each of these fringe pattern using the following
formula:

Pi = Ai +
Ci

2
cos(Di × Φvib,S +Φi) (1)
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FIG. 5: Measured transition probabilities versus vibration
phase shift, estimated from the simultaneous measurement
of a low noise seismometer. The total interferometer time is
2T = 120 ms. The retrieval of the fringe pattern reveals the
correlation between the interferometer phase fluctuations and
the vibration noise recorded by the classical sensor.

with Ai the offset, Ci the contrast, Φvib,S the calculated
vibration induced phase shift and Φi the phase shift of
the i-th interferometer. Di is a coefficient which accounts
for an eventual mismatch in the calibration of the seis-
mometer. In practice, we find that D1 and D2 deviate
from 1 by a few percents, due to the non flat response
function of the seismometer [6]. Such fits allow to ex-
tract the individual phases of the two interferometers,
from which the differential phase is calculated.

To assess the sensitivity of this method, we divide a
series of about 4000 consecutive measurements into pack-
ets of 40 measurements, which we individually fit. The
phases extracted from these fits are displayed on figure
6 for the two clouds. For these measurements, one can
note that the fluctuations of the extracted phases, of or-
der of about 0.6 rad peak-to-peak, are correlated for the
two clouds.

We then calculate the Allan standard deviation (ASD)
of the fitted phase fluctuations of the two interferome-
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ters, and of their difference. Figure 7 displays such ASDs
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FIG. 7: Allan standard deviations of the vibration phase noise
(seismic phase displayed as open squares), the individual re-
trieved interferometer phases (full squares and circles) and
the differential phase (diamonds). Total interferometer time:
2T = 120 ms.

for in phase interferometers with 2T = 120 ms. The
ASDs average as white noise, and correspond to phase
sensitivities of 150 mrad/packet of 40 shots, or equiva-
lently of 1 rad/shot, for the individual interferometers.
In comparison, the ASD of the induced vibration noise
of 2 rad/shot. The gain is not significant, due to the
poor quality of the correlation, as can be seen in figure
5. Despite this, the ASD of the differential phase is sig-
nificantly less, of about 33 mrad/packet (or equivalently
of 208 mrad/shot), and lies not far from the limit set
by our detection noise (120 mrad/shot on the differen-
tial measurement). This puts into evidence the existence
of strong correlations between the values of the fitted
phases for the two interferometers, which are suppressed
when taking their difference. From [32], we expect this

correlation, and thus the rejection of the common mode
vibration noise, to decrease when the differential phase
increases. We have investigated this loss of sensitivity by
repeating this analysis for different differential phases in
a range from -1.5 to 1.5 rad (this range corresponds to a
variation of the current in the bias coils of 10%). Figure
8 displays the sensitivity of the differential phase extrac-
tion we obtain as a function of the differential phase. In
order to highlight the effect of this correlation, this sen-
sitivity is normalized by the one we would expect in the
absence of any correlation between the two interferom-
eter phases, which correspond to the quadratic sum of
the sensitivities σi obtained individually:

√

σ2
1 + σ2

2 . We
indeed observe that the sensitivity reaches its best level
for in phase interferometers.

The results are compared with numerical simulations,
which we take as representative as possible of the ex-
periment. In these simulations, we generate the transi-
tion probabilities of the two interferometers, by randomly
drawing the vibration phase estimated by the seismome-
ter Φvib,S in a Gaussian distribution. We use for the con-
trasts of the two interferometers the average values of the
fitted contrasts, 10% and 6%. We add to the transition
probabilities uncorrelated Gaussian detection noises with
standard deviation σP = 3×10−3, equal to the measured
detection noise. We also randomly draw δΦvib the differ-
ence between the vibration phase Φvib and its estimate
Φvib,S in a Gaussian distribution. The standard devia-
tion of δΦvib is adjusted so as to obtain the same sensitiv-
ity of 1 rad/shot as in the measurements when extracting
the individual phases from the simulated data using the
method described above. This adjustment corresponds to
a standard deviation of δΦvib of 620 mrad/shot. We then
repeat the simulations for various differential phases and
the normalized sensitivity we obtain in the simulation
for the extraction of the differential phase is displayed
on figure 8 as a line. The shaded area corresponds to
the uncertainty in the estimation of the Allan standard
deviations, given that the number of data samples in the
measurements is finite. This confidence area is estimated
from the dispersion of the results obtained when repeat-
ing numerical simulations with different sets of random
draws and with the same number of data samples as for
the measurements (typically 4000 measured samples for
each differential phase, to be compared with the 500 000
draws generated to calculate the normalized sensitivity
displayed as a line). We find a perfect agreement be-
tween the experimental results and the corresponding
simulation, given that most of our measurements lie in
the shaded confidence area and that the uncertainties in
the measured sensitivities match the width of the simu-
lated confidence area.

We finally compare the technique studied here with the
direct fit of the ellipse, using the same fitting procedure
as [26], both in the measurements and the simulations.
Figure 9 displays the sensitivities of the differential phase
(not normalized here) obtained with these measurements,
displayed as points, and with the simulations, displayed
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as lines. For a quantitative match between experiments
and simulation, we had for this simulation to decrease the
amplitude of the vibration noise measured by the seis-
mometer σΦvib,S

from 2 to 1.8 radian (the latter value
corresponding to an average amplitude over all the mea-
surements of the measured seismic noise, which fluctuates
from one measurement to the other) and to increase the
amplitude of σδΦvib

to 0.86 rad.
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FIG. 9: Comparison with the ellipse fitting technique. Points
display the results of the measurements (squares: our method,
circles: ellipse fitting), and lines of the simulation (black line:
our method, red (light gray) line: ellipse fitting).

With respect to the method presented here, the el-
lipse fitting technique rejects better the common vibra-
tion noise. Its sensitivity does not depend on the value
of the differential phase, and equals the optimal sensi-
tivity we obtain with our method for a null differential

phase. On the other hand, the simulations show that
the ellipse fitting technique leads to a biased differen-
tial phase, whereas our method is in principle unbiased.
Also, by contrast with our method, the ellipse fitting rou-
tine cannot extract differential phases close to zero [26],
and suffers from ambiguities in the determination of the
differential phase, which complicates the extraction, es-
pecially close to π/2. This explains the discontinuities of
the red line in the figure 9. Finally, one can note signifi-
cant deviations of the measurements from the simulation
for the ellipse fitting. We attribute these mismatches
to variations from one measurement to the other of the
detection noise, due to changes in the contrast of the
interferometers and in the number of detected atoms.

Assessing experimentally our ability of extracting the
differential phase accurately, as claimed in [32], requires a
method for varying this differential phase in an accurate
way. This cannot easily be realised with magnetic field
gradient phase shifts. An alternative method consists
in changing the frequencies of the Raman lasers at the
second pulse, such as demonstrated in [38].

IV. CONCLUSION

We have performed the experimental validation of the
method proposed in [32] for extracting the differential
phase in dual atom interferometers. The experiment was
performed on an atom gradiometer setup, consisting in
two simultaneous atom gravimeters separated along the
vertical direction. We have exploited the correlations be-
tween the individual noisy measurements of each interfer-
ometer and the estimates of the phase noise introduced
by parasitic ground vibrations to determine the individ-
ual phases of each interferometer, out of which the dif-
ferential phase is straight-forwardly obtained. We find
that the sensitivity of the differential phase extraction is
optimal, and close to the limit set by the detection noise,
when the two interferometers are in phase. We have fi-
nally briefly compared this method with the simple and
more often used ellipse-fitting method. A thorough com-
parison with other techniques would be of interest, but
lie beyond the scope of this paper. In the future, we will
demonstrate the accuracy of this method, thanks to the
fine tuning of the differential phase obtained by chang-
ing the frequency of the Raman lasers at the central π
pulse. As shown in [39] and pointed out in [40], with a
specific adjustement of this frequency change and thus
of the corresponding Raman wavevector, the gradiome-
ter differential phase can be compensated, which allows
for a precise determination of the gravity gradient inde-
pendently of the gradiometric baseline. Our method for
extracting the differential phase thus appears perfectly
suited to the implementation of this compensation tech-
nique since it works best for a null differential phase.
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