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Abstract 

Understanding the fate and ecotoxicological effects of pesticides largely depends on their molecular properties. 

We recently developed TyPol (Typology of Pollutants), a classification method of organic compounds based on 

statistical analyses. It combines several environmental (sorption coefficient, degradation half-life) and one 

ecotoxicological (bioconcentration factor) parameters, to structural molecular descriptors (number of atoms in the 

molecule, molecular surface, dipole moment, energy of orbitals, etc.). The present study attempts to extend TyPol 

to the ecotoxicological effects of pesticides on non-target organisms, based on data analysis from available 

literature and databases. It revealed that relevant ecotoxicological endpoints for terrestrial organisms (e.g., soil 

microorganisms, invertebrates) that support a range of ecosystemic services are lacking as compared to aquatic 

organisms. The availability of ecotoxicological parameters was also lower for chronic than for acute ecotoxicity 

endpoints. Consequently, seven parameters were included for acute (EC50, LC50) and chronic (NOEC) 

ecotoxicological effects for one terrestrial (Eisenia sp.) and three aquatic (Daphnia sp., algae, Lemna sp.) 

organisms. In this new configuration, we used TyPol to classify 50 pesticides into different clusters that gather 

molecules with similar environmental behaviors and ecotoxicological effects. The classification results evidenced 

relationships between molecular descriptors, environmental parameters, and the added ecotoxicological endpoints. 

This proof-of concept study also showed that TyPol in silico classification can successfully address new scientific 

questions and be expanded with other parameters of interest.  

 

Keywords Pesticides · Molecular descriptor · Fate · Ecotoxicity · Clustering 
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Introduction 

Assessing and linking the fate and ecotoxicological effects of organic contaminants in the environment remains a 

major time- and resource-intensive challenge. Therefore, advances in our understanding of the (eco)toxicological 

impacts of the thousands of chemicals being produced or already marketed are often painfully slow and lag 

significantly behind the public’s demand for information. Reliable measurements of environmental fates and 

effects, and risk assessment procedures, strongly rely on the ability to accurately measure or estimate various 

environmental parameters and ecotoxicological endpoints (Sabljic 2001). According to the literature, 30,000 to 

100,000 chemical substances may be concerned by environmental risk assessment (ERA) (Muir and Howard 

2006). However, they cannot be studied on a case-by-case basis, in particular because experimental studies are 

time-consuming and/or cost-prohibitive (Russom et al. 2003). In such a context, the development of in silico 

methods of prediction based on Quantitative Structure Activity Relationships (QSARs) (or Quantitative Structure 

Property Relationships, QSPRs) has received increasing attention for many years (Cronin et al. 2003; Hermens et 

al. 1995; Lapenna et al. 2010). 

 QSARs estimate one or several properties of compounds (such as sorption on soils and sediments, 

biodegradation, bioconcentration factor, or biological activities) from other properties such as structural molecular 

properties (molecular weight, molecular surface, energies, etc.), water solubility, or the octanol-water partition 

coefficient (e.g., OECD 1993; Worrall 2001; Sabljic and Nakagawa 2014; Mamy et al. 2015). An important 

number of QSARs have recently been proposed for predicting behavioral or toxicological parameters (Eriksson et 

al. 2002; Pavan et al. 2008; Lapenna et al. 2010; Mamy et al. 2015). Other approaches aim at ranking organic 

compounds based on the values of several of their properties such as partitioning, persistence, or bioaccumulation. 

Therefore, approaches able to classify compounds according to their environmental behavior and/or 

(eco)toxicological effects will help regulators and scientists to tackle the constant increase in the diversity and 

number of chemical substances. 

 We recently developed “TyPol” (Typology of Pollutants), a classification method based on statistical 

analyses combining several environmental parameters (i.e., sorption coefficient, degradation half-life, Henry 

constant) and an ecotoxicological parameter (bioconcentration factor BCF), and structural molecular descriptors 

(i.e., number of atoms in the molecule, molecular surface, dipole moment, energy of orbitals). Molecular 

descriptors are calculated using an in silico approach. Environmental parameters and BCF are extracted from 

available databases and literature (Servien et al. 2014). So far, TyPol has been mainly focused on pesticides and 

their transformation products. It can infer possible changes in environmental fate following different degradation 
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processes through modifying the clustering as compared to the parent compounds (Servien et al. 2014; Benoit et 

al. 2017). As indicated above, the initial version of TyPol did not include any ecotoxicological endpoints except 

the bioconcentration factor, which informs more on the transfer along the food chain than on the effects on non-

target organisms. 

 The objective of this study was to implement the TyPol pesticide database with a set of ecotoxicological 

data for several aquatic and terrestrial organisms. We first carried out a data analysis based on available literature 

and pesticide databases, and focused on ecotoxicological endpoints recommended by regulatory risk assessment 

guidelines for terrestrial and aquatic organisms (microorganisms, plants, and invertebrates). The review resulted 

in the selection of seven parameters for acute (EC50, LC50) and chronic (NOEC) effects of 50 pesticides on 

earthworms (Eisenia), crustaceans (Daphnia sp.), algae, and lemnoideae (Lemna sp.). These parameters were 

implemented in the database, and in this new configuration, TyPol was used to classify pesticides into different 

clusters as a proof of concept. Finally, classification results were analyzed to reveal relationships between 

molecular descriptors, environmental parameters, and the added ecotoxicological parameters. 

 

Material and methods 

Selection of ecotoxicological parameters 

We first considered the 146 pesticide-related molecules (122 active substances and 24 transformation products 

(TPs)) already present in the TyPol database for which environmental parameters, BCF, and molecular descriptors 

had previously been implemented (Servien et al. 2014). To include the ecotoxicological effects of pesticides on 

non-target organisms in TyPol, we selected biological models with available ecotoxicological endpoint data. We 

primarily decided to focus on terrestrial/aquatic invertebrates and aquatic plants because standardized bioassays 

are included in regulatory guidelines for pesticide registration (EU-Regulation 1107/2009/EC) or risk assessment 

(Table 1). Thus, we first used databases such as PPDB and Agritox (Agritox 2017; PPDB 2017). In addition, we 

consulted databases such as INERIS (2017), and the US-EPA ECOTOX Knowledgebase (2017), and also 

regulatory reports about active substances from the ECHA and EFSA European Agencies, in which validated 

ecotoxicological endpoints are available. We performed a complementary literature survey to collect missing 

values. Acute and chronic effects were both considered, and only the well-documented molecules were retained. 

One difficulty was to find data obtained for a same species and according to the same protocols. Especially for 

algal tests, different Chlorophyceae species (Raphidocelis subcapitata, Scenedesmus subspicatus) are used 

according to ISO standard recommendations (Table 1), so we decided to gather data concerning Raphidocelis 
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subcapitata and Scenedesmus subspicatus. For earthworms, we found LC50 and NOEC values from either Eisenia 

fetida or Eisenia andrei. Microbial ecotoxicological data were collected from Microtox® (ISO 11348 2009) and 

from the standardized nitrification assay (ISO 15685 2012). Although not included in pesticide ERA, these tests 

are frequently used in microbial ecotoxicology. However, for these two tests, too many values were missing to be 

included in our study. 

 

Table 1. Selected non-target organisms and corresponding acute and chronic ecotoxicological parameters 

Organisms Normalized  

bio-assay 

Ecotoxicological parameters 

Earthworms Eisenia fetida 

 

LC50 acute (µmol/kg), 14 or 28 d – survival 

(ISO 11268-1, OCDE 207) 

Eisenia andrei NOEC chronic (µmol/kg), 28 d – reproduction (ISO 11268-

2, OCDE 222) 

Aquatic 

invertebrates 

Daphnia sp. EC50 acute (µmol/L), 48 h – mobility test 

(ISO 6341, OCDE 202) 

NOEC chronic (µmol/L), 21 d – mobility test 

(ISO 10706, OCDE 211) 

Algae Pseudokirchneriella subcapitata  

(or Selenastrum capricornus or 

Raphidocelis subcapitata)  

EC50 acute (µmol/L), 72 or 96 h – growth or biomass (ISO 

8692, OCDE 201) 

NOEC chronic (µmol/L), 72 or 96 h – growth or biomass 

(ISO 8692, OCDE 201) 

Aquatic plants Lemna sp. EC50 acute (µmol/L), 7 d – biomass  

(ISO 20079, OCDE 221) 

 

 

TyPol already included the bioconcentration factor (BCF), which describes bioaccumulation across 

trophic networks (Servien et al. 2014). We implemented seven new ecotoxicological parameters to cover both 

acute and chronic effects of pesticides on non-target soil and aquatic organisms. For acute toxicity, we used LC50 

for earthworms (Eisenia sp.), and EC50 for aquatic invertebrates in surface waters (Daphnia sp.), aquatic plants 

(Lemna sp.) and unicellular algae (Chlorophyceae sp.). Chronic effects were described by NOEC for Eisenia sp., 

Daphnia sp., and algae. 

 

Environmental parameters 

Six environmental parameters are addressed in TyPol: water solubility (Sw) and the octanol-water partition 

coefficient (Kow) to describe dissolution; vapor pressure (Pvap) for volatilization from soil and plants; Henry’s law 
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constant (KH) for volatilization from water; the adsorption coefficient normalized to soil carbon organic content 

(Koc) for adsorption, and half-life (DT50) for degradation (Servien et al. 2014). 

 

Clustering methodology  

The TyPol tool classifies pesticides and their transformation products according to their behavior in the 

environment and their molecular properties (Servien et al. 2014; Benoit et al. 2017). The strategy relies on partial 

least squares (PLS) analysis and hierarchical clustering (see “Statistical treatments” section below). We assessed 

its robustness on a list of 215 organic compounds using a cross-validation algorithm. The information system is 

based on MySQL DBMS-R management system for relational database (version 5.1), the Apache web server 

(version 2.2), and the statistical R software program (also used for graphs). More details concerning TyPol can be 

found in Servien et al. (2014). 

 

Statistical treatments  

In TyPol, the PLS model is applied to find the multidimensional directions X in the observable variable (molecular 

descriptor) space that explains the maximum multidimensional variance Y direction in the predicted variable 

(environmental and ecotoxicological parameter) space. The optimal number p of PLS components to perform 

clustering is selected according to Wold rules (Wold 1978). We also used the NIPALS (Non-linear Iterative PArtial 

Least Squares) algorithm, which performs PLS without removing individuals with missing values and without 

estimating these missing values (Tenenhaus 1998). Nevertheless, reducing the number of missing values as much 

as possible is recommended to obtain the most accurate results. After PLS analysis, we carried out a hierarchical 

clustering algorithm on the PLS X1,…, Xp and Y1,…, Yp axes to categorize the molecules by assigning similar 

compounds to one cluster. At each step, the final number of clusters was chosen by comparing heights in the 

dendrogram, a statistical map summarizing Ward clustering. Minimization of intra-variability and maximization 

of intervariability were retained to choose the most appropriate number of clusters (Servien et al. 2014). 

 

Results and Discussion 

Available data for ecotoxicological effects on soil and water systems 

Contrarily to our expectations, although 122 active substances and almost all of the 24 transformation products 

(TPs) preexisting in the TyPol database were indexed in the PPDB and Agritox databases, we failed to retrieve the 

selected ecotoxicological endpoints for all of them (Supplementary material - Table A1). We found the seven 



 7 

selected parameters in the PPDB or Agritox databases only for chlorothalonil, epoxiconazole, glyphosate, 

metribuzin, pendimethalin, tebuconazole, triallate, and trifluralin, and for only one TP, toxanilic acid (derived from 

metolachlor). Conversely, data were completely missing for the following active substances: di-allate, fosetyl, 

kelevan, metsulfuron, and neburon, and also for several TPs: 1-(3,4-dichlorophenyl)-3-methylurea, 3-

ketocarbofuran, 4-fluoro-3-phenoxybenzoic acid, and desmethyl norflurazon. In general, TP data were much less 

available in both databases. But even if we excluded TPs and only considered the 122 active substances, 5 or 6 

ecotoxicological endpoints were still missing for a significant number of active substances (Supplementary 

material Table A1). 

 We found strong variability in data availability according to ecotoxicological parameters and biological 

models. Acute toxicity endpoints were the most available data for aquatic invertebrates (Daphnia sp.), with values 

present in at least one of the databases for 114 active substances. By contrast, chronic effects on terrestrial 

invertebrates (Eisenia sp.) were the least available data, with values found only for 32 active substances. The same 

trends were observed for TPs. Again the least abundant data concerned chronic toxicity effects, with missing values 

for 88, 96, and 92% of the transformation products for Daphnia sp., algae, and earthworms, respectively. For acute 

toxicity, EC50 values were much more available for Daphnia sp. (22% of missing values for the selected TPs) 

than for algae, Lemna sp., or earthworms (68, 84, and 68% of missing values, respectively). 

 In order to reduce the number of missing values and to perform TyPol analysis, we selected a set of 50 

pesticides with the highest number of available data for the next step. Then we conducted a detailed survey of the 

selected pesticides in other databases and literature reviews (US-EPA ECOTOX, ECHA and EFSA reports, Web 

of Science) to gather the remaining missing data (Table 2; see the detailed reference list in Supplementary 

Material). Thanks to this data mining, we retrieved almost all ecotoxicological endpoints for the 50 molecules, and 

the level of missing data was reduced to 3.4% of missing values for the whole dataset (Table 2). 
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Table 2. Ecotoxicological parameters obtained from normalized bioassays and implemented in TyPol database for the 50 selected pesticides (AS: active substance, PGR: Plant 

growth regulator) 

Chemical family CAS number Name Pesticide type Daphnia sp. Lemna sp. P. subcapitata (or  

other chlorphyceae) 

Eisenia fetida 

Eisenia andrei 

      EC50 NOEC EC50 EC50  NOEC LC50 NOEC 

    µmol (AS) L-1 µmol (AS) kg-1 

Amide 15299-99-7 Napropamide Herbicide 52,7 a 15,8 a 0,884 a 12,5 a 4,42 b 1039 a 111 a 

Amide 118134-30-8 Spiroxamine Fungicide 10,1 c 0,114 c 9,28 a 0,011 a 0,007 a 1681 a 108 a 

Arylophenoxy acid 94-75-7 2,4-D Herbicide, PGR 452 d 173,7 d 2,62 d 109 a 86,9 d 1583 a 283 d 

Benzoic acid 1918-00-9 Dicamba Herbicide 403 e 439 a 53,8 e 45,2 e 16,7 e 4524 a Not found 

Carbamate 16118-49-3 Carbetamide Herbicide 343 a 4,23 f 1274 a 669 a 212 f 2793 a Not found 

Carbamate 1563-66-2 Carbofuran Insecticide  0,172 b 0,044 b 1067 b 29,4 a 14,5 a 38,2 h 2,26 h 

Carbamate 13684-56-5 Desmedipham Herbicide 1,50 a 0,033 a 17,3 a 0,033 a 0,033 a 266 a 8,32 a 

Carbamate 13684-63-4 Phenmedipham Herbicide 1,37 a 0,107 a 0,766 a 0,633 i 0,083 i 147 j 7,21 j 

Chloroacetamide 34256-82-1 Acetochlor Herbicide 31,9 a 0,082 a 0,010 a 0,007 k 0,0002 k 391 a 74,1 l 

Chloroacetamide 15972-60-8 Alachlor Herbicide 37,1 a 0,853 a 0,037 a 0,004 m 0,001 m 1435 m Not found 

Chloroacetamide 51218-45-2  Metolachlor Herbicide 82,8 a 2,50 a 0,152 a 0,195 n 0,134 n 2008 o 8,95 o 

Chloroacetamide 67129-08-2 Metazachlor Herbicide 80,3 p 0,360 a 0,008 a 0,112 q 0,007 a 1584 p Not found 

Chloronitrile 1897-45-6 Chlorothalonil Fungicide 0,203 a 0,034 a 1,09 a 0,790 a 0,124 a 357 r 37,6 r 

Cinamic acid 110488-70-5 Dimethomorph Fungicide 27,3 s 1,19 s 56,8 s 107 s 25,3 s 2578 a 309 a 

Diazine 25057-89-0 Bentazone Fungicide 260 a 499 a 22,5 a 18,7 b 3,66 b 3620 a Not found 

Diazine 1698-60-8 Chloridazone Herbicide 596 a 28.1 a 20.8 b 13.5 a 3.29 a 4513 a Not found 

Dicarboximide 36734-19-7 Iprodione Fungicide 2,00 a 0,515 a 3,03 a 5,45 a 9,69 a 3029 a Not found 

Dinitroaniline 33629-47-9 Butralin PGR, Herbicide 0,406 a 0,267 a 0,508 a 0,406 a Not found 3386 a 84,3 a 

Dinitroaniline 40487-42-1 Pendimethalin Herbicide 0,523 a 0,052 a 0,078 a 0,021 a 0,011 a 3555 t 119 t 

Dinitroaniline 1582-09-8 Trifluralin Herbicide 0,731 u 0,152 a 0,130 a 0,036 a 0,015 a 1491 a 42,3 a 

Diphenyl ether 74070-46-5 Aclonifen Herbicide 4,53 a 0,060 a 0,023 a 0,106 v 0,026 v 567 a 170 a 

Hydroxyanilide 126833-17-8 Fenhexamid Fungicide 62,2 a 3,31 a 7,61 b 86,0 a 17,7 a 1655 a 33,1 a 
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Chemical family CAS number Name Pesticide type Daphnia sp. Lemna sp. P. subcapitata (or  

other chlorphyceae) 

Eisenia fetida 

Eisenia andrei 

      EC50 NOEC EC50 EC50  NOEC LC50 NOEC 

Neonicotinoid 135410-20-7 Acetamiprid Insecticide 224 a 22,5 a 4,49 a 450 a 441 40 a 5,66 a 

Organochlorine 115-29-7 Endosulfan Insecticide 0,451 w 0,035 w 246 w 5,28 w 1,38 w 27 w 0,25 w 

Organochlorine 58-89-9 Lindane Insecticide 5,50 a 0,186 a 0,093 a 8,60 a 6,53 a 395 x, y 61,9 y 

Organophosphorous 13194-48-4 Ethoprophos Insecticide 0,825 a 0,008 a 413 a 115,6 a 13,2 a 163 a 34,3 a 

Organophosphorous 122-14-5 Fenitrothion Insecticide 0,031 a 0,0001 a Not found 4,69 a 0,361 a 833 a 90,2 a 

Phosphonoglycine 1071-83-6 Glyphosate Herbicide 237 a 177,4 a 71,0 a 26,0 a 3,78 z 5914 z 2791 aa 

Phthalimide 133-06-2 Captan Fungicide 23,6 a 1,86 a 42,2 a 3,93 a 33,3 a 1726 a 40,6 a 

Pyridine 01/02/1918 Picloram Herbicide 142 a 48,9 a 422 a 157,4 a 33,1 b 20707 a Not found 

Strobilurin 131860-33-8 Azoxystrobin Fungicide 0,570 a 0,109 a 7,93 a 0,892 a 0,094 ab 702 a 49,6 a 

Strobilurin 361377-29-9 Fluoxastrobin Fungicide 1.05 a 0.39 a 13.1 a 0.57 a 0.17 g 1090 a 2.90 a 

Strobilurin 175013-18-0 Pyraclostrobin Fungicide 0,04 a 0,01 a 4.44 a 0.39 a 0,04 ac 1462 a 1.14 a 

Strobilurin 141517-21-7 Trifloxystrobin Fungicide 0,027 a 0,007 a 4.73 a 0,09 a 0,02 a 982 ad 8,57 a 

Thiocarbamate 2303-17-5 Tri-allate Herbicide 1,41 a 0,043 a 7,55 a 0,007 a 0,105 a 901 a 44,7 a 

s-Triazine 1912-24-9 Atrazine Herbicide 72,3 ae 0,649 ae 0,394 af 0,621 af 0,070 af 1048 ag 46,4 ah 

s-Triazine 66215-27-8 Cyromazine Insecticide 602 a 27,7 a Not found 746 a 602 a 6018 a 2004 a 

s-Triazine 122-34-9 Simazine Herbicide 5,45 a 12,4 a 0,69 b 0,496 b 0,159 b 4959 a Not found 

Triazinone 41394-05-2 Metamitron Herbicide 480 ai 28,2 ai 2,0 a 0,692 aj 0,495 aj 4520 a 138 a 

Triazinone 21087-64-9 Metribuzin Herbicide 229 a 1,49 a 0,173 ak 0,201 ak 0,089 ak 1993 a 24,5 a 

Triazole 94361-06-5 Cyproconazole Fungicide 89,1 a 0,994 a 0,202 a 0,343 a 0,069 a 576 a 2,57 a 

Triazole 133855-98-8 Epoxiconazole Fungicide 26,4 a 1,91 a 0,042 a 3,61 a 0,237 a 1083 ad 0,51 a 

Triazole 76674-21-0 Flutriafol Fungicide 222 a 1,03 a 2,2 a 6,31 a 2,16 a 1660 a Not found 

Triazole 107534-96-3 Tebuconazole Fungicide, PGR 9,06 a 0,032 a 0,8 am 12,3 am 0,325 am 4486 a 32,5 a 

Triazole 131983-72-7 Triticonazole Fungicide 28,3 a 0,29 a 4,4 a 3,15 an 7,87 b 1573 an 787 an 

Triketone 99105-77-8 Sulcotrione Herbicide 304 ao 228 ao 1,703 ao 10,646 ao 0,578 ao 3042 a Not found 

Triketone 335104-84-2 Tembotrione Herbicide 111 ap 11,3 a 0,014 a 0,862 a 0,454 ap 2268 a 2,84 a 

Substituted Urea 64902-72-3 Chlorsulfuron Herbicide 1037 a 33,5 a 0,001 a 0,190 a 0,026 b 2795 a 524 a 

Substituted Urea 330-54-1 Diuron Herbicide 6,01 aq 0,429 aq 0,079 a 0,012 a 0,008 aq 3424 a 61,8 a 
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Chemical family CAS number Name Pesticide type Daphnia sp. Lemna sp. P. subcapitata (or  

other chlorphyceae) 

Eisenia fetida 

Eisenia andrei 

      EC50 NOEC EC50 EC50  NOEC LC50 NOEC 

Substituted Urea 34123-59-6 Isoproturon Herbicide 2,81 a 0,582 a 0,150 a 0,155 ar 0,087 ar 4848 a Not found 

(a) PPDB 2017; (b) US-EPA ECOTOX Knowledgebase 2017; (c) ECHA report for Spiroxamine 2015; (d) EFSA 2014; (e) EFSA 2011; (f) ECHA 2014; (h) De Silva et al. 2009; (i) EC 1999; (j) PPDB and Van Gestel et 

al. 1992; EFSA 2011; (l) Xiao et al. 2006; (m) EC 2007; (n) PAN Pesticides Database 2017; (o) EU - Pesticides database 2017; (p) FAO 1999; (q) ECHA 2011; (r) Leitao et al. 2014; (s) EFSA 2004; (t) Belden et al. 
2005; (u) EC 2005; (v) EC 2006; (w) Rotterdam Convention 2011; (x) PPDB, Haque et al. 1983, and Lock et al. 2002; (y) Lock et al. 2002; (z) EU 2002; (aa) von Mérey et al. 2016; (ab) EFSA 2009; (ac) US-EPA 2005; 

(ad)Wang et al. 2012; (ae) Giddings 2002; (af) UE 2004; (ag)Wang et al. 2012, and Haque and Ebing 1983; (ah) Song et al. 2009; (ai) Nitschke et al. 1999; (aj) Vaittinen 1987; (ak) Fairchild et al. 1997; (al) ECHA 2012; 

(am) EFSA 2005; (an) ECHA 2011; (ao) ECHA 2012; (ap) UE 2005; (aq) ECHA 2015. Details about these references are specified in supplementary materi
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The fact that data about chronic effects of pesticides were less available is explained by current rules in EU 

pesticide registration procedures. As a matter of fact, results of standardized chronic toxicity tests are mandatory 

in case of continuous or repeated exposure, otherwise acute toxicity tests are sufficient. We should point out that 

for ecotoxicological assessment of soil organisms and aquatic plants, even if standardized tests do exist on model 

organisms, data on pesticide ecotoxicological effects are still dramatically missing. This statement is in line with 

recent scientific opinions on risk assessment of plant protection products for soil organisms and biodiversity (EFSA 

2016a, 2017). It suggests implementing new tests on non-target organisms that act as keystones of ecosystem 

functions to fulfill ERA with specific goals as far as protecting ecosystem services is concerned. Therefore, 

ecotoxicological endpoints related to the behavior (Sousa et al. 2008), functions (i.e., EFSA 2016a), and recovery 

capabilities of non-target organism communities (EFSA 2016b) would deserve greater attention for more careful 

pesticide ERA. 

 

Clustering with ecotoxicological parameters 

Adding the seven new ecotoxicological parameters and considering optimal PLS conditions for only 50 pesticides 

prompted us to choose a number of PLS components equal to three according to Wold rules (Wold 1978). Figure 

1 shows the projection of the data from the 50 pesticides on the first component axes. On this projection, clusters 

2 and 3 strongly overlap, but they are better separated on the other component axes (data not shown). The 

composition of the four clusters is given in Table 3. The first component explained 35% of the variance of the 

molecular descriptors, and 34% of the variance of the environmental and ecotoxicological parameters. Its main 

characteristics were strong positive loadings for polarizability, geometric and topological descriptors, and 

constitutional descriptors like the number of carbon atoms and molecular mass (Fig. 2). In contrast, total energy 

had strong negative effects. The second axis explained only 6% of the variance of the molecular descriptors, and 

32% of the variance of the environmental and ecotoxicological parameters. On this axis, variables such as the 

number of chlorine or halogen atoms had a positive loading, whereas LUMO energy, the number of multiple and 

aromatic bonds, or the number of oxygen atoms had a negative loading (Fig. 2). 

 We selected the number of clusters by plotting the heights of the dendrogram nodes and looking for a 

break. The best choice, which minimized intra-variability and maximized inter-variability, was to classify the 

compounds into four clusters. The largest cluster (cluster 4) contained 16 molecules (32% of the total), and the 

smallest (cluster 3) contained 8 molecules (16% of the total) (Table 3). 
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Fig. 1 Graphical representation Y1 of the four obtained clusters in the first component X, Y axes of the PLS with 

the molecular descriptors, and environmental and ecotoxicological parameters on the 50 selected pesticides 

 

 

Fig. 2 Circles of correlations of the ecotoxicological and environmental parameters (in blue) and molecular 

descriptors (in red) variables on the two main components of the PLS. C.i–i stands for the connectivity index C.i 

of order i (i = 0 to 5), and V.c-i stands for the valence connectivity index V.c of order i (i = 0–5) 
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Fig. 3 Ranges of variation (box-and-whisker plots) of the values of ecotoxicological and environmental parameters 

considered in TyPol for the 50 selected pesticides classified in the four clusters: cluster 1 (11 pesticides), cluster 2 

(15 pesticides), cluster 3 (8 pesticides) and cluster 4 (16 pesticides) 

 

 

 

 



 14 

Table 3. TyPol clustering of the 50 selected pesticides using the molecular descriptors, and environmental and 

ecotoxicological parameters 

Composition of each cluster 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Glyphosate 

Acetamiprid 

Carbetamid 

Dicamba 

Picloram 

Bentazone 

Tembotrione 

Chlorsulfuron 

Cyromazine 

2,4-D 

Sulcotrione 

Tebuconazole 

Dimethomorph 

Spiroxamine 

Fenhexamid 

Azoxystrobin 

Triticonazole 

Epoxiconazole 

Desmedipham 

Phenmedipham 

Trifloxystrobin 

Napropamide 

Pyraclostrobin 

Fluoxastrobin 

Flutriafol 

Cyproconazole 

Endosulfan 

Trifluralin 

Chlorothalonil 

Tri-allate 

Butraline 

Pendimethalin 

Lindane 

Aclonifen 

Fenitrothion 

Simazine 

Ethoprophos 

Captan 

Carbofuran 

Alachlore 

Chloridazon 

Atrazine 

Metribuzine 

Diuron 

Isoproturon 

Acetochlor 

Metamitron 

Metolachlor 

Metazachlor 

Iprodione 

 

 

Identification of discriminating parameters and molecular descriptors  

Variation ranges within each cluster are shown in Fig. 3 for all the ecotoxicological/environmental parameters and 

in Fig. 4 for selected molecular descriptors. Median values are given in Table A2 (Supplementary Material). Figure 

3 clearly shows that the four clusters had close DT50 values and that their ranges overlapped to a high degree. It 

suggests that this parameter poorly discriminated the different molecules within the classification. 

 Cluster 1 gathered together phenoxyacids, glyphosate, and other polar pesticides (Table 3). This cluster 

included compounds characterized by a strong dipole moment and high total energy values, whereas 

polarizabilities (Fig. 4) and the different connectivity indices were low (Table A2). These compounds had low 

molecular weights and low Connolly molecular surface areas (Fig. 4). Concerning the different ecotoxicological 

parameters, this cluster was characterized by the lowest BCF and the highest NOEC and EC50 values (Fig. 3). 

This suggests that the compounds gathered in cluster 1 are lowly likely to bioaccumulate in living organisms 

(Regulation EC 1107/2009 2009) and also have low acute toxicity on invertebrates (median LC50 in earthworms 

= 3042 μmol/kg; median EC50 in Daphnia sp. = 304.2 μmol/L) or aquatic microorganisms (median EC50 in algae 
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= 45.2 μmol/L). The presence of glyphosate in this low toxicity cluster can appear as surprising because recent 

publications showed that glyphosate isopropylamine salt (CAS 38641-94-0) may be potentially harmful to the 

environment and biota (Cuhra et al. 2013). This discrepancy is due to the use of fairly high values of EC50 and 

NOEC recorded only for the active ingredient glyphosate (CAS 1071-83-6) in EU registered data compiled in the 

PPDB database and the other two references (Table 2). The highest median value was Sw (10,500 mg/L), while 

Koc was the lowest (55.9 L/kg). These pesticides had low DT50 values (Fig. 3). This suggests that they have low 

persistence in the environment, and partly explains their low potential for bioaccumulation and toxicity (Regulation 

EC 1107/2009 2009). Finally, the compounds gathered in cluster 1 had low KH values (i.e., low volatility from 

water) and low Pvap values, hence low volatility from soil and plants, and a low potential of transfer to the 

atmosphere (FOCUS 2008). 

 Cluster 2 mostly contained azoles, amides (fenhexamid, napropamide) and strobilurin fungicides, and a 

few carbamate (desmedipham, phenmedipham) herbicides (Table 3). These compounds had the lowest total energy 

values and the highest polarizability values, numbers of atoms, and connectivity indices (Fig. 4 and Table A2). 

Median Sw values were low (9.3 mg/L), which is consistent with high median Koc values (885 L/kg) indicating a 

relatively high sorption potential. These molecules also had low KH and Pvap values. Ecotoxicological endpoints 

indicated higher toxicity for the different non-target organisms than in cluster 1. Medium to high BCF values 

indicated their potential to significantly bioaccumulate in living organisms. Chronic toxicity was relatively high 

for algae (median NOEC value = 0.09 μmol/L), Daphnia sp. (median NOEC value = 0.29 μmol/L), and earthworms 

(median NOEC value = 20.5 μmol/kg) as compared to the other groups. Acute toxicity was also in the medium to 

high range considering the relatively low EC50 and LC50 values (Fig. 3). 

 Cluster 3 was composed of pesticides belonging to various chemical families (e.g., organochlorine, 

dinitroaniline, chloronitrile) and various categories of uses (insecticides, fungicides, and herbicides) (Table 3). It 

contained the most persistent ones, with a median DT50 value of 86 days. These molecules had low total energy 

values and relatively high polarizability values, numbers of atoms, Connolly molecular surface areas, and 

connectivity indices (Fig. 4). They had the lowest dipole moment values and the highest numbers of chlorine atoms 

(2), which is in line with the highest ecotoxicity, whether acute or chronic. EC50 median values were 0.22, 0.32, 

and 0.63 μmol/L for algae, Lemna sp. and Daphnia sp., respectively. NOEC values were the lowest for algae and 

Daphnia sp., whereas this chronic toxicity parameter was relatively high for earthworms as compared to cluster 2 

(Fig. 3). BCF values were much higher than in the other clusters. In relation to this strong bioaccumulation 

potential, these compounds had the lowest water solubility (median Sw = 0.57 mg/L) and the highest octanol water 
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coefficient (median Kow = 97.3). Accordingly, sorption coefficient values were high (median Koc = 5713 L/kg). 

Their volatilization potential from water (KH) and from soil or plants (Pvap) was also the highest, much higher than 

for compounds from the other clusters.  

 

Fig. 4 Ranges of variation (box-and-whisker plots) of the values of selected molecular descriptors considered in 

TyPol for the 50 selected pesticides classified in the four clusters: cluster 1 (11 pesticides), cluster 2 (15 pesticides), 

cluster 3 (8 pesticides), and cluster 4 (16 pesticides) 
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 The compounds gathered in cluster 4 were mostly herbicides belonging to chloroacetanilides, s-triazines, 

and substituted ureas (Table 3). They were characterized by high total energy values, whereas polarizability values 

and the different connectivity indices were low (Fig. 4 and Table A2). Based on these features, cluster 4 was quite 

close to cluster 1. However, LUMO energy was very high (median LUMO energy value = - 0.119 eV) as compared 

to cluster 1 (median value = - 0.748 eV). Values of ecotoxicological and environmental parameters placed cluster 

4 in between cluster 1 and clusters 2 or 3. It had a low DT50, close to the median value of cluster 1, indicating 

relatively low persistence of the compounds (median DT50 value = 23 days). The compounds were relatively 

water-soluble (median Sw = 261 mg/L) and had moderate sorption coefficients (median Koc = 127 L/kg). In terms 

of ecotoxicity, organisms differed according to the acute or chronic endpoints. Whereas cluster 4 compounds had 

high acute toxicity for algae and Lemna sp. (EC50 = 0.39 μmol/L), they had lower toxicity for invertebrates, 

Daphnia sp., or earthworms than the compounds of cluster 3 (Fig. 3). These results are in accordance with the 

biochemical effect of herbicides, which disrupt plant physiology and more particularly photosynthesis. 

Surprisingly, when considering chronic toxicity parameters, the differences in ranking between algae and other 

organisms (i.e., Daphnia sp. and earthworms) were no longer observed. In this cluster, the median BCF value 

indicated quite a low potential for bioaccumulation along food webs. 

 Besides well-known relationships between parameters such as water solubility, the octanol-water 

coefficient, the sorption coefficient, and the bioconcentration factor, the interpretation of the different clusters 

highlighted certain molecular descriptors likely to have a significant influence on ecotoxicological effects. High 

dipole moments, high total energy, low connectivity indices, and low MW and surface areas are correlated to low 

bioaccumulation and low ecotoxicity, as well as to low Koc coefficients and low DT50. On the contrary, low dipole 

moments, low total energy, high polarizability, high connectivity indices, and high numbers of Cl atoms 

characterize pesticides with high Koc and medium to high DT50, and high BCF and ecotoxicity for invertebrates. 

Pesticides combining high total energy, low connectivity indices, and low polarizability have rather high acute 

ecotoxicity for algae and aquatic plants, but a medium bioaccumulation potential correlated with high water 

solubility, along with low Koc and DT50 values.  

 In addition, we can suggest that the relationship between molecular descriptors and environmental 

behavior and the ensuing consequences on ecotoxicological endpoints partly depend on bioassay type. This should 

be further investigated because the ecotoxicological effect of pesticides highly depends on the experimental 

conditions of standardized tests, which generally do not take into account the exposure routes of organisms in 

natural conditions. To overcome this drawback, one could recommend to conduct ecotoxicological assessment of 
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pesticides using reproducible laboratory experiments in ecologically relevant conditions. Another issue of concern 

is the use of standardized tests with a relatively low number of non-target model organisms, which are far from 

being representative of the possible effects of pesticides on the diversity of non-target organisms. 

 

Conclusion 

This proof-of-concept study shows that TyPol allows the classification of pesticides according to their potential 

ecotoxicological effects on non-target organisms. Despite a relatively low number of pesticides included in the 

study, the strength of our clustering approach was to consider ecotoxicological endpoints on both terrestrial and 

aquatic non-target organisms and environmental behavior together. In each cluster, pesticides were gathered 

according to similar features in terms of environmental behavior and ecotoxicological parameters, related to 

combinations of values from specific molecular descriptors. This first trial should be extended to a larger number 

of pesticides and TPs to increase the statistical power in clustering analysis and in the prediction of 

ecotoxicological parameters. 

 To do so, one difficulty already encountered in this study is to retrieve relevant ecotoxicological endpoints 

from public databases: the availability of ecotoxicological parameters in the PPDB or Agritox databases was lower 

for chronic than for acute toxicity endpoints whatever the targeted organisms. This distortion is due to the 

assessment of acute toxicity in pesticide regulation by simple and cost- and time-effective tests. It is also well 

known that measurements of ecotoxicological parameters are far more available for aquatic organisms 

(invertebrates) than for terrestrial invertebrates. Moreover, interpretation and rationalization of results from 

terrestrial invertebrates requires a far more complex methodology because tests regularly involve non-equilibrium 

processes. It also reflects longer time history of regulatory frameworks and European directives for aquatic 

ecosystems quality than for soils. This emphasizes the need to acquire more ecotoxicological data for a range of 

pesticides, especially for a range of non-target soil organisms. Filling this gap will (i) improve the possibility to 

classify pesticides according to their ecotoxicological effects on non-target organisms, and (ii) pave the way for 

predicting ecotoxicological parameters of pesticides and TPs about which this information is lacking. 
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