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Abstract
We present a new hybrid Hoare logic dedicated for a class of linear hybrid automata well suited
to model gene regulatory networks. These automata rely on Thomas’ discrete framework in
which qualitative parameters have been replaced by continuous parameters called celerities. The
identification of these parameters remains one of the keypoints of the modelling process, and is
difficult especially because the modelling framework is based on a continuous time. We introduce
Hoare triples which handle biological traces and pre/post-conditions. Observed chronometrical
biological traces play the role of an imperative program for classical Hoare logic and our hybrid
Hoare logic, defined by inference rules, is proved to be sound. Furthermore, we present a weakest
precondition calculus (a la Dijkstra) which leads to constraints on dynamical parameters. Finally,
we illustrate our “constraints generator” with a simplified circadian clock model describing the
rhythmicity of cells in mammals on a 24-hour period.
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1 Introduction

Formal methods from computer science have been largely applied to model and analyse
biological systems [5, 17]. In particular, verification tools like model-checking have been used
to verify dynamical properties of discrete models [3, 7] in which the temporal aspects are
only present through the succession of events: the delay between two successive events is
not taken into account. Unfortunately, continuous time turns out to be important in most
biological systems, in particular for gene regulatory networks.

Gene regulatory networks are models representing influences between genes leading to
the modification of the synthesis of associated proteins. Because proteins can regulate their
target genes, positive or negative feedback loops emerge making possible a large variety of
behaviours. These gene regulatory networks are designed to apprehend and predict effects of
a component on the system but such models are also useful to confront hypotheses with the
up-to-date collected knowledge on the gene interactions.

Several modelling framework have been devoted to gene networks. These frameworks differ
by the aspects they highlight. Stochastic models emphasize non-determinism, differential
models represent a system with a lot of details (transcription, traduction, transports . . . ) [14]
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5:2 Constraint Identification Using Modified Hoare Logic

and give precise trajectories in terms of concentrations; qualitative models [16, 15] focus
on the major features that explain the observations (only main causalities are taken into
account); and hybrid models link qualitative aspects with continuous variables such as time.

Whatever the modelling framework, the main difficulty of building such networks is the
identification of parameters governing the dynamics of the system. The determination of
these parameters is crucial to observe a behaviour consistent with biological knowledge. We
already showed [3] that formal methods can help in this parameter identification step in the
René Thomas’ discrete modelling framework [16]. Unfortunately, this framework abstracts
temporal information, often necessary for tuning the models. This discrete approach is based
on the splitting of homogeneous concentration areas which have the same effects on other
components. In order to refine this complete discrete framework, we associated with each
such area a celerity describing the evolution speed of each component. These parameters lead
to a class of linear hybrid automata. We also showed how the known experimental traces
can be used to establish constraints on dynamical parameters (celerities) and to restrain the
set of admissible parameters [1].

Numerous works already focus on the study of hybrid automata [9]. Especially, several
tools already exist to tackle the model checking of linear hybrid automata, either with classical
exhaustive approaches [10] or using abstract interpretation [8]. Communicating sequential
processes (CSP), a process algebra for describing patterns of interaction in concurrent systems,
has also been extended to hybrid systems and hybrid Hoare logic has been proved to be
useful in such context [18]. These methods among others propose parameter synthesis in
some ways. Nevertheless, these tools are tailored for a general purpose and will not take into
account the specificities coming from biological contexts.

We divert Hoare logic (whose aim is to rigorously reason about the correctness of
imperative programs) in order to determine constraints on celerities in such models. This
approach was already developed, for the discrete framework [2, 4] and we extend it in the
present paper for hybrid automata. Hoare logic has already been extended to real time
systems [11] in which continuous evolutions are not taken into account whereas they are
important in our biological context. Hoare logic relies on triples of the form {Pre} p {Post}
where Pre and Post are conditions on states of the system and p is a path of the system.
A Hoare triple is considered true if, whenever the system is reset at a state satisfying the
Pre condition, the path p is possible and leads the system into a state which satisfies the
condition Post. Following E. Dijkstra [6], the aim of the game is then to determine, for each
path p and postcondition Post, the weakest precondition Pre, thus covering the largest set
of states, making the Hoare triple true. In our temporal approach, the time spent in each
state becomes crucial to determine the constraints on parameters.

We illustrate our formalism with a biological process named circadian clock which
synchronises all cells in mammals at a 24-hour rhythmicity. We design a hybrid automaton
modelling this biological cycle and, from the observed trace of this process, we build constraints
for each celerity of this hybrid automaton using the aforementioned hybrid Hoare logic. We
finally show that simulations, run parameters values satisfying the constraints, exhibit curves
which are similar to experimental data.

The paper is organised as follows. We first define in Section 2 the formalism of the
hybrid modelling framework. Then Section 3 focuses on the syntax and the semantics of the
modified Hoare logic, and the weakest precondition calculus, whereas Section 4 is devoted to
the soundness of our hybrid Hoare logic. We illustrate in Section 5 the use of this Hoare logic
for identifying the constraints on parameters of the simplified circadian clock model. Finally
in Section 6, we discuss the limits of this approach and we expose some possible extensions.
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Figure 1 Simplified model of the circadian clock in mammals. L is a zeitgeber (see Section 5).

2 Hybrid Modelling Framework of Gene Network

A gene network is visualised as a labelled directed graph (interaction graph) in which vertices
are either variables (within circles) or multiplexes (within rectangles), see Fig. 1. Variables
abstract genes and their products, and multiplexes contain formulas that encode situations
in which a variable or a group of variables (inputs of multiplexes, dashed arrows) influences
the evolution of some other variables (output of multiplexes, plain arrows). A multiplex can
encode the formation of molecular complexes, phosphorylation by a protein, competition of
entities for the activation of a promoter, etc. Definition 1 gives the formal details of a gene
network.

I Definition 1 (Hybrid Gene Regulatory Network). A hybrid gene regulatory network (GRN
for short) is a tuple R = (V,M,E, C) where:

V is a finite set whose elements are called variables of the network. With each variable
v ∈ V is associated a boundary bv ∈ N∗.
M is a finite set whose elements are called multiplexes. With each multiplex m ∈M is
associated a formula ϕm in the multiplex language formed of the atoms “(v > n)”, where
n ∈ J1, bvK1, and the usual logical connectives ¬, ∧, ∨ and ⇒.
E is a set of edges of the form (m→ v) ∈M × V .
C = {Cv,ω,n} is a family of real numbers indexed by a tuple (v, ω, n) where v ∈ V , ω is a
subset of R−(v) where R−(v) = {m | (m→ v) ∈ E}, that is, ω is a set of predecessors of
v, and n ∈ J0, bvK. Cv,ω,n is called the celerity of v for ω at the level n and these celerities
have to satisfy the following constraints:

∀v ∈ V, ∀ω ⊂ R−(v), ∀n ∈ J0, bvK, Cv,ω,n = 0 ⇒
{
∀i ∈ Jn+ 1, bvK Cv,ω,i < 0
∀i ∈ J0, n− 1K Cv,ω,i > 0

∀v ∈ V, ∀ω ⊂ R−(v), ∀k ∈ J0, bv − 1K, Cv,ω,k × Cv,ω,k+1 ≥ 0.
Let us remark that the dashed arrows of Fig. 1 are not present in the previous definition.
When representing a gene network, it is convenient to visualise the variables contributing to
a particular multiplex, but from a formal point of view, this information is redundant with
the formula of the considered multiplex.

Celerities (noted Cv,ω,n) give the evolution of each variable v when it is under the active
regulation of the set ω of its predecessors and when it is in the qualitative state n. They
code for the dynamics of the system and we aim at the identification of these celerities. The
constraints on celerities given in the previous definition link the signs of celerities to the
underlying dynamics and may need some explanations. The first one deals with the case
where a celerity value is null for a given set of active predecessors ω of a variable v. This
models an equilibrium state, thus the related constraint states that celerities around this
equilibrium, for the same set of active predecessors ω, must force v to reach this equilibrium.

1 Ja, bK = {n ∈ N | a 6 n 6 b}.

TIME 2017



5:4 Constraint Identification Using Modified Hoare Logic

As a consequence, there is a single null celerity at most for a given couple of v and ω. If, on
the other hand, no celerity is null for these v and ω, a consequence of the second constraint
is that they are all of the same sign. This models that v either always decreases until full
degradation or always increases up to saturation.

In the remainder of this section, we focus on the dynamics of a gene network. Definition 2
introduces the hybrid states whereas Def. 3 explains the crucial notion of resources of a
variable in a particular state.

I Definition 2 (State of a GRN). Let R = (V,M,E, C) be a GRN. A hybrid state of R is a
tuple h = (η, π) where

η is a function from V to N such that for all v ∈ V , 0 6 η(v) 6 bv;
π is a function from V to the interval [0, 1] of real numbers.

η is called the discrete state or qualitative state of h whereas π is called its fractional part.
For simplicity, we note in the sequel ηv = η(v) and πv = π(v). We denote S the set of hybrid
states of R. When there is no ambiguity, we often use η and π without explicit mention of h.

Figure 2-Centre illustrates an example of hybrid state. The tuple of all fractional parts
represents coordinates inside the current qualitative state.

I Definition 3 (Resources). Let R = (V,M,E, C) be a GRN and let v ∈ V . The satisfaction
relation h � ϕ, where h = (η, π) is a hybrid state of R and ϕ is a formula of the multiplex
language, is inductively defined as follows:

If ϕ is the atom (v > n) with n ∈ J1, bvK, then h � ϕ iff ηv > n;
The usual meaning of the logical connectives is used.

The set of resources of a variable v at a state h is defined by: ρ(h, v) = {m ∈ R−(v) | h � ϕm},
that is, the multiplexes that are predecessors of v and whose formula is satisfied.

We note that the set ρ(h, v) only depends on the discrete state of h: all hybrid states
having the same discrete part thus have the same resources. Indeed, inside a discrete state η,
the dynamics of v is controlled in the same manner, thus the celerity is the same for all states
h = (η, π), that is: Cv,ρ(h,v),ηv . By abuse of language, we also use the notation ρ(η, v). From
this celerity, and given a particular hybrid state, one can compute the touch delay (Def. 4)
of each variable, which measures the time necessary for the variable to reach a border of the
discrete state.

I Definition 4 (Touch Delay). Let R = (V,M,E, C) be a GRN, v be a variable of V and
h = (η, π) be a hybrid state. We note δh(v) the touch delay of v in h for reaching the border
of the discrete state. More precisely, δh is the function from V to R+ ∪ {+∞} defined by:

If Cv,ρ(h,v),ηv = 0 then δh(v) = +∞;
If Cv,ρ(h,v),ηv > 0 (resp. < 0) then δh(v) = 1−πv

Cv,ρ(h,v),ηv
(resp. −πv

Cv,ρ(h,v),ηv
).

Nevertheless, reaching the border of a discrete state is not sufficient to go beyond the
frontier: there may be no other qualitative level beyond the border (we call such a border an
external wall) or the celerity in the neighbour state may be of the opposite sign (internal
wall), as given in Def. 5.

I Definition 5 (External and Internal Walls). Let R = (V,M,E,C) be a GRN, let v ∈ V be
a variable and h = (η, π) a hybrid state.
1. v is said to face an external wall at state h if:(

(Cv,ρ(h,v),ηv < 0) ∧ (ηv = 0)
)
∨
(
(Cv,ρ(h,v),ηv > 0) ∧ (ηv = bv)

)
.
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Figure 2 Continuous transitions. Inside each state, a continuous transition (h0 → h′
0) goes

from the initial point h0 to the unique point h′
0 from which a discrete transition takes place (h′

0 → h1).
Left: The celerity vector allows, without sliding mode, the trajectory to directly reach a border
which is crossed. Center: From h′

0 two possible discrete transitions can occur: h′
0 → h1 or h′

0 → h2.
Moreover (πg, πpc) corresponds to the fractionnal coordinates of a hybrid state h along the path.
Right: The grey zone depicts an external or internal wall. The only possible discrete transition is
h′

0 → h1.

2. Let h′ = (η′, π′) be another hybrid state s.t. η′v = ηv + sgn(Cv,ρ(h,v),ηv ) and η′u = ηu for
all u 6= v. Variable v is said to face an internal wall at state h if sgn(Cv,ρ(h,v),ηv) ×
sgn(Cv,ρ(h′,v),η′v ) = −1, where sgn is the classical sign function.

We note sv(h) the set of sliding variables, that is, variables that face an internal or external
wall in the qualitative state of h.

We note that a sliding variable v ∈ sv(h) may not be actually sliding if it has not reached
its border yet. However, if in addition δh(v) = 0, then v is located on an internal wall or
external wall. In this case, its fractional part cannot evolve anymore in the current qualitative
state (see Fig. 2-Right where variable g reaches an external wall). We introduce the notion
of first changing variables in Def. 6 which are the first variables able to change their discrete
levels.

I Definition 6 (First Changing Variables). Let R = (V,M,E,C) be a GRN and h = (η, π)
be a hybrid state. The set of first changing variables is defined by:

first(h) = {v ∈ V \ sv(h) | δh(v) 6= +∞∧ ∀u ∈ V \ sv(h), δh(u) > δh(v)} .

Moreover, δfirst
h denotes the time spent in the qualitative state of h when starting from h:

for any v ∈ first(h), δfirst
h = δh(v), or δfirst

h = +∞ if first(h) = ∅.

The set first(h) represents the set of variables whose qualitative coordinates can change
first. If a variable is on an external or internal wall, it cannot evolve as long as other variables
do not change, thus: first(h) ∩ sv(h) = ∅. Similarly, if the celerity of v in the current state is
null, its qualitative value cannot change because of an infinite touch delay.

Figure 2 illustrates several evolutions of a gene network. From a particular hybrid state
h0, the dynamics alternates continuous transitions (within the discrete state) and discrete
transitions (when changing the discrete state). When the trajectory reaches an external or
internal wall (see Fig. 2-Right), the variable slides along the wall only if the celerity of some
other variable can drive the trajectory in such a direction. This description leads to the
following definition.

I Definition 7 (Hybrid State Space). Let R = (V,M,E,C) be a GRN. We note R =
(S, cT, dT ) the hybrid state space of R where S is the set of hybrid states, and cT (resp. dT )
is the set of continuous (resp. discrete) transitions:

TIME 2017



5:6 Constraint Identification Using Modified Hoare Logic

1. There exists a continuous transition in cT from state h = (η, π) to state h′ = (η′, π′) iff:
a. Either first(h) 6= ∅ and there exists a variable v ∈ first(h) such that:

i. δh(v) 6= 0, where δh(v) is called the duration of the (continuous) transition,

ii. η′ = η and π′u =
{

0 if Cu,ρ(h,u),ηu < 0
1 if Cu,ρ(h,u),ηu > 0 for all u ∈ (first(h) ∪ σ)

where σ = {x ∈ sv(h) | δh(x) 6 δfirst
h },

iii. ∀z ∈ V \ (first(h) ∪ σ), then π′z = πz + δh(v)× Cz,ρ(h,z),ηz .
b. Or first(h) = ∅ (meaning that each variable v either reaches an equilibrium state:
Cv,ρ(h,v),ηv = 0; or faces a wall: v ∈ sv(h)) and:

i. ∀v ∈ sv(h), π′v =
{

0 if Cv,ρ(h,v),ηv < 0
1 if Cv,ρ(h,v),ηv > 0

ii. ∀u /∈ sv(h), π′u = πu (since in this case Cu,ρ(h,u),ηu = 0).
2. There exists a discrete transition in dT from state h′ = (η′, π′) to state h′′ = (η′′, π′′) iff

there exists a variable v ∈ first(h′) such that:
a. δh′(v) = 0, where δh′(v) is called the duration of the (discrete) transition,

b. η′′v = η′v + sgn(Cv,ρ(h′,v),η′v ) and π′′v =
{

0 if Cv,ρ(h′,v),η′v > 0
1 if Cv,ρ(h′,v),η′v < 0 ,

c. ∀u ∈ V \ {v}, η′′u = η′u and π′′u = π′u.
The states from which there do not exist any transitions (discrete or continuous) are called
steady states.

The continuous transitions lead to the last hybrid state inside the current discrete state,
at which point a qualitative change can happen. The instantaneous discrete transitions
make the system evolve, as soon as the system can (that is, when δh′(v) = 0), into the next
qualitative state by going through a border. These two different kinds of transitions can
be observed on Fig. 3 where the discrete transitions are in dotted lines and the continuous
transitions are in plain lines. Let us remark that there is a unique continuous transition
starting at a given hybrid state. Indeed, assuming that there exist two continuous transitions
h→ h1 and h→ h2 from the same hybrid state h, the item 1 of the previous definition leads
to the equality h1 = h2 regarding the ends of the continuous transitions (whatever the value
of the set first(h)).

Let us notice that the defined linear hybrid automata leads to an undeterministic behaviour:
when the celerity vector allows the trajectory to reach more than one border at the same
time, several discrete transitions can be considered (see Fig. 2-Center). Some of these discrete
transitions can be forbidden in case of internal wall.

3 Hybrid Hoare Logic

This section is dedicated to the presentation of the Hoare logic adapted to our hybrid
formalism. Hoare logic is based on Hoare triples noted {Pre} p {Post} meaning that if a
program p is executed from a state satisfying a precondition Pre, then after execution, the
postcondition Post is true. In our case, the program p is replaced by a biological trace
characterising biological knowledge on the chronometrical qualitative behaviour of the system.

For this, we define the property language used for pre- and postconditions in Subsec. 3.1
and the path language used to describe observed traces in Subsec. 3.2. Then, Hoare logic
is defined using these languages and we give in Subsec. 3.3 an adaptation of the weakest
precondition calculus, that is, the computation of the weakest (the most general) precondition
that makes the trace possible and such that the postcondition Post is satisfied afterwards.
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In the rest of this section, we denote by � any of the usual comparison symbols on
integers or real numbers: <, ≤, >, ≥, =, 6=.

3.1 Property Language
We first define the property language describing pre- and postconditions.

I Definition 8 (Property Language LC). The terms of the property language LC are induct-
ively defined as follows:

A discrete term is a variable ηu with u ∈ V , or a constant of N;
A continuous term is a variable πu or π′u with u ∈ V , or Cu,ω,n with u ∈ V , ω ⊂ R−(u)
and n ∈ J0, buK, or a constant of R;
The connectives +, −, × and / create new terms by composition, the latter being only
valid for continuous terms. We use their usual semantics.

Discrete atoms are of the form n � n′ where n and n′ are discrete terms and continuous
atoms are of the form f � f ′ where f and f ′ are continuous terms.

The discrete conditions are defined by: D :== ad | ¬D | D ∧D | D ∨D where ad is a
discrete atom.

The hybrid conditions are defined by: H :== ad | ac | ¬H | H ∧H | H ∨H where ad
and ac are respectively a discrete atom and a continuous one.

A property is a couple (D,H) formed by a discrete and a hybrid condition. All such
couples (D,H) form the property language LC .

A hybrid state h satisfies a property ϕ = (D,H) ∈ LC iff both D and H hold in h, by
using the usual meaning of the connectives; in this case, we note h � ϕ.

3.2 Path Language
The path language given in Def. 12 takes the role of an imperative program in a Hoare triple
by describing a biological behaviour. Such a path consists in explicit discrete transitions as
given in Def. 9, but also in continuous transitions described by duration and some information,
see Def. 10. The characterisation of continuous transitions is based on two kinds of atoms:
Cv � c constrains the value of the current celerity of v, and slide(v) constrains v to slide.

I Definition 9 (Discrete Path Atom). The (discrete) path atoms are defined by:
dpa :== v+ | v− where v ∈ V is a variable name.

For any states h = (η, π) and h′ = (η′, π′), the transition h
v+−→ h′ (resp. h v−−→ h′) is

satisfied iff there exists a discrete transition from h to h′ so that η′v = ηv+1 (resp. η′v = ηv−1).

In the following, if v ∈ V is a variable, v± refers indistinctly to v+ or v−.

I Definition 10 (Assertion Language LA). The assertion language LA is defined by the
following grammar:

a :== > | Cv � c | slide(v) | slide+(v) | slide−(v) | ¬a | a ∧ a | a ∨ a
where v ∈ V is a variable name and c ∈ R is a real number.

A couple (∆t, a) ∈ R+×LA of a non-negative real number and an element of the assertion
language is called an assertion couple.

The following definition gives the semantics of such assertion couples. From an informal
point of view, for any states h = (η, π) and h′ = (η, π′) in the same qualitative state η, the
continuous transition h→ h′ satisfies the assertion couple (∆t, a) if the continuous transition
exists and if it lasts ∆t units of time and it respects the assertion a: > is always true; Cv � c

TIME 2017



5:8 Constraint Identification Using Modified Hoare Logic

is satisfied iff Cv,ρ(h,v),ηv � c where Cv,ρ(h,v),ηv is the celerity of v in the current qualitative
state; slide+(v) (resp. slide−(v)) is satisfied iff v faces and reaches a wall at the top of the
domain (resp. at the bottom); slide(v) is a shorthand for slide+(v) ∨ slide−(v); and logical
connectives have their usual meanings. We note indifferently (h, h′) � (∆t, a) or h (∆t,a)−→ h′.

Regarding Def. 10, the special case where ∆t equals 0 characterises a situation where
the system enters a qualitative state in a “corner” and no continuous transition is required
between two successive discrete transitions.

I Definition 11 (Semantics of the Assertion Couple (∆t, a)). Let us consider a hybrid state
h = (η, π) and the unique continuous transition starting from h and ending in h′ = (η, π′).
The satisfaction relation between the continuous transition h −→ h′ and an assertion couple
(∆t, a) ∈ R+ × LA is noted (h, h′) � (∆t, a), by overloading of notation, and is defined as
follows:

If a ≡ >, (h, h′) � (∆t, a) iff δfirst
h = ∆t.

If a is of the form (Cu � c), (h, h′) � (∆t, a) iff δfirst
h = ∆t and (Cu,ρ(h,u),ηu � c).

If a is of the form slide(v), (h, h′) � (∆t, a) iff δfirst
h = ∆t and δh(v) < δfirst

h .
If a is of the form slide+(v) (resp. slide−(v)), (h, h′) � (∆t, a) iff δfirst

h = ∆t and δh(v) < δfirst
h

and Cv,ρ(h,v),ηv > 0 (resp. Cv,ρ(h,v),ηv < 0).
If a is of the form ¬a′, (h, h′) � (∆t, a) iff δfirst

h = ∆t and (h, h′) 6� (∆t, a′).
If a is of the form a′∧a′′ (resp. a′∨a′′), (h, h′) � (∆t, a) iff (h, h′) � (∆t, a′) and (resp. or)
(h, h′) � (∆t, a′′).

I Definition 12 (Path Language LP ). The (discrete) paths are defined by:

p :== ε | (∆t, a, v±) | p ; p

where (∆t, a) is an assertion couple and v± is a discrete path atom. The semantics of a path
p is given by the binary relation p−→ between states defined by:

If p = ε, then h1
p−→ h2 iff h1 = h2;

If p = (∆t, a, v±), then h1
p−→ h2 iff there exists a state h′1 s.t. h1

(∆t,a)−→ h′1 and h′1
v±−→ h2;

If p ≡ p1; p2, then h1
p−→ h2 iff there exists a state h3 s.t. h1

p1−→ h3 and h3
p2−→ h2.

A path containing only (∆t, a, v±) is called an elementary path.

The path language allows the modeller to express experimental biological traces as
sequences of elementary paths. The next section shows how such information can be formally
taken into account in order to help the identification of celerities compatible with such paths.

3.3 Hoare Triples and Weakest Precondition
We are now able to give the definition (Def. 13) of a Hoare triple in the scope of our hybrid
formalism which is a natural extension of the classical definition. Figure 3 gives an example
of a valid Hoare triple.

I Definition 13 (Hybrid Hoare Triples). A Hoare triple for a given GRN is an expression of the
form {Pre} p {Post} where Pre and Post, called precondition and postcondition respectively,
are properties of LC , and p is a path from LP . A Hoare triple {Pre} p {Post} is satisfied iff
for all state h1 � Pre, there exists another state h2 so that h1

p−→ h2 and h2 � Post.

Now that the semantics of this new Hoare logic is defined, we aim at adapting the
weakest precondition calculus as proposed by Dijkstra [6] to our hybrid framework (Def. 14).
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pc

1

0 1 g

∆1
t

∆2
t

h′1

h′2

h1 � PreC

h2 � PostC

Figure 3 Hoare triple example: {PreC} (∆1
t ,>, g+) {PostC}. Starting from the hybrid state

h1 � PreC , and considering the path in bold line, it is possible to chain a continuous transition
(h1 → h′

1) of duration ∆1
t and a discrete transition (h′

1 → h2) leading to a h2 � PostC : this Hoare
triple is therefore satisfied.

Edsger Dijkstra introduced a predicate transformer semantics: the semantics of an imper-
ative programming language is defined by assigning to each instruction in this language a
corresponding predicate transformer. For each elementary instruction EI of the imperative
programming language, the weakest precondition of EI is a function mapping any postcondi-
tion Post to a precondition Pre. Actually, this function returns the weakest precondition on
the initial state ensuring that the execution of EI terminates in a final state satisfying Post.
For each sequential imperative program "P ; EI " whose last instruction is EI , and for each
postcondition Post, the predicate transformer of EI allows us to first determine the weakest
precondition just before the last instruction and by iterating the same process, it becomes
possible to determine the weakest precondition of the whole imperative program (loops are
treated in a particular way with the help of invariants).

In our setting, the same approach leads to build the minimal constraints on the celerities
insuring that starting from a state satisfying the precondition Pre, the model exhibits
the known path p (corresponding to a biological trace) leading to a state satisfying the
postcondition Post. Each constraint depends on each elementary path which is defined by
the time ∆t spent in the current qualitative state, the assertion a and the discrete path atom
v±. Each elementary path takes the role of an elementary instruction.

I Definition 14 (Weakest Precondition). Let p be a path program and Post = (D,Hf ) be a
post-condition parameterized by a final state index f . The weakest precondition attributed to
p and Post is a property: WPif (p,Post) ≡ (D′, H ′i,f ), parameterized by a fresh initial state
index i and the same final state f , and whose value is recursively defined by:

If p = ε is the empty sequence program, then D′ ≡ D and H ′i,f ≡ Hf ;
If p = (∆t, a, v+) is an atom, with v ∈ V :
D′ ≡ D[ηv\ηv + 1],
H ′i,f ≡ Hf [ηv\ηv + 1] ∧ Φ+

v (∆t) ∧ F(∆t) ∧ ¬W+
v ∧ A(∆t, a) ∧ Jv;

If p = (∆t, a, v−) is an atom, with v ∈ V :
D′ ≡ D[ηv\ηv − 1],
H ′i,f ≡ Hf [ηv\ηv − 1] ∧ Φ−v (∆t) ∧ F(∆t) ∧ ¬W−v ∧ A(∆t, a) ∧ Jv;

If p = p1; p2 is a concatenation of programs:

WPif (p1; p2,Post) ≡WPim(p1,WPmf (p2,Post))

which is parameterized by a fresh intermediate state index m;
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where Φ+
v (∆t), Φ−v (∆t), W+

v , W−v , F(∆t), A(∆t, a) and Jv are sub-properties detailed in
Appendix A.

We note that in the cases corresponding to atoms p = (∆t, a, v±), the formula H ′i,f
contains Hf with substitutions, in conjunction with Φ±v (∆t), ¬W±v , F(∆t), A(∆t, a) and Jv,
which makes the weakest precondition of a sequence of instructions very big and difficult to
compute or analyse by hand. Nevertheless, each of the previous subformulas corresponds to
a condition which has to be met to allow the execution of an atomic instruction (∆t, a, v±):

The sign of the celerity of v in the current state is given by v±;
Traversing the qualitative state lasts ∆t units of time (Φ±v (∆t));
There is no internal or external wall preventing v to increase or decrease its qualitative
state (¬W±v );
All components other than first changing variables must either reach their border after v,
or face an internal or external wall (F(∆t)).
The assertion a is verified along the continuous transition (A(∆t, a));
The continuous transition inside a discrete state links the fractional parts of v, its celerity
and time spent in the current discrete state. Similarly the discrete transition indicates
that the fractional parts of states before and after a discrete transition are the same
except for the variable v changing its discrete level (Jv).

Finally, the computation of the weakest precondition for a given Hoare triple {Pre} p {Post}
is automated using the classical backward proof strategy:

If p is of the form (∆t, a, v±) or ε, then we compute the precondition.
If p = p1; p2 with p2 = (∆t, a, v±), we compute the precondition before p2 and we iterate
for path p1 (we never consider p2 as ε).

These two items are mutually exclusive which means that the proof strategy generates a
unique proof tree.

An implementation of this weakest precondition calculus has been realised2. Section 5
details its result on a model of the circadian clock and before that, next section gives the
theorem of its soundness.

4 Soundness of the Hybrid Hoare Logic

4.1 Inference Rules and Axioms
The considered Hoare logic for hybrid gene regulatory networks is defined by the following
inference rules:

Incrementation rule:
{
D[ηv\ηv + 1]

H ′
i,f

}∆t
a

v+

{D
Hf

}

Decrementation rule:
{
D[ηv\ηv − 1]

H ′
i,f

}∆t
a

v−

{D
Hf

}
where v is a variable, ηv its expression level, D (resp. H) the discrete (resp. hybrid) condition,
H ′i,f ≡ Hf [ηv\ηv + 1] ∧ Φ+

v (∆t) ∧ F(∆t) ∧ ¬W+
v ∧ A(∆t, a) ∧ Jv (Incrementation rule), or

H ′i,f ≡ Hf [ηv\ηv − 1] ∧ Φ−v (∆t) ∧ F(∆t) ∧ ¬W−v ∧ A(∆t, a) ∧ Jv (Decrementation rule),

2 Available at: http://www.i3s.unice.fr/~comet/DOCUMENTS/hybridisation.tar.gz.

http://www.i3s.unice.fr/~comet/DOCUMENTS/hybridisation.tar.gz
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both detailed in Appendix A, ∆t the time spent inside the current discrete state and a an
assertion. The last inference rule is the sequential composition rule:

Sequential composition rule: {Q1} p1 {Q3} {Q3} p2 {Q2}
{Q1} p1; p2 {Q2}

where Q1, Q2, Q3 are properties of the form (D,H) having the role of pre- and postconditions,
and p1 and p2 are particular paths deduced from biological experiments.

The two following axioms, based on the semantics of the hybrid model, complement the
inference rules:

ηv ≥ 0 ∧ ηv ≤ bv (the expression level has to be in its definition domain),
Cv,ω,ηv ×Cv,ω,ηv+1 ≥ 0 (for two neighbour qualitative states, if the variable v is controlled
by the same resources, then the celerities of v cannot be of opposite signs).

4.2 Soundness of the Hoare logic
The following lemmas are useful for the proof of soundness. Lemma 15 states that the time
spent in the current discrete state is equal to the time mandatory, for the variable which
changes first, to reach its border. Lemma 16 expresses the fact that the truth value of a
formula remains the same after a continuous transition.

I Lemma 15 (Time Spent in a Discrete State). Let h be a hybrid state. If h � (D1, H1) and
H1 ⇒ Φ+

v (∆t) ∧ F(∆t) (resp. H1 ⇒ Φ−v (∆t) ∧ F(∆t)), then: δfirst
h = δh(v) = ∆t.

Proof. Let us consider H1 ⇒ Φ+
v (∆t)∧F(∆t) (resp. H1 ⇒ Φ−v (∆t)∧F(∆t)). Let h = (η, π)

be a hybrid state such that h � (D1, H1).
From the definition of the sub-property Φ+

v (∆t), see Appendix A.2, variable v reaches its
upper border (πi′v = 1) and its celerity is positive (Cv,ω,n > 0). Let h′ = (η, π′) be the hybrid
state where v first touches this border. The time spent in the current qualitative state η
corresponds to the time necessary to reach the border where v changes its qualitative level.
Indeed, from Φ+

v (∆t) we deduce:

πiv = πi
′

v − Cv,ω,n ·∆t = 1− Cv,ω,n ·∆t, that is, ∆t = 1− πiv
Cv,ω,n

.

From Def. 4, we have ∆t = δh(v).
Finally, the sub-property F(∆t), see Appendix A.4, expresses the fact that if a variable

u different from v reaches its border before v, u faces an internal or external wall (see
Appendix A.3). Thus, since δh(v) = ∆t and according to Def. 6, we deduce δfirst

h = δh(v) =
∆t. J

I Lemma 16 (Preservation of Formulas Evaluation Along a Continuous Transition). Let us
consider a Hoare triple {(D′, H ′i,f )} p {(D,Hf )} obtained by the weakest precondition calculus,
a hybrid state h = (η, πi), and finally the unique continuous transition h→ h′ starting from
h. If h � (D′, H ′i,f ), then h′ � (D′, H ′i,f ).

Proof.
Since h and h′ belong to the same discrete state, the expression levels of all variables are
the same. The evaluation of D′ in h′ is then the evaluation of D′ in h.
The atoms of H ′i,f (see subformulas in Appendix A) concern either celerities or discrete
or continuous coordinates of different points of the trajectory (entrance and arrival points
in different discrete states). These points are either outside the current discrete state, or
are the points h or h′.
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Moreover, the celerities are constants, the points of the trajectory which do not belong to
the current discrete state as well as the points h and h′ do not change.

The interpretation of (D′, H ′i,f ) is therefore the same in h and h′. J

The soundness of the modified Hoare logic, adapted for the hybrid modelling framework,
means that if a Hoare triple is built in agreement with the inference rules (Def. 14) then this
Hoare triple is satisfied according to the semantics of Hoare triples (Def. 13).

I Theorem 17. The hybrid Hoare logic is sound.

The proof is detailed in Appendix B.

5 Example: Simplified Circadian Cycle

The circadian rhythm is a biological process regulating cells of an organism with a 24-hour
period and controlling the electrical and metabolic processes.

5.1 Presentation of the Circadian Cycle

In mammals, the main circadian cycle is located in the suprachiasmatic nucleus and regulates
the peripheral clocks. It is affected by light, acting like a synchronizer called Zeitgeber, which
means “giver of time”.

The circadian rhythm is mainly controlled by two protein complexes which are PER/CRY
and BMAL1/CLOCK. When light appears, the BMAL1/CLOCK complex activates the
per and cry genes by binding the E-box response element in the promoter upstream these
genes [12]. The PER and CRY proteins are synthesized and dimerised in the cytoplasm.
During night, this complex is found inside the nucleus and inhibits BMAL1/CLOCK implying
a negative feedback of PER/CRY on its genes. Finally, PER/CRY is degraded by proteasome.
The circadian cycle completes and a new one begins with the transcription of genes bmal1
and clock.

We decided to use an interaction graph which focuses on the per and cry components,
as represented in Fig. 1. The Light/Day cycle (whose duration is 12h/12h) is represented
by the node named L. (Let us notice that the node labelled X is a modelling artefact to
get an oscillating feature for light.) This node enhances the per and cry genes (modelled
with node g) when the light is activated, that is, when the qualitative value of L is at level 1.
These genes synthesize their proteins which complex and spread inside the nucleus. When
the complex is activated (which is modelled by an expression level of 1 for pc), those genes
are inhibited, blocking the synthesis during night. Because genes are disabled, the protein
complex will be degraded by proteasome and a new cycle begins with the reactivation of the
genes. All four nodes of this model have two qualitative levels of expression named 0 (not
active) and 1 (active).

5.2 Hoare Triple and Results

The steps of the circadian clock explained in Subsec. 5.1 are represented in the Hoare Triple
below. The time spent in each qualitative state comes from biological information obtained
during a light/day cycle of 12h/12h. The assertions slide+(g) and slide+(pc) (resp. slide−(L))
characterize a saturation (resp. complete degradation) of g and pc (resp. of L, corresponding
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Table 1 Constraints obtained by computation of the weakest precondition. Left: Constraints on
celerities of g and pc. Right: Constraints on celerities of L and X.

Constraints on celerities of g and pc

Cg,∅,0 < 0 0< Cg,{pc,L}0

Cg,∅,1 < 0 0<Cg,{pc,L},1 <
1

5.53
Cg,{L},0 < 0 Cpc,∅,0 < 0
Cg,{L},1 < 0 Cpc,∅,1 = − 0.12

0.9
Cg,{pc},0 > 0 0< Cpc,{g},0 < 1

6.13
Cg,{pc},1 > 0 0< Cpc,{g},1 < 1

5.4

Constraints on celerities of L and X

− 1
0.6 < CL,∅,0 < 0 CX,∅,0 < 0

CL,∅,1 < 0 − 1
6 6 CX,∅,1 < 0

0 < CL,{X},0 0 < CX,{L},0 <
1

5.1
0 < CL,{X},1 0 < CX,{L},1

to the beginning of the night). This information is summed up in the following Hoare triple:

{
D8
H8

}0.9
>
pc−

;

4.5
>
g+

;

0.6
>
X+

;

 5.53
slide+(g)
pc+

;

0.47
>
L−

;

 5.4
slide+(pc)

g−

;

 0.6
slide−(L)
X−

;

 6
>
L+

{D0
H0

}

where
{
D0 ≡ (ηg = 0) ∧ (ηpc = 1) ∧ (ηL = 1) ∧ (ηX = 0)
H0 ≡ (πg = 0.12) ∧ (πpc = 0.12) ∧ (πL = 0) ∧ (πX = 0)

Using this Hoare triple, we compute via the backward strategy the weakest precondition
iteratively by crossing the intermediate states of the path. In addition, because the behaviour
is cyclic, we know that the starting hybrid state of this path is equal to the finishing one. The
provided implementation allows us to identify and simplify the constraints of the celerities
obtained through our weakest precondition calculus. After some automatic and manual
simplifications, we finally obtain the constraints summed up in Table 1 which make the
known cyclic behaviour possible.

In order to illustrate the validity of this process, we used the constraint solver Ibex3

to extract values satisfying the previous constraints. This constraint solver takes as input
only conjunctions. Thus the obtained constraints are transformed in a disjunctive normal
form (we obtained 3 terms in disjunction) and all terms of this disjunction are successively
given to Ibex to extract possible values for variables. Amongst the values returned by Ibex,
we arbitrarily chose one set of possible values to be injected in the model for simulation.
Interestingly, the obtained constraints fully characterize one of the hybrid states along the
limit cycle, which gives us an initial state for the simulation.

The simulated traces have then to be compared to biological experimental data. Because
such data for the PER/CRY protein complex inside the nucleus are not published, the
simulation (Fig. 4) is compared to experimental data of genes per1, per2, cry1 and cry2 as
well as their respective proteins taken separately [13]. We noticed that the maximal activity
of per genes of our simulation and experimental data occurs at the end of a day, and the
curves of proteins are maximal during night at the same time slot for both curves. Thus our
simplified circadian cycle model is consistent with biological experimental data although we
arbitrarily used parameter values satisfying constraints. This simulation reinforces reliability
of our formalism for determining constraints.

3 See http://www.ibex-lib.org/.
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Figure 4 Model simulation based on arbitrarily chosen celerities satisfying the deduced constraints.
The plain (resp. dashed) line represents the PER/CRY complex (resp. gene) activity.

6 Conclusion

In this paper, we have developed a suitable approach to determine constraints on the
parameters of a linear hybrid automaton. Our hybrid Hoare logic combined with experimental
biological traces including precise chronometrical information leads to constraints on celerities
which have to be satisfied to allow the model to represent the observed behaviour (HCSP [18]
is a formalism similar to ours but does not include chronometrical information along the
path). The obtained constraints via the weakest precondition calculus are analysed using
the solver Ibex which extracts all admissible intervals of celerities. Choosing celerity values
satisfying these constraints leads to a model which exhibits simulation traces similar to the
aforementioned experimental data, this approach has been tested on the simplified circadian
clock model.

The soundness of our hybrid Hoare logic is proved which means that simulations obtained
with parameters satisfying the computed precondition leads to simulated traces which are in
concordance with the path representing the experimental data.

This work opens many outlooks. Generally, it is useful to prove the completeness of
the weakest precondition calculus. Because of the continuous terms (real numbers), our
hybrid Hoare logic cannot be complete regarding all possible formulas. Nevertheless, we
think that our hybrid Hoare logic should be complete regarding closed propositional formulas
constructed from polynomial (in)equations and logical connectors. The decidability of the
theory of real closed fields implies that the precondition constraints can be analysed; it does
not mean that for each semantically correct Hoare triple, there exists a proof tree built on
our inference rules. Completness of our framework would mean that if a Hoare triple is
semantically correct and if pre- and postconditions are expressions in the first order language
of real closed fields, then there exists a proof tree for this Hoare triple. Finally, because of
the combinatorial explosion of the size of the weakest precondition formula and despite some
on-the-fly simplifications, it could be interesting to investigate other ways to simplify the
result in some particular cases.

Acknowledgements. We are grateful to F. Delaunay for having shared his expertise on the
circadian clock and to E. Cornillon and G. Bernot for fruitful discussions about the hybrid
formalism.
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A Appendix: Sub-properties of the Weakest Precondition Calculus

In this appendix, we detail each subformula of the weakest precondition in Def. 14.

A.1 Weakest Precondition
In order to fully compute the weakest precondition, it is required to label the fractional parts
of the states mentioned in the properties. For this, we use labels called below f (final), i
(initial) and m (intermediate). Moreover, by convention, we use π′ (resp. π) to specify the
fractional part of the exit from the current discrete state (resp. entrance into the current
discrete state).

Let us notice that all the following properties depend on the indices i and f used in
Def. 14, although for readability issues we did not mention them on the names of each
sub-property. Furthermore, for a given index i, we call by convention πiu (resp. πiu

′) the
fractional part of the entering (resp. exiting) state inside the discrete state i.

Finally, for all variable u ∈ V and all ω ⊂ R−(v) subset of predecessors of u, we define:

Φωv ≡
( ∧
m∈ω

ϕm

)
∧
( ∧
m∈R−1(v)\ω

¬ϕm
)
.

In other words, Φωv is true in a state h if and only if the resources of u are exactly ω, that is,
ρ(h, v) = ω.

A.2 Discrete Transition to the Next Discrete State
For all component v ∈ V , Φ+

v (∆t) (resp. Φ−v (∆t)) describes the conditions in which v increases
(resp. decreases) its discrete expression level after ∆t units of time: its celerity in the current
state must be positive (resp. negative) and its fractional part only depends on ∆t in the way
given at the very end of Section 2.

Φ+
v (∆t) ≡ (πiv

′ = 1) ∧
∧

ω⊂R−(v)
n∈J0,bvK

(( Φωv ∧
(ηv = n)

)
⇒ (Cv,ω,n > 0) ∧ (πiv = πiv

′ − Cv,ω,n ·∆t)
)
,

Φ−v (∆t) ≡ (πiv
′ = 0) ∧

∧
ω⊂R−(v)
n∈J0,bvK

(( Φωv ∧
(ηv = n)

)
⇒ (Cv,ω,n < 0) ∧ (πiv = πiv

′ − Cv,ω,n ·∆t)
)
.

A.3 Internal and External Walls
For all component u ∈ V , W+

u (resp. W−u ) states that there is a wall preventing u to
increase (resp. decrease) its qualitative state. This wall can either be an external wall EW+

u

(resp. EW−u ) or an internal wall IW+
u (resp. IW−u ). Furthermore, Φω′u+ (resp. Φω′u−), which is

required in these subformulas, is true if and only if the set of resources of u is exactly ω′ in
the state where u is increased (resp. decreased) by 1.

W+
u ≡ IW+

u ∨ EW+
u and W−u ≡ IW−u ∨ EW−u

where:

EW+
u ≡ (ηu = bu) ∧

∧
ω⊂R−(u)

(Φωu ⇒ Cu,ω,bu > 0) ,

EW−u ≡ (ηu = 0) ∧
∧

ω⊂R−(u)

(Φωu ⇒ Cu,ω,0 < 0) ,
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IW+
u ≡ (ηu < bu) ∧

∧
ω,ω′⊂R−(u)
n∈J0,buK

(  (ηu = n) ∧
(m = n+ 1) ∧

Φωu ∧ Φω′u+

⇒ Cu,ω,n > 0 ∧ Cu,ω′,m < 0
)
,

IW−u ≡ (ηu > 0) ∧
∧

ω,ω′⊂R−(u)
n∈J0,buK

(  (ηu = n) ∧
(m = n− 1) ∧

Φωu ∧ Φω′u−

⇒ Cu,ω,n < 0 ∧ Cu,ω′,m > 0
)
,

Φω
′

u+ ≡ (ηu < bu) ∧
∧

n∈J0,buK

(
(ηu = n)⇒ Φω

′

u [ηu\ηu + 1]
)
,

Φω
′

u− ≡ (ηu > 0) ∧
∧

n∈J0,buK

(
(ηu = n)⇒ Φω

′

u [ηu\ηu − 1]
)
.

A.4 First Changing Variables
F(∆t) states that all components that are not first changing variables must either reach
their border after the first changing variables, or face an internal or external wall.

F(∆t) ≡
∧

u∈V \first(hi)



 ∧
ω⊂R−(u)
n∈J0,buK

 (ηu = n) ∧ Φωu ∧
Cu,ω,n > 0 ∧

πiu > πi
′

u − Cu,ω,n ·∆t

⇒W+
u

∧
 ∧
ω⊂R−(u)
n∈J0,buK

 (ηu = n) ∧ Φωu ∧
Cu,ω,n < 0 ∧

πiu < πi
′

u − Cu,ω,n ·∆t

⇒W−u



.

A.5 Hybrid Assertions
The sub-property A(∆t, a) allows one to translate all assertion symbols given about the
continuous transition related to the instruction (celerities and slides) into a property:

A(∆t, a) ≡
∧

k ∈ J1, nK
ωk ∈ R−(vk)
nk ∈ J0, bvk K

 ∧
l ∈ J1, nK

(
(ηvl = nl) ∧ Φωlvl

)
⇒ a


Cvl\Cvl,ωl,nl

slide(vl)\Svl,ωl,nl(∆t)
slide+(vl)\S+

vl,ωl,nl
(∆t)

slide−(vl)\S−vl,ωl,nl(∆t)




where a is the assert part of the instruction P = (∆t, a, v±), and, for all variable u ∈ V :

S+
u,ω,n(∆t) ≡ (πiu

′ = 1) ∧ (πiu > πiu
′ − Cu,ω,n ·∆t) ,

S−u,ω,n(∆t) ≡ (πiu
′ = 0) ∧ (πiu < πiu

′ − Cu,ω,n ·∆t) ,

Su,ω,n(∆t) ≡ S+
u,ω,n(∆t) ∨ S−u,ω,n(∆t) .

These sub-properties indicate that the exit position of the corresponding variable u is located
on a threshold. In addition, the constraints πiu > πiu

′−Cu,ω,n ·∆t and πiu < πiu
′−Cu,ω,n ·∆t

mean that the duration before reaching the border is lower that the one spent inside the
current state (∆t). The sign of the celerity of the sliding variable u is constrained by the
sub-property F and the constraint πiu > πiu

′ − Cu,ω,n ·∆t (resp. πiu < πiu
′ − Cu,ω,n ·∆t) of

the sub-property S+
u,ω,n(∆t) (resp. S−u,ω,n(∆t)) or Su,ω,n(∆t).
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A.6 Junctions

A.6.1 Continuous Junctions Inside Discrete States
For all component v ∈ V , and for a continuous transition between two hybrid states h = (η, π)
and h′ = (η, π′), CJ v establishes a relationship between the fractional parts and the celerity
of the variable v. If the exit fractional part of v is 0 or 1, the sign of the celerity can be
deduced and the time mandatory to v to reach the border is lower than the time spent in
the current discrete state. If v does not reach its border, the exact position of the entrance
fractional part of v can be deduced from the exit position, the time spent in the current
discrete state and the celerity.

CJ v ≡


(π′v = 0) ⇒ Cv,ρ(h,v),ηv < 0 ∧ (πv ≤ π′v − Cv,ρ(h,v),ηv × δfirst

h )
∧ (π′v = 1) ⇒ Cv,ρ(h,v),ηv > 0 ∧ (πv ≥ π′v − Cv,ρ(h,v),ηv × δfirst

h )
∧ (0 < π′v < 1) ⇒ (πv = π′v − Cv,ρ(h,v),ηv × δfirst

h ) .

A.6.2 Discrete Junctions Between Discrete States
For all component v ∈ V , and for a discrete transition happening on component v between
an initial and a final state corresponding to the indices i and f , DJ v establishes a junction
between the fractional parts of these states. This formula states that the fractional part
of v switches from 1 to 0 for an increase, or from 0 to 1 for a decrease, whereas all other
fractional parts are unchanged:

DJ v ≡ (πfv = 1− πiv
′) ∧

∧
u∈V \{v}

(πfu = πiu
′) .

Finally, we define:

Jv ≡ DJ v ∧
∧
u∈V
CJ u

These relationships can be easily observed on Fig. 3 on the discrete transition in the
centre: all fractional parts are left the same, except for the variable performing the transition.

B Soundness Proof

The soundness proof is made for each inference rule which depends on its corresponding
assertion (Def. 11). Each of them is treated according to the assertion type. We focus here
on the proof of the soundness of the incrementation rule since the proof of the soundness of
the decrementation rule is similar, and that the one for the sequential composition rule is
classical. In this subsection, we consider the Hoare triple associated with the incrementation
rule, described in Subsection 4.1, and a hybrid state h = (η, π) satisfying the precondition.

B.1 First Case: a = >
(α) Let us first prove the existence of the continuous transition. According to the sub-
property Φ+

v (∆t), π′v = 1 (arrival at the top border of v), Cv,ω,n > 0 and π′v = πv+Cv,ω,n×∆t
(the time spent in the current state is ∆t) if Φωv and ηv = n are satisfied. Let us also consider
the unique hybrid state h′ = (η, π′) such that the continuous transition h→ h′ exists. Thus,
according to Lemma 15 and Definition 11, (h, h′) � (∆t,>).
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(β) Let us now prove the existence of the discrete transition. Let us simplify the
subformula ¬W+

v ≡ ¬EW+
v ∧ ¬IW+

v satisfied at h′. We have:

¬EW+
v ≡ ¬

[
(ηv = bv︸ ︷︷ ︸

⊥

) ∧
∧

ω⊂R−(v)

(Φωv ⇒ Cv,ω,bv > 0)
]
≡ >

which is evaluated to true because v increases its level (v+ is the discrete path atom) and
thus is not already at its maximal discrete value. Thus, ¬W+

v ≡ ¬IW+
v :

¬W+
v ≡ ¬

(ηv < bv) ∧
∧

n∈J0,bvK
ω,ω′⊂R−(v)

( (ηv = n)∧
(m = n+ 1)∧

Φωv ∧ Φω′v+

⇒
 Cv,ω,n > 0

∧
Cv,ω′,m < 0

)


≡ ¬(ηv < bv)︸ ︷︷ ︸
⊥

since ηv < bv

∨
∨

n∈J0,bvK
ω,ω′⊂R−(v)

¬
( (ηv = n)∧

(m = n+ 1)∧
Φωv ∧ Φω′v+

⇒
 Cv,ω,n > 0

∧
Cv,ω′,m < 0

)

Amongst all premises of the remaining disjunctions, only one is satisfied because the current
qualitative state and the next state have a unique qualitative level (ηv = n and m = n+ 1)
and a unique set of resources (Φω

v and Φω′

v+). Replacing ω and ω′ by the right resources of
the corresponding states ρ(η, v) and ρ(η′′, v) and naming η′′ the next state, we deduce:

¬W+
v ≡ ¬

(
¬

 (ηv = n) ∧
(m = n+ 1) ∧
Φρ(η,v)
v ∧Φρ(η

′′,v)
v+


︸ ︷︷ ︸

⊥

∨

 Cv,ρ(η,v),ηv > 0
∧

Cv,ρ(η′′,v),η′′v < 0

)≡
 Cv,ρ(η,v),ηv≤0

∨
Cv,ρ(η′′,v),η′′v ≥0



However, since Φ+
v (∆t) is true at h′, we have Cv,ρ(η,v),ηv > 0. Thus ¬W+

v is equivalent to
Cv,ρ(η′′,v),η′′v ≥ 0 and the previous inequation is true since ¬W+

v is satisfied at h′. Thus the
variable v reaches its threshold in ∆t time (Φ+

v (∆t)) and crosses it (¬W+
v ) allowing a discrete

transition h′ → h′′ which increases v because the signs of the celerities of v in h′ and in h′′
are the sames.

(γ) Let us finally prove that the postcondition is satisfied after the elementary path. We
previously proved that there exists a unique continuous transition h→ h′ and a discrete one
h′ → h′′. Since h � (D[ηv\ηv+1], H ′i,f ), we deduce with Lemma 16: h′ � (D[ηv\ηv+1], H ′i,f ).
The discrete transition increases the variable v (η′′v = ηv + 1), we deduce that:

h′′ � (D[ηv\ηv+1][ηv\ηv−1], H ′i,f [ηv\ηv−1]), that is, h′′ � (D,H ′i,f [ηv\ηv−1])

The hybrid condition H ′′ ≡ H ′i,f [ηv\ηv − 1] is satisfied in h′′:

H ′′ ≡
(
Hf [ηv\ηv+1] ∧ Φ+

v (∆t) ∧ F(∆t) ∧ ¬W+
v ∧ A(∆t, a) ∧ Jv

)
[ηv\ηv−1]

≡ Hf ∧
(

Φ+
v (∆t) ∧ F(∆t) ∧ ¬W+

v ∧ A(∆t, a) ∧ Jv
)

[ηv\ηv − 1]

So, the discrete and hybrid conditions D and Hf are satisfied at h′′ and the postcondition is
verified.
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B.2 Second Case: a = slide+(u)

(α) Similarly to the first case, we consider the unique hybrid state h′ = (η, π′) such that
the continuous transition h→ h′ exists. The time spent in the current qualitative state is
also ∆t (sub-property Φ+

v (∆t)). Since a 6= >, the sub-property A plays a crucial rule:

A(∆t, a) ≡
∧

k ∈ J1, nK
ωk ∈ R−(vk)
nk ∈ J0, bvk K

 ∧
l ∈ J1, nK

(
(ηvl = nl) ∧ Φωlvl

)
⇒ a


Cvl\Cvl,ωl,nl

slide(vl)\Svl,ωl,nl(∆t)
slide+(vl)\S+

vl,ωl,nl
(∆t)

slide−(vl)\S−vl,ωl,nl(∆t)




Amongst all premises of these conjunctions, only one is satisfied because the current qualitative
state has a unique qualitative level for each variable vl (ηvl = nl) and a unique set of resources
for each vl (Φωlvl ). We can then replace slide+(u) by the sub-property S+:

S+
u,ω,n(∆t) ≡ (πiu

′ = 1) ∧ (πiu > πiu
′ − Cu,ω,n ·∆t)

where ω is the resources of u and n its current qualitative level. This formula means that the
exit position of the current qualitative state is on the top border (πiu

′ = 1). We then deduce:

Cu,ω,n ·∆t > 1− πiu

∆t > 1− πiu
Cu,ω,n

= δh′(u) because 1− πiu ≥ 0, ∆t ≥ 0 and Cu,ω,n > 0

According to Lemma 15, we have δh′(v) = δfirst
h′ = ∆t and so δh′(v) > δh′(u). In other words,

u reaches its top border before v reaches its one. Thus, the continuous transition h→ h′ is
such that (h, h′) � (∆t, a), see Definition 11.

(β and γ) The proof of the discrete transition existence from h′ is similar to the first case.
This transition leads to h′′ which satisfies the postcondition h′′ � (D,H) (see the stages β
and γ of the first case).

B.3 Third Case: a = Cu � c with c ∈ R

(α) The sub-property A(∆t, a) allows one to replace the celerity Cu in the assertion a by
the celerity indexed by the relevant set of resources of the current qualitative state. So, we
deduce Cu,ρ(η,u),ηu � c. From Definition 11, the unique continuous transition h→ h′ where
h′ = (η, π′) is such that (h, h′) � (∆t, a).

(β and γ) The proof of the discrete transition existence from h′ is similar to the first case.
This transition leads to h′′ which satisfies the postcondition h′′ � (D,H) (see the stages β
and γ of the first case).

B.4 Fourth Case: a = a1 ∧ a2

(α) From the previous cases, it is possible to construct two hybrid states h1 and h2 such
that (h, h1) � (∆t, a1) and (h, h2) � (∆t, a2). Because the continuous transition starting at
h is unique, h1 = h2. Thus, (h, h1) � (∆t, a1 ∧ a2).
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(β and γ) The proof of the discrete transition existence from h′ is similar to the first case.
This transition leads to h′′ which satisfies the postcondition h′′ � (D,H) (see the stages β
and γ of the first case).

This proof is generalisable for all logical connectives and recursively to all formulas.

TIME 2017
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