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The nonlocal expression proposed by Luciani-Mora-Virmont is implemented into a 1D fluid model for the
scrape-off layer. Analytic solutions for heat equation are discussed as well as the impact of sheath boundary
conditions on the continuity of the temperature profile. The nonlocal heat flux is compared to Spitzer-Hérm
heat flux for different collisionality.
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1 Introduction

At the entrance of the scrape-off layer, the plasma collisionality * defined as the ratio between the field line
length and collision mean free path is found to be of order unity. Despite this low collisionality, tokamak edge
plasma modelling relies mostly on the fluid approach and collisional closures that are theoretically only valid at
high collisionality. Departure between Braginskii fluid description and kinetic modelling have been highlighted,
in particular an underestimation of temperature gradient by the fluid approach [4]. Several kinetic corrections
have been proposed to improve plasma description at intermediate collisionality [1,3,6,7]. We investigate in this
contribution kinetic corrections to the local Spitzer-Harm (Braginskii) closure for the heat flux; more precisely,
we focus on applying the nonlocal expression for the heat flux proposed by Luciani-Mora-Virmont [8] to scrape-
off layer physics. We adapt in particular boundary conditions and implement the nonlocal expression into a 1D
hydrodynamic model for the scrape-off layer.

2 Nonlocal formulation for heat flux

In order to introduce long range features to the heat flux, we plan to use in this contribution the nonlocal expres-
sion for the heat flux expressed in Equation 1. This formulation has been proposed in a broad range of references
including [2,4, 8].

avel@) = [ asn(@ule, )i’ M
where ggyr denotes the Spitzer-Hérm expression for the heat flux:
qsi(z) = —k(2)V T(x) = —koT(2)*/ >V T() 2

and w(z, z') is a kernel describing the space correlation between the temperature gradient and the heat flux. Here,
the kernel is an exponential decay, Equation 3, where the decay length is given by the collision mean free path.

w(x,2') = ! exp (—l S (") d |> 3)

2A(z") n(z")A(z')
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This kernel tends to a Dirac centered on x for high collisionality i.e. when A — 0. In this case, one recovers the
local Fourier law. For flat density profiles and neglecting the temperature dependence upon the mean free path,
the kernel w(z, z") reduces to

1 |z — 2|
— 4
ilea') = grew (-57) @
In this case, the nonlocal heat flux given by Equation 1 can be re-written in the form of a convolution product of
Spitzer-Harm heat flux and an exponential kernel, see Equation 5.

ina@) = [ gye ( Y |> asn(@')da’ = (@ + gsm) (@) ®

In order to emphasize the behavior of such a nonlocal expression for the heat flux, let us compute analytical
solutions for the heat equation 0.qnr, = S in a periodic 1D domain. We solve the equation in the Fourier space,
q(x) = 1/27 [*_G(k)e' ™, the Fourier transform of the convolution product being the product of the Fourier
transforms:
ikFlgne] = FI[5]

kK2 F[@0)F[T) = F[S] (6)
where we neglected the dependence of the temperature on . The Fourier transform of the exponential kernel is
given by a Lorentzian:

1

Tl = e @
Reporting in Equation 6 gives
1 A2
FIl=—7+—]FIS 8
1=z + 2 ) 718 ®

Back to the real space, one finds

T(x):T(O)—&—m(&IT()—aS ) ( /da:/ da" S ”>+):S(x) ©)

The temperature profiles is thus obtained by summing the double integration of the source (high collisional
diffusive behavior) and the source itself ponderated by A2 /x. The last term can be neglected at high collisionality.
At low collisionality when A is not zero, the shape of the source is recovered in the temperature profile and if the
source is not continuous (e.g. punctual sources modeled as Dirac distributions), neither is the temperature profile.
Figure 1 shows temperature profiles for punctual source and sink S(x) = §(z — x) — §(x — ) for different
value of the collisionality. At low collisionality, the temperature profile is continuous. An analytic solution is
also found with continuous gaussian sources. In this case, the solution is continuous at any collisionality. From
this analytical analysis, one finds that the nonlocal formulation for the heat flux does not guaranty the continuity
of the temperature profile. However, as long as the source is continuous (which is the case in most applications),
so is the temperature profile. What about the continuity when adding non-periodic boundary conditions which is
necessary for an application to the plasma scrape-off layer?

3 Boundary conditions

3.1 Heat equation with Dirichlet boundary conditions

In order to study the continuity of the temperature profile for a tokamak SOL application. Let us consider first a
simple application to the nonlocal heat flux expression to a finite 1D domain of length L with Dirichlet boundary
conditions:

{ OzGnr =0 (10)

T(O) = Thot and T(LH) = Tcold
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Fig. 1 Temperature profiles obtained by solving heat equation with simplified nonlocal heat flux expression and punctual
(left) and gaussian (right) heat source and sink.

Assuming a constant temperature gradient (0,7 = «) and reporting in the nonlocal heat flux expression, one

finds:
LH 1 _ !
gnr(z) = —/0 2 OXP (_|x )\I |> Kkada!

K T Ly—x
o [exp (-2 +exp <_ . ) _ 2] (11

In order to obtain a constant heat flux consistant with d,,¢ = 0, one needs to complete the temperature gradient
so as to cancel the two exponential functions in Equation 11. This is made possible by adding dirac functions:

0,T = a(1 + Ado(x) + Ao, () (12)

One finds with this temperature gradient expression ¢ = —ak. The temperature is obtained by integrating
Equation 12 and considering boundary conditions:

T(x) = Thot + o(z + AH(z) + AH (z — L)) (13)
where H (z) denotes the Heaviside function. The value of « is found evaluating Equation 13 in L

Tcold - Thot
= feold = “hot 14
“T L 2 (14

Solutions are plotted for different values of A\ on Figure 2. Like with the punctual sources, one finds once again
that the temperature profile is not continuous. The discontinuity appears this time at the domain boundary. In
order to use the nonlocal kernel combined with an hydrodynamic approach of the plasma, one needs to guaranty
the continuity of the temperature including at the boundary. In the following paragraph, we propose a practical
way to treat the sheath boundary condition at the ends of the magnetic field line in order to guaranty the continuity
of the temperature profile.

3.2 Nonlocal boundary conditions for the sheath

From the previous section, we observe that the use of non-local expression for the heat flux may lead to disconti-
nuities in the temperature profile at the domain boundary. The temperature can be decomposed as 7' = T+ Tpe
where 7T is continuous; by definition, we impose 9,7(0) = 9,T (L) = 0. The temperature gradient being
expressed by

9,T = 0,T + 0,Tpc = 0, T + 9,T(0)3(x) + 0, T(Ly)d(x — Ly) (15)
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Fig.2 Analytical solution to the heat equation with the simplified nonlocal expression for the heat flux in a finite 1D domain
with Dirichlet boundary conditions. The solutions are plotted for different values of the mean free path A.

Reporting Equation 15 in the nonlocal expression for the heat flux gives

anr,r(z) = qyp 7(2) + aBo,o exp (-%) +gBc,L €xp <$ /\Ll) (16)
This expression exhibits a first term describing the nonlocal heat flux computed from the continuous temperature
gradient 9, T in the plasma. The two last terms represent the impact of the boundary condition in the heat flux,
effect that decays exponentially away from the wall on a typical length given by the collisional mean free path.
The values gpc,0 and gpc, L, are adjusted to match the sheath boundary condition for the heat flux, namely
gse = ynv) T at both ends where  is the so called sheath transmission coefficient. One has thus at both ends of
the field line:

L
POUOTO) = s 0+ aca + ancs, exw (-5 (7
L
(Lo (LT (Ly) = dnp7(L)) +acoexp (—)\') + 4oL, (18)
that is denoting v* = L;|/X and 3 = exp(—v*):

95¢(0) = dnp,7(0) = B(dse (LH) - ‘jNL,T(LH))
gBco = -5 (19)

Gse(Ly) — dyp 7(Ly) — B (qse(O) - qNL,T(O))
qBC,L, 1= (20)

4 Application to 1D SOL modelling

The nonlocal model with the above mentioned sheath boundary condition is applied to simulate a 1D SOL hy-
drodynamic. The following system of Equations is solved for mass, parallel momentum, ion and electron energy
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balance:

on + V- (nv“g) =5,

Oy (mynv)) + V- (m m)H ) = =V |pi + qnE)
Oy (%nTi + %mmvlo +V- ([ nT; + mlv”} va) +V- ( Hb) = qnv E)| — f—(T T.)+ Sgi
Oy (%nTe) +V- (gnTeva> +V- (qub) = —env B — f—(T T;) + Ske

2D
where £ = —(V)p.)/(en). The following boundary conditions apply:
Neumann : Vn(0) = Vn(L)) =0
Bohm : v)(0) < — \/w and v (L)) > L)+ Tily) (22)

m;

Sheath heat flux :  g;(¢)| = ('yl (e) — 7) nlieyv) at0and L) location

where v; = 2.5 and . = 4.5. First, simulations are run with a fixed and homogeneous particle source S, (x) =
S0, The energy source is also taken homogeneous (Sg. () = S%e7i) and the intensity of the energy source
is scanned to change plasma temperature and thus plasma collisionality. Figure 3 shows electron temperature
profiles computed for different collisionalities and using different expressions for the heat flux:

e Spitzer-Harm: ¢ = qsg = —ksy V|| T

e Flux limited Spitzer-Harm: ¢ = qpp, = (qE}I + qulm)fl with ¢naz = amencg where ¢, = /T./m. and
a=0.15

e Non-local heat flux ¢ = qn
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Fig. 3 Electron temperature profiles for different heat flux expressions (solid line: nonlocal, dashed line: Spitzer-Hérm,
dot-dashed line: Flux limited Spitzer-Hérm). The particle and energy sources are homogeneous.

To go further and see the impact of the shape of the source, we now consider a particle source located close to
the ends of the field line to simulate recycling:

Sp(z) = S° [exp <_0.ij|> + exp ( %'1; ) +0. 005} (23)

For the energy sources, we use Gaussian shaped sources located at the middle of the field line. The width of the
energy source is controled by Ag.

2
Spes = S0 exp [ (- HL (24)
” et /\E 2)\E
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Figure 4 shows simulation results for Az = 0.1L;. Once again, the intensity of the source is ramped to change
the collisionality.
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Fig. 4 Electron temperature profiles for different heat flux expressions (solid line: nonlocal, dashed line: Spitzer-Harm,
dot-dashed line: Flux limited Spitzer-Hédrm). The particle and energy sources are peaked.

5 Discussion

On Figure 3 and Figure 4, for high and medium collisonality, there is almost no difference in the temperature
profiles obtained considering either the nonlocal expression or the Spitzer-Hérm expression. At medium colli-
sionality noticeable effect of the flux limiter leads to increasing temperature gradients for the same heat flux. This
leads to an increase of the upstream temperature. Such an increase of the upstream temperature is not observed
using the nonlocal heat flux. Figure 5 shows electron heat fluxes calculated from the electron temperature profile
obtained at high collisionality with the nonlocal heat flux. One finds a relatively good agreement between the
different heat flux expressions, in particular between Spitzer-Hdarm and the nonlocal expression. All heat flux
expressions gives values much below the maximum heat flux value plotted in red as ¢ax = 0.15qFg with the
free streaming heat flux beging given by qrs = nemec® with ¢, = /T, /me..

The situation is more interesting at lower collisionality. The effect of the nonlocal heat flux is more pro-
nounced, in particular when considering peaked sources. On Figure 4, it can be noticed that the temperature
profile obtained with the nonlocal heat flux expression shows the superposition of the shape of the sources (tem-
perature peak in the middle of the field line as well as temperature drop close to the wall due to the plasma energy
dilution induced by the particle source) on top of a more standard temperature decay that is observed consider-
ing diffusive expression for the heat flux. This superposition of the diffusive solution and the source shape was
already found analytically in Equation 9. Figure 5 compares heat flux values computed as a post-treatment from
the electron temperature profile obtained at low collisionality with peaked sources and with the nonlocal heat
flux expression. Unlike the nonlocal expression, one notices that Spitzer-Harm expression gives value way above
Gmax- The nonlocal heat flux expression plays thus actively as a flux limiter. Likewise, one notices obviously
that the flux limited Spitzer-Héarm heat flux takes value below ¢y, ,x, that is the purpose of the flux limited expres-
sion. However, when comparing nonlocal heat flux with local flux limited Spitzer-Hiarm, one observes a different
shape of heat flux, the nonlocal expression exhibiting long range effect of the strong temperature gradient near
the energy source. This effect is reminiscent to what is observed in laser heated plasma where the heat source
is localised [8]. Localised heat sink near the wall can also drive these strong temperature gradient as observed
in [4].

6 Conclusions and perspectives

Using nonlocal heat flux for electron conduction seems to make possible to recover strong temperature gradients
and long range interactions at intermediate collisionality. The heat flux is found to be lower than the maximum
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Fig. 5 Comparison of heat flux computed as a post-treatment from the electron temperature profile obtained at low collision-
ality with the nonlocal heat flux expression and with flat (left) and peaked (right) sources.

free-streaming heat flux. Future comparisons with kinetic PIC simulations [5, 9] should confirm or contradict
results obtained with the nonlocal expression.
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