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Since his famous discussions with Niels Bohr, Albert Einstein considered quantum entanglement (QE) as a 

spooky action at a distance, due to the violation of locality necessary so that two entangled particles can 

share this effect in an instantaneous way despite of being at a great distance from each other, i.e., not being 

local. In other words, a notification about the change of state in one of them could only cover the space that 

separates them at a speed superior to that of light, which we know is impossible according to the Theory of 

Relativity (TR). Besides, QE faces directly the two main pillars of Physics: TR and Quantum Theory (QT); 

becoming the bone of contention between both theories. Quite the contrary, in this work we will see that QE 

is the meeting point of both theories, so much so, that QE could be considered as the cornerstone of the 

Theory of Everything (TOE). Consistent with this, the entangled particles retain certain autonomy unknown 

to date, and in addition, they will have relativistically entangled alter-egos, which will hold the effect even 

when the original entangled particles are extremely separated from each other. These alter-egos can be 

considered as black holes (with their corresponding temperature and entropy) giving rise to a wormhole. This 

is possible since the locality dilates according to the Lorentz factor, which is accompanied by a contraction 

in the effective channel and in the temporal delay to cross that channel. All this takes place while space-time 

is curved (hyperspace) to generate the wormhole between both black holes. In other words, QE is a local 

effect of infinite range so it does not outpace the speed of light, and therefore QT is a complete theory that 

does not clash with TR. Finally, everything we have said has direct consequences on the link between 

entangled particles from the point of view of quantum communications in terms of the channel and its 

bandwidth, latency, capacity, robustness and security.  

 

Keywords—Black holes; EPR paradox; locality; quantum channel; quantum communication; quantum 

entanglement; Quantum Theory; quasi-entanglement; Theory of Relativity; wormhole. 

 
1 Introduction 

Quantum entanglement -also known as the God effect- is a physical phenomenon which takes place between 

two or more particles (strictly speaking, their spins) that interact after their creation in such a way that the 

resulting quantum state corresponds to the effect itself and not to the individual particles that make it up [1]; 

even when such particles are separated by an astronomical distance. Consequently, the resulting quantum 

state acts as a whole [2] with a total loss of individuality on the part of the original states. Therefore, we will 

refer to the entanglement as a specific case of correlation between subsystems [3]. Also, several 

configurations for quantum entanglement which currently exist can be found, in particular: GHZ state due to 

D.M. Greenberger, M.A. Horne and A. Zeilinger [4,5] formed by 3 or more entangled particles and the so-

called configuration W which is the perfect complement of the previous one [3]. Another interesting kind of 

entanglement is called Hyperentanglement [6] which is a promising resource in quantum information 

processing because of its inherent characteristic of high capacity; defined as the entanglement in multiple 

degrees of freedom (DOF) of a determined quantum system, such as polarization, spatial-mode, orbit-

angular-momentum, time-bin and frequency DOF of photons [7]. Simultaneously, multidimensional 

entanglement quantum system confirms the existence of at least one dimension of 100-x-100 using spatial 

modes of photons [8]. On the other hand, distributed entanglement [9] is the polygamous nature present in 

multipartite systems with a strong unlocalizable character [10]. Recently, two extremely important 

experiments have been carried out: one being entanglement between photons that have never coexisted [11], 

i.e., entanglement in time, not only in space, and the other one being, a scheme that deterministically 

generates wave-particle entanglement of two photons [12]. 
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Besides, at this point, it is important to mention two outstanding aspects of entanglement: distillation, and, 

swapping. In the first case, we get some number of almost pure Bell pairs from N copies of an arbitrary 

entangled state. This transformation happens using local operations and classical communication (LOCC). In 

other words, it is a powerful tool to cope with the negative influence produced by noise in quantum channels. 

Thanks to this previous transformation, the distillation is achieved by obtaining a smaller number of 

maximally entangled pairs (i.e., Bell states [1]) from less shared entangled pairs. As for swapping, it is a 

simple and illustrative example of Teleportation, which can be equally applied to pure and mixed states, and 

is considered as the state of a single subsystem of an entangled pair [1].  

Moreover, quantum decoherence is the worst enemy of entanglement, and formally it is the loss of 

quantum coherence. In quantum mechanics, particles such as electrons also behave like waves and are 

described by a wavefunction. These waves can interfere, leading to the peculiar behavior of quantum 

particles. As long as there is a definite phase relation between different states, the system is said to be 

coherent [1]. 

Although quantum entanglement is a key piece in Quantum Information Processing [13-15] in general 

and Quantum Computing [14,16-20] in particular, it is in Quantum Communications [18,19,21-23] where the 

most exciting challenge is presented, which consists of the following problem: if we have two entangled 

particles and we separate them from each other at a distance similar to that existing between Earth and Mars; 

the theory of quantum entanglement tells us that any local change in the state of one of the particles causes 

the instantaneous change in the state of the other particle regardless of the distance between them, either 

because of the quantum measurement, or by a change in the polarization of the particle or in the magnetic 

field in which it is immersed. 

However, if we consider the link between these particles as a quantum channel and the change in both 

states as a signal, then that signal should travel at a speed greater than light to perform such a feat. This fact 

collides head-on with the Theory of Relativity [24] and this results in the Einstein-Podolsky-Rosen (EPR) 

paradox [1,25-30] and even more, with No-Communication [31] and No-Cloning
 
 [1] Theorems (two No-Go 

Theorems [32]). At this point, a formidable debate on the basis of four possible alternatives breaks ground:  

1) quantum entanglement [1] is not instantaneous, therefore, it makes no contribution in relation to the 

communications involved in the trip to Mars, and hence, it does not collide with the Theory of Relativity 

[24], 

2) quantum entanglement is instantaneous, and we do not expect it to convey information, this is the present 

posture (or resignation) and from which no problem is derived,   

3) quantum entanglement is instantaneous, and we intend to carry information, then, it collides with the 

Theory of Relativity, which represents a very unpleasant scenario because it deepens the gap between 

Quantum Theory and the Theory of Relativity,  

4) lastly, quantum entanglement is instantaneous, and we intend to carry information, however, it does not 

collide with the Theory of Relativity. This is the hypothesis and the central objective of this work, 

moreover, this would be the ideal scenario, because Quantum Theory [1] would be a complete theory, 

being quantum entanglement an instantaneous effect, and all these advantages coexist simultaneously. 

Regardless of the correct alternative, such a debate is the main pitfall of quantum communications involved 

in the trip to Mars. 

On the other hand, in recent years, there have been significant efforts to formally link quantum 

entanglement with gravity in general [33-35], as well as with the entropy of black holes in particular [36-38]. 

This link is not trivial at all. If this was successful, it would give rise to a version of the theory of everything 

(TOE) [39], through which the Quantum Theory [40-43] and the Theory of Relativity [24] would coexist, 

neither doubting the completeness of the first (as happened from the EPR paradox [27]) nor exposing with 

marked discrimination the total inability of the second to explain the subatomic world; given that, the search 

for a formal nexus between both worlds definitely represents the central axis of Modern Physics, and the 

present work. 

The principle of locality [44-45] establishes that an object can only be influenced by its immediate 

surroundings. A local theory must necessarily include the principle of locality. This is presented as an 

alternative to the deeply rooted concept of instantaneous action at a distance [1,25-29]. Since the days of 

Newton, the locality has overflowed its natural frame (i.e., Classical Physics), in particular, field theories. 

Basically, the idea is the following: given two points A and B; if an action takes place on point A, then, the 

only way that this action could have influence on point B is that between them, there is a field that conveys 

such action. In other words, there must be a wave or particle that crosses the space between the two points so 
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that they share that influence. The Special Theory of Relativity [24]
 
establishes that the limit at which the 

mentioned influence can travel is that of the speed of light. A direct consequence of this is that an action at 

point A cannot simultaneously and instantaneously cause the same result at point B; since, the time it takes 

for the influence to cross the space between both points cannot be less than t = d/c, where d is the distance 

between the points, and c is the speed of light. In fact, in 1935 Albert Einstein, Boris Podolsky and Nathan 

Rosen published their work on the EPR paradox [1,25-30]. In this work they theorize about the possibility of 

non-local behavior of quantum mechanics. Their reasoning is based on the fact that, if we make a 

measurement on one of the constituent particles of an entangled pair, it simultaneously and instantaneously 

produces the collapse of the wave-function in both near and remote particles, incomprehensibly exceeding 

the speed of light. However, this violation of locality does not allow us to use it to transmit information faster 

than light [29,46,47], since the collapse of the wave-function has a probabilistic nature. In 1964, John 

Stewart Bell presented his famous theorem (the Bell inequality [1,25]), which was violated in several 

experiments implying, at least apparently, that quantum mechanics does not comply with locality and realism 

(or local-realism [1,27]). This principle, among others, is linked with values of unmeasured magnitudes. 

Then, the local-realism emerges as the resultant between locality principle (establishing the speed of light as 

the upper limit of any cause-and-effect) with the assumption that any physical magnitude must objectively 

have a real value before any possible measurement. As Albert Einstein said “I like to think that the moon is 

there even when I am not looking at it”.  

The local realism is accepted by classical mechanics, and classical electrodynamics, but absolutely 

rejected by quantum mechanics. This rejection is based on the experiments carried out with remote entangled 

particles, in particular, that made by Aspect in 1982, which is apparently supported by the Bell's 1964 

inequality theorem [1,25]: an interpretation that Einstein previously rejected (in form of a paradox). In the 

course of this work the reason why we say apparently will be unveiled. By definition, Quantum Mechanics 

violates either locality or realism. If an experiment shows quantum mechanics, it violates Bell's theorem. 

However, it is not clear if the 1982 experiment demonstrates a true violation, due to two reasons: 

experimental limits of the test and the complete inability to prove the sub-class of inequalities. Currently, 

several interpretations of quantum mechanics seem to violate various aspects of Local Realism, at least, 

apparently, since it can be wondered: Does the violation really happen? Is that interpretation correct? In fact, 

some interpretations only violate aspects of a related principle known as counter-factual definiteness [48] 

(CFD), i.e., it accepts the results of a measurement that was never made giving values that were never 

measured as valid.  

The first experimental test about the Bell inequality was made by Alain Aspect in 1982 [30,49]. In such 

test, quantum mechanics seems to violate the inequality, so it follows that it must violate either locality or 

realism [1,27]. However, several scientists have noticed that these experiments contained “loopholes”, which 

do not allow an effective response to this question. Apparently, this problem seemed to have been solved in 

2015 in the experiment of Dr. Ronald Hanson at Delft University, carrying out the first loophole-free 

experiment [50]. 

However, as it can be seen, the controversy continues although, at present, in a tone significantly lower 

than in the days of Albert Einstein, who fundamentally objected to the probabilistic nature of quantum 

mechanics and famously declared “I am convinced God does not play dice”. Einstein, Podolsky, and Rosen 

argued that “elements of reality” (in the form of hidden variables [1-3,51]) must be incorporated to quantum 

mechanics to explain entanglement without accepting action at a distance [1,52]. This led the authors to 

argue that Quantum Theory could not be considered a complete theory, although it was [27]. In other words, 

entanglement became the bone of contention between the two main theories of Physics. Later, Bell's theorem 

established that local hidden variables of certain types are impossible, and that this implies non-locality. 

Another famous non-local theory belongs to De Broglie–Bohm [1,2].  

In a very short although extremely interesting paper [53], Prof. Alain Aspect raises doubts about what the 

problem is: locality or realism? Several experiments have been carried out throughout the last decades with 

the object of unmasking, or simply bringing out the truth in relation to this subject, including, of course, 

Bell’s experiments. The most outstanding fact of these experiments takes place based on the so-called CHSH 

inequalities, which are thanks to John Clauser, Michael Horne, Abner Shimony, and Richard Holt (CHSH), 

who described them in a much-cited paper published in 1969 [51].  

Nowadays, a series of methods for local operations and classical communication [1,3] (LOCC) complete 

these concepts. The first one is LOCC itself which is employed in quantum information theory, and where a 

local operation (i.e., a product) is carried out on part of the system. The result of that operation is 
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communicated classically to another part where another local operation is usually performed putting in 

evidence that two Bell pairs [25]
 
would constitute an example of this. Another method is the so-called 

NLOCC [54], or noisy LOCC, by means of which local systems in maximally mixed states can only be 

added. That means that any other system must be considered in the initial state rather than in the processing 

stage. Lastly, the CLOCC or closed LOCC [55]
 
method, which is a modification of the LOCC paradigm that 

disallows unrestricted consumption of local pure states. Horodecki et al [56] had previously obtained some 

limitations on this problem, both for the one-way and two-way CLOCC case.  

Finally, and based on what we have said so far, it is clear that a reconciling theory is more necessary than 

a unifying one. That is the central idea of this work through the Theory of Dilated Locality developed in the 

next sections. 

 

2 Results 

 

2.1 Mutual information as a measure of correlations 

For pure states, that is, states on the Bloch’s sphere [13], any wave-function 

 

10                        (1) 

 

arises from the superposition of so-called Computational Basis States (CBS) or qubit basis states, which are 

located at the poles of the already mentioned sphere with 1
22
  , such that α ∧ β ∈ ℂ, 

 

0
0Spinup North pole      ,                                  (2) 

1 0
1Spin down South pole        ,                         (3) 

 

where 
0

1   for photons, and ½ for electrons, being 
0

  and 
1

  the scalar versions of the spin up 0  and 

the spin down 1 , respectively, in such a way that the complete spin is conserved, i.e., 
0 1

0   , 

similarly when a spinless particle decays in two new entangled particles with opposite spins [1,2,13]. 

Therefore, in this paper, the letter μ will represent spin numbers in general, exclusively, and does not 

necessarily mean muon. Moreover, and based on CBS, we can define another basis, which will be very 

useful for the rest of this paper as well as for Quantum Information in general [1], and quantum teleportation 

and superdense coding in particular [28,57-59], taking into account the interaction of two subsystems A and 

B, and considering that its components are pure states and using their scalar versions too, 

 
2
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10 1 0

2
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A B A B A B A B

A B A B A B A B

A B A B A B A B

A B A B A B A B

, ,
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, ,

, ,

       

        

        

       

                  (4) 

 

where ⨂ is the Kronecker’s product, and 
00

  and 
11

  are the scalar version of 00  and 11 , respectively, 

with 
00 11

0   . The sign rules that support the equivalences and equalities of Eq.(4) will be explained at 

the end of this section. From Eq.(4), we are going to build the famous Bell’s bases [1-3], with 2-qubit vectors 

the combined Hilbert space will be 
2 2

A B A B   , and then we will have the following four vectors, 

 

   
1 1

0 0 1 1 0 1 1 0
2 2

A B A B A B A B A B A B, , , , , 

       .                       (5) 
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At the same time, we will define the density matrix necessary to calculate the entropy for the complete set 

of the above-mentioned cases. We are going to begin with density matrix of the subsystems treated 

individually, 

 

 
1 01 1 1

0 0 1 1
0 12 2 2

A B I 
 

      
 

,           (6) 

 

where I is the identity matrix. While the scalar version of this operator will be 

 
2 2 2 2

0 1 0 11 1

2 2 2

A Br r
   



    
     
   
   

,            (7) 

 

where η is the adjustment factor (necessary in the scalar version of the density matrix), which in the case of 

photons is equal to 2, since the scalar version is strongly dependent on the type of particle to which it 

represents. We must note that in the case of photons r
A
 = r

B
 = ½; which is consequent with the matrix nature 

of Eq.(6). However, with respect to the case of the system composed of two subsystems, its density matrix 

will depend on whether or not these subsystems are entangled. Therefore, for the non-entangled case 

 
A B A B     ,                  (8) 

 

but for the entangled case, we will have, 

 
A B A B     .                  (9) 

 

Although this operator will depend on each of the 3 cases that will be analyzed in the next subsection: 

completely independent, classically-correlated, and entangled subsystems.  

Now, with respect to the entropy, we can define it in two forms: tensor and scalar. The first one, 

 

   A B A A B BS S tr log tr log          
   

,            (10) 

 

then, replacing Eq.(6) into Eq.(10), yield, 

 

1 0 1 01 1
1

0 1 0 12 2

A BS S tr log
     

        
      

,            (11) 

 

while the scalar version would be, 

 

   A B A A B BS S r log r r log r        
   

,            (12) 

 

where,   is an adjustment factor (necessary in the scalar version of the entropy). Then, replacing Eq.(7) into 

Eq.(12), and considering the case of photons:   = 2 and 
0 1

1    , yield, 

 

 1 12 1
2 2

A BS S log    
 

.               (13) 

 

In the same way, for a composed system, the entropy would be, 

 

   A B A B A B A B A BS tr log r log r            
   

.             (14) 
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In this case,   depends on the degree of correlation between both subsystems: completely independent, 

classically-correlated, and entangled subsystems. 

Besides, in both worlds: classical and quantum-mechanical, the correlations between the systems are 

those established by the additional information. In the case of composite quantum systems, the mutual 

information 
A BS 

 is introduced to quantify that additional information, allowing us to obtain the degree of 

correlation between both subsystems
 
[1],  

 

0A B A B A BS S S S     .                 (15) 

 

Therefore, the entropy of the composite system 
A BS 

 indicates us that the uncertainty of a state 
A B  is 

less than the two subsystems 
AS  and 

BS added together. In other words, 
A BS 

 tells us how much more 

information the composite system can store compared to the individual subsystems. Besides, 
A BS 

 measures 

the distance between the state 
A B  and the non-entangled state

 
[1] 

A B  . 

The entropy of the subsystems 
AS  and 

BS  is equal to one in all cases (i.e., 1A BS S  ); while the 

entropy of the composite system 
A BS 

 will have different values for each and every of the three cases. For 

the sake of simplicity, the subsystems are expressed in qubits. Making use of Eq.(15), the main idea is to 

relate correlations and entanglement to the entropy, and in particular, to the mutual information 
A BS 

. 

Then, we present the mutual information of the three types of subsystems: completely independent, 

classically correlated, and entangled, where the last one is critical for the development of both the alter-egos 

involved in the relativistic entanglement and the Theory of Dilated Locality.  

 

2.2 Completely independent subsystems 

In this case, both subsystems have absolute and complete independence between them, i.e., 
A B 

 is a 

Kronecker’s product of density matrices like Eq.(8), as we can see in Fig.1. Therefore, there are no 

correlations between such subsystems.  

 

 

 
 

Fig. 1 Completely independent. 

 

 

In the computational basis of 
A B  , 

A B  takes the following form, 

 

  4 41 1
0 ,0 0 ,0 0 ,1 0 ,1 1 ,0 1 ,0 1 ,1 1 ,1

4 4

A B A B A B A B A B A B A B A B A B I       ,       (16) 

 

where 
4 4I 

 is a 4x4 identity matrix. Therefore, replacing Eq.(16) into Eq.(14), 
A BS 

will be 

 

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 01 1
log 2

0 0 1 0 0 0 1 04 4

0 0 0 1 0 0 0 1

A BS tr

     
     
                        

.          (17) 
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Now, introducing the results of Eq.(13) and (17) into Eq.(15), 
 

1 1 2 0A B A B A BS S S S        .               (18) 

 

The result of the Eq.(18) ratifies the complete independence of the subsystems. At this point, if we 

remember the equivalences of Eq.(4), then, the scalar version of Eq.(16) will be, 

 

        

00 00 01 01 10 10 11 11

2 2 2 2

0 0 0 1 0 1 1 0 1 0 1 1

2
4 2 2 2 2 4 4 2 2 4 2 2

0 0 1 1 0 1 0 0 1 1 0 1

2

1

4

1

4 4

21

4 4 4

A Br
       



           

           




   

   
 

     
 
 
 

          
       
     
     

,         (19) 

 

where η  will be equal to 4 for the purpose of adjusting its subsequent use into entropy, and considering that, 

we will make the following deduction for the case of photons: 
2 2

0 1
1    . Then, replacing Eq.(19) into 

the scalar version of Eq.(14) with   = 4, and 2A BS   from Eq.(17), we will have, 

 

 
2 2

2 2 2 2

0 1 0 1
2 4

4 4

A B A B A BS r log r log
   

  

      
           

       
      

.          (20) 

 

Replacing 
2 2

0 1
1     outside logarithm, and making additions and subtractions that do not alter Eq.(20), 

 
2 2 2 2 2 2

0 1 0 0 1 1

2 2 2 2

0 1 0 1

1
4 2 2 2 2

1 1
4 2 2

log log log log log

log log log

     

   

         
              
         
         

     
          
     
     

,            (21) 

 

and, 

 

   
2 2 2 2 2 2

0 1 0 1 0 1 2

2 2

0 1

1
4 2 2

log log log log log log
 

      
             

       
       

     
 

 
.    (22) 

 

Finally,  

 
2 2

0 12 2 2 1

0 12 2

0 1

1
// 2

2

 
   

 



 
    


.             (23) 

 

where “//” is the parallel operator, and 


 is the equivalent spin for completely independent subsystems, 

which would have been impossible to deduce with the traditional tensor (original) analysis [1]. The graphic 

interpretation of Eq.(23) can be seen in Fig.2 where 
2

0
  in red is in position A, and 

2

1
  in blue is in position B, 

where, the pink line is parallel to the thick black line of the base and the perpendicular to the spins’ arrows. 
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Fig. 2 Parallel operator for completely independent subsystems. 

 

 

Then, as 
2 2 2

0 1
//  


  according to Eq.(23), 

2 1
2

  in green is in position C, that is to say, at the 

intersections of two gray lines, one connects the upper part of 
2

0
  (in red) with the base of 

2

1
  (in blue) and 

the other connects the base 
2

0
  (in red) with the upper part of 

2

1
  (in blue). In short, this is - in itself - the 

geometric interpretation of the parallel operator.  

In Fig.3, if we move 
2

1
  (in blue) to position B', and we leave 

2

0
  (in red) in its original position A, and 

reapply the parallel operator to this new configuration, we will see that a new 
2


 (in green) appears as a 

result of the two new intersected gray lines, but now in position C', which has a value of ½ again, i.e., similar 

to the previous case of Fig.2. We can see this new result in Fig.3, where, the pink lines are parallel to the 

thick black line of the base and perpendicular to the arrows (red, blue and green) representing the spins. In 

other words, the lines of pink color indicate that heights are preserved regardless of the distance between 

both particles (red and blue) on which the parallel operator is applied. This indicates that the parallel operator 

is insensitive to the distance between the two spins (red and blue).  

 

 

 
 

Fig. 3 Parallel operator for completely independent subsystems with an increase in separation between 

original spins. 

 

 

Now, if we apply square root to both sides of Eq.(23), we obtain the final value of the equivalent spin 


 

 
2 2

0 1 02 2

0 1 2 2 2
0 1

0

1

1
//

2

1

  
   

 




 
    

  
 
 
 

.            (24) 

 

Finally, in the Section called Methods, the position of the spin 


 will be analyzed. 

 

2.3 Classically-correlated subsystems 

In this case, see Fig. 4, it is possible to create correlations without obtaining entanglement for 0A BS   . For 

example, let’s do this with the separable mixture of pure product states. 
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1

0 ,0 0 ,0 1 ,1 1 ,1
2

A B A B A B A B A B    .            (25) 

 

As we can see, 
A B  of Eq.(25) contains fewer terms than the case of completely independent of Eq.(16).  

 

 

 
 

Fig. 4 Classically-correlated. 

 

 

In the computational basis of 
A B  , 

A B  will be: 

 

1 0 0 0

0 0 0 01

0 0 0 02

0 0 0 1

A B

 
 
  
 
 
 

.                     (26) 

 

Therefore, replacing Eq.(26) into Eq.(14), 
A BS 

will be 

 

1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 01 1
log 1

0 0 0 0 0 0 0 02 2

0 0 0 1 0 0 0 1

A BS tr

     
     
                        

.          (27) 

 

Next, introducing the results of Eq.(13) and (27) into Eq.(15), yields the following 

 

1 1 1 1A B A B A BS S S S        .                 (28) 

 

This result brings out a certain degree of correlation between the subsystems. Then, if we remember the 

equivalences of Eq.(4), the scalar version of Eq.(25) will be, 

 

  2 2 2 2

0 0 1 100 00 11 11

4 4 4 4 4 4

0 1 0 1 0 1

1 1

2 2 4

1 1

2 4 2 4 8

A Br
      



     



    
      

   

     
     
   
   

,          (29) 

 

where η = 4 for the same reasons as for the completely independent case, where we also consider the use of 

photons: 
2 2

0 1
1    . Then, replacing Eq.(29) into the scalar version of Eq.(14) with   = 2, and 1A BS    

from Eq.(27), we will have, 
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4 4 4 4

0 1 0 1
1 2

8 8

A B A B A BS r log r log
   

  
      

           
            

.          (30) 

 

Replacing 
2 2

0 1
1     outside logarithm,  

 

 
4 4

0 1 4 4

0 1
2 3

8
log log

 
 

 
      
 
 

.                (31) 

 

Simplifying and making additions and subtractions that do not alter Eq.(31), 

 

         4 4 4 4 4 4

0 1 0 0 1 1
1 log log log log log             ,           (32) 

 

being    4 4

0 1
0log log     , then, 

 

   
4 4

0 1 2 4

4 4

0 1

1 log log log
 

 
    
 
 

 
 

 
,              (33) 

 

Finally,  
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Anew, this would have remained hidden if not for this treatment: the scalar version. Besides, and as for 

the previous case (completely independent), the equivalent spin 


 represents (in some way) the original 

spins involved with a similar analysis to the one made for Fig.3, and with a similar result, because, in this 

case too, the parallel operator is completely insensitive to the distance between the spins. Then, if we apply 

the fourth root to both sides of Eq.(34), we obtain the final value of the equivalent spin 
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2.4 Entangled subsystems 

For this case (see Fig.5) we will take one of the Bell states of Eq.(5) as an example, specifically 
A B

 , 

which is a pure state, with 
A B  from Eq.(36),  

 

 
1

0 ,0 0 ,0 0 ,0 1 ,1 1 ,1 0 ,0 1 ,1 1 ,1
4

A B A B A B A B A B A B A B A B A B      .       (36) 

 

In this case [1], 0A BS   , then, introducing this value and the results of Eq.(13) into Eq.(15), we will obtain 

 

1 1 0 2A B A B A BS S S S        .                 (37) 
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Fig. 5 Entangled subsystems. 

 

 

Therefore, we will go directly to the calculation of 
A Br 
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,          (38) 

 

where η = 4 for the same reasons that we applied to the previous cases, where we also considered the use of 

photons: 
2 2

0 1
1    . Then, replacing Eq.(38) into the scalar version of Eq.(14) with   = 4, we will have, 
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Clearing Eq.(39) appropriately, 
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.            (40) 

 

That is, on the left side of Eq.(40), denominator tends to zero with more power than the numerator. In fact, 

the right side verifies it, because, -log(0) = ∞. Now, doing additions and subtractions that do not alter Eq.(40) 
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Then, 



12 

 

   

2 2 2 2

0 1 0 1

2 2

0 1
2 2

0 1 2

2 2 2 2

0 1 0 1

2
4 2 2

2 2

4

log log log

log log log log
 

     
           
     
     

 
   
      

   
 

 
 

   

 
 

 
   

       (42) 

 

Finally,  
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.   (43) 

 

Actually, Eq.(43) has two possible values:  , see Eq.44 and Fig.6. Equation (43) represents one of a 

pair of super-spins, and this result justifies in itself the whole paper and in a few words tells us that the parts 

are infinitely superior to the whole. Then, another super-spin will be,  

 
2 

 
    ,            (44) 

 

therefore, 0 
 

  . The attribute of these last two equations was hidden with the traditional treatment 

[1] and through them, we will try to explain the exceptional attributes of entanglement. Clearly, the value of 

these spins infinitely exceeds the value of the original spins. The traditional analysis [1] based on vector or 

tensor notation is unable to detect this scenario, in fact, the expressions based on scalar notation (Equations 

38 and 39) are key, which leads to the equation as it could have never been possible with the original version, 

i.e., Eq.(36) and 
A BS 

 based on Eq.(36). On the other hand, Fig.6 shows us the geometric representation of 

Eq.(43) with 
00

  (in red) in position A and 
11

  (in blue) in position B. 

 

 

 
 

Fig.6 Parallel operator for entangled subsystems. 

 

 

Figure 6 shows that 


 and 


 are in the positions   and  , respectively, i.e., to both ends of the 

figure, namely, where both gray lines intersect. Therefore, it seems as if the positions were also entangled,  

 



13 

 

 00 11 00

00

00 11

A BA
A

A B

d dd
d d d



   


     

 
,             (45) 
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,         (46) 

 

Equations (45) and (46) will be analyzed in depth in the section called Methods. They keep the same 

relationship as in the case of spins: 0d d
 

  . 

In Fig.7, if we move 
00

  from position A to position A’, we will have 


   and 


   again. 

Besides, and as in the case of completely independent subsystems, Fig.7 shows that 


 and 


 are 

absolutely insensitive to the distance between the original spins, as long as 
00

  and 
11

  do not change 

neither in modulus nor in its orientation (polarization). Regardless how much they separate from each other, 

such displacement does not alter the final result; in this case, 


   and 


  . This confirms the 

success of the parallel operator since it attempts to model the entanglement, and as we know from several 

laboratory experiences, it does not seem to care about the distance between the entangled particles. 

 

 

 
 

Fig.7 Parallel operator for entangled subsystems with an increase in the inter-spin separation. 

 

 

Finally, if we apply square root to both sides of Eq.(45), we obtain the final value of the resulting spin  
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with 
1

  

   , 

1 0 1
     , and, 0 

 
  , and where,  

 

2 2 2

1 0

0 1

1 1 1

1 1 1
v

c



 

 

  

     
       
     

   

,        (48)  

 



14 

 

is the Lorentz factor when the speed v = c (speed of light). In a generic way, we will have: 
X x

   , 

where, X is the subscript of the alter-egos, which can be   or   , while, x is the subscript of the original 

spins, respectively, which can be 0 or  1. In this way, we arrive at a unified effect equation. This is the first 

testimony of the relativistic nature of spins involved in quantum entanglement. In fact, both spins are 

relativistic. These are the alter-egos. The same situation applies with the locations of these alter-egos, 

 

 2 2 2

00 11 00A BAd d d d d d d 
 

                (49)

             

 2 2 2

11 00 11B ABd d d d d d d 
 

                 (50) 

 

Equations (49) and (50) will also be analyzed in depth in the section called Methods. This tells us that both 

the spins resulting from the entanglement and their locations suffer a dilation according to the Theory of 

Relativity [24]. On the other hand, the original spins and their alter-egos form a spatial homothecy between 

them, where the alter-egos are the shadows of the original spins projected to the infinite with the same 

morphology (in this case, the orientation or polarization of the spins) but with infinite magnitude. 

 

2.5 Spatiotemporal analysis 

Figures 6 and 7 show us the case analyzed so far, where the coordinates of point A are (dA,tA), while those of  

point B are (dB,tB), this means, same time but different space. However, the model allows an entanglement 

between spins that have never coexisted before [11]. See Fig.8. In this figure, it can also be seen that the 

model is insensitive to inter-spin temporal separation as it is in the case of spatial separation. In this case, we 

have same space but a different time since A is in the future and B is in the past. Finally, Figures 9 and 10 

show us the spin A in the present in the position dA, while spin B is in the position dB, in the past in Fig.9 and 

in the future in Fig.10. 
 

 

 
 

Fig.8 Entanglement between particles that have never coexisted before. 
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Fig.9 Particle A in the present in position dA, and particle B in the past in position dB. 

 
 

Fig.10 Particle A in the present in position dA, and particle B in the future in position dB. 

 

 

2.6 Final thoughts on this section 

The alter-egos of Equations (43 and 44) were obtained from Eq.(39), i.e., the scalar version of 
A BS 

. We 

would have never found the alter-egos with the original tensor notation (no scalar) since with that notation 

values, signs and polarizations (or orientations) of spins are blurred; which is not advisable, in particular, 

when we try to study different degree of correlations between them. All this is particularly important 

considering that the spin is the most conspicuous element of Quantum Physics. 

 

Besides, Table 1 shows us some attributes of the parallel operator “//” employed in Eq.(23, 34 and 43) 

which will be taken into account later. 

 

 

Table 1.  Some attributes of the parallel operator “//”. 

// 0 x ∞ - x -∞ 

0 0 0 0 0 0 

x 0 x/2 x ±∞ x 

∞ 0 x ∞ - x ±∞ 

- x 0 ±∞ - x - x/2 - x 

-∞ 0 x ±∞ - x -∞ 

Where x is a scalar and has generic value. 

 

 

On the other hand, the model for the representation of the entanglement based on the parallel operator “//” 

predicts strange configurations which have not been tested in the laboratory yet. That is the case of three 
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spins oriented according to a single axis z, which we can see in Fig.11. The spin numbers of these particles 

are (1, 1, -1/2).  

 

 

 
 

Fig.11 Two completely independent spins (
A  and 

B ) are entangled with a third spin 
D . 

 

 

 

 

These spins do not comply with the Principle of Spin Conservation since 1+1-1/2 ≠ 0. The first two (
A  and 

B ) are completely independent (red and blue in Fig.11); however, their resulting spin, in green, obtained 

after the application of Eq.(23) is 
C , which is entangled with another spin in position D: 

D  in yellow. 

According to the model, the result is a perfect entanglement between 
C  and 

D . This can only take place 

as long as the spins in C and D are equal in modulus and opposite in orientation. In other words, both parallel 

lines in light blue, that link both spins through the parallel operator, intersect between each other at +∞ and -

∞ to both sides of the Fig.11 and to infinite distances of the original spins. The literature about entanglement, 

curiously, does not mention anything about it, maybe because it does not exist in reality. 

Additionally, the same model also predicts the existence of quasi-entanglement when we have two 

opposite spins oriented respect to the same axis but with different spin numbers, see Fig.12. 

 

 

 
 

Fig.12 Quasi-entanglement of two opposite spins (
A  in red and 

B  in blue) oriented according to the same 

axis but with different spin numbers, produces the resulting spin 
C  in green. 

 

 

As we can see in Fig.12, the resulting spin of quasi-entangled subsystems is on the same side and has the 

same sign as the spin of the smaller modulus. That is to say, by the mere fact that 
A  and 

B  have a 

different modulus: 
A B  , we obtain, 

C = . We are going to analyze the position of the spin
C  in 

the Section called Methods. Besides, as it was seen in the cases of completely independent, classically-

correlated, and entangled spins; the results of the application of the parallel operator “//” to quasi-entangled 

subsystems is completely insensitive to the distance between original spins, i.e., to the inter-spin distance. 

See Fig.13. 
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Fig.13 When spin 
A  is displaced from position A to position A’, the result of the quasi-entanglement gives 

us a new resulting spin 
C  in a new position C’. This tells us that just as in the case of entanglement, here 

also, the inter-spin distances are entangled and that 
C  will have much-smaller-than-infinity modulus. 

 

 

Table 2 compares two attributes (quantity and size) of the resulting spin after applying the parallel 

operator “//” to the four viewed cases, depending on the degree of correlation between both spins (
A  and 

B ): completely independent, classically-correlated, entangled, and quasi-entangled. As we can see in Table 

2, in the case of entangled spins two resulting spins are generated only, i.e., both alter-egos have infinitely 

large modulus, whereas, in the other cases, a single spin is generated and it has finite modulus. 

 
 

Table 2.  Attributes (quantity and size) of the spins resulting from applying the parallel operator “//” 

according to the degree of correlation of such spins. 

attribute independent correlated entangled quasi-entangled 

quantity 1 1 2 1 

size finite finite infinite finite 

In the case of quasi-entangled spins, the resulting one is on the same side and has the same sign (orientation) 

as the spin of smaller modulus, as shown in Figures 12 and 13. 

 

 

But, at this point, a question automatically arises: What does each resulting spin represent physically for 

each of the 4 cases? We can go in an ascendant order of importance. First, in the completely independent 

case, the resulting spin is a kind of figurehead or representative of the population of spins involved, and 

without being in the least tied to some kind of correlation between them. In this case, the parallel operator is 

only the instrument that conveys the finding of the resulting spin. A similar case appears in some diatomic 

molecules, where if classical physics were applicable, the nuclei would have energy [62],  
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p p
E k x
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               (51) 

 

where m1 and m2 are the masses of the nuclei, p1 and p2 are the magnitudes of its momenta, k is a constant 

and x denotes displacement or distance. In the center-of-mass frame, we can set p1 = p2 = p and, by 

introducing the reduced mass (resulting and equivalent mass) through the parallel operator 
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Then, we will obtain 
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  .             (53) 
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It is clear that both masses do not have any kind of correlation between them. Instead, in the second and third 

cases corresponding to Figures 12 and 13 (quasi-entangled), as well as in the case of classically-correlated of 

Eq.(34), respectively, and even in the curious case of Fig.11, all of them possess a witness of the correlation 

between the original spins in the resulting one. 

However, in the fourth case, the entanglement, the resulting spins have a deeper (ontological) 

philosophical and physical meaning. As we will see in the following section both alter-egos are the ones that 

support the effect; since they generate a locality aisle that involves all the mentioned spins, i.e., originals and 

alter-egos, which will be developed later on. It is the alter-egos that will give rise to all the extraordinary 

attributes of entanglement. 

On the other hand, it is important to make clear the sign rules for the scalar spins of Eq.(4), with 

 

 0
0sign                          (54a) 

 1
0sign                          (54b) 

 

xy x y
                          (55a) 

xy x y
                           (55b) 

 

where sign(•) means sign of  (•), and x and y can only be 0 or 1. Such rules are 

 

Rule #1: 
xy

   

if x = 0, 

  0
x

sign    

else 

  0
x

sign    

   y y
sign sign    

end if 

 

Rule #2: 
xy

   

   xy y x
sign sign    

 

where x  and y  mean inverse of x and y (e.g., if x = 0, then 1x  , and vice-versa). 

 

Rule #3: 
xy

  

   xy y x
sign sign      

 

Therefore,  
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In this way, the rules of the signs necessary for their use in the deduction of Equations (23, 34 and 43) are 

completed. 

Finally, in today's Physics, we employ the following syllogism: 

 

Major premiss:  

The Theory of Relativity [24] says that any instantaneous phenomenon can only be local since it cannot 

have a speed that outpaces the speed of light [29,46,47,60]; and if there is an instantaneous nonlocal 

phenomenon, this cannot transport information. 

Minor premiss:  

In Quantum Theory [4,26,42], the works of Bell [4,5,25,30,44,48-50], CHSH [51], Aspect [30], 

Zellinger [58], and many others, establish that the entanglement is a nonlocal effect, like another 

phenomenon predicted by the Theory of Relativity: the ER bridge [61] (by Einstein and Rosen) also 

known as wormhole between two black holes. 

Therefore:  

There is no instantaneous transmission of information thanks to the entanglement or through the interior 

of a wormhole. 

 

However, and from what has been seen so far in this work, it is logical to ask ourselves: what is the impact of 

this work on both theories and the apparent crack that separates them? As we have said before, the truth is 

that a reconciling and binding theory is not only needed to close the gap between both pillar theories of 

Physics but also to test the earlier syllogism. In fact, this work will show that there is a problem of 

interpretation with the results of the experiments cited in the minor premise, since at their time the 

information provided by this work was unavailable. This is what we will try to do throughout the following 

sections.  

 

3 Discussion 

 

3.1 Dilated Locality 

Equations (43 and 47) tell us about two new spins (alter-egos) that arise as a consequence of the quantum 

entanglement, whose values are infinite in modulus and are at infinite distances from the center of origin (at 

opposite ends of the universe). From the previous analysis, we cannot deduce anything about the respective 

eventual masses of both spins. In fact, there are two possibilities: 

- their masses are null, i.e., 0m m
 

  , and 

- their masses (finite or infinite) have opposite signs, in such a way that 0m m
 

  . 

From here to the rest of this section, we will work with the first ponder idea. This possibility is very 

interesting because if a massless spin with infinite modulus could bend the space-time, then, a large number 

of pairs of these spins but with opposite signs (alter-egos) could be responsible for several facts in the visible 

and invisible universe. This fact would constitute something extremely important in the field of Physics, 

since, as we know from the Theory of Relativity [63-69] a big mass curves the space-time diverting the path 

of light beam composed by massless photons which have finite spin equal to ½, but there is still no evidence 

that space-time is curved by a massless spin, even if this one has infinite modulus. If the above is correct, we 

could conjecture that a pair of such extravagantly immense spins (even if they do not have mass) could divert 

the trajectory of elements with and without mass, attracting and/or repelling them directly. A direct 

consequence of some of these possibilities would be that a large number of entangled spins can be 

responsible for the expansion of the universe. Besides, in a section called Methods, we are going to analyze 

the second ponder idea, i.e., different to zero masses (finite or infinite) with opposite signs. 

On the other hand, in literature there are numerous works about particles with infinite spins [70-75], 

whose existence has not yet been discovered. There are also works on massless particles with infinite spin 

[74,76-84] with identical considerations as the previous ones regarding their eventual existence, which can 

also be found under the name of massless continuous spin [72,85-89], although of course, all these works are 

mere theoretical speculations. We must not forget the contribution of the Vasiliev Higher-Spin theory [90-

95], which is a minimal extension of gravity with (massless, Gauge) fields of spin s > 2. It is a higher-

derivative completion of gravity that has good chances of being a consistent theory of quantum gravity 

(without super-symmetries and extra dimensions). The idea of a relativistic spin [96-104]
 
was not born with 
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the present work, and as a consequence of this, a relativistic entanglement [105-117] comes to light. Besides, 

in recent years numerous works have appeared linking entanglement with the Theory of Relativity [118-128] 

directly or indirectly, some of which pose an entanglement between black holes (giving rise to an ER bridge 

or wormhole, even if temporarily) and others instead explore the relativistic consequences of entanglement.  

 
 

 
 

Fig.14 On the left, the dilation of the locality with an infinite range. In the middle, the locality aisle between 

two parallel green lines which is curved in the vicinity of the alter-egos since the graph is not in scale. And, 

on the right, a simplified version of the graphic, where 
0  means neutral meson which sometimes decays 

into two opposed charged muons, and 
0 0   represents the spin baseline. 

 

 

The above concerns can be channeled through an exhaustive analysis of Fig.7, which is the key to the 

whole effect, given that this figure shows the immunity of entanglement to the distance between the original 

spins to obtain the same alter-egos with their same locations, i.e., at infinity. In other words, even if we 

modify at will the separation between 
00

  and 
11

 , the distance between


 and 


 will always be the 

same (based on Equations 49 and 50 and considering for simplicity 
11 00

0d d  ), and it is represented in 

Fig.14, as 
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       (58) 

 

This follows from Eq.(49) where d

   and d


  , with 2d d

 
  and 2d d

 
  , which represents 

a case identical to the rule of the signs of the spins seen above. In the middle of Fig.14, we can see the 

original spins and their alter-egos linked by two green parallel lines which intersect exactly in the alter-egos. 

These lines have been drawn curved in the vicinity of the alter-egos since it is impossible to graph infinite 

values in such figure. As we can see, both green lines define among themselves a locality aisle whose range 

is infinite and is determined by Eq.(58). Let's test that statement with a simple mental experiment 

(Gedankenexperiment - in german) based on Fig.7: 
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- if the distance between
00

  and 
11

  is so small that the experiment may be considered local, then, the 

application of Eq.(43) will give the same alter-egos (i.e., ) and the Eq.(45 and 46) will give the same 

locations (i.e., ), now,   

- if we start to separate 
00

  and 
11

  until the experiment may be considered non local by our knowledge 

of the works of Bell [4,5,25,30,44,48-50], CHSH [51], Aspect [30], Zellinger [58], and many others, then, 

the application of Eq.(43) will give the same alter-egos (i.e., ) and the Eq.(45) and (46) will give the 

same locations (i.e., ) again. 

At this point, there is an apparent contradiction given that in one case the experiment is local, and in the 

other case it is non-local, however, the effect is the same with identical results. How is it possible? If the 

effect is the same, then both times the experiment is local or both times it is not local. But the same effect 

cannot be disguised as different things according to the occasion. It is clear that something happens with the 

locality, as well as the fact that the alter-egos are under the same area of the effect caused by the original 

spins when they are entangled according to Eq.(43). On the other hand, if in the first case the original spins 

are so close that the measurement instruments of the experiment overlap, while in the second case the 

original spins can be as far apart as the alter-egos and even more being part of the same area of influence of 

the effect (i.e., inside locality aisle or locality alley) which involves the above mentioned alter-egos, then, the 

only explanation is that in both cases the experiment is local with a significant influence on the locality, 

which translates into a dilation of locality infinitely until sheltering, containing or covering the alter-egos. In 

other words, in both cases, the locality contains the alter-egos despite the distance between the original spins. 

Therefore, based on Eq.(58), the locality is stretched like a chewing gum. Then, this dilation of the locality 

can be represented by the following equation 

 

  2

00 11 00
2 2 2Lo d d d d d d

  
          .      (59) 

 

Lo  is represented on the left of Fig.14. Besides, on the right of this figure, we have an equivalent 

simplification of the central scheme which will help us better understand the concepts developed in relation 

to Fig.15. Finally, 
0  means neutral meson which sometimes decays into two opposite charged muons, and 

it represents the spin baseline. It is also a simply reference which establishes the value of spin equal to zero. 

The graph on the right of Fig.14 is the same graph on the left of Fig.15, and this -in turn- is equivalent to 

the graph on its right, which interprets the alter-egos as two massless black holes [129-133]
 
(massless, at 

least for the moment). The alter-egos are entangled with each other forming an EPR bridge or wormhole (in 

yellow) which can be seen in the third and fourth graph (from the left to the right) of Fig.15. In these graphs 

we can see that the locality aisle becomes the hyperspace (in green) when bending according to the Theory 

of Relativity [63-69] and the entanglement of the two massless black holes (alter-egos) forms a particular 

case of wormhole, which has already been vastly treated in the literature although with a slightly different 

approach [36,38,126,134-136], particularly in the works of Susskind [36,126] and Maldacena [36,37]. 
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Fig.15 From bipartite entanglement to wormhole where the locality aisle curves according to the Theory of 

Relativity forming the hyperspace. 

 

 

Evidently, the alter-egos are entangled with each other, in fact, as entangled as the original spins to each 

other in Eq.(43). Then and taking into account everything seen so far 
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where, 
2




 means second level entanglement, with, 

 
2

02
//      

   
              (61)  

 

Therefore, Eq.(47, 49, 58 and 61) constitute an approximation to the Theory of Everything [39], e.g., in the 

case of Eq.(61) we can see that this equation is a perfect balance between a spin (being the spin the fifth 

essence of Quantum Theory) and the Lorentz’s factor (which is a central tool in the Theory of Relativity); 

i.e., entanglement generates relativistic spins and hence relativistic entanglement. The negative complement 

of Eq.(61) will be 

 

2
    

  
                  (62)  



23 

 

Thus, Eq.(61) and its negative complement Eq. (62) represent an ER bridge or wormhole, where the spin of 

Eq.(47), i.e., 
0

  

  and its negative complement 

1
  


  are the massless black holes of Fig.15, 

which when entangled generate the spins of the Eq.(61 and 62) as a result. In other words, a domino effect 

takes place, being each time more and more pronounced, getting alter-egos from alter-egos. The main role of 

the alter-egos in the entanglement and, in consequence, an eventual quantum communication through a 

wormhole are clear at this point. To do justice to the importance of alter-egos in the entanglement we 

propose the following mental experiment (Gedankenexperiment - in german) based on Fig.7 again. Let's 

define the following rates spin/distance-from-center 
 

 00'

00

00

units of distance

d





    and   

 11'

11

11

units of distance

d





      (63) 

 

where 
'

00
  and 

'

11
  do not have physical units (like spins). Then, if we start with both spins relatively close 

(and this statement can be as arbitrary as we want), and we separate them, both ratios of Eq.(63) start 

deteriorating (i.e., they are approaching zero), therefore, and according to Fig.7 and Eq.(43) the alter-egos 

remain intact in magnitude and position, while the ratios of Eq.(63) disappear, which clearly indicates that 

the alter-egos sustain the effect, that is, the entanglement, even more so than the original spins themselves, 

which give existence to the alter-egos. Evidence of this can be obtained by replacing the alter-egos and their 

positions in Eq.(63); in this case, the ratios will always be equal to 1, regardless of the position occupied by 

the original spins, i.e., these new ratios do not degrade with the positions of the original spins.  
 

 

 
 

Fig.16 Graph on the left is a continuity of Fig.15, with a very pronounced curvature of hyperspace (locality 

aisle) according to Equations (60 and 61). The graph on the right shows us the complete curvature of 

hyperspace to the point of provoking a super-compression (or overshrinking) on the channel (ER bridge or 

wormhole). This last graphic is the platform to analyze the virtues of entanglement in communications. 

 

 

On the other hand, the graph on the right of Fig.15 (the last one) is equivalent to the graph on the left of 

Fig.16 (the first one), with a pronounced curvature of hyperspace (or locality aisle).  

Equations (60 and 61) tell us that as the alter-egos are entangled, then the curvature of space-time 

becomes extravagantly exaggerated to the point of completely closing in a perfect circle (infinite stretching of 

the locality aisle) crushing the ER bridge or wormhole to a null trajectory or channel length with dramatic 

consequences. The most relevant of these consequences consists of the appearance of a trade-off between the 

range of the locality Lo  (see Eq.59) and the length of the channel (ER bridge or wormhole) Ch , both in 

meters 
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               (64) 

 

where   351 616229 38 10pl .    is the Planck length in meters. Equation (64) will be called entanglement’s 

uncertainty principle and will be deduced formally in a future section called Method. The most outstanding 

thing to highlight at this moment is that, as the locality stretches to infinity, the channel is compressed 

(shrinked) to zero. This phenomenon is of vital importance when we later deduce the attributes of 

entanglement from the point of view of quantum communications: bandwidth, latency and channel capacity. 

 

3.2 Final thoughts on this section 

Although Eq.(59) shows a dilation of the locality directly proportional to γ
2
 instead of γ (from the point of 

view of an eventual communication between both alter-egos), everything is local, i.e., the link behaves 

operatively as a point. In fact, and as we have seen, the channel has null length. This last characteristic has 

surprising implications since the main argument by which we could not transmit useful information thanks to 

a link based on the entanglement, is that -given its instantaneousness- any transmission at such a distance d, 

such that if we divide that distance by a time t = 0, such ratio would result in a velocity greater than the speed 

of light, i.e., v > c. This would automatically imply that the information traveled faster than c, which results 

in an inconceivable concept being in clear opposition to what is established by the Theory of Relativity. 

Namely, what is questioned is not the instantaneousness (null latency) of entanglement but the fact that it 

could beat the speed of light to transmit useful information. However, and based on what is seen here in this 

work, particularly, if we look at the graph on the right of Fig.16, and relate it to Eq.(64) we can carry out 

another mental experiment (Gedankenexperiment - in german). Imagine a turtle (Dermochelys coriacea) 

crossing the length channel 0Ch   at a speed 

 

   sec sec.09 300,000,000meter meter
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How long would it take the turtle to cross that channel? 
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   .          (66) 

 

That is to say, and to exemplify it, the trip of a turtle through a channel (ER bridge or wormhole) of null 

length is instantaneous even when the speed used by the turtle is much less than c. In this way, the 

entanglement retains its main attribute without contradicting the Theory of Relativity, because it is a local 

effect of infinite range, and as we have already said, it is also the key to the TOE [39], given that if we 

rewrite Eq.(5) based on the original spins we will have 
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we can define symbolically the entanglement between both black holes of Fig.16 based on the Eq.(67)  
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Then, Eq.(68) represents the essence of the TOE, where their last terms have on the left the original Bell’s 

bases, which constitute a main role in Quantum Theory and, on the right the Lorentz factor as its counterpart 

in the Relativity Theory. In fact, Eq.(68) is the relativistic version of the Bell’s bases. 

Thanks to the Theory of Dilated Locality (TDL) there is no confrontation between the Theory of 

Relativity and Quantum Theory because of the entanglement. On the contrary, there is a union since the 

Theory of Relativity assists entanglement with a super curvature of space-time and, so TDL demonstrates 

that entanglement does not violate the Theory of Relativity, even when the entanglement carries useful 

information. In other words, it is the Theory of Relativity itself that collaborates with entanglement so as not 

to be violated by the entanglement itself. 

Besides, if the channel is reduced to a point (that is, no channel) and the information is completely shared, 

it is clear that the following principle is applied: What You Put is What You Get (WYPiWYG). Therefore, the 

bandwidth of a link via entanglement is infinite, and as there is no channel then there is no noise, at least, 

there is no channel noise, therefore, with infinite bandwidth and without noise, we will have a channel 

capacity which is also infinite. And finally, at this point, the most important finding is that it is impossible to 

attack, intercept or hack a channel that does not exist, i.e., thanks to the entanglement we can manipulate 

data without the need of using compression or encryption. In fact, in this context, the compression and 

Cryptography of data will not be useful any more.  

Furthermore, TDL shows that the channel is reduced to a point, so instead of talking about transmitting 

information we prefer to talk about sharing information at that point. In other words, it is even as if there was 

no a signal involved. The arguments mentioned above and the following ones are those that avoid violating 

the No-Communications Theorem [31,137-141] in the case of a transmission of information through a link 

based on entanglement, thus, we will start with a simple analysis about this important theorem. The No-

Communication Theorem works with the Kraus matrices which satisfy certain conditions and their means –

for example– that Alice's measurement apparatus does not influence Bob's subsystem, i.e., it starts from the 

non-locality established by Bell's theorem, CHSH and the apparent experimental verifications of such non-

locality carried out by Aspect and others. We say “apparent experimental verifications” because such 

experiments were consistent with a preconception which is completely displaced in this work. Then, the 

mentioned Kraus matrices continue being manipulated until they reach a scalar on which the theorem says: 

from this scalar, we can argue that, statistically, Bob cannot discern the difference between what Alice did 

and a random measurement (or if she just did something). That is, everything begins from the assumption 

that non-locality is the only reality around entanglement; but as we have seen throughout this work; the 

entanglement is a local phenomenon of infinite range, however, it does not violate the No-Communication 

Theorem. Besides, entanglement does not need a transmission at a speed v > c to share information 

instantaneously. As we have previously seen, in relation to the Eq.(63) it is the alter-egos that sustain the 

effect and, in fact, they are the only ones that can communicate among themselves. Moreover, since they are 

located in the same point, we could say that they share information by default, because the channel has zero 

length. In other words, it is as if they would communicate between themselves even without intentionally 

doing so. Therefore, the No-Communication Theorem does not apply to alter-egos, which are the only ones 

that manipulate information without violating the Theory of Relativity. Furthermore, in relation to 

entanglement we can draw three interesting conclusions: 

- it is a local phenomenon of infinite range,  

- the original spins do not communicate among each other but they do it through their representatives, i.e., 

their alter-egos, and 

- in every experiment related to the entanglement, the measured entangled pairs are those of Eq.(5) also 

known as singlet states, Bell bases, or simply the bases of Eq.(5), and they are based on the original spins 

of Eq.(4), since the alter-egos has never been measured (for obvious reasons). However, if such thing as 

measuring an alter-ego was possible, in fact, if we measured one, we would be measuring the other one as 

well because they share the same place (i.e., in this case the channel is a point). 

Therefore, there is not the slightest inkling of limitation or impediment to the instantaneous sharing of useful 

information via a link based on entanglement. At least until the entanglement is destroyed, for example, 

through a quantum measurement. 

So far, it should be clear that entanglement is the meeting point and not the cause of disagreement 

between the two main pillars of Physics (Theory of Relativity and Quantum Theory). Moreover, it is the 

cornerstone or instrument that ends up amalgamating everything. This is extremely positive since a better 
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understanding of entanglement could lead us to convert a measurement into a message itself. Since if Alice 

and Bob share a pair of entangled spins, and are far away from each other, being Alice in a fort which could 

be attacked but previously she had agreed with Bob that if she was attacked, the polarity of her spin would 

change. Otherwise, if she was not attacked, then her spin would be intact. The only way for Bob to realize 

whether Alice’s fort was assaulted is to measure his spin. Therefore, this is a clear example where the 

message is transmitted despite of the fact that the entanglement is destroyed. Techniques to recovering 

entanglement after a quantum measurement are shown in Appendix A.6. This better understanding of the 

entanglement sheds light on the potential it has in quantum communications in general, and in a possible 

interplanetary communication in particular, such as for the much-mentioned trip to Mars. Besides, thanks to 

the present work three types of communication systems are revealed: 

- classic (via an electromagnetic transmission), for disambiguation in a quantum information transmission, 

e.g., Teleportation [1-3, 58], 

- quantum (via optical fiber), for a classic information transmission, e.g., Superdense Coding [28, 57-59], 

and 

- quantum (via entanglement exclusively), which will give rise to a new communication system with links 

that do not have obstacles that interrupt it, neither fading nor vanishing it. Moreover, with the real 

possibility of developing new protocols for Teleportation, which will allow a disambiguation without the 

use of a classic channel (like the traditional Teleportation protocol) but using a second entanglement link, 

instead. This would allow a completely instantaneous Teleportation without violating the Theory of 

Relativity. What is more, it could not only have an impact over the interpretation on the theory of black 

holes [142] and the Hawking’s radiation [38,142,143], but also the Information Paradox [14,38]. 

On the other hand, and since the entanglement is "monogamous" (a third party cannot participate unless it is 

part of the original entangled particles) and taking into account that the channel is a point (i.e., there is not a 

channel or 0Ch  ), the security of the link should be completely preserved. However, the impact on 

Teleportation and Superdense coding goes much further since under the parallel operator of Eq.(43) we 

could think about protocols considering not only an exclusive wave-function representative of entanglement 

(as we know from the literature on this subject [1-3]) but also, recognizing more individuality to the original 

spins involved in that eventual protocol, that is to say, a new protocol where Alice and Bob do not lose their 

individualities. Moreover, and already in the terrain of Figures 15 and 16, a possible teleportation based on 

the entanglement of both black holes could be thought as a distribution of an entangled pair of the type of 

Eq.(68) between Alice and Bob, instead of sharing pairs of the type of Eq.(67). This opens up a whole new 

world of possibilities to Teleportation protocols of another type, which to date are mere speculations. 

 

Furthermore, from Eq.(43), it is easier to understand why there is no entanglement in the classical world. 

The reason is that in the world of the macroscopic (whether natural or man-made) there are not two perfectly 

equal things in such a way that with opposite signs they can be entangled by some means and reproduce an 

effect as extraordinary as the case of the entanglement between quantum spins. Even more, if two classic 

elements were perfectly equal, then they could cancel the denominator of the Eq.(43) and give infinite alter-

egos, with everything that that entails. In other words, everything is reduced to the Eq.(43), where if two 

things in nature were perfectly equal and with opposite signs, they could make the denominator of Eq.(43) 

equal to zero, and in this way, there would be entanglement. 

For the option chosen in this section, we conclude that the alter-egos do not emit Hawking’s radiation 

[38,142,143], precisely because they are massless black holes and such radiation depends on the mass of a 

black hole.  

Although we have taken the decision to completely strip this paper of all complicated symbolic logic so 

that the physical effect and its attributes survive above everything else, several questions remain to be 

answered: 

- What attributes of the original spins are transferred to alter-egos? Since these spins are one of the so many 

attributes of a particle to which the spin belongs, e.g., if the original spins are photons (bosons) with mass = 

0, electric charge = 0, mean lifetime = stable, among others, all this seems to be transferred from the 

originals to the alter-egos, except for the spin value which in photons are  1 and in the alter-egos are ∞, 

precisely since the latter are reached by the relativistic dilation, which is ∞ too, and 

- What kind of black holes are the alter-egos? We know that they are massless infinite spins, but what else? 

What about their linear momentum? 
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These questions will remain for an upcoming work, however, in the next section, we will delve into the 

relationship between alter-egos and black holes in order to verify the attributes of entanglement for quantum 

communications. 

 

4 Methods 

In this section, we will develop the necessary method for the verification of the concepts conceived in the 

previous sections, in particular, regarding the main attributes of entanglement in quantum communications:  

bandwidth and latency. This method is called Quantum Spectral Analysis-Frequency in Time (QSA-FIT) 

[144,145]. Also, we will demonstrate some theorems related to the projection of the aforementioned 

attributes in communications. Besides, we will develop a new deduction of the alter-egos but this time from 

the Hamiltonian of entanglement. Finally, we will expose the possibility that a pair of alter-egos may have 

equal masses with opposite signs. 

 

4.1 Prolegomena to Quantum Spectral Analysis-Frequency in Time 

A unitary operator U can transform a quantum state into another one, with, U: H → H on a Hilbert space H, 

where U will be a unitary operator if it satisfies the condition: † †U U UU I  . Besides,  
†

•  is the adjoint of 

(•), and I is the identity matrix. Such condition is required to preserve inner products, inasmuch as, we can 

transform   and   to U   and U  , respectively, thus †U U     . In particular, unitary 

operators preserve lengths: 

 

2 2
1† * *U U

 
                 

,                           (69) 

 

Besides, the unitary operator satisfies the following differential equation known as the Schrödinger equation 

[13, 16, 17]: 

 

   
ˆd i H

U t t,t U t t ,t
dt


  

h
                                 (70) 

 

where Ĥ  represents the Hamiltonian matrix of the Schrödinger equation, while 2 1i   , and h  is the 

reduced Planck constant: 2h h / . Multiplying both sides of Eq.(70) by  t  and setting  

 

     t t U t t ,t t                                 (71) 

 

Being      U t t,t U t t t U t       a unitary transform (operator and matrix), yields 

 

   
ˆd i H

t t
dt


  

h
                           (72) 

 

The Hamiltonian operator represents the total energy of the system and controls the evolution process. 

In most of the cases, the Hamiltonian is formed by kinetic and potential energy. However, if the particle is 

stationary thus the kinetic energy is cancelled, it will only leave the potential energy which is the only one 

that will be linked to external forces applied to this particle. Thus the control of the external forces is at the 

same time the control of the evolution of the states of the system [1, 2, 13, 16, 17, 146, 147]. For example, in 

the case of bosons (in particular, photons), they possess an integer spin ( = 1). Besides, we would have a 

momentum, 
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being  x y z, ,      the Pauli’s matrices,  

 

0 1 0 1 0

1 0 0 0 1
x y z

i
, , ,

i

     
          

     
           (74) 

 

while the spin will be, 

 

 x y zS , ,        h h h .                 (75) 

 

Then, the Hamiltonian takes the following form, 
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being c the speed of light,   will result in this case, 
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                           (77) 

 

At this point, if we consider a polarization of spin regarding the z-axis exclusively, thus,  
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   h h h
                            (78) 

 

with a Hamiltonian, 

 

z z z z

c
H P       h h h

h
                  (79) 

 

where  is the angular frequency, which is the same in all directions since we will consider Ω as spatially 

isotropic and homogeneous.  

Finally, solving Eq.(72) depending on the Hamiltonian of Eq.(79), we will have the solution to 

Schrödinger equation based on the exponential matrix of the Hamiltonian’s, 
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    h  (if Hamiltonian is not time-dependent)         (80) 

 

   
t t

t

i
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   h      (if Hamiltonian is time dependent)                 (81) 

 

Discrete versions of Equations (80) and (81) for a time-dependent (or not) Hamiltonian, being k the discrete 

time. With, 
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        (with 1k  , and starting from initial state
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0 )              (84) 

 

Moreover, replacing Eq.(79) into Eq.(80) and (81), we will have another main equations for this paper, 
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Finally, and considering an incremental approximation of Eq.(72) as well as in its discrete version, and 

considering the proper replacements of Eq.(79), both versions of Schrödinger’s equation will take the 

following form respectively, 
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and 
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4.2 Quantum Spectral Analysis-Frequency in Time (QSA-FIT) 

This tool plays a main role in the development of this section. Besides, it is highly important when it is 

applied in signal analysis, in particular for the practical calculation of the bandwidth of any type of signal in 

a much more direct way than the Fourier theory [148-150]. In fact, a quantum time-dependent spectrum 

analysis, or simply, quantum spectral analysis: frequency in time (QSA-FIT) complements and completes the 

Fourier theory, especially its maximum exponent: the fast Fourier transform (FFT) [151-154]. For all the 

above, QSA-FIT constitutes a practical temporal-spectral bridge [144,145]. Finally, QSA-FIT is a metric 

which assesses the impact of the flanks of a signal on its frequency spectrum at each instant, which is not 

taken into account by the Fourier theory and, let alone, in real time. This is the reason why they must both 

work together. 

Next, we are going to deduce this operator in its continuous and discrete forms for a quantum state. There 

are several versions of QSA-FIT [144,145], in this case, we will deduce this operator in its continuous and 

discrete versions of Equations (87) and (88), respectively. Therefore, if we multiply by   both sides of 

Eq.(87), we will have, 
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then,  
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Now, if we multiply both sides of Eq.(88) by
k , we will have, 
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then,  
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        (92) 

 

Summarizing, we are going to have a Δω at each instant of the signal (continuous or discrete, classical or 

quantum). Another interesting attribute of this operator is that it is not affected by the quantum measurement 

problem, because its output is a classical scalar, i.e., it can be measured with complete accuracy. In fact, the 

operator Δω arises from a hybrid algorithm with quantum and classical parts, as we can see in Fig.17 where a 

single fine line represents 1 or N qubits, while a single thick line represents 1 or N classical bits. Moreover, 

the quantum part of the operator Δω must respect the concept of reversibility because it is closely related to 

energy consumption, and consequently to the Landauer’s Principle [13], for this reason,
k  also appears 

on the way out. Thus, 

 

Quantum part: 
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Fig. 17 A hybrid algorithm with quantum and classical parts. 

 

 

Finally, for all mentioned cases (continuous or discrete, classical or quantum signals) the bandwidth BW 

will result from the difference between the maximum and the minimum frequency of such signal, 

 

 max min max min

1

2
BW f f     


             (95) 

 

A practical example will make things clearer. This is the case of the application of QSA-FIT to a classical 

signal. There are several versions and ways to apply QSA-FIT to a classical signal [144,145]. For any signal 

(in general) it is necessary to equalize it and calibrate it in quadrature with FFT [144,145], but for a pure tone 

this procedure is unnecessary, so we can access the result in a much simpler way. Therefore, the direct 

classical continuous version of Equations (90) and (92) will be, 

 

 
 

 ds t
t

s t dt
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where s(t) is the signal, and η is an adjustment factor. While the discrete version will be, 
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The problem with Equations (96) and (97) consists in the indeterminacy of Δω when the signal is null at that 

instant. Then, we will use a modified version of the signal called baselineless (BLL) which consists of, 
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with η = 1, where,  
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then, ω, fmax and fmin will be 
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Fig. 18 Example of signal (in blue), QSA-FIT (in green), and |FFT| (in red) of cosine. 
 

 

Now, if we consider a signal like Fig.18 (in blue), 
 

   coss t A t B    ,                       (103)  

 

where A is the amplitude,   is the phase, and B is the baseline, with, 
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then, 
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Now, replacing Equations (104) and (105) into (100), we will have, 
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in green in Fig.18, then, 
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Then, replacing Eq.(107) into (95), we will have, 

 

 max min 2BW f f f f f      .                    (108) 

 

This result can be seen in the lower part of Fig.18 between QSA-FIT and |FFT|, which is the total aperture of 

QSA-FIT (in green) and at the same time, the distance between the peaks of |FFT| (in red). 

Now, we are going to calculate the spectral analysis of one of the original spins thanks to the operator 

QSA-FIT. Therefore, if we resort to Eq.(87) but for one of the bases of Eq.(4), e.g., 00  
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In Eq.(109) we used a new operator “ . ” (which is easy to generalize) on the Pauli matrix 
z  of Eq.(74), 

this new operator is the only substantial difference between the Equations (87) and (109), and accounts for 

the dimensional difference between the two equations. So that if 

 

11 12

21 22

a a
A

a a

 
  
 

,   and  
11 12

21 22

b b
B

b b

 
  
 

,   therefore 

 

11 12 11 12

11 12

21 22 21 2211 12 11 12

21 22 21 22 11 12 11 12

21 22

21 22 21 22

11 11 12 11 11 12 12 12

21 11 22 11 21

. .

a a a a
b b

a a a aa a b b
A B

a a b b a a a a
b b

a a a a

a b a b a b a b

a b a b a b

    
     

                      
     
     

    
 

   


11 11 12 11 11 12 12 12

12 22 12 21 11 22 11 21 12 22 12

11 21 12 21 11 22 12 2211 21 12 21 11 22 12 22

21 21 22 21 2121 21 22 21 21 22 22 22

a b a b a b a b

a b a b a b a b a b

a b a b a b a ba b a b a b a b

a b a b aa b a b a b a b

      
  

       
           
                22 22 22b a b

 
 
 
 
 

 

(110) 

 

Now, applying the new operator on the Pauli matrices 
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Then, if we multiply both sides of the Eq.(109) by 00 , 
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Then,  
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It can be seen that Equations (92) and (113) coincide in their form and it is clear that the spectral analysis for 

its counterpart independently of the term in the extreme right of Eq.(113) will be, 
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Then, the bandwidth of the original entangled spins will be, 
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Therefore, the bandwidth of the link between the original spins is finite. However, what happens with the 

bandwidth of the link between the alter-egos? We obtain the answer replacing the alter-egos in the Eq.(113), 

 

max

min

   

   

 

 

   

   
                                       (116) 

 

Then, the bandwidth will be 
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This result should not be surprising given the exceptional performance of the quantum entanglement and 

therefore of a quantum entanglement channel. But once again, it can be seen that it is the alter-egos that 

sustain not only the effect but also the exceptional attributes of such effect. 

Now, if we consider that 
t

 



 is a good approximation of d
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 , since   is a stationary wave-

function, then 
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Equation (118) represents a trade-off, such that, if we consider the division by 2 of the derivative, and we 

take the modulus on the right side of the equality, then, the trade-off becomes 
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,                          (119) 

 

which represents the famous Heisenberg Uncertainty Principle [1-3, 13], and it is the same for the original 

spins and for the alter-egos,  
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4.3 Entanglement and black holes 

Next, we will try to verify the connection between Equations (64) and (119), since and as we can see, both 

equations represent a trade-off between their two respective components, i.e., if in Eq.(64) Lo  , then, 

0Ch  , and if in Eq.(119)   , then, 0t  . We will begin by demonstrating three theorems, 

which are key to this mission. 

 

Perfect Quantum Channel Theorem (PQChT): 

Theorem: A quantum channel with infinite bandwidth and then null time latency is a perfect quantum 

channel.  

 

Proof: From Eq.(119), we know that if    , thus 0t  . Now, replacing 0t   and 
0t t  into Eq.(71), 

we will have, 

 

               0 0 0 0 0 0 0 0 00 0 0 0t t U t ,t t U t t t U t                             (121) 

 

It is easy to deduce that the only equality that admits Eq.(121) is when 

 

 0U I                                                              (122) 

 

where I is the identity matrix. Consequently, Eq.(121) will be, 

 

   0 0t t                                       (123) 

 

Therefore, we will obtain a perfect quantum channel U under these conditions.                        ∎ 

 

No-Quantum Channel Theorem (NQChT):  

Theorem: Every perfect quantum channel has null effective Euclidean dimensions.  

 

Proof: If we do,  

 

2

2

p
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l

 
                       (124) 

and 

 
Ch

t
C


                         (125) 

 

where Lo  is the range or locality of the effect (quantum entanglement),   351 616229 38 10pl .    is the 

Planck length, and Ch  is the channel length (all of them in meters), and C is the speed of light, then, 

replacing Equations (124) and (125) into (119), we will have,  

 

2

2
2 1/ 2

p p p
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l C l l

         
                  

                 (126) 

 

with 

 

2 1/ 2o hl c                          (127) 

 

and then 
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1/ 4o hl c                                     (128) 

 

being 
ol  the range of effect (unitless) and 

hc  the channel length (unitless). Clearly, Eq.(128) holds the 

trade-off between 
ol  and 

hc  (like between   and t ), so, if 
ol  , then, 0hc  .                        ∎ 

 

This theorem does not tell us that there is no quantum channel but -under these conditions- there is a 

quantum channel of null dimension, that is, the quantum channel is reduced to a point. Besides, from 

Eq.(126) we can rearrange terms so that thanks to it we can deduce Eq.(64). 

Moreover, in the two theorems developed up to this point we could have considered (in relation to the 

graph on the right of Fig.16) only the upper semicircle (or north arch) above the dotted line, that is, 

  2 2
Lo Ch   instead of Lo Ch  (see Fig.19), although the final result for these two theorems would not 

have changed at all.  

 

 

 
Fig.19 North arch of Fig.16. 

 

 

Therefore, we will take Fig.19 into account for the following theorem. Besides, for the next theorem we 

will consider the remaining option with respect to the masses of the black holes of a bipartite entanglement, 

that is, both black holes have mass (finite or infinite) but of opposite sign. In particular, the following 

theorem exclusively involves the north arch, which has positive mass (finite or infinite), as we can see in 

Fig.19. 

 

North Arch Theorem (NAT):  

Theorem: The north arch of a bipartite quantum entanglement behaves like a black hole. 

 

Proof: Let's start from Eq.(126), considering only the northern arch, and regrouping elements, we will have, 
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t
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   ,                    (129) 

 

where the term inside parentheses represents the lateral area of the cylinder of Fig.20. In the following 

equation, A is the area of the event horizon, and the width of the channel is equal to its length since it is a 

point. Then, 

 

2

1

4p

A

l
                         (130) 

 

where the lateral area 
2 2

Lo ChA    , being the diameter of the cylinder equivalent to 
2

Ch , and its 

length equal to 
2

Lo , see Fig.20. 
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Fig.20 This cylinder contains the singularity of the entanglement black-hole whose lateral area contributes to 

the entropy of the effect, while such cylinder is its event horizon. 

 

 

Now, if we divide both sides of the inequation (130) by 4 and multiply it by the Boltzmann’s constant 

  231 38064852 79 10B
Jk .

K
  , we will have the entropy of the entanglement black-hole,  
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k A k
S
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  .                      (131) 

 

The central term of Eq.(131) represents the Bekenstein–Hawking [14, 38] formula for the entropy of a black 

hole. The subscript BH indiscriminately refers to "black hole" or "Bekenstein–Hawking". Now, if 

3

N
p

G
l

C


h , where, GN is Newton’s gravitational constant, and if we replace them into Eq.(131), we will 

have, 
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.                    (132) 

 

On the other hand, the Hawking temperature [155] for a black-hole is 
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,                        (133) 

 

where  is the acceleration due to gravity at the horizon of the black-hole. Then, 
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.                          (134) 

 

Now, replacing Eq.(134) into (132), we will have, 
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,                      (135) 

 

then, 
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It is evident that the north arch of a bipartite quantum entanglement behaves like a black hole because of the 

strict values that its temperature 
22

H

B N

AC
T

k G

 
 
 

 and its entropy 
16

B
BH

k
S
 

 
 

 reach. It is a very particular 

black hole, but definitively, a black hole. However, a question immediately arises: What happens with the 

southern arch? Obviously, it is another black hole, but, how does it interact with the northern arch? They are 

mutually alter-egos of one another, and since both of them are in full contact (more precisely, one over the 

other) then, if the positive mass radiates, the other one will receive that radiation until both masses are 

annulled. If it does not happen instantly because the masses of the alter-egos are equal (finite or not) and of 

opposite sign, then, both black holes end up being massless black holes. The question that remains is whether 

in this case, the extinction of the radiation eliminates the entanglement, or if it is simply a scenario similar to 

the original case of massless black holes. 

 

4.4 Deduction of parallel operator via a Hamiltonian analysis 

We know from the literature [157] that the Hamiltonian of the entanglement has a form like the following 

 
A B A BH H I I H    .                (137) 

 

But we also know
 
[1] that a more consistent and complete model for entanglement is the following: 

 

int

AB A B A B ABH H I I H H     ,                (138) 

 

where the interaction between both subsystems S
A
 and S

B
 is described by the Hamiltonian 

int 0ABH   so that 

each individual subsystem is an open quantum system. The Hamiltonian as a whole, and under these 

circumstances, takes the form of Eq.(138). However, and considering two fundamental aspects: 

- a greater approximation between the treatment based on entropy as well as that based on the Hamiltonian, 

and 

- the possibility of working with a Hamiltonian model notably more simplified and at the same time closer to 

entanglement from the physical point of view, which is used with remarkable success [158], 

then, we understand that the best option is to use the following Hamiltonian, 

 

/ /

1
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H H H H
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                (139) 

 

where, 

 

00

A

zH   h                     (140a) 

11

B

zH   h                     (140b) 

/ /

zH  


 h                     (140c) 

 00 11
0A B

zH      h                   (140d) 

 

Therefore, replacing Eq.(140) into (139) so that a pair of matrices 
z  cancel each other before being 

replaced in 
A BH 

, we will have, 
 

00 11 00 11

1
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  h h h h
h
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Thus,  
 

 2 2 2 2

0 100 11 0 1 2

2 2 2 2

00 11 0 1 1 0

    
 

      


   

  
,                              (142) 

 

which coincides completely with Eq.(43). In fact, there are two more methods that converge to the same 

result and that have been omitted in this paper due to space issues and because they are considered 

unnecessary. Such coincidences clearly indicate the consistency in the genesis of alter-egos.  

Finally, we will see additional deductions of this operator based on others entropies in Appendix A.5. 
 

4.5 Analysis of the positions of equivalent spins 

In the case of two hypothetical and completely independent spins, we will use Eq.(23) for the calculation of 

the equivalent spin 
C , and Eq.(45) for its position 
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where 12A  , 4B  , 5Ad cm , and 15Bd cm . Besides, and although Fig.21 is not in scale, the 

proportions are preserved. In that figure, we can see that 
BA B Ad d d  . 

 

 

Fig.21 Sketch for the case of two hypothetical and completely independent spins. 

 

 

We will apply the same equations of the previous figure to the case of two hypothetical quasi-entangled 

spins. 
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where 4A   , 8B  , 4Ad cm  , and 8Bd cm . On the other hand, Fig.22 is not in scale, although, 

the proportions are preserved. However, it is the entangled case by far the most interesting one. Because of 

this we resort to Eq.(45) and (46). Making the convenient replacements in them, we will obtain the 

following: 

 

 
 

Fig.22 Sketch for the case of two hypothetical quasi-entangled spins. 
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,              (143)  

 

while, 
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.              (144) 

 

We can clearly see that Equations (143) and (144) are identical to Equations (49) and (50). 

 

4.6 Final comments 

As we have seen so far, the entanglement bandwidth is BW    (i.e., it is unlimited) and the length of the 

quantum link based on entanglement is null. A direct consequence of this is that the system interchanges 

information in a robust way, i.e., the link is immune to noise and could not be attacked, that is be intercepted 

by an indiscreet third part. Besides, we must remember that a bipartite entanglement is a monogamous 

process [1-3]. However, what is the capacity of a quantum channel based on quantum entanglement? If we 

resort to a classical approach to the problem, e.g., the Shannon’s Channel Capacity Theorem, then, we will 

have that the Shannon-Hartley Theorem [156] states that, 

 



41 

 

2 1
S

C BW log
N

 
  

 
  [bits/sec]                     (145) 

 

with these elements: C is the channel capacity, BW is the bandwidth in Hertz, S is the signal power and N is 

the noise power, N0 BW with N0/2 is the two-sided noise Probability Density Function (PSD), and S/N is the 

ratio in watt/watt, not decibels. Then, C rises according to the increase of the available BW and the 

increase/improvement in S/N. Besides, Eq.(145) seems to tell us that as the BW increases, capacity C should 

increase proportionally. But this does not happen due to an increase in the bandwidth BW, because it also 

increases the noise power N = N0 BW giving: 
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Now, if BW   then 
0

0S
N BW

  
 

. On the other hand, the expression  
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. Therefore, the channel capacity goes to: 
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                (147) 

 

If we do not have the channel, then, we do not have channel noise, therefore, when BW   and 
0 0N  , 

the channel capacity is also infinite. This is the last attribute of entanglement which is still to be explored in a 

context of absolute interest for quantum communications. 

On the other hand, we rescue a particular equation, which constitutes a bridge between the Theory of 

Relativity and the Quantum Theory, and which constitutes a fundamental tool of the Theory of Everything,  

 
2 2 2 2

00 01 10 11
, , ,

   
                .                 (148) 

 

In fact, we can consider a simplification like this, 

 
2

XY xy
,                         (149) 

 

where, X and Y are the first and the second subscripts of the alter-egos, respectively, which can be   or   , 

while, x and y are the first and the second subscripts of the original spins, respectively, which can be 0 or  1. 

In this way, we arrive at a unified effect equation, which represents a super arching of space-time since 
2 . 

 

Finally, there is a large territory for the exploration of different questions and possibilities, namely: 

- If we considered the case of alter-egos with masses different from zero and with opposite sign, and 

supposing that the masses did not cancel each other, a question arises: would the alter-egos repel each 

other? In Eq.(140) we can see that the sign of the energy is conditioned by the sign of the corresponding 

spin. Therefore, if one of the components of Eq.(140) has negative energy, we can suppose that this will 

have negative mass, given that 
2E mc . 

- Could we consider an alter-ego constituted of matter and another one by anti-matter in the previous case? 

Would they annihilate each other? 

- Could we picture a scenario where one black hole attracts and the other one repels? 

- What is the relationship of the previous points with dark matter? 
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- Could a massless black hole with an infinite spin radiate foreign matter borrowed from its environment? 

- Could a massless spin, especially if that spin is infinite, bend space-time? 

- What is the relationship between alter-egos and an eventual black-hole/white-hole pair? 

- Is the entanglement of a spin with itself possible? That is to say, is the self-entanglement a real possibility? 

See Fig.23. 
 

 

 
 

Fig.23 Symbolic sketch for a self-entanglement. 
 

 

- Can we think in a Physics where the spin has more prominence than the mass when curving space-time? 

- The entanglement is presented as a link system that does not allow a blocking of its effect by a third party, 

which is understandable given that it is impossible to block a channel that does not exist, then: Can we 

think of a communication system based on entanglement without antenna or transmission power? What is 

more, from the point of view of quantum communications: Can we think of Teleportation protocols that do 

not need to be disambiguated thanks to a classical channel? 

- In [11] we can see entanglement between photons that have never coexisted temporarily, but, can two spins 

that have never coexisted spatially be entangled?  

- From the General Theory of Relativity we know that it is not possible to use quantum entanglement to 

extract information from inside a black hole, but, in light of what it has been seen in this paper: what new 

conclusion can we draw from it? 

 

These are just some of the questions that remain to be answered in the future. On the other hand, the 

following questions will be answered in Appendices below: 

- What is the projection of this work in N-partite entanglement? See Appendix A.1. 

- What is the incidence of decoherence in the analysis seen in this paper? See Appendix A.2. 

- Is any type of entanglement between signals possible? See Appendix A.3. 

- What is the N-dimensional analysis of entanglement according to this theory? See Appendix A.4. 

- Is it possible to deduce the parallel operator for other entropies? See Appendix A.5. 

- Is it possible to recover entanglement after its destruction by a quantum measurement? See Appendix A.6. 

- Is it possible to deduce new protocols for Teleportation and Superdense Coding with a greater emphasis on 

the distinguishability of entangled particles based on the new theory? 

 

In a future work, some concepts in the context of a practical quantum communication will have to be 

explored formally: 

- If we need to distribute an EPR pair between Alice and Bob: what is the most convenient method to do it?   

a) Take-out: using an adiabatic container, bottle or holder, 

b) Sophisticated Delivery: using a laser cannon, or telescope 

c) Simple Delivery: using a standard optical fiber (even in non-ideal conditions) as suggested in the  

    simulations in [160]. 

- In light of this work: can we think of the following means of transmitting information? 

a) Classical Channel: Internet, telephone, radiocommunication, etc. 

b) Quantum Channel: optical fiber 
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c) Entanglement Link: this is a means, not a channel, in fact and as we could see in this work, thanks to the 

Theory of Dilated Locality there is no channel since the channel disappears at the expense of the 

locality. Therefore, useful information can be transmitted. 

- In this paper the entanglement between atoms (matter) and photons (light) is pending. 

- Throughout this work, we have assumed the absence of noise, i.e., we have considered a pure 

entanglement. An exhaustive analysis under noisy conditions remains pending. 

- The symbolic logic has been simplified to the detriment of rigor in order to reach as many readers as 

possible, stripping the paper of all mathematical formalism in order to put the Physics of the problem above 

of such symbolic logic. To this end, the minimum symbolic and formal expressions necessary in order to 

respect the central idea of this work have been used. 

Finally, this work highlighted fundamental concepts such as entanglement and spin which are the main actors 

in the Theory of Everything. Besides, the experiment where the thermodynamic arrow of time is reverses 

using quantum correlations in relation to a heat exchange [159] exposes the fact that there are negative and 

positive energies involved with a high degree of polarization on their parts. This concept is a key element 

involved in the very existence of the alter-egos which are the main essence of the present work, and hence, 

the experiment carried out in [159] supports all the predictions of the new theory presented in here. 

 

Appendices: Theory of Dilated Locality contemplates all things related to entanglement 
 

A.1 Multi-entanglement or N-partite analysis 

 

In this appendix, six cases of entanglement will be analized according to the new perspective introduced by 

the Theory of Dilated Locality: 2-partite, 3-partite [1, 3] and 4-partite [3, 161] for GHZ and W states 

configurations. For this reason, we will introduce a couple of new tools:  

- a polynomial of spins,  

- and their corresponding complex root locus according to the canonicity of the state configuration: GHZ or 

W. 

 

The complex adjective has a double meaning:  

a) the root locus has a Hermitian nature, but besides 

b) it has to do with the complexity of such root locus which depends on the order of the polynomial (whose 

roots are the spins) and the type of state configuration: GHZ or W. 

 

2-partite GHZ states configuration: Fig.A.1.1a shows us this case. In fact, this is the case analyzed so far and 

on which all deductions were made. From Eq.(5) we have, 
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2

A B A B A B, ,

   , 

 

with the following polynomial of spins, where such spins are its roots, 

 

  2

2 2 1 0 0P a a a                                    (A.1.1) 

  
where, 
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 (this is the case of the meson)              (A.1.2) 

We will use 
1 00
   and 

2 11
   (or 

1 0
   and 

2 1
  , which in the case of photons are 

absolutely equivalent) for simplicity. In Fig.A.1.1a, we can see a black ring with 
1  (on point A) and 

2  (on 

point B) at 180 degrees from one another. Now, if we remember the Eq.(43), we will have, 
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Figure A.1.1a. 2-partite GHZ states configuration. 
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                (A.1.3) 

 

Besides, and how we have said, the denominator of Eq.(A.1.3) is the principle of spin conservation. If we 

make a rename,  

 

1 2 1 00a


                           (A.1.4) 

 

Then, the polynomial of the spins will be, 
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2 0 0P a                        (A.1.5) 

 

with roots, 
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3-partite GHZ states configuration: Fig.A.1.1b shows us this case. In these circumstances, everything 

increases in one degree with respect to the previous case, that is, 
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with the following polynomial of spins, 
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                  (A.1.8) 
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Figure A.1.1b. 3-partite GHZ states configuration. 

 

 

In Fig.A.1.1b, we can see a black ring with 
1  (on point A), 

2  (on point B), and 
3  (on point C) at 120 

degrees from the next. Then, for this case, we will have, 
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                  (A.1.9) 

 

The degree of the root (i.e., 2) is equivalent to the jump between the degree of the numerator (i.e., 3) and the 

denominator (i.e., 1) under this root. Therefore, 


  has a degree equal to 1, in fact, this is what should 

always happen with 


 . Besides, the denominator of Eq.(A.1.9) is the principle of spin conservation:  

 

1 2 3 2 00a


                           (A.1.10) 

 

Then, the polynomial of the spins will be, 
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3 0 0P a                      (A.1.11) 

 

with roots, 
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4-partite GHZ states configuration: Fig.A.1.1c shows this last case. Here too, everything increases in one 

degree with respect to the previous cases, that is, 
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with the following polynomial of spins, 
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where, 
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Figure A.1.1c. 4-partite GHZ states configuration. 
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             (A.1.14) 

 

In Fig.A.1.1c, we can see a black ring with 
1  (on point A), 

2  (on point B), 
3  (on point C), and 

4  (on 

point D), at 90 degrees from the next. Then, for this case, we will have, 
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The degree of the root (i.e., 3) is equivalent to the jump between the degree of the numerator (i.e., 4) and the 

denominator (i.e., 1) under this root. Therefore, here again, 


  has a degree equal to 1. Besides, the 

denominator of Eq.(A.1.15) is the principle of spin conservation:  
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                          (A.1.16) 

 

Then, the polynomial of the spins were, 
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with roots, 
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Summing-up for the N-partite GHZ states configuration: We will have, 
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2-partite W states configuration: Fig.A.1.2a showcases this configuration. From Eq.(5) we have, 
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   ,         

with,  
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         ,   (this is the case of the meson)           (A.1.22) 

 

and, 
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.              (A.1.23) 

 

That is to say, for the 2-partite case, both models agree on the values of their spins 


  and 


 . For this 

case, we obtain the values of coefficients 
1a  and 

0a  from Eq.(A.1.2). 

 

On the other hand, Fig.A.1.2a shows us a black ring with 
1  (on point A) and 

2  (on point B) at 180 

degrees from one another. Besides, and clearly, Fig.A.1.2a allows to see a pink ring which represents the 

signal beam (i.e., vertical polarization), and a light blue ring which represents the idler beam (i.e., horizontal 

polarization). The two entangled particles correspond to the intersection points of the rings. 

 

 

 
 
Figure A.1.2a. 2-partite W states configuration. 

 

 

3-partite W states configuration: Fig.A.1.2b shows us this case. In these circumstances, everything increases 

in one degree with respect to the previous case, that is, 
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with,  
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.              (A.1.25) 

 

For this case, we obtain the values of the polynomial coefficients 
1a  and 

0a  from Eq.(A.1.8). On the other 

hand, Fig.A.1.2b displays this particular configuration. 

 

 

 
 
Figure A.1.2b. 3-partite W states configuration. 

 

 

4-partite W states configuration: Fig.A.1.2c shows us this case. Here too, everything increases in one degree 

with respect to the previous case, that is, 
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4
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     ,    

     

with,  
 

1 2 3 1 2 4 1 3 4 2 3 4 1 0a


                   ,            (A.1.26) 

 

and 
 

 
1 2 3 4 0

1 2 3 1 2 4 1 3 4 2 3 4 1

a

a
   
   

   


           
.           (A.1.27) 

 

For this case, we obtain the values of the polynomial coefficients 
1a  and 

0a  from Eq.(A.1.14). On the other 

hand, Fig.A.1.2c represents this particular configuration. It is too easy to extrapolate this case to another one 

of higher degrees. 
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Figure A.1.2c. 4-partite W states configuration. 
 

 

Summing-up for the W states configuration: In a generic manner and for this configuration we must 

remember the polynomial of the spins from Eq.(A.1.19), then, 
 

 
1

11 0
N

a



   ,                 (A.1.28) 

 

and 
 

0

1

a

a
   .                  (A.1.29) 

 

Next, we will visualize the jumps of the GHZ states configuration from a purely graphic point of view for the 

cases: 2-partite, 3-partite, 4-partite and 5-partite. See Fig.A.1.3. 
 

 

 
 

Figure A.1.3. Jumps for the configuration of GHZ states depending on the degree of the spins’ polynomial. 
 

 

As we can see in Fig.A.1.3, the jumps are equivalent to the difference of degree between aN-1 and a0, that is to 

say, N-1. Besides, N-1 is the difference between the subscript of aN-1 and a0, and at the same time, it is the 

degree of the radical that represents the corresponding jump. In Eq.(A.1.20) we can see this radical for the 

generic case, i.e., for N entangled spins of the GHZ configuration. We must remember that for this case all 

coefficients from aN-1 to a1 are 0, where aN-1 represents the principle of spin conservation for this 

configuration, i.e., 


 . 
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In Fig.A.1.4 instead, we can see the jumps for the W states configuration depending on the degree of the 

spins’ polynomial. In this case, the jumps are the difference of degree between a1 and a0, that is to say, 

always equal to 1. Besides, this configuration results from the intersection of different rings which represents 

several polarizations. In this regard, the simplest case is represented by the type 2-partite where one ring 

corresponds to the horizontal polarization while the other corresponds to the vertical polarization. 

 

 

 

Figure A.1.4. Jumps for the W states configuration depending on the degree of the spins’ polynomial. 

 

 

A.2 Analysis of decoherence according to the Theory of Dilated Locality 

 

The W states configuration (including the parallel operator) has its counterpart in electrical circuits, in 

particular, the so-called reactive circuits where they are composed, at first, by inductors (L) and capacitors 

(C). This will lead to the so-called entanglement circuits. This should not be surprising since Physics is 

frequently based in models. In fact, the parallel operator is repeated in several cases inside Physics, e.g., we 

must remember Eq.(52) of Subsection 2.6 for the De Broglie wavelength as the centre-of-mass frame of a 

nuclei with two masses in the context of an energy treatment where meq = m1 // m2, see pp.136 of [62]. 

Another example in the use of this operator can be seen in Optics: if two lenses with focal length f1 and f2 

placed next to each other are equivalent to a single lens with a focal length feq = f1 // f2, see pp.30 of [162]. 

Finally, the equivalent spin in W states configuration like Eq.(43) is also represented in RLC circuits [163].  
 

On the other hand, in this appendix and with the same criterion of Appendix A.1, we are going to consider 

00LX   and 
11CX  , or 

0LX    and 
1CX   , which in the case of photons both pair of equalities 

are completely equivalent. In fact, if an inductive impedance is now associated with a spin up for a given 

frequency, we will have, 
 

L LX j L   ,                    (A.2.1) 

 

while the capacitive impedance will be, 

 

C C

j
X

C





  ,                    (A.2.2) 

 

then, the serial impedance will be the principle of spin conservation for entanglement, being this the left 

graphic of Fig.A.2.1, 
 

1
0L C L C

j
Z X X j L j L

C C
 

  
          

 
    

 
,             (A.2.3) 
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Now, for the resonance frequency, see Eq.(A.2.3), we will have, 
 

21 1 1 1
, , , f .

2
L

C LC LC LC
  

 
                   (A.2.4) 

 

Besides, if we want to calculate the parallel impedance, this will be the super-spin for entanglement, being 

this the right graphic of Fig.A.2.1, 
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j
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,              (A.2.5) 

 

As we can see, Eq.(A.2.3) is similar to Eq.(A.1.22), whereas Eq.(A.2.5) is similar to Eq.(A.1.23). In 

Fig.A.2.1, we can see Eq.(A.2.3) on the left as a serial LC circuit which is the denominator of Eq.(A.2.5), 

while the complete version of Eq.(A.2.5) is on the right as a parallel LC circuit. 
 

 

 
 
Figure A.2.1. On the left we have a serial LC circuit which is the denominator of Eq.(A.2.5), and on the right we have a 

parallel LC circuit. 
 

 

This analogy resists even its application to the case of completely independent subsystems of Eq.(23), with  
 

 2 2 0L L L L LZ X X j L j L j L
 

                ,             (A.2.6) 

 

where Eq.(A.2.6) is the denominator of Eq.(A.2.7) and can be seen in the graphic on the left of Fig.A.2.2. 
 

 
2

2 2 2

L L L

L L

j Lj L j L j L
Z

j L j L j L 
       

 

     


    
.               (A.2.7) 

 

Equation (A.2.7) can be seen in the graphic on the right of Fig.A.2.2. 

 

 

Figure A.2.2. An inductive version of completely independent subsystems. 
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The capacitive version of Fig.A.2.2 can be seen in Fig.A.2.3.  
 

2 2 2 0C C C C C C

j
Z X X X

C
 

 
         

 
   


,              (A.2.8) 

 

where Eq.(A.2.8) is the denominator of Eq.(A.2.9). Its graphic can be seen on the left of Fig.A.2.3.  
 

 
2

1

2 2 2 2

CC C C C C C

C C C C C

XX X X j
Z

X X X C 

 
         

  

  


  
.              (A.2.9) 

 

Equation (A.2.9) can be seen on the right of Fig.A.2.3. 
 

 

 
 

Figure A.2.3. A capacitive version of completely independent subsystems. 
 

 

In Fig.11 we saw for the W states configuration that two completely independent particles can be entangled 

with another third particle. This example is showed in Fig.A.2.4 as an LC circuit. In this case, if the result of 

XL//XL= XL/2 is equal and opposite to XC, i.e., XL/2 + XC = 0, then, we will have entanglement. In other 

words, the last equation is the denominator of parallel operator and it is on the left of Fig.A.2.4. 
 

 

 
 

Figure A.2.4. Two completely independent particles are entangled with another third particle. 
 

 

Including the most extreme cases, this analogy between spins and LC circuits fits the W states configuration, 

even under the effects of quantum measurement [164], however a question arises: what about the collapse of 

the wavefunction? It is a very interesting question, in fact, this analogy based on LC circuits for W states 

configuration resists the presence of decoherence. It is important to highlight that we can continue to use this 

analogy to represent the disturbed effect of entanglement intervened by the action of the environment since 

the scope is not adiabatic. The presence of decoherence is modelled via resistors in an RLC analogy in 

Fig.A.2.5, which represents both the degradation of the equivalent inductor and the capacitor simultaneously. 

 

In other words, the presence of resistors degrades both the inductor and the capacitor leading us to present a 

theorem on decoherence based on the RLC analogy and its corresponding proof. 
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Figure A.2.5. Entanglement perturbated by decoherence represented with resistors. 
 

 

Theorem: Decoherence converts two entangled spins into two new equivalent and completely independent 

spins.  
 

Proof: First, we are going to simplify the RC tank circuit of Fig.A.2.5, which is framed in blue. 
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where, 
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                  (A.2.11) 

 

and, 
 

 

   
2 22

2 2 2 2

1 11

1

C CC

C CC

C R C RR C
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C' R C R CC R

   
   

   
            (A.2.12) 

 

Then, we will go from Fig.A.2.5 to Fig.A.2.6.  

 

Therefore, the complete impedance of the graphic on the right of Fig.A.2.6 will be, 
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L L C CL C
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,               (A.2.13) 

 

where its denominator will be, 
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Figure A.2.6. RLC circuit of Fig.A.2.5 with a built-in simplification on the original RC circuit. 
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,           (A.2.14) 

 

The imaginary part of Eq.(A.2.14) may be canceled for some frequency, however, its real part will never be 

annulled, as we can see in Fig.A.2.7 where 
LZ  is in pink color while 

CZ  is in light blue and both of which 

shape Z


 in light green which will never be annulled. Therefore, we find ourselves facing a new 2-partite 

equivalent system of completely independent spins.             ∎ 
 

 

Note: this theorem, as well as its proof, is easily and completely generalizable to the N-partite case. 

 

Therefore and undoubtedly, for this analogy, the resistors represent decoherence in the same way that they 

are associated with the energy expenditure by Joule effect in electrical circuits. Since in this analogy energy 

is lost in heat, the resistors will represent the loss of entanglement because of the interaction with the 

environment. If we consider that the ambit where the entangled particles are located is not adiabatic, they 

will be victims of the action of decoherence [1]. So much decoherence seems like the bad boy of the movie, 

however, it is an excellent tool to understand this analogy better. 

 
 

 

Figure A.2.7. The denominator of Eq.(A.2.13), which is the graphic on the left of Fig.A.2.6. 
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Finally, from Eq.(A.2.5) 

 

2 2

0021
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j L
Z X

LC 
   




   


,                             (A.2.15) 

 

where   is the Lorentz’s factor,  

 

2

1

1 LC






.                        (A.2.16) 

 

Then, 

 

0
Z

 
    ,                                  (A.2.17) 

 

where, Eq.(A.2.15) is equal to Eq.(48) and Eq.(A.2.17) is equal to Eq.(147). 

 

A.3 Entanglement of Signals 

 

If there is entanglement between particles, and between a particle and its wave duality [12], automatically 

two questions arise: can entanglement take place between two waves? If the answer to the first question was 

yes, then, how would such entanglement be according to both state configurations previously mentioned? We 

will try to answer both questions simultaneously. For example, if we choose two entangled waves regarding 

both states configuration (GHZ and W), we will have:  

 

f = 2 [hertz],  

A = 1 (amplitude),  

D = 1 (baseline),  

N = 1000 (number of samples), and, 

t = 0:1/(N-1):1 (from 0 to 1 with a pass = 1/(N-1)), then, 

 

 

 

1

2

A 2 D

A 2 D

sin f t

sin f t

   

     
                   (A.3.1) 

 

In Fig.A.3.1 we can see both entangled signals 1 and 2. 

 

 

 
 
Figure A.3.1. Two entangled waves for the 2-partite case. 
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Next, Eq.(A.3.2) will be the denominator of Eq.(A.3.3) 
 

1 2 00 t


      ,                  (A.3.2) 

  1 2. . / t


         ,                 (A.3.3) 

 

where, “ .” means infixed version of Hadamard’s product of vectors (discrete waves like signals) [165], and 

“ . / ” represents the infixed version of Hadamard’s quotient of vectors (previous id) [165], and whose result 

can be seen in Fig.A.3.2. This figure shows us 


  and 


  for the 2-partite case. Besides, in Fig.A.3.3 

both states configurations, GHZ and W, coincide. 

 

 

  
 
Figure A.3.2. 


  (on the left), and 


  (on the right) for the 2-partite case. 

 
 

However, for the 3-partite GHZ case the entangled waves will be: 
 

f = 2 [hertz],  

A = 1 (amplitude),  

D = sqrt(2) (baseline), 

N = 1000 (number of samples), and, 

t = 0:1/(N-1):1 (from 0 to 1 with a pass = 1/(N-1)), then, 
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A 2

A 2 2 3 D

A 2 4 3 D
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                  (A.3.4) 

 

In Fig.A.3.3 we can see the three entangled waves 1, 2 and 3, with, 
 

1 2 3 00 t


       ,                              (A.3.5) 

  
1

2
1 2 3

•

. . . / t


         ,                (A.3.6) 

 

where “  
1

2
•

• ” means infixed version of Hadamard’s square root of vectors (discrete waves like signals), i.e., 

it is the square root of each and every one of the samples of the discrete wave, and whose result can be seen 

in Fig.A.3.4. This figure shows us 


  and 


  for the 3-partite GHZ case. 
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Figure A.3.3. Three entangled waves for the 3-partite GHZ case. 
 

 

  
 
Figure A.3.4. 


  (on the left), and 


  (on the right) for the 3-partite GHZ case. 

 

 

While for the 3-partite W case the entangled waves may have the following form: 

 

f = 2 [hertz],  

N = 1000 (number of samples), 

 = exp(i*2*pi/3) (twiddle factor), and, 

t = 0:1/(N-1):1 (from 0 to 1 with a pass = 1/(N-1)), then, 
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                    (A.3.7) 

 

where, k=/c is the wave number and x is the position, with,  
 

1 2 1 3 2 3 0. . . t


         .                 (A.3.8) 

 1 2 3. . . / t


         .                 (A.3.9) 

 

Which can be seen in Fig.A.3.5. 
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Figure A.3.5. Three entangled waves for the 3-partite W case. 
 

 

Since the three entangled spins of Eq.(A.3.7) are complex, Fig.A.3.6 shows us 


  and 


  for the 3-

partite W case, where we have separated the real and the imaginary part of both resulting spins . 

 

 

  

  
 
Figure A.3.6. 


  (top), and 


  (bottom) for the 3-partite W case. 
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A.4 N-Dimensional Entanglement 

 

The W states configuration predicts entanglement in N spatial dimensions, i.e., not with respect to a unique 

dimension but projected on N axes, as long as the entangled spins are always on a same plane, e.g., we can 

see this in Fig.A.4.1 for 2 dimensions, however, the analysis is easily extendable to N dimensions. 

 

 

 
 

Figure A.4.1. 2-partite entanglement regarding 2 spatial axes. 
 

 

Figure A.4.1 shows us two entangled spins 
A  (in red) and 

B  (in blue), with projection on one of their 

original axis (x’, y’): y’, however, they have projections on two new axes (x, y), therefore, for their original 

axes the spins 


  and 


  will be, 

 

        0x' y' x' y' x' x' y' y'

A B A A B B A B A B
                                 (A.4.1) 

 

where, 

 
x' y'
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                     (A.4.2) 

 

with, 
 

0x' x' x' x'

A B A B

y' y'

A B

,   

 

   

 
.                 (A.4.3) 

 

The second line of the Eq.(A.4.3), in relation to the original axes (x’, y’), is the unique projection which 

records a perceptible value for the entanglement. That is, they are equal in modulus, parallel, opposites, and 

in principle, nonzero. Then, considering the equalities of Eq.(A.4.3), we will have, 
 

      
   

   
2

0

x' y' x' y' y' y' y'
A A B B A B AA B

y' y'x' y' x' y'
A B A BA A B B



   
     

   

       


      
            (A.4.4) 

 

While for the new pair of axes (x, y), 


  and 


  will be, 

 

        0x y x y x x y y

A B A A B B A B A B
                     ,            (A.4.5) 
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where, 

 
x y

A A A

x y

B B B

 

 

  

  
                     (A.4.6) 

 

with, 

 
x x

A B

y y

A B

 

 

 

 
,                    (A.4.7) 

 

Both lines of the Eq.(A.4.7), in relation to the new axes (x, y), record a perceptible projection for the 

entanglement. That is, in both cases, they are equal in modulus, parallel, opposites, and in principle, nonzero. 

Then, considering the equalities of Eq.(A.4.7), we will have, 
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          (A.4.8) 

 

This shows us several things at once since the W states configuration predicts: 

- the multidimensional entanglement [8] exists, as long as, the spins are on the same plane and are parallel, 

with equal modulus and are opposites, 

- the parallel operator can be applied individually: projection by projection, provided that each and every 

one of the projections complies with 
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                             (A.4.9) 

 

and 
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                           (A.4.10) 

 

- the application to K-partite of N dimensional entanglement as a natural extension of Equations (A.4.9) 

and (A.4.10) but applying the respective operators on 


  and 


  according to K-partite case, see 

Appendix A.1. 

 

In terms of applications, as in the case of quantum radar, the orientation is also critical, since in all equations 

of this work despite having implicitly assumed an analysis strictly on a single plane, we have dispensed with 

the analysis of the projections on the three spatial axes. This last analysis is what really corresponds in the 

treatment of signals of any radar, including (of course) its quantum version. 

 

Similar considerations can be made and similar results can be obtained for the GHZ states model in relation 

to K-partite/N-dimensional cases. In other words, the analysis performed is totally generalizable to N 

dimensions individually for each dimension. In this context a question arises: can entanglement occur 

independently in one direction (projection) and in another not as indicated in Fig.A.4.2?  As we can see in 
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Fig.A.4.2, at first sight, 
A  (in light blue) and 

B  (in blue) cannot entangle because they have different 

orientations and values in their spins. However, the new theory says that we can consider the projections 

individually and thus establish an entanglement between 
y

B B   (in blue) and 
y

A  (in red), discarding the x 

axis completely and any eventual projection on it as 
x

A . If this is verified experimentally, we would be in 

the presence of an oriented entanglement or entanglement by projection with all the applications that this 

would allow in practice. The Theory of Dilated Locality contemplates what has been said, however, what 

about practical reality? This possibility is within the sphere of possibilities that this new theory contemplates 

as it did with the case of Fig.11 of Section 2.6. 

 

All this should not surprise us because there are other forms of partially entangled pairs [166-169]. 

 

 

 
 
Figure A.4.2. Oriented entanglement or entanglement by projection. 

 

 

A.5 Deduction of the parallel operator from other entropies 

 

The entropy employed in Section 2.1 to obtain the alter-egos and known as von Neumann’s entropy can be 

deduced as a limit case of the Rényi’s entropy [170]. In fact, the th order Rényi is defined as 

 

 
1

1
S log Tr 


  
 

                   (A.5.1) 

 

The zeroth-order (α = 0) Rényi’s entropy is related to the rank, namely, the number of nonzero singular 

values of ρ. When α → 1, the first-order Rényi’s entropy reduces to the von Neumann’s entropy, 

 

 1S Tr log    ,                            (A.5.2) 

 

also known as Shannon’s entropy. The latter can also be represented as 
 

 Tr log log      .                  (A.5.3) 

 

If we remember Eq.(37) and considering that for the scalar case 

 

log log r   ,                            (A.5.4) 

 

then, replacing Eq.(A.5.4) into Eq.(37) in each case, we will have, 

 

log log logA B A B A B A B A BS S S S r r r         .              (A.5.5)
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Now, from Eq.(7) we can consider, among many other possibilities, 
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, and                   (A.5.6a) 
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,                   (A.5.6b) 

 

given that 
2 2

0 1
1    for photons. If we replace Equations (A.5.6) and (38) into Eq.(A.5.5), we will have, 
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.                           (A.5.7) 

 

If we make the appropriate additions and subtractions to Eq.(A.5.7), we will have: 
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.          (A.5.8) 

 

Sending to the other side of the equal sign that is in brackets, 
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.          (A.5.9) 

 

Replacing the corresponding values of each term of Eq.(A.5.9): 
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.                     (A.5.10) 

Finally, we obtain 

 
2 2

0 1 00 11

2 2

0 1 00 11
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,                     (A.5.11) 

 

which is exactly equal to Eq.(43). 

 

On the other hand, another version of the entanglement Hamiltonian can be seen in [170] 

 

entH log   ,                         (A.5.12) 

 

which has a matrix structure. Then, if we consider its scalar version, we will have, 

 

entS h log r   ,                 (A.5.13) 

 

As we can see, Eq.(A.5.13) matches completely with Eq.(A.5.4), the deduction starts again and ends with the 

same result, that is, Eq.(A.5.11). 
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A.6 Loss and Restoration of Entanglement 

 

We know that an entanglement link is established between elements of an EPR pairs. Figure A.6.1 represents 

such link as two tank tuned LC circuits based on the guidelines of Appendix A.2.  

 

 

 
 
Figure A.6.1. Entanglement link between an EPR pair. This pair is tuned. 

 

 

A problem arises when we want to measure the state of one of the elements of the entangled pair. In this 

circumstance, the entanglement is interrupted. In Fig.A.6.2 the intervention of the quantum measurement is 

represented as resistors in the LC (inductor-capacitor) pairs. These resistors tell us about the direct 

intervention of the environment on these pairs. As a result of this, the spins become completely independent 

and the alter-egos disappear.  

 

 

 
 

Figure A.6.2. After quantum measurement the entanglement link is disrupted, however, this persists in a ghostly way. 

Both resulting spins will be completely independent, and the action of the decoherence is represented with resistors in 

inductors and capacitors. 
 

 

As we can see in Fig.A.6.3, the resistor components (in green) of the original entangled spins 
A  (in red) 

and 
B  (in blue) generate two new resulting spins (in pink and in light blue, respectively) which are not 

entangled. Effectively, the resistive components misalign the original spins (they are not parallel), making 

them independent and thus interrupting the entanglement. See Appendix A.2. 
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Figure A.6.3. Original entangled spins 
A  (in red) and 

B  (in blue) with their respective resistor components in green, 

which generate two new resulting spins (in pink and in light blue, respectively) not collinear and hence not entangled. 
 

 

This is also known as decoherence and is associated with the collapse of the wavefunction. Besides, noise as 

a consequence of an interaction with the environment or with operations on imperfect gates generally reduces 

both purity and entanglement itself of a given state. However, if one has several copies of some less than 

maximally entangled state available, it is possible that both parties Alice and Bob concentrate or distill the 

entanglement, by acting locally on their parts in relation to the states and exchanging classical information on 

a classical channel. Thus, by using the so-called local operations and classical communication (LOCC) they 

can create fewer pairs with higher entanglement and higher degree of purity. This process is called 

entanglement purification or entanglement distillation [1, 3, 13, 171-177]. So far, this was the only known 

technique to improve entanglement, even, in part. However, the Theory of Dilated Locality tells us that the 

loss of entanglement is a completely reversible process, that is, the entanglement can be restored and the link 

re-established. On the other hand, and given that the resistors are directly associated with heat dissipation, the 

technique that is suggested as a remedy for the problem is laser cooling [178-180]. Returning to Fig.A.6.2, 

the Theory of Dilated Locality tells us that the decoherence can be overcome with a direct and local action on 

the spins (local cooling), although these are independent with an apparent irreversibility. 

 

Everything said so far is indicating that quantum entanglement remains latent after decoherence in a ghostly 

state, and besides that such entanglement can resurrect with a direct and individual action on the spins as we 

can see in Fig.A.6.4, which has never been predicted in such a direct way by Quantum Theory. However, this 

must be verified even experimentally. 
 

 

 
 

Figure A.6.4. For a given EPR element, the upper green arrow shows the pass from the entangled spins to completely 

independent spins via quantum measurement, while, the bottom green arrow indicates the transition from completely 

independent spins to entangled spins thanks to laser cooling. Laser cooling eliminates the resistors factors that inhibit 

the entanglement. 
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In a more general context: is the entanglement trainable? Can we make a supervised or unsupervised 

purification or distillation? In the supervised case the objective is to try to reach a target, and in the 

unsupervised case minimize an energetic functional. The answer to these questions constitutes a bridge 

between Quantum Information Processing and Artificial Intelligence. 
 

Finally, when we return to the scheme of Fig.A.6.1 thanks to the laser cooling technique, the range of the 

locality completely shelters the EPR pair and the alter-egos according to what was developed in Section 3.1, 

which constitutes an important longing in all quantum optics experiments [181] and their potential 

applications. 
 

A.7 New protocols for Teleportation and Superdense Coding 
 

The quantum teleportation begins with the distribution of the EPR pair to Alice and Bob. This distribution 

constitutes the entanglement link between Alice and Bob, and after that, we continue with the complete 

sketch of quantum teleportation of Fig.A.7.1, where the green line indicates the border between the sides of 

Alice and Bob, that is, both extremes of the entanglement link. In Fig.A.7.1, a single fine line represents a 

wire carrying one qubit, while a double line represents a wire carrying one classical bit [13]. Besides, the 

classical channel is really a control classical channel for disambiguation purposes (as we will see below 

through two bits), while the entanglement link is really an entanglement data link. Besides, in this figure, the 

block with an H represents a Hadamard’s gate, and 00

A B

   of Eq.(5). 

 

 

 
 

Figure A.7.1. Current Teleportation protocol using an EPR pair and two classical bits for disambiguation. 
 

 

If the arbitrary state to be teleported is 10   , then, the initial state (3-partite state) will be, 

 

   0 00

1
0 00 11 1 00 11

2

1
000 011 100 111

2

    

   

      

      

,               (A.7.1) 

 

where for simplicity and in a generic form x y x y  . Now, CNOT gate is applied to Eq.(A.7.1), 

 

1

1
000 011 110 101

2
          

.                  (A.7.2) 

 

At this time, we apply a Hadamard’s gate to the elements of Eq.(A.7.2), 

 

0 0 1 0 0 1 1 1

2

0 0 0 1 1 0 1 1

1
00 01 10 11

2

1

2

x z x z x z x z

x z x z x z x z

   

     

        
 

            

           

 .               (A.7.3) 
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Finally, Table A.7.I synthesizes the complete process of quantum teleportation, where Alice measures two of 

the possible qubits of the basis    00 01 10 11, , , , , ,             and therefore she transmits 

the corresponding bits M1 and M2 via classical channel to Bob. The quantum measurement process is 

imperative in order to make the wavefunction of the original arbitrary state collapse since this is necessary 

not to violate the No-Cloning Theorem. In other words, the quantum measurement process destroys the 

original arbitrary state [13]. 

 

 
TABLE A.7.I 

ALICE’S SIDE: MEASUREMENT OF BASE, CLASSICAL TRANSMISSION OF BITS, AND COLLAPSE OF STATES,                                                                                    
BOB’S SIDE: CLASSICAL RECEPTION OF BITS, GATES APPLICATION FOR THE FINAL RECOVERY OF THE ARBITRARY STATE. 

Alice’s 

measurement 

Alice  

transmits  

This happens with 

probability 
Collapsed state Bob applies 1 2M M

x z   

00   M2 M1 = 00 
2

0 01 1
2 4x z      0 0

x z    0 0

x z      

01   M2 M1 = 01 
2

1 01 1
2 4x z     1 0

x z    1 0

x z x      

10   M2 M1 = 10 
2

0 11 1
2 4x z     0 1

x z    0 1

x z z      

11   M2 M1 = 11 
2

1 11 1
2 4x z     1 1

x z    1 1

x z x z       

 

 

At this point, it is important to mention that in literature there are several concerns regarding the 

implementation of teleportation protocols using a greater or lesser dimensional commitment but always with 

two classical bits for disambiguation. An interesting example can be found in [182], which shows that the 

one-qubit teleportation can be considered as a state transfer between subspaces of the whole Hilbert space of 

an indivisible eight-dimensional system. However, this as well as the rest of the works that manipulate high 

dimensional quantum systems for the implementation of teleportation protocols do it with two classical bits 

for disambiguation. Next, we present a new teleportation protocol with a single bit of disambiguation, with 

the peculiarity that this protocol respects the individuality of the entangled particles that are distributed to 

Alice and Bob and that is consistent with what has been seen so far in the Theory of Dilated Locality. This 

new protocol can be seen in Fig.A.7.2, where the block with the symbol “ ” represents the correlation 

between   and 0 . 

 

 

 
 

Figure A.7.2. Proposed Teleportation protocol with only one classical bit of disambiguation and using a  0 1,  pair. 

 

 

Alice’s side: 

If the arbitrary state to teleport is 10    again, then, the initial state (2-partite state) will be, 

 

 0 0 0 0 1 0 00 10                            (A.7.4) 
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Applying CNOT gate to Eq.(A.7.4): 

 

1 00 11                        (A.7.5) 

 

Now, applying Hadamard’s gate to Eq.(A.7.5): 

 

   2

1 1
00 10 01 11 0 0 1 1 0 1

2 2
                                  (A.7.6) 

 

Equation (A.7.6) and Fig.A.7.2 show us that if in the instant t3 Alice measures 0 , then she transmits 0, and 

if she measures 1 , then she transmits 1. 

 

Bob’s side: 

Next, we will establish the state of the wavefunction on Bob's side for each instant. 

 

 0 1 1 0 1 1 01 11                            (A.7.7) 

1 01 10                                 (A.7.8) 

   2

1 1
01 11 00 10 0 1 0 1 1 0

2 2
                                  (A.7.9) 

 3 0

1
0 1 0

2
                              (A.7.10a) 

 3 1

1
1 1 0

2
                              (A.7.10b) 

 

Applying 
x  gate to both rows of Eq.(A.7.10): 

4 0
0 1                                  (A.7.11a) 

4 1
0 1                        (A.7.11b) 

 

Applying 
z  gate only to Eq.(A.7.11b), i.e., if M = 1: 

5 0
0 1                                   (A.7.12a) 

5 1
0 1                         (A.7.12b) 

 

Therefore, the complete teleportation of the arbitrary state   is done with a single classical bit of 

disambiguation and distributing an entangled pair of type  0 1,  between Alice and Bob. In this way, we 

can obtain an alternative teleportation protocol to the one in current use that endorses the Theory of Dilated 

Locality. 

 

Here a question automatically arises: is it possible to do the same thing that we did with the  0 1,  pair but 

instead distributing a pair of type  00 11,  between Alice and Bob? 

 

Alice’s side: 

In this case we have and initial 3-partite state, 

 

 0 00 00 0 1 00 000 100                         (A.7.13) 

 

Applying CNOT gate to Eq.(A.7.13): 
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1 000 110                      (A.7.14) 

 

Now, applying Hadamard’s gate to Eq.(A.7.14): 
 

   2

1 1
000 100 010 110 0 0 1 0 1 0 1 0

2 2
                             (A.7.15) 

 

Equations (A.7.15) and (A.7.6) are clearly equivalent. Besides, here too, if in the instant t3 Alice measures 

0 , then she transmits 0, and if she measures 1 , then she transmits 1. 

 

Bob’s side: 

Next, we will establish the state of the wavefunction on Bob's side for each instant. 
 

 0 11 11 0 1 11 011 111                         (A.7.16) 

1 011 101                               (A.7.17) 

   2

1 1
011 111 001 101 0 1 0 1 1 1 0 1

2 2
                               (A.7.18) 

 3 0

1
0 1 0 1

2
                             (A.7.19a) 

 3 1

1
1 1 0 1

2
                    (A.7.19b) 

 

Applying 
x  gate to both rows of Eq.(A.7.19): 

4 0
0 1                                  (A.7.20a) 

4 1
0 1                        (A.7.20b) 

 

Applying 
z  gate only to Eq.(A.7.20b), i.e., if M = 1: 

5 0
0 1                                   (A.7.21a) 

5 1
0 1                         (A.7.21b) 

 

Clearly, the protocols that distribute both of the  0 1,  pairs as well as the  00 11,  pairs between Alice 

and Bob are equivalent, which is another fact predicted by the Theory of Dilated Locality. In fact, we could 

do the same with type  01 10,  pairs and even then the protocol would still work perfectly. 

 

Next, we are going to try to show that for the new protocol proposed in the same use of  0 1,  pair as an 

EPR pair.  

 

 

 

Figure A.7.3. Proposed Teleportation protocol with only one classical bit of disambiguation and using an EPR pair. 
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Based on Fig.A.7.3, we will have the following procedure: 

 

Alice’s side: 

   0 00

1
0 00 11 1 00 11

2

1
000 011 100 111

2

    

   

      

      

             (A.7.22) 

 

Applying CNOT gate to Eq.(A.7.22): 

1

1
000 011 110 101

2
          

                 (A.7.23) 

 

Now, we apply Hadamard’s gate to Eq.(A.7.23): 

 

       

2

1
000 100 011 111 010 110 001 101

2

1
00 0 1 10 0 1 01 1 0 11 1 0

2

          

         

        

       

          (A.7.24) 

 

In the instant t3, Alice measures, obtains M, and transmits it. In fact, the first qubit of the basis is associated 

with the application of 
z  gate, and the second one with the application of 

x  gate, then, Alice only 

measures the first qubit of those bases that end in 1 as 01  and 11 , since Bob will always apply the 
x  

gate. 

 

Bob’s side: 

In the same instant t3, Bob applies 
x  gate to Eq.(A.7.24): 

 

       4

1
00 1 0 10 1 0 01 0 1 11 0 1

2
                            (A.7.25) 

 

Finally, in the instant t4, if M = 1, Bob applies 
z  gate to the state associated to the 11 basis of Eq.(A.7.25), 

and, if M = 0, Bob does not apply 
z  gate to the state associated to the 01 basis of Eq.(A.7.25), and in this 

way we recover the teleported state. The states associated with bases 00  and 10  are completely 

discarded. This demonstrates that it is the same to distribute a  0 1,  or EPR pair between Alice and Bob. 

Therefore, this also demonstrates that the predictions based on the Theory of Dilated Locality about the non-

loss of individuality by the entangled particles is correct. 
 

Now, we present the standard Superdense Coding (SDC) protocol with two classical bits to transmit and an 

EPR pair to be distributed between Alice and Bob. This protocol is based on Fig.A.7.4 where after 2M

x  and 

1M

z  and depending on the values of M1 and M2, it delivers the Bell’s basis 
1 2M M , which is transmitted by 

a quantum channel from the Alice’s side to Bob’s side. Next, the combination of CNOT gate and 

Hadamard’s gate (in that order) obtains  1 2M , M  from 
1 2M M . Finally, quantum measurement allows 

to reach  1 2M ,M  from  1 2M , M . 

 

Now, we are going to develop a new protocol for SDC with only one classical bit to transmit and using a 

 0 1,  pair to distribute between Alice and Bob instead of the traditional EPR pair 
00  as in the standard 

SDC protocol. Figure A.7.5 shows the new SDC protocol which represents the counterpart of the protocol of 

Fig.A.7.2. 
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Figure A.7.4. Current SDC protocol with two classical bits to be transmitted and using an EPR pair. 
 

 

 
 

Figure A.7.5. Proposed SDC protocol with only one classical bit to be transmitted using a  0 1,  pair. 

 

 

Alice’s side: 

From Fig.A.7.5 we will develop the new protocol instant-by-instant: 
 

Top line:  

0 1                                      (A.7.26) 

 

Applying 
M

z  gate to Eq.(A.7.26) and depending on the value of M: 

1 0
1                                                 (A.7.27a) 

1 1
1                                        (A.7.27b) 

 

Applying 
x  gate to Eq.(A.7.27): 

2 0
0                                     (A.7.28a) 

2 1
0                            (A.7.28b) 

 

Bottom line:  

0 0                                       (A.7.29) 

 

1 0
0                                     (A.7.30a) 

1 1
0                               (A.7.30b) 

 

2 0
1                                                 (A.7.31a) 

2 1
1                                              (A.7.31b) 
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Bob’s side: 

From  0 1,  or  0 1,   to the input of the combination of Hadamard’s gate and CNOT gate, we will 

obtain 
01  or -

01 , respectively. Then, and after the quantum measurement, if Bob has an 
01 , he 

obtains a 0, and if he has a -
01 , he obtains a 1. 

 

This unequivocally establishes the equivalence when we use  0 1, ,  00 11,  or EPR pairs for the 

different protocols of Teleportation and Superdense Coding. Besides, and as a preliminary conclusion, we 

can say that the entangled spins are not separable, however, they can be distinguishable, where in this 

context, distinguishable means that the entangled spins can be considered clearly distributable in an 

individual way between Alice and Bob in the context of protocols like those of Figures A.7.2 and A.7.5 for 

Teleportation and Superdense Coding, respectively.  

 

On the other hand, and since the locality is dilated for which the EPR pair is local, a question automatically 

arises: what is the impact of the locality on the distinguishability defined above for the entangled EPR pair? 

In other words, if they are local: are they distinguishable according to the definition suggested above? Or: are 

they not? 

 

Finally, an exhaustive analysis is pending on the possibility of developing both Teleportation and Superdense 

Coding protocols using Mixed Entangled Pairs [183]. 
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