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Abstract

A parallel multiscale strategy for a non-invasive mixed domain decomposition method is pre-
sented. After briefly exposing our non-invasive implementation of the Latin method, we present
how the scalability of the algorithm is obtained by the addition of a global verification of the
constitutive law of the interfaces. We propose a new interpretation of the classical macro strategy
that impose a global equilibrium of interface’s forces. We also propose a new study of a macro
strategy that permits to enforce a global continuity of displacement at the interface.

1 Introduction

The industrial simulations of assemblies require to manage complex models with large numbers of
degrees of freedom that provokes memory and time consuming limitations. Nonlinearities coming from
the complex behaviors, such as plasticity, damage or contact, amplify increasingly the problems of
memory or time consumption. Since 80s, domain decomposition methods have been developed to face
these issues : Schwarz methods [9], Balancing Domain Decomposition [25], Finite Element Tearing
and Interconnecting [8, 7, 6]. They distribute the computation on parallel architecture of hardwares
and stretch the memory limitation at the same time they reduce time computation.

The first works on domain decomposition were limited by the scalability of the methods and patho-
logical cases with high heterogeneities. However the recent developments truly improve the robustness
of the algorithms. Two-levels algorithms with coarse problems are commonly use [5, 6, 26, 28] and
similarities can be done with deflation [29, 14, 33] and multi-grid methods [15, 16, 37]: a comparison
can be found in [36]. Adapted augmentation Krylov subspaces obtained through prior quasi-local
analysis [35] or multi-preconditioned approaches [11] are also proposed to improve significantly the
convergence.

The nonlinearities due to the contact behavior between pieces of an assembly may cause technical
difficulties for domain decomposition methods. With the Latin method [17], as subdomains and
interfaces are both considered as different entities, it is possible to distinguish the different behaviors,
avoiding to verify at the same time, contact laws on interfaces and equilibrium of the linear elastic
subdomains. Indeed, the principle of the Latin method is to separate the equations managing contact
referring to the interfaces from the equations of equilibrium over subdomains. Therefore two spaces of
partial solutions are defined over which a fixed point algorithm is applied to reach the global solution
of the problem. Two successive problems are solved at each iteration: a linear stage composed of
independent linear elastic problems over subdomains followed by local stage composed of independent
nonlinear point-wise problems on interfaces.

The implementation in commercial softwares has becomes one of the issues of these domain decom-
position methods. The issue of all these previous methods is their intrusive implementation. Complex
development into sources codes are required and even impossible for non opened commercial softwares.
Thus, proposing non-intrusive formulation has become a true concern. Works about the global/local
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method have been proposes during the last decade [10, 31, 1, 2]. An extension of this method for a
complete domain decomposition for nonlinear problems is described in [4].

For the Latin method, the difficulties come from the mechanical computation under Robin condi-
tions on the boundaries of subdomains which do not incite to develop in the softwares. We propose
the scalability of a non-invasive implementation of the Latin method described in [30]. The multiscale
strategy of [19, 20] is adapted to this non-invasive approach. A global equilibrium of force distributions
is enforce at the linear stage by the introduction of a Lagrange’s multiplier. A macro basis for the
displacement of the interface is chosen over which the force is globally equilibrated. Macro information
of boundary conditions are directly transmitted through the structure during the iteration improving
convergence. The choice of the macro basis is crucial. The optimal one is difficult to choose and it
depends on physics of the problem, the geometry and also on boundary conditions [21, 12, 34].

Particularly a new interpretation of the multiscale strategy is proposed. A multiscale modification
of the search direction couples all the subdomains together and the method becomes scalable. The
algebraic formulation permits to determine precisely the expression of the different projectors and
correctly define macro and micro contributions of displacement. A new study of a global continuity
strategy is examined. A macro basis for forces is built directly with the first macro basis for dis-
placement. A two-level algorithm is implemented: a first step consists in solving parallel mechanical
problems on the subdomains, the second one computes a macro problem that couples subdomains
together through an ”homogenized” operator.

This paper is organized as follow: sections 2 and 3 briefly present the substructured problem and
the Latin method for a non-invasive mono-scale implementation. The multiscale strategy and its
interpretation are presented in section 4. Two approaches are detailed: a global equilibrium and a
global continuity strategies. These two strategies are compared on a 3D example in the section 5. The
scalability and the influence of the search direction are studied. Finally a severe multiscale frictional
3D case is presented and some performance about the time computation are shown.

2 The substructured reference problem

2.1 substructured discrete problem

We consider an assembly composed of a family of non-overlapping subdomains (ΩE)E∈[1,N ] of R3.
We assume small perturbations and quasi-static isotherm evolution. The material is supposed to be
isotropic linear elastic; Hooke’s tensor K is characterized by Young’s modulus and Poisson’s ratio. We
use classical Lagrange conforming finite element. We denote by KE the stiffness matrix related to the
subdomain ΩE , by uE the vector of nodal displacement over the subdomain, and by fdE the generalized
forces associated to given loads. Degrees of freedom submitted to Dirichlet boundary conditions are
supposed to having been eliminated.

ΩE ΩE ′

ΓEE ′∂ΩE ′
E ∂ΩE

E ′

fEE ′ ,wEE ′ fE ′E ,wE ′E

Figure 1: Force and displacement fields defined on the edges of the subdomains

Subdomain ΩE interacts with any neighboring subdomain ΩE′ through the interface ΓEE′ . For
each interface we introduce finite element displacement and force distributions defined on the edges of
the related subdomains: (wEE′ ,wE′E) and (fEE′ , fE′E). These fields are connected to the subdomains’
by trace relations materialized by the operator NEE′ . Let E be the set of all subdomains and G the
set of all interfaces.

We use (pseudo)-time in order to properly describe complex load sequences and to be able to
manage the history-dependence of the solution. We use dot notations (ẇEE′ , u̇E) for the interface and
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subdomain velocity fields. In practice a simple backward Euler scheme is used for the time integration.
To easily handle the many interfaces of one subdomain, we define concatenated operators:

wE =


...

wEE′

...

 , fE =


...

fEE′
...

 , NE =


. . .

NEE′

. . .

 , E′ spans all neighbors (1)

The mechanical problems to solve on the subdomains is:

subdomains: ∀ΩE ∈ E , ∀t,
{

KEutE = fd
t
E + NT

Ef tE

wt
E = NEutE

(2)

The mechanical behavior of the interface ΓEE′ can be given by a relation of the form:

Interfaces: ∀ΓEE′ ∈ G,


f tEE′ + f tE′E = 0, ∀t
f tEE′ = bEE′

(
ẇt′

E′E − ẇt′

EE′ , t
′ 6 t; w0

E′E −w0
EE′

)
, ∀t

Initial conditions

(3)

where the first relation is the balance of forces and the second relation represents the constitutive law
of the mechanical behavior. Intuitively, perfect and contact interfaces can be considered as limit cases
of mechanical behaviors (3) (think of a perfect interface as an infinitely stiff interface). In the following
we use the term “interface behavior” and the notation bEE′ for any kind of interface, except when
being more specific is required.

2.2 Assembly operators and perfect interfaces

Block notations are used to simplify the writing of all the relations. As said earlier xE represents the
gathering of all the (xEE′)E′ . x will represent the gathering of all the xE defined on each subdomain
ΩE , same procedure applies to operators:

x =


...

xE
...

 , K =


. . . 0

KE

0
. . .

 , where E spans all subdomains (4)

We introduce operators which permit to make neighboring subdomains communicate: the operator
A makes sum of interface vectors whereas the operator B makes differences:

(Af)|ΓEE′
= fEE′ + fE′E

(Bw)|ΓEE′
= wE′E −wEE′

(5)

These operators are orthogonal in the sense that ker(A) = range(BT ).

2.3 Discrete problem

Under these notations, the discrete problem equivalent to the substructured problem is:

∀t,


Kut = f td + NT f t Equilibrium of the subdomains

wt = Nut Trace of the subdomain displacement

f t = BTb(Bẇt′ , t′ 6 t,Bw0) Interfaces’ behavior

(6)

This notation for the interface’s behavior makes it clear that the equilibrium is ensured: Af =
ABTb(Bw) = 0. Note that in the case of perfect interfaces, the equations become:

∀t,
{

Af t = 0

Bwt = 0
(7)

The contact formulation with Coulomb friction is fully detailed in [30].

3



A

L

k+
Vk−V

s0s1snsn+1

sth

Figure 2: Latin method

3 The non-invasive Latin method

3.1 Principle of the Latin method

In order to solve the problem (6), we use the Latin method [17] which is a variant of the method of
alternate search directions. We define two sets of interface fields:

A : (f t, ẇt)t solutions to ∀t


Kut = f td + NT f t

ẇt = Nu̇t

u̇t = (ut − ut−∆t)/∆t,+ initial condition

(8)

L : (f̂ t, ̂̇wt
)t solutions to ∀t f̂ t = BTb(B ̂̇wt

, t′ 6 t,B ̂̇wt
) (9)

The set A is made out of solutions to linear equations set on subdomains, it is thus an affine space often
called space of admissible fields. The set L is in general a manifold (in the case of perfect interfaces, it
is a vector space), one important feature is that the equations which define it are pointwise independent
in time and space (they are often called “local” equations).

The solution is reached by iterations where partial solutions are alternatively searched for in each
set A and L.

Starting from a partial solution sn = (fn, ẇn) ∈ A, the so-called local stage consists in searching

for a partial solution ŝn = (f̂n, ̂̇wn) ∈ L. This in made possible by enforcing a search direction of the
form:

fn − f̂n − k+
V

(
ẇn − ̂̇wn

)
= 0 (10)

where k+
V is an operator which can be chosen by the user. In order to benefit the local character of

the equations which define L, k+
V is often chosen to be diagonal.

Starting from a partial solution ŝn = (f̂n, ̂̇wn) ∈ L, the so-called linear stage consists in searching
for a partial solution sn+1 = (fn+1, ẇn+1) ∈ A. This in made possible by enforcing a search direction
of the form:

fn+1 − f̂n + k−V

(
ẇn+1 − ̂̇wn

)
= 0 (11)

where k−V is an operator which can be chosen by the user.

The iterations are graphically represented on Figure 2. A relaxation is often applied at the end of
linear stages:

sn+1 ← sn + α(sn+1 − sn) (12)

with 0 < α 6 1.

Proposition 1 The convergence of (sn+1 + sn)/2 is proved in [17] when k−V = k+
V are symmetric

definite positive operators and α < 1 for maximal monotone behaviors b.
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3.2 The non-invasive implementation

During the linear stage, independent solves on the subdomains are performed. Equations (8) and (11)

lead to the following equations which are independent per subdomain, and where (f̂ t+∆t, ̂̇wt+∆t
) are

known from previous local stage:(
K + NT k−V

∆t
N

)
ut+∆t = f t+∆t

d + NT

(
f̂ t+∆t + k−V

̂̇wt+∆t
+

k−V
∆t

wt

)
(13)

Then compute

ẇt+∆t = Nu̇t+∆t = N(ut+∆t − ut)/∆t

f t+∆t = f̂ t+∆t + k−V

( ̂̇wt+∆t − ẇt
) (14)

Remark 1 Equation (13) can be interpreted as the discretization of the subdomains equilibrium under
a generalized Robin boundary condition. The term (NTk−V N) in (13) corresponds to the interface
impedance, it is a non-standard term in industrial finite elements software for mechanical problems
(there often exist implementations for thermal problems, since it corresponds to convection conditions).

A new implementation of the generalized Robin conditions is needed to tackle the constraints
of industrial finite elements software. Several proposals are given in [30]. We choose to consider
k− = k−V /∆t as a generalized Robin condition which can be realized by adding matter on the boundary
of the subdomains. This strategy leads to a “non-local” search direction in the sense that the nodes
of an interface are coupled together through the layer of elements (k− is not diagonal).

The matter added at interface ΓEE′ is written θEE′ , the Hooke tensor associated to its behavior
is KθEE′ . The addition is called a “sole”. A zero Dirichlet condition is imposed on the part ∂uKθEE′

of the boundary of the sole which is not in contact with the interface. KθEE′ is the stiffness matrix of
the sole (with zero Dirichlet boundary conditions taken into account). k−EE′ is the Schur complement
of KθEE′ which condenses the stiffness on the interface degrees of freedom.

Remark 2 (Practical considerations)

• In order not to enlarge computations, we choose to add only one layer of elements. With such a
choice and in the case of linear elements, as the zero Dirichlet boundary conditions are eliminated, the
Schur complement is strictly equal to the stiffness operator KθEE′ = k−EE′ .

• The search direction is parametrized by the behavior of the sole. We chose to use the same Poisson’s
ratio as the subdomain and to adapt the Young modulus. Classically the search direction is chosen
such as k = Y/L [17] with Y the Young modulus of the structure and L a characteristic length of the
structure. In our case, the idea is kept and the Young modulus of the sole is chosen such as

YS
LS

=
Y

L
(15)

with YS the Young modulus of the sole and LS a characteristic width of the sole.

With this non-invasive search direction, solving the problem of the linear stage
(
K + NTk−N

)
amounts to solve a mechanical problem on subdomain extended with the sole, loaded by an inner
interface traction field (Figure 3). This stiffness assembly is a classical operation in commercial soft-
wares.

3.3 Control of convergence

An error indicator η can be defined to control the convergence of the method. This indicator represents
the distance between a local solution in L and a linear solution in A:

η =

∑
t

(
ẇt − ̂̇wt

)T
k−V

(
ẇt − ̂̇wt

)
+
∑
t

(
f t − f̂ t

)T
k−V
−1
(
f t − f̂ t

)
∑
t

(
ẇtk−V ẇt + f tk−V

−1
f t + ̂̇wt

k−V
̂̇wt

+ f̂ tk−V
−1

f̂ t
) (16)

Remark 3 (Properties of the indicator)
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E1

E3

E2

Γ13

Γ12

F

(a) 3 subdomains with 2 inter-
faces

E1

Γ13

Γ12

F

θ13

θ12

(b) Subdomain with soles.
Interface forces are applied
on (Γ1,Γ2)

Figure 3: Example of a problem to solve at linear stage

• The indicator is post-processed from the linear stage.

• The indicator depends on the search direction.

• Other indicators based on true errors Af and Bẇ, which are computed at the beginning of the local
step can also be used.

4 The multiscale strategy in the Latin method

The multiscale strategy is presented in this section. During the linear stage, displacement and force
distributions do not verify the constitutive law of the interface. With perfect interface, before conver-
gence we have : Bw 6= 0 and Af 6= 0. Thus the idea is to modify the linear stage in order to enforce
a “global” verification of the constitutive law.

Firstly we explain the classical definition of a macro space for displacement that results in a global
weak equilibrium of the force distributions over the whole structure. A new interpretation is detailed
to show that this two-level strategy can be seen as a particular choice of the search direction. The
algebraic notations permits to bring out the micro / macro space for distributions of interface.

Finally an explanation of the computation of the “macro” operator and the resolution of the
multiscale approach is presented.

4.1 The multiscale strategy with global equilibrium

4.1.1 Definition of a macro space for displacement.

A macro basis of interface displacement is chosen over which force will be globally equilibrated. The
macro basis of the interface ΓEE′ is denoted WEE′ and the associated macro space is WM

EE′ =
span (WEE′). This macro space has to be orthogonal to the force distributions which propagate
deeply in the structure. In agreement with Saint Venant’s principle, the macro basis consists of rigid
body motions, it is completed with simple deformation modes such as extension and shearing modes
(Figure 4).

4.1.2 Definition of the linear stage

The global equilibrium is enforced by the addition of a constraint to the linear problem. With the
block notations for W this relation is:

WTAf = 0 (17)
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(a) Translation along x (b) Translation along y (c) Rotation around x

(d) Rotation around y (e) Extension along x (f) Extension along y

Figure 4: Examples of macro displacement modes

It imposes to reconsider the search direction which is now defined globally over all the interfaces and
no more separately on each interface:

min
WTAf=0

[
1

2

(
f − f̂

)T
k−V
−1
(
f − f̂

)
+
(
f − f̂

)T (
ẇ − ̂̇w)] (18)

The constraint is taken into account by the definition of a lagrangian whose stationarity leads to:(
f − f̂

)
+ k−V

(
ẇ − ̂̇w)+ k−V ATWα = 0 (19)

where α is the Lagrange multiplier.

Remark 4 Classically in [18, 19], the multiplier corresponds to WTAα and it is written W̃ .

With the quasi-static assumption the problem of the linear stage can be written as:

Find
(
wt+∆t, ẇt+∆t, f t+∆t

)
solution to :

Kut+∆t = fd + NT f t+∆t

ẇt+∆t = Nu̇t+∆t = N(ut+∆t − ut)/∆t

WTAf t+∆t = 0(
f t+∆t − f̂ t+∆t

)
+ k−V

(
ẇt+∆t − ̂̇wt+∆t

)
+ k−V ATWαt+∆t = 0

(20)

4.1.3 New interpretation of the multiscale strategy

We first apply the operator WTA on the relation of search direction to remove the unknown f t+∆t:

WTAf t+∆t︸ ︷︷ ︸
=0 (macro equilibrium)

−WT Af̂ t+∆t︸ ︷︷ ︸
=0 (local equilibrium)

+ WTAk−V

(
ẇt+∆t − ̂̇wt+∆t

)
+WTAk−V ATWαt+∆t = 0 (21)
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Thus the multiplier is expressed in function of the unknown velocity ẇt+∆t:

αt+∆t =
(
WTAk−V ATW

)−1
[
WTAk−V

( ̂̇wt+∆t − ẇt+∆t
)]

(22)

Afterwards the multiplier is injected in the search direction to express the unknown f t+∆t in function
of the velocity unknown ẇt+∆t:

f t+∆t = k−V

[
I−ATW

(
WTAk−V ATW

)−1 WTAk−V

] ( ̂̇wt+∆t − ẇt+∆t
)

+ f̂ t+∆t (23)

With this new expression of the search direction and the Euler scheme, we obtain the following problem
written in displacement to compute ut+∆t:[

K + NT k−V
∆t

(I−PM ) N

]
ut+∆t = fd + NT f̂ t+∆t + NTk−V (I−PM )

[ ̂̇wt+∆t
+

wt

∆t

]
with PM = ATW

(
WTAk−V ATW

)−1 WTAk−V

(24)

Remark 5 (Properties of the projection)

• PM is the macro projector which is applied to the displacement. Its definition only involves the search
direction and the macro basis; it is not connected to the properties of the real structure.

• The multiscale approach has thus two effects: it propagates the right-hand side and it soften the Robin
condition in the left-hand side by a low-rank term.

• Pm = I − PM is a micro projector filtering the macro part of the displacement. The algebraic
properties of this micro projector imply that the micro part of the displacement and the macro part of
the force are orthogonal.

ker(Pm) = range
(
ATW

)
filters out the macro part of displacement

Im (Pm) = ker
(
WTAk−

) (25)

• It makes sense to define a macro subspace of forces: FM = span
(
k−ATW

)
= range(Pm)⊥. This

macro force space is not balanced between subdomains except when search directions k− are identical
between neighboring subdomains.

4.1.4 Illustration of the multiscale effect on the linear problem

By considering the structure described at Figure 3, the macro constraint modifies the stiffness operator
(which is initially block-diagonal) by out-diagonal terms as illustrated on Figure 5. The factorization of
the operator permits to propagate the information of the boundary condition included in the right-hand
side to all the subdomains.

4.2 Computation of the multiscale stiffness operator and resolution

In order to use a parallel resolution over the subdomains, it is impossible to invert directly
[
K + NT k−V

∆t (I−PM ) N
]
.

Indeed the macro projector couples the subdomains together and therefore this operator becomes global
over all the subdomains. Instead, the inverse of the operator is expressed with the identity of Woodbury
[38]:

(M + UCV )
−1

= M−1 −M−1U
(
C−1 + VM−1U

)−1
VM−1 (26)

In our case we have:
M = K + NT k−V

∆t
N

C = −
(
WTA

k−V
∆t

ATW
)−1

U = V T = NTk−V ATW

(27)
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K1

K2

K3

k12

k13

k21

k31

k12

k13

k21

k31

K1

Figure 5: Block stiffness operator with out-diagonal terms due to the macro projector

Noting k̃ = NT k−V
∆tN the inverse of the global stiffness operator becomes:

K−1
tot =

(
K + k̃

)−1

−
(
K + k̃

)−1

NTk−V ATW . . .

. . .

(
WTA

[
k−V N

(
K + k̃

)−1

NT − I
]

k−V ATW
)−1

. . .

. . .WAk−V N
(
K + k̃

)−1

(28)

Therefore the expression of the displacement becomes:

ut+1 =

[(
K + k̃

)−1

−
(
K + k̃

)−1

[. . .]
(
K + k̃

)−1
]
. . .

. . .

(
fd + NT

(
f̂ t+∆t + k−V (I−PM )

[ ̂̇wt+∆t
+

wt

∆t

])) (29)

According to the expression of the inverse of the global stiffness operator, a two-steps strategy is
adopted. The first step is a parallel computation over each subdomains. It consists in solving:(

K + k̃
)

ut+1
1 = fd + NT

(
f̂ + k−V

[ ̂̇wt+∆t
+

wt

∆t

])
(30)

In the second step, a macro correction is computed:

ut+1
2 = −VK−1

2

(
WTAF2

)
with V =

(
K + k̃

)−1

NTk−V ATW

K2 = VTNTk−V ATW−WTAk−V ATW

F2 = k−V

(̂̇wt+∆t
+

wt

∆t
− Nut+1

1

∆t

) (31)

Then the displacement is:

ut+1 = ut+1
1 + ut+1

2 (32)
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Remark 6

• K2 is computed at the beginning of the algorithm and called ”macro” operator in [19, 20]. It consists
in determining successively the behavior of the subdomains under macro load from the macro basis of
displacement. That is why it is often referred as the homogenized behavior of the subdomains. During
the computation of K2, the basis V is stored on the subdomains.

• The computation of
(
WTAF2

)
requires a global reduction at each iteration.

• One can remark that the Lagrange’s multiplier can be expressed as :

αt+∆t = K2
−1WT AF2 (33)

which is computed during the second step. Therefore, the computation of f t+∆t does not require any
supplementary communication.

The method is summed up in the algorithm 1.

Algorithm 1: Multiscale Latin method with global weak equilibrium of force

Input: Initialisation
Factorization of the ”macro” operator:

K2 = WTA

(
k−V N

(
K + k̃

)−1

NT − I
)

k−V ATW

Saving of the intermediate quantity:

V =
(
K + k̃

)−1

NTk−V ATW
while Error criterion < objective do

Local stage:
foreach time step do

foreach interface do
Interface computation detailed in [30]

end

end
Linear stage:
foreach time step do

foreach subdomain do

1. Parallel computation on subdomains

ut+1
1 =

(
K + k̃

)−1 [
Fd + NT

(
f̂ + k−V

[ ̂̇wt+∆t
+ wt

∆t

])]
2. Communication between subdomains and second parallel computation

Communication to compute ψ = WTAk−V

( ̂̇wt+∆t
+ wt

∆t −
Nut+1

1

∆t

)
Save of the multiplier: αt+∆t = K2

−1ψ
Parallel computation: ut+1

2 = −Vαt+∆t

Finally:ut+1 = ut+1
1 + ut+1

2

3. Computation of interface’s distributions
Time scheme to compute velocity: ẇt+∆t =

(
wt+∆t −wt

)
/∆t

Search direction to compute force: f t+∆t = f̂ t+∆t − k−V

(
ẇt+∆t − ̂̇wt+∆t

)
− k−V ATWαt+∆t

4. Relaxation step
sn+1 ← sn + α(sn+1 − sn);

end

end

end
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4.3 A macro strategy for the weak continuity of displacement

In the case of perfect interfaces, it makes sense to impose a weak continuity of the displacement. This
weak continuity is defined by the orthogonality to a macro basis in force:

FTBw = 0 (34)

Note that such a strategy was evoked in [19] and a study of optimal search direction was proposed.
However the extensibility was not illustrated. In this paper we proposed to complete this approach
by formulate it under algebraic notations.This reveals some properties of the different operators and
facilitate the analyze of the extensibility results.

4.3.1 Definition of a macro space for force

The choice of the force macro basis is far from trivial, in particular if we wish to adapt to irregular
interfaces. The more advanced strategies can be found in FETIDP-BDDC literature [27, 13, 32].

For now, we adopt a simple strategy by simply processing the displacement macro basis:

F :=

(
A

k−V
∆t

AT

)
W (35)

4.3.2 Definition of the linear stage

In order to comply with the macro constraint (which also applies to the velocities), the search direction
is seen a minimization:

min
FTBẇt+∆t=0

[(
ẇt+∆t − ̂̇wt+∆t

)T (
f t+∆t − f̂ t+∆t

)
. . .

+ . . .
1

2

(
ẇt+∆t − ̂̇wt+∆t

)T
k−V

(
ẇt+∆t − ̂̇wt+∆t

)T] (36)

which leads to the following search direction:

f t+∆t − f̂ t+∆t + k−V

(
ẇt+∆t − ̂̇wt+∆t

)
+ BTFβt+∆t = 0 (37)

where βt+∆t is the Lagrange multiplier.
The problem to solve at the linear stage becomes:

Find
(
wt+∆t, ẇt+∆t, f t+∆t, βt+∆t

)
solution to :

Kut+∆t = fd + NT f t+∆t

wt+∆t = Nut+∆t

FTBwt+∆t = 0

f t+∆t− f̂ t+∆t + k−V

(
wt+∆t −wt

∆t
− ̂̇wt+∆t

)
+ BTFβt+∆t = 0

(38)

4.3.3 Practical computation

Again, using the constraint in the search direction enables to find the expression of the Lagrange
multiplier:

βt+∆t = −
(
FTBk−V

−1
BTF

)−1

FTB
[
k−V
−1
(
f t+∆t − f̂ t+∆t

)
− ̂̇wt+∆t

]
(39)

The search direction thus reads:

(I−QM )
(
f t+∆t − f̂ t+∆t

)
+ k−V

wt+∆t −wt

∆t
− (I−QM ) k−V

̂̇wt+∆t
= 0 (40)

with QM = BTF
(
FTBk−V

−1
BTF

)−1

FTBk−V
−1

11



Remark 7

• QM is a macro projector. Like PM , it only depends on the initial search direction.

• The search direction enables to define the micro part of the force (I−QM ) f t+∆t as a function of the
displacement.

• Note that the macro part of the force QM f t+∆t can be written as: BTFγt+∆t

Thanks to the last remark, we split the force term in the equilibrium of the subdomains:

Kut+∆t = fd + NT (I−QM ) f t+∆t︸ ︷︷ ︸
micro part via search direction

+ NT QM f t+∆t︸ ︷︷ ︸
macro part: BT Fγt+∆t

(41)

We have now a problem with two unknowns: γt+∆t and ut+∆t. Using the search direction, we can
express ut+∆t as a function of γt+∆t. Then the weak global continuity enables to compute γt+∆t:

γt+∆t = −
(
FTBN

(
K + NT k−V

∆t
N

)−1

NTBTF

)−1

FTBN

(
K + NT k−V

∆t
N

)−1

. . .

. . .

[
fd + NT (I−QM )

(
f̂ t+∆t + k−V

̂̇wt+∆t
)

+ NT k−V
∆t

wt

] (42)

And by re-injecting the expression of γt+∆t in the equilibrium relation we obtain:(
K + NT k−V

∆t
N

)
ut+∆t = (I−R)

[
fd + NT (I−QM )

[
f̂ t+∆t + k−V

̂̇wt+∆t
]

+ NT k−V
∆t

wt

]
(43)

with R = NTBTF
(
FTBN

(
K + NT k−V

∆tN
)−1

NTBTF
)−1

FTBN
(
K + NT k−V

∆tN
)−1

Remark 8

• For the case of perfect interface Bŵt+∆t = Bŵt = 0 so QM
̂̇wt+∆t

= 0 and the problem to be solved
becomes:(

K + NT k−V
∆t

N

)
ut+∆t=(I−R)

[
fd+NT(I−QM)f̂ t+∆t+NT

[
k−V
̂̇wt+∆t

+ NT k−V
∆t

wt

]]
(44)

• We see that the weak global continuity does not affect the Robin condition. It only modifies the right-
hand side. Anyhow it allows to propagate the information related to the load on the whole structure.

5 Numerical examples

A first comparison between a mono-scale and a multiscale implementation is presented in 5.1 on a 3D
traction beam case. The impact of the multiscale approach for both approaches is illustrated. A 3D
industrial contact case is finally presented to illustrate the compatibility of the multiscale approach
with contact interfaces.

5.1 Comparison between a mono and a multiscale implementation

The comparison between the mono-scale and the multiscale strategy is performed on the case of a
3D homogeneous isotropic linear elastic beam decomposed in 8, 16, 32, 64 and 128 subdomains. The
Young modulus is E, Poisson ratio ν, the length of the beam L and section S. The parameters are given
in Table 1. Figure 7 presents a comparison between a mono-scale and the multiscale implementation
with the global equilibrium strategy.

On Figure 7a, the dependency of the convergence with respect to the substructuring is shown. The
more subdomains the structure is split into, the more iterations are required to reach the same level
of convergence. After 70 iterations the ratio of the error indicator between a 8 and 128 substructuring
is 100. On Figure 7b we illustrate the impact of the multiscale strategy. The convergence is much less
dependent on the substructuring and it is much faster than in the mono-scale implementation. For

12
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Figure 6: substructured traction beam

Table 1: Parameters
Parameters Value/Range

Young Modulus Y 200 GPa
Young Modulus of soles YS 0.008Y
ν 0.3
Length L 160 mm
Section S 10×10 mm
Load Fd 10 MPa
Size mesh h 1.25 mm
substructuring 8,16,32,64,128

example the indicator of 10−5 is reached after 50 iterations for the 8-substructure beam in mono-scale
whereas only 7 iterations are required for the 32-substructure beam with the multiscale method.

Even if the convergence is still better than for the mono-scale approach, the strategy with global
continuity is not scalable as can be seen on figure 7c. Indeed the global continuity manages to spread
the right-hand side on all the subdomains, but it does not couple the local equilibriums together as
the weak balance does (the Robin condition is not modified by the constraint).

Figures 8a and 8b show the deformation and tension states after one iteration for the two multiscale
approaches on a 332-subdomain decomposition. In that example where the solution is a uniform
tension, we observe that the global balance leads to a quasi exact solution (in stress) after initialization;
the global continuity leads to a better looking solution but the correct stress state is far from being
found. After the second iteration, on Figures 9a and 9b, the global balance is almost converged (the
stress state at the interface is a visualization artifact) whereas the global continuity is far from the
solution.

Remark 9 With the global balance approach, after few iterations all that remain to be found is or-
thogonal to the macro constraint and thus a classical (slow) fixed point convergence rate is achieved.
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(a) Mono-scale
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(b) multiscale equilibrium
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Figure 7: Comparison for different weighting of the search direction - Latin indicator

(a) Equilibrium (b) Continuity

Figure 8: Iteration 1 for the multiscale approaches

5.2 Impact of the search direction on the multiscale approach

We now study the impact of the search direction on the convergence of the multiscale approach for
a beam substructured in 32 subdomains. To do so, the reference Young modulus of the soles will be
multiplied by 0.01, 0.1, 10 and 100. We present the different convergence curves in term of jump of
displacement and equilibrium of forces (Figure 10). Such results can be easily interpreted by considering
the two following limit cases about the search direction:

• the case when k −→∞: with such an assumption the search direction can be considered equiv-
alent to:

ẇt+∆t − ̂̇wt+∆t
+ ATWαt+∆t = 0 (45)

Such a search direction improves the convergence of the displacements. Indeed as forces have dis-
appeared, the displacement of linear stage become closer than the displacement from local stage
which is naturally continuous. Conversely, the convergence of the interface forces is deteriorated.
However through the multiscale approach it still remains acceptable.

• The case when k −→ 0: with such an assumption the search direction can be considered equiv-
alent to :

f t+∆t − f̂ t+∆t = 0 (46)

In addition of the multiscale effect, such a search direction implies that the forces are quasi-
equilibrated. However the search direction no more includes displacements and their convergence
is deteriorated.

From these considerations and from Figure 10, the initial choice of the search direction seems to manage
a good compromise.

Results of the continuity strategy are shown on Figure 11. A similar analysis for the asymptotic
search direction than the equilibrium strategy can be done. When the weighting decreases, the conver-
gence of the force term is improved whereas the jump of displacement stagnates very quickly. On the
other hand, increasing the weighting disturbs the convergence of the force since displacement terms
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Figure 9: Iteration 2 for the multiscale approaches
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Figure 10: Comparison for different weighting of the search direction - Equilibrium strategy

dominate in the search direction. However too much weighting does not seem to increase particularly
the convergence of the displacement.

5.3 A study of the speed-up

We present in this section the results about the speed-up of the method. We use again the 3D beam
structure presented previously. The beam consists of 25 millions degrees of freedom. The error criterion
to stop the computation is chosen at 10−5. Each subdomain is computed on one CPU. On the figure 12,
we present the speed-up in term of CPU time for the several substructuring. The speed-up is computed
in comparison with the CPU time with 16 subdomains. The gain due to parallel processing is very
poor for the mono-scale approach. Due to the non-scalability,the more subdomains there are, the more
iterations are required to reach the same level of error. In the case of the multiscale approach with
global equilibrium, the scalability almost permits to reach the theoretical speed-up. However, with too
many subdomains, the speed-up will grow slower because of the many communications to do between
substructures. This phenomenon is already visible for 128 subdomains.

5.4 A 3D multi-contact problem with friction

In this part,the objective is to prove the robustness of the Latin method in presence of many contact
interfaces. In order to illustrate this robustness, we choose a polycrystalline structure where all the
interfaces between the grains are considered to be contact interfaces with friction. Each grain is made
of iron with E = 200GPa and ν = 0.3. In total, the structure is blend of 100 substructures linked
by 467 interfaces. The structure is a cube which consists of 565 000 degrees of freedom (Figure 13a),
blocked on the bottom face and loaded on the top face. The load is applied in 4 steps (Figure 13b).
The Coulomb coefficient is 0.1 for all the interfaces. We use the multiscale approach with a global
equilibrium.
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Figure 12: Comparison of the speed-up

5.4.1 Convergence

The figure 14 shows the deformed shapes of the structure at the different load-steps. During the first
two load-steps, more and more sliding appears between the subdomains. Due to the weak Coulomb
coefficient, detachment between subdomains is observed during the unload (two last load-steps). Of
course, at the end of the load sequence, the structure does not go recover to its initial shape because
of the sliding and detachment.

The figure 15 shows a comparison of the evolution of the error indicator during the iterations
between the mono-scale strategy and the multiscale approach for a global equilibrium. On the first
iterations, the impact of the multiscale approach is obvious. After few iterations (around 5) the
multiscale approach does not bring any more information and the convergence rate is similar to the
monoscale approach.

5.4.2 Details of time computation

We present here some details about the time spent to simulate this structure with the multiscale ap-
proach. We compare some functions by considering the smallest and the largest subdomains, described
in table 2.

The table 3 presents the details of the principal functions. As the smallest subdomain has 3 times
less interfaces than the largest and almost 8 times less nodes on the interfaces, its local stage is faster
(×5.6). Even though its linear stage begins earlier, it has to wait for all other subdomains to exchange
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Figure 13: Polycristalline structure and load

Table 2: Comparison between the smallest and biggest subdomains
Smallest subdomain Largest subdomain

Nodes of the subdomain 529 5639
Nodes on the interfaces 160 1258

Number of interfaces 5 18

the results of the first step of the macro strategy. The MPI communications are described on table 4.
The smallest subdomain spends almost 80% of its time to wait for other subdomains. This explains
the longer duration of the linear stage for the smallest subdomain. A communication hiding procedure
[3] will be considered in the future.

As a global reduction is also needed for the computation of the convergence indicator, the time
of computation of the associated function is equivalent whatever the subdomain. However, due to
the specific management of the memory of the industrial code code aster, this function occupies a
non-negligible part of the global time computation. This time is directly linked to the size of the
subdomain and the number of associated interfaces.

The little remaining percents in the table 3 principally correspond to minor functions for post-
processing and mpi.sendrecv communications to neighbors between the linear stage and the local
stage.

Smallest subdomain Largest subdomain
#calls Time (s) ratio #calls Time (s) ratio

Local stage 70 1766 4.84% 70 9964 27.3%
Linear stage 70 26341 72.2% 70 15954 43.7%
Indicator computation 70 5200 14.2% 70 4677 12.8%
Memory management 70 828 2.3% 70 4944 13.5%
Total 92.5% 97.3%

Table 3: Time repartition for the principal functions

This simulation illustrates issues due to the lack of balance of size between the subdomains. The
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(a) 1st load-step (b) 2nd load-step

(c) 3rd load-step (d) 4th load-step

Figure 14: Deformed shape according the load-steps

Smallest subdomain Largest subdomain
#calls Time (s) Global Part #calls Time (s) Global part

Python mpi.allreduce 630 28615 78.4% 630 815 2.2%
Python mpi.sendrecv 1750 1385 3.8% 6300 37 0.1%

Table 4: Time repartition for MPI communications

small subdomains have to wait for the large ones. A simple solution is to re-split large subdomains
into pieces connected by perfect interfaces. In the future, we will also consider asynchronous iterations
[24, 23, 22] to allow small subdomains to continue their iterations even in the absence of information
from large subdomains.
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6 Conclusion and perspectives

In this paper a non-invasive implementation of a multiscale mixed domain decomposition has been
presented. The introduction of a multiplier to enforce a global equilibrium of force distribution is
seen as a low-rank softening of the mono-scale search direction which weakly couples neighboring
subdomains together.

A “dual” macro approach has been proposed to enforce a global continuity of displacements instead
of a global equilibrium of force. The computational strategy stays similar to the global equilibrium
approach: the two-level algorithm consists in a first parallel computation over subdomains before a
global correction that transmits the macro information. However this approach appears not to be
scalable. Contrary to the equilibrium approach, it is not possible to interpret it as a modification of
the mono-scale search direction.

A 3D structure involving many interfaces with frictional contact and 565 000 degrees of freedom
has been studied. The multiscale and the monoscale approaches have been compared with obvious
advantage for the multiscale strategy. For this computation, the subdomains matched the parts in
contact (no subdivision of large subdomains was considered), leading to strong lack of load balancing
and idling small subdomains.

As observed in the examples, the multiscale approach only accelerates the convergence during the
first iterations, we are currently working on acceleration strategies in order to avoid the plateau that
is observed later.
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[18] P. Ladevèze and D. Dureisseix. Une nouvelle stratégie de calcul micro/macro en mécanique
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