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Abstract: This article presents a newly proposed selection process for genetic algorithms on a class
of unconstrained optimization problems. The k-means genetic algorithm selection process (KGA)
is composed of four essential stages: clustering, membership phase, fitness scaling and selection.
Inspired from the hypothesis that clustering the population helps to preserve a selection pressure
throughout the evolution of the population, a membership probability index is assigned to each
individual following the clustering phase. Fitness scaling converts the membership scores in a range
suitable for the selection function which selects the parents of the next generation. Two versions
of the KGA process are presented: using a fixed number of clusters K (KGAf) and via an optimal
partitioning Kopt (KGAo) determined by two different internal validity indices. The performance of
each method is tested on seven benchmark problems.

Keywords: genetic algorithm; selection process; clustering; k-means; optimization algorithm

1. Introduction

The fields of computational intelligence and optimization algorithms have grown rapidly in the
past few decades. Classical methods are not efficient in solving current problems in engineering such
as energy, transportation and management [1]. The development of these optimization algorithms can
be mainly divided into deterministic and stochastic approaches [2].

Most conventional algorithms are deterministic, such as gradient-based algorithms that use the
function values and their derivatives. These methods work extremely well for smooth unimodal
problems, but in the case of some discontinuities, non-gradient algorithms are preferred [3].
Nelder–Mead downhill simplex [4] and Hooke–Jeeves pattern search technique [5] are a few examples
of deterministic gradient-free algorithms. For stochastic algorithms, we have two types: heuristic
and meta-heuristic. Although there is no agreed definition of each type in the literature, the aim of
stochastic methods is to find feasible solutions in a satisfactory timescale. There is no guarantee that
the best solutions can be found; however, it is expected that the algorithm will provide nearly optimal
solutions most of the time.

In this paper, we propose a genetic algorithm (GA)-based algorithm that uses clustering analysis
to organize the population and select the parents for recombination. Cluster analysis is the study of
techniques and algorithms to organize data into sensible groupings (clusters) according to measured
or apparent similarities [6]. Clustering has been successfully applied in various engineering and
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scientific disciplines such as biology, medicine, machine learning, pattern recognition, image analysis
and data mining [7,8]. The performance of a newly proposed selection process named the k-means
genetic algorithm selection process is investigated on a class of unconstrained optimization problems.
The KGA technique is composed of four essential stages: clustering, membership phase, fitness scaling
and selection. The authors postulate that clustering the evolving population can help preserve a
continuous selection pressure throughout the evolution process. A membership probability index is
allocated to each individual following the clustering phase. Fitness scaling alters the membership
scores into a range suitable for the selection function, which selects the parents of the succeeding
generation. Two versions of the KGA technique are examined: using a fixed number of clusters K
(KGAf) and via an optimal number of clusters Kopt (KGAo). The performance of each method is tested
on eight benchmark problems. The numerical simulations reveal that the proposed selection process is
superior to or competitive with the standard GA for the given problems.

The remainder of the paper is organized as follows: The next section summarizes some relevant
studies that have explored clustering analysis in optimization algorithms. Section 3 presents important
definitions on genetic algorithm. Section 4 presents the selection processes (KGAf and KGAo) proposed
in this paper. Section 5 contains the numerical simulations where the performance of the proposed
approaches is demonstrated. Finally, Section 6 concludes with some final remarks and possible
future contributions.

2. Literature Review

There are many algorithms that have been proposed in literature to solve the clustering problems.
Some relevant studies that have explored the problem of clustering using various approaches include
evolutionary algorithms such as evolutionary programing [9], particle swarm optimization [10–12],
ant colony algorithms [13,14], artificial bee colony [15], simulated annealing [16,17] and tabu search [18].
Conversely, there have been many attempts to use GAs to solve clustering applications [7,19–27].
Maulik and Bandyopadhyay [21] proposed a GA approach to clustering. They tested the performance
of the algorithm on synthetic and real-life data sets. The GA-k-means algorithm was used to search
for the cluster centres which minimize the clustering metric, showing results significantly superior to
those of the k-means algorithm. Another genetic algorithm approach, the genetic k-means algorithm,
was presented by Krishna and Murty [7]; they defined a mutation operator specific to clustering
problems. Recently, a novel optimization algorithm was proposed by Krishnasamy [28] referred to as
K-MCI, inspired by the natural and social tendency of cohort individuals to learn from one another.

Since the novelty of the proposed algorithm revolves around the notion of introducing
clustering analysis in the selection stage of the genetic algorithm, this section will avoid a survey of
clustering techniques. The reader is referred to [29–31] for detailed surveys of clustering algorithms.
Consequently, in the remainder of this section, we will review the most relevant optimization
algorithms that have introduced clustering analysis in one way or another.

In the process of genetic differentiation, the population subdivided was discussed in the literature.
For instance, the island model [32] divides the population into discrete finite races, between which
some migration occurs. The hypothesis is that multiple subpopulations help preserve a better
genetic diversity, since each island can potentially follow a different search trajectory through
the search space. Various “islands” conserve some degree of independence and therefore explore
different regions of the search space while sharing some information by migration. On the other
hand, various niching methods have been introduced into GAs to promote the formation of stable
sub-populations in neighborhood of optimal solutions [33]. There are many commonly adopted
techniques, such as deterministic crowding [34], sharing [35], clearing [36] and dynamic niche
clustering [37]. Standard and deterministic crowding both suffer from genetic drift. In sharing
and clearing methods, prior knowledge about the fitness landscape is required to set the niche radius.
The set of cluster numbers in dynamic niche clustering will largely affect the quality and quantity of
optimal solutions.



Algorithms 2017, 10, 123 3 of 15

Many researchers have investigated evolutionary algorithms for dynamic optimization problems
(DOPs) because EAs are fundamentally inspired from biological evolution, which is always subject
to an ever-varying environment. From the literature on DOPs, the traditional approaches use the
multi-population method to find the optimum solutions for multi-modal functions. The core notion is
to divide the search space into different sub-spaces, and then separately search within these sub-spaces.
The challenge with these multi-population methods (such as [38–40]), is how to choose an appropriate
number of sub-populations to cover the entire search space. Three major difficulties arise using
multi-population methods: how to guide the particles towards different promising sub-regions, how to
define sub-regions and how many sub-populations are required. In order to overcome these questions,
a clustering particle swarm optimizer (CPSO) was proposed in [38,41]. In the CPSO algorithm, a proper
number of sub-swarms which cover different local regions are created using a clustering method.
A hierarchical clustering method is used to locate and track multiple optima and a fast-local search
method is employed to find the near optimal solutions in a promising region in the search space.
Kennedy [42] originally proposed a PSO algorithm that uses a k-means clustering algorithm to identify
the centers of different clusters of particles in the population, and then uses the centers to substitute the
personal best or neighborhood best positions. The limitation of this approach lies in that the number
of clusters must be predefined. Similarly, a fuzzy clustering-based particle swarm (FCPSO) algorithm
was proposed in [43] to solve multiobjective environmental/economic dispatch. The clustering in the
FCPSO technique ensures that the obtained Pareto front will have uniform diversity at all stages of
the search.

In [44], clustering analysis was applied to adjust the probabilities of crossover px and mutation pm

in GAs. By applying the k-means algorithm, the population is clustered in each generation and a fuzzy
system is used to adjust the values of the genetic operators. Regulations are based on considering the
relative size between the clusters holding the best and worst chromosomes respectively.

Zhang et al. [45] tackled the problem of large-scale many-objective optimization problems based
on a decision variable clustering method. The proposed technique divides the decision variables into
two clusters based on the features of each variable. The decision variable clustering method adopts the
k-means method to divide the decision variables into two types: convergence-related variables and
diversity-related variables.

Recently, a self-organizing multiobjective evolutionary algorithm [46] was evaluated on some
state-of-the-art multiobjective evolutionary methods. A local PCA partitions the given population into
several disjointed clusters, and conducts PCA in each cluster to extract a continuous manifold and
build a probabilistic model.

3. Problem Definition

In essence, the basic objective of any clustering algorithm is to find a global or approximate optimal
for combinatorial optimization problems which are NP-hard [47]. The k-means algorithm is very likely
to converge to a suboptimal partition. The main advantage of stochastic optimization techniques over
deterministic-methods is that they are able to avoid convergence to a local optimal solution. Therefore,
stochastic approaches have been employed to solve clustering problems; algorithms such as simulated
annealing, genetic algorithms, evolution strategies and evolutionary programming. Inspired by the
principles of natural selection and biological evolution, evolutionary algorithms seek to optimize a
population of individuals by applying a set of evolutionary operators. They are population-based
meta-heuristic optimization algorithms that make use of biological evolution operators such as
selection, recombination and mutation.

In order to demonstrate the novelty in the use of clustering analysis in the selection process of the
genetic algorithm, the performance of the proposed KGA techniques will be compared with existing
GA methods. They were originally proposed by Holland [48], inspired by the principle of natural
selection of biological systems or ‘Darwinian evolution’. GAs have demonstrated their capability
to solve a wide range of optimization problems such as revenue management, optimal engineering
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system designs, scheduling applications, image processing, quality control etc. John Holland essentially
laid the foundation of modern evolutionary computing by fundamentally defining three key genetic
operators: crossover, mutation, and selection. These evolutionary operators provide a way to generate
offspring from parent solutions.

We summarize the fundamental steps of genetic algorithms in Algorithm 1. In genetic algorithms,
each individual (or solution vector) is encoded as either a binary bit string or a real-value vector, both
referred to as a chromosome. The standard representation of each individual is a binary array of bits,
to facilitate the crossover and mutation operations.

Algorithm 1: Given the function f(
→
x ),
→
x = (x1, . . . , xd)

T to minimize

(a) Encode the solutions into a set of chromosomes
(b) Generate the initial population
(c) Initialize the crossover and mutation probabilities
(d) Evaluate fitness function of each individual
(e) Selection of the current best for the next generation
(f) Reproduction by crossover and mutation
(g) Update t = t + 1
(h) Repeat (d)→ (g) if t < Max number of generations OR Stopping criteria is met

(i) Display the optimal solution
→
x
∗

An initial population is generated according to a heuristic rule or randomly. The population
size typically depends on the nature of the optimization problem. Often, the initial population is
generated in such a way as to allow a larger range of possible solutions inside the given search space.
If the population size is too small, there is not enough evolution going on and consequently there is a
risk of premature convergence towards a local optimum and ultimately extinction of the population.
However, a larger population will require more computational time and fitness evaluations.

At each successive generation, a percentage of the existing population is ‘selected’ to breed a
new generation, thus ensuring the continuity of the population. Thus, a selection function chooses
‘parents’ based on a fitness-based selection process, where ‘fitter’ solutions are more likely to be
selected. An individual can be selected more than once, in which case it transfers its genes to more
than one offspring.

At each generation, the GA uses the current generation to create the new offspring that will define
the next generation. The algorithm will apply a set of genetic operators (crossover and mutation) on
the parents selected by the selection function to generate the children. Recombination (or crossover)
is the combination of a pair of parents, analogous to biological reproduction. Mutated children are
created by a random change (or mutation) of the genes of a single parent. Both genetic operators are
essential for the success of the optimization search. Crossover enables the algorithm to preserve the
best genes from different individuals and recombine them into possibly fitter children. This allows a
better ‘exploitation’ of the search space. Whereas mutation increases the diversity of the population
and permits a further ‘exploration’ of the search domain. The crossover probability is usually between
0.7 and 1.0, while the mutation probability is lower 0.001~0.05. Mutation probability is dependent upon
the representation type and number of genes. For instance, for an n bit representation, the suggested
mutation rate is 1/n. In natural systems, if the mutation rate is too high under a high selection pressure,
the population might become extinct. A suitable elitist selection function must be employed to avoid
loss of good solutions. Selection, crossover and mutation are iteratively applied to the population until
a stopping condition is satisfied.

Introducing the concept of clustering analysis in an evolutionary algorithm is inspired from the
notion that clustering the evolving population can help avoid excessive exploitation and therefore
escape local optimum (local minimum or local maximum). The role of clustering analysis is to
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improve the probability of discovering the global optimum by sufficiently covering the solution space
(exploration) yet ensuring sufficient pressure to obtain even better solutions from current individuals
(exploitation).

Furthermore, in practical multimodal domains problems, it is desirable to evaluate several global
optima or some local optima that might be suitable alternatives to the global optima. Traditional
genetic algorithms perform well on single optimum problems but fail to provide multiple solutions.
By combining the strength of clustering analysis and genetic search, the proposed KGA techniques
permit the evaluation of multimodal functions. A detailed explanation of the proposed KGA technique
is considered in the next section.

4. The Proposed Algorithm

The following section presents a brief description of the proposed k-means genetic selection
processes. We are interested in the unconstrained optimization problems in which we attempt to find
→
x∗ which optimizes f (

→
x ) using GA-based algorithms. Therefore, only the standard GA will be used to

test the performance of the proposed KGA algorithms. Below, two distinct selection techniques KGAf
and KGAo are presented.

4.1. KGAf

The proposed KGA is different to the standard GA in several ways. Primary, the chromosomes of
the population are partitioned into groups in such a way that all individuals inside the same cluster
are similar. This offers a novel approach to solve the two important issues in the evolution process of
the genetic search: exploitation and exploration. Exploration is responsible for population diversity
by exploring the search space, while exploitation attempts to reduce the diversity by focusing on
individuals with higher fitness scores. Strong exploitation encourages premature convergence of the
genetic search. Recombining individuals inside the same cluster reduces population diversity, and thus
clustering the population can allow an enhanced balance between exploitation and exploration.

The aim of clustering is to find a given structure among the series of data and is therefore
exploratory in nature [49]. The task of organizing a set of data using cluster analysis requires some
dissimilarity measurement among the set of patterns. The dissimilarity metric is defined according to
the nature of the data and the purpose of the analysis. Many types of clustering algorithms have been
proposed; the reader is referred to [49–52] for a taxonomy of clustering techniques, discussions on
major challenges and key issues and useful surveys of recent advances. The simplest and most popular
clustering algorithm is the k-means algorithms (KMA), and was originally published by Steinhaus [53]
in 1956. Even though it was first proposed 60 years ago, it is still the most widely used algorithm
for clustering.

A general definition of clustering can be stated as follows: given a set of data composed on n
objects, find K groups in such a way that the measure of similarities between objects in the same group
is low while the similarities between objects in different groups are high.

The k-means algorithm attempts to find a partition such that the squared error between the
empirical mean of a cluster and the objects in the cluster is minimized. The goal is to minimize the
sum of the squared error J over all K clusters, as follows:

J(X, C) =
K

∑
k=1

∑
xi∈ck

‖xi − µk‖2 (1)

where X = {xi}, i = 1, . . . , N is the set of N d-dimensional points to be clustered into K clusters,
C = {ck}, k = 1, . . . , K and µk the mean of cluster ck.

Minimizing the k-means objective function is an NP-hard problem (even for K = 2) [54],
and therefore the algorithm can only converge to local minima. The main steps of the k-means
algorithm can be summarized as follows:
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1. Choose an initial partition with K clusters.
2. Generate a new partition by assigning each pattern to its nearest cluster centroid.
3. Compute new cluster centroids.
4. If a convergence criterion is not met, repeat steps 2 and 3.

In the KGAf algorithm, the number of clusters is kept the same throughout the evolution process.
The four main stages of KGAf are as follows:

5. Clustering the population by the k-means algorithm
6. Computing the membership probability (MP) vector (Equations (2)–(4))
7. Fitness scaling of MP
8. Selection of the parents for recombination.

In general, we want to maintain an even selection pressure during the evolution of the genetic
search. At the beginning, the search may be bias towards high fitness individuals. Near the end of the
search, as the population is converging towards an optimal solution, there may not be much separation
among individuals in the population. Neither situation is desirable, thus there is a necessity to scale
the fitness in such a manner to keep the selection pressure the same throughout in the population.

The membership probability score of an individual is a measurement of its affiliation with respect
to both designated and external clusters (Equation (2)). For a given solution i inside a cluster j of size
mj, the membership probability index is calculated as follows:

MP(i, j) =
mj

mj − 1
× 1

P
×

Sj − f (xi)

Sj
(2)

and

Sj =

mj

∑
i=1

f (xi) (3)

P =
K

∑
j=1

mj (4)

where P is the population size and Sj is the sum of the fitness values f (xi) inside cluster j.
The key characteristics that are associated with the use of the membership probability function

are the following:

• The sum of the membership probability scores of a given cluster j of size mj is equal to
mj
P .

Consequently, clusters with more individuals will be attributed a larger probability sum.
• An individual with a lower fitness value f (xi) inside a cluster of size mj is awarded a higher MP

score. This is translated in the
Sj− f (xi)

Sj
term, thus allocating fitter solutions a higher probability

of selection.
• In order to reduce the probability of recombination between individuals from the same cluster,

thus avoiding local optimal traps, fitter individuals in smaller clusters are awarded a higher MP
score. This is the direct effect of

mj
mj−1 term.

• The sum of all membership probability scores is equal to one.

Fitness scaling converts the membership scores in a range suitable for the selection function which
selects the parents of the next generation. The selection function allocates a higher probability of
selection to individuals with higher scaled values.

The range of the scaled values can affect the performance of the genetic algorithm. If the scaled
values vary too extensively, higher scaled value individuals will reproduce too rapidly and prevent
the GA from searching other regions in the search space. In contrast, for lower scaled value variations,
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all individuals will have an equal chance of reproduction and therefore will result in very slow
search progress.

The general framework of the proposed KGAf algorithm is shown in Figure 1 below.

4.2. KGAo

It is obvious that a problem we face in the KGAf algorithm is to decide the optimal number of
clusters. Visual verification of a large multidimensional data set (e.g., more than three) is difficult [55].
In order to find the optimal clustering scheme that best fits the inherent partitions of the data set,
the concept of clustering validation has been subject to numerous research efforts. The fundamental
concepts, drawbacks and applications of clustering validation techniques were discussed in [55–58].

In essence, there are three main approaches to examine cluster validity:

• External criteria: evaluation of the clustering algorithm results is based on previous knowledge
about data.

• Internal criteria: clustering results are evaluated using a mechanism that takes into account the
vectors of the data set themselves and prior information from the data set is not required.

• Relative criteria: aim to evaluate a clustering structure by comparing it to other clustering schemes.
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The KGAo attempts to answer the following questions:

• In how many clusters can the population be partitioned to?
• Is there a better “optimal” partitioning for our evolving population of chromosomes?
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Two main approaches to determining the suitable number of clusters for a given data set can be
distinguished:

• Compatible Cluster Merging (CCM): starting with a large number of clusters, and successively
reducing the number by merging clusters which are similar (compatible) with respect to a
similarity criterion.

• Validity Indices (VI’s): clustering the data for different values of K, and using validity measures to
assess the obtained partitions.

The CCM approach requires more computational operations than the use of a validity index to
determine the optimal number of clusters. Moreover, the size of the evolving population is small
(less than or equal to 100 chromosomes), therefore there is no need to apply a CCM approach. On the
other hand, the validity index is not a clustering algorithm itself, but rather a measurement of the
results and thus suggests a scheme that best fits the data set. At each generation in the proposed KGAo

technique, the optimal number of clusters is calculated using a validity assessment index. Different
validity indices suitable for k-means clustering have been proposed in the literature.

In this paper, two different internal validity indices are applied in the KGAo technique:
Silhouette [59] and the Davies–Bouldin index [60] as explained in Figure 2 below.

• Silhouette (S) [59]

The silhouette technique assigns to the ith vector of cluster cj (j = 1, . . . , K), a quality measure s(i)
known as the silhouette width defined as S:

sj =
1

mj

mj

∑
i=1

(b(i)− a(i))
max [a(i), b(i)]

(5)

and

S =
1
K

K

∑
j=1

sj (6)

where a(i) is the average distance between the ith vector and the remaining elements inside the same
cluster j of size mj, b(i) is the minimum average distance between vector i and all elements inside
clusters ck (k = 1, . . . K; k 6= j). The optimal partition is expected to minimize the intra-group distance a
while maximizing the inter-group distance b, thus maximizing the silhouette width criterion S.

• Davies–Bouldin (DB) [60]

The DB index aims to evaluate intra-cluster similarity and inter-cluster differences by computing
the following:

BD =
1
K

K

∑
i=1

maxi 6=j

[
d(xi) + d

(
xj
)

d
(
ci, cj

) ]
(7)

where d(xi) and d(xi) are each the sum of all the distances between the centroid of the cluster and
the elements of clusters i and j respectively, d(ci, cj) is the distance between centroids of cluster ci and
cj. A good partition composed of compact and separated clusters is represented by a small DB value.
The Davies–Bouldin index presents decent results for dissimilar groups. However, it is not intended to
handle overlapping clusters [27].

Throughout the KGAo technique, the evaluation of the validity index function is performed within
a range of cluster numbers and then an optimal number is chosen. For instance, if the Silhouette index
is applied, the number of clusters which maximizes S corresponds to the optimal partition, whereas
the minimum DB value determines the optimal number of clusters for the clustering of the population.
Since the size of the population is small, the maximum number of partitions is set to ten. Consequently,
the search for the optimal partition varies between i = 2 (the minimum number of clusters) and i = 10,
as per Figure 2.
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5. Numerical Simulations

In this section, the performance of KGA techniques on seven well-known test functions is
investigated. In recent years, various kinds of novel computational intelligence methods have
been proposed and the field is attracting more and more attention. To promote research on
expensive optimization, the CEC 2014 special session competition developed a set of benchmark
optimization problems.

All test functions are minimization problems defined as follows:

min f (x); x = [x1, x2, . . . , xD] (8)

D dimension of the search space.
Most functions are shifted by oi = [oi1, oi2, . . . , oiD], randomly distributed in [−10, 10]D.

Some problems are rotated by a predefined rotation matrix M (Table 1). Each rotation matrix is
generated from standard normally distributed entries by Gram–Schmidt ortho-normalization with
condition number equal to one or two.

Table 1. Summary of the test functions.

No. Functions Search Ranges f∗i = fi(x
∗)

1 shifted sphere [−20, 20] 0
2 shifted ellipsoid [−20, 20] 0

3 shifted and rotated
ellipsoid [−20, 20] 0

4 shifted step [−20, 20] 0
5 shifted Ackley [−32, 32] 0
6 shifted Griewank [−600, 600] 0

7 shifted rotated
Rosenbrock [−20, 20] 0

1. f1(x) = ∑D
i=1 x2

i F1(x) = f1(x− o1)

2. f2(x) = ∑D
i=1 ix2

i F2(x) = f2(x− o2)



Algorithms 2017, 10, 123 10 of 15

3. F3(x) = f2(M3[x− o3])

4. f3(x) = ∑D
i=1|xi + 0.5|2; F3(x) = f3(x− o4)

5. f4(x) = −20 exp
[
−0.2

√
1
D ∑D

i=1 x2
i

]
− exp

[
1
D ∑D

i=1 cos(2πxi)
]
+ 20 + e ; F5(x) = f4(x− o5)

6. f5(x) = ∑D
i=1

x2
i

4000 −∏D
i=1 cos

(
xi√

i

)
+ 1; F6(x) = f5(x− o6)

7. f6(x) = ∑D−1
i=1

[
100
(

x2
i − xi+1

)2
+ (xi − 1)2

]
; F6(x) = f6

(
M7

[
2.048(x−o7)

20

]
+ 1
)

Results of the KGA techniques (KGAo-S, KGAo-DB and KGAf) were taken for D = 10 and
20 and are compared to those of the standard genetic algorithm GA and the Group Counseling
Optimizer (GCO) [61] presented at the IEEE Congress on Evolutionary computation (CEC 2014). In all
experiments, common parameters such as population number, maximum generation number and
stopping criterion were the same for all algorithms. Population sizes of 50 and 100 were selected
for dimensions 10 and 20 respectively. Each experiment is repeated 50 times to obtain the statistical
features of the algorithms. A system with an Intel core i7 2.9 GHz processor and 4.096 GB RAM is
used for implementing the MATLAB code for the proposed KGA techniques. All algorithms run
the same number of fitness evaluations equal to 15,000 for D = 10 and 20,000 for D = 20, to ensure a
fair comparison.

The statistical results of the test problems are shown in Tables 2 and 3. The GCO outperformed
the proposed techniques in only one data set (test = 4, D = 20). In all other cases, the best solution was
obtained with either the KGAo-S or the KGAo-DB. This demonstrates the significant feasibility and
efficiency of the proposed techniques over the standard GA. Although the average runtime of each
experiment was increased by 10–15%, the KGA techniques ensured a broader and more exhaustive
search and prevent premature death of potential solutions.

The KGA methods implement an efficient partitioning of the population. They extend the
diversity by intensifying the scope of the search process and reducing less favourable solutions.
The recombination of two similar solutions will more likely generate a descendant with homogenous
chromosomes. The evaluation of the membership probability vector inside the proposed selection
process guarantees a more fitting parent selection.

In addition, the elitism strategy that results from partitioning the population into a number
of clusters ensures that best solutions are always carried forward to the next generation. In fact,
rather than obtaining one elite solution, K-strong optimal solutions are generated in each generation.
In the long run, this enhances the exploration of future generations and reduces the possibility of
premature convergence at local minima. The latter was recorded with the standard GA in problems
4–7 especially. Unlike the KGAf, the KGAo-S and KGAo-DB are designed in such a way that there are
no additional parameters to be fine-tuned.

Table 2. Comparison of statistical results of four algorithms for test problems 1–7 of dimensions D = 10.

Problem KGAo (S Index) KGAo
(DB Index)

Genetic
Algorithm (GA)

KGAf (K = 10) GCO

1

Best 8.81 × 10−5 1.95 × 10−4 2.76 × 10−4 5.06 × 10−4 3.23
Mean 2.45 × 10−3 5.33 × 10−3 8.29 × 10−3 2.84 × 10−2 1.23 × 101

Worst 1.13 × 10−2 5.43 × 10−2 1.08 × 10−1 3.04 × 10−1 2.96 × 101

SD 2.63 × 10−3 8.39 × 10−3 1.58 × 10−2 5.02 × 10−2 6.37

2

Best 2.91 × 10−4 3.34 × 10−4 4.60 × 10−4 2.08 × 10−3 8.46
Mean 7.12 × 10−3 7.12 × 10−3 4.75 × 10−2 2.09 × 10−1 4.14 × 101

Worst 6.27 × 10−2 4.83 × 10−2 7.21 × 10−1 3.62 2.22 × 102

SD 1.07 × 10−2 1.06 × 10−2 1.17 × 10−1 6.13 × 10−1 4.61 × 101

3

Best 5.55 × 10−4 2.27 × 10−4 5.32 × 10−4 3.23 × 10−3 1.56 × 101

Mean 1.01 × 10−2 8.24 × 10−3 5.01 × 10−2 3.12 × 10−1 8.85 × 101

Worst 5.42 × 10−2 7.49 × 10−2 2.58 × 10−1 2.49 2.09 × 102

SD 1.25 × 10−2 1.46 × 10−2 6.73 × 10−2 5.63 × 10−1 5.54 × 101
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Table 2. Cont.

Problem KGAo (S Index) KGAo
(DB Index)

Genetic
Algorithm (GA)

KGAf (K = 10) GCO

4

Best 4.00 2.00 1.50 × 10−1 3.00 3.00
Mean 9.14 × 101 6.48 × 101 1.31 × 102 6.50 × 101 1.00 × 101

Worst 3.86 × 102 4.19 × 102 3.83 × 102 2.05 × 102 2.70 × 101

SD 9.84 × 101 8.38 × 101 8.88 × 101 5.42 × 101 6.94

5

Best 1.48 × 10−3 8.42 × 10−3 1.21 × 10−2 4.01 × 10−2 3.92
Mean 1.50 6.55 5.15 5.62 6.36
Worst 1.26 × 101 1.31 × 101 1.24 × 101 1.30 × 101 9.94

SD 2.28 4.52 3.62 4.12 1.71

6

Best 4.94 × 10−2 4.97 × 10−2 4.95 × 10−2 5.04 × 10−2 1.24
Mean 6.41 × 10−2 6.32 × 10−2 6.38 × 10−2 6.96 × 10−2 2.11
Worst 8.66 × 10−2 8.56 × 10−2 8.14 × 10−2 1.00 × 10−1 4.51

SD 7.33 × 10−3 6.73 × 10−3 7.56 × 10−3 1.07 × 10−2 6.77 × 10−1

7

Best 2.02 × 10−1 3.84 × 10−3 1.28 1.48 × 10−1 4.42 × 101

Mean 3.77 3.65 3.22 4.60 9.28 × 101

Worst 7.77 8.81 5.09 1.55 × 101 1.80 × 102

SD 1.48 2.12 5.95 × 10−1 2.78 3.22 × 101

Table 3. Comparison of statistical results of four algorithms for test problems 1–7 of dimensions D = 20.

Problem KGAo
(S Index)

KGAo
(DB Index)

Genetic
Algorithm (GA)

KGAf
(K = 10) GCO

1

Best 1.67 × 10−3 2.36 × 10−3 1.05 4.51 × 10−3 3.60 × 101

Mean 1.22 × 10−2 1.53 × 10−2 1.63 1.16 × 10−1 1.19 × 101

Worst 6.32 × 10−2 9.89 × 10−2 2.43 6.42 × 10−1 2.17 × 101

SD 1.45 × 10−2 1.87 × 10−2 3.13 × 10−1 1.40 × 10−1 5.88

2

Best 3.76 × 10−3 5.68 × 10−3 8.99 5.01 × 10−2 7.79 × 101

Mean 1.17 × 10−1 1.19 × 10−1 1.02 × 101 4.10 9.34 × 101

Worst 1.16 2.05 1.33 × 101 2.75 × 101 1.79 × 102

SD 2.17 × 10−1 2.94 × 10−1 1.48 6.05 4.75 × 101

3

Best 1.96 × 10−1 5.50 × 10−3 1.49 × 101 2.27 × 10−2 3.33
Mean 9.16 × 10−1 3.34 × 10−1 2.45 × 101 2.04 1.44 × 102

Worst 3.19 4.59 3.53 × 101 1.27 × 101 2.62 × 102

SD 4.29 × 10−1 6.85 × 10−1 4.19 2.55 4.76 × 101

4

Best 7.00 7.00 3.19 × 102 1.70 × 101 3.00
Mean 7.91 × 101 7.52 × 101 4.89 × 102 8.83 × 101 8.48
Worst 5.37 × 102 3.32 × 102 7.23 × 102 3.17 × 102 1.40 × 101

SD 9.23 × 101 7.44 × 101 9.99 × 101 6.41 × 101 3.01

5

Best 1.46 1.32 × 10−1 9.83 1.55 1.28
Mean 6.75 5.59 1.16 5.18 4.58
Worst 1.26 × 101 1.28 × 101 1.25 × 101 1.20 × 101 8.94

SD 3.69 3.58 7.38 × 10−1 2.47 1.16

6

Best 1.46 1.32 × 10−1 9.83 1.55 1.28
Mean 6.75 5.59 1.16 5.18 4.58
Worst 1.26 × 101 1.28 × 101 1.25 × 101 1.20 × 101 8.94

SD 3.69 3.58 7.38 × 10−1 2.47 1.16

7

Best 1.65 × 10−2 1.02 × 10−2 7.99 5.04 × 10−2 3.10 × 101

Mean 1.87 × 101 1.59 × 101 2.63 × 101 1.96 × 101 1.13 × 102

Worst 7.54 × 101 7.21 × 101 6.15 × 101 7.85 × 101 1.72 × 102

SD 2.82 × 101 2.75 × 101 1.34 × 101 2.97 × 101 2.67 × 101
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The most frequently used statistical tests to determine significant differences between two
computational intelligence algorithms are the t-test and Wilcoxon signed-ranks test [62]. The later is a
non-parametric counterpart of the paired t-test, which ranks the differences in performances of two
algorithms over each data set. In brief, the test omits the signs, and compares the ranks for the positive
and the negative differences. The differences are ranked based on their absolute values and in case of
ties average ranks are calculated.

A Wilcoxon test is used for pairwise comparisons between the following pairs of algorithms:
KGAo (S index)-KGAo (DB index), KGAo (S index)-GA, KGAo (S index)-KGAf, KGAo (DB index)-GA,
KGAo (DB index)-KGAf, GA-KGAf for test function seven (refer to Table 4).

As we can see, the p-values obtained by the paired Wilcoxon test indicate that the algorithms
behave differently, since all p-values are less than the level of significance α = 0.05.

Table 4. p-Values for the Wilcoxon test in paired comparisons for test number 7.

Comparison R+ R− Alpha z-Score p-Value

KGAo (S index)-KGAo (DB index) 307 968 0.05 3.190 1.421 × 10−3

KGAo (S index)-GA 155 1120 0.05 4.658 3.198 × 10−6

KGAo (S index)-KGAf 74 1201 0.05 5.440 5.339 × 10−8

KGAo (DB index)-GA 451 824 0.05 3.800 4.181 × 10−2

KGAo (DB index)-KGAf 134 1141 0.05 4.860 1.170 × 10−6

GA-KGAf 1275 0 0.05 6.154 7.557 × 10−10

6. Conclusions and Future Work

A k-means Genetic Selection (KGA) is proposed to solve multimodal function optimization
problems. Two different versions of the KGA technique were presented: using a fixed number of
clusters K (KGAf) and via an optimal number Kopt (KGAo). In the latter, the optimal number of clusters
is determined using two validity indexes: Silhouette and Davies–Bouldin. The KGA techniques are
composed of four stages: clustering, membership phase, fitness scaling and selection. Clustering
the population aids the search algorithm to preserve a selection pressure throughout the evolution.
A membership probability number is assigned to each individual following the k-mean clustering
phase. Fitness scaling converts the membership scores in a range suitable for the selection function
which selects the parents of the next generation. The performance of each KGA technique (KGAo-S,
KGAo-DB and KGAf) is tested on seven benchmark problems for two separate dimensions of the search
spaces D = 10 and 20. Traditional GAs perform well on single optimum problems but fail to provide
multiple solutions. By combining the strength of clustering analysis and genetic search, the proposed
KGA techniques permit the evaluation of multimodal functions. The computational results reveal that
the proposed selection process is superior to or competitive with the standard genetic algorithm for
the problems considered.

In the current study, combining the strengths of evolutionary computation and data mining were
limited to single-objective optimization problems. Future research could test the performance of KGA
techniques in solving constrained optimization problems and/or multiobjective formulations [63].
The stability of the novel selection processes should also be considered in future work. It would be
compelling to integrate the KGA processes in further population-based optimization algorithms such
as particle swarm optimization (PSO) [64], ant colony optimization (ACO) [65] and firefly algorithm
(FA) [66]. Lastly, larger-scale examples should be tested and further research on the impact of GA
parameters (such as population size, probabilities of crossover and mutation) on the KGA process will
be examined.
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