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The Vertex Reinforced Jump Process and a Random

Schrödinger operator on finite graphs

Christophe Sabot, Pierre Tarrès, Xiaolin Zeng

Abstract

We introduce a new exponential family of probability distributions, which can be viewed as
a multivariate generalization of the Inverse Gaussian distribution. Considered as the potential
of a random Schrödinger operator, this exponential family is related to the random field that
gives the mixing measure of the Vertex Reinforced Jump Process (VRJP), and hence to the
mixing measure of the Edge Reinforced Random Walk (ERRW), the so-called magic formula. In
particular, it yields by direct computation the value of the normalizing constants of these mixing
measures, which solves a question raised by Diaconis. The results of this paper are instrumental
in [16], where several properties of the VRJP and the ERRW are proved, in particular a functional
central limit theorem in transient regimes, and recurrence of the 2-dimensional ERRW.

1 Introduction

In this paper we introduce a new multivariate exponential family, which is a multivariate generalization
of the inverse Gaussian law. This exponential family is associated to a network of conductances and
provides a random field on the vertices of the network, the latter having the remarkable property that
the marginals have inverse gaussian law and that the field is decorrelated at distance two.

This exponential family is mainly motivated by the study of two self-interacting processes, namely
the Edge Reinforced Random Walk (ERRW) and the closely related Vertex Reinforced Jump Process
(VRJP), but it could also find some applications in other topics, such as Bayesian statistics for
instance. Note that Diaconis and Rolles [8] introduced in 2006 a family of Bayesian priors for
reversible Markov chains, similarly associated to the limit measure of the ERRW.

More precisely, we consider a non-directed finite graph G = (V,E) with strictly positive con-
ductances Wi,j = Wj,i on the edges. Denote by ∆W the discrete Laplace operator associated to
the conductance network (Wi,j) and write Wi =

∑

j:{i,j}∈EWi,j. The exponential family provides a

random vector of positive reals (βj)j∈V such that

Hβ := −∆W + V

is a.s. a positive operator, where V = 2β −W is the operator of multiplication by (2βi −Wi) and
2β −W is considered as a random potential. We prove in Theorem 3 that if the Green function is
defined by G = (Hβ)

−1, then the field (euj) giving the mixing measure of the VRJP starting from
i0, c.f. [14], is equal in law to (G(i0, j)/G(i0, i0)).

This has several consequences. Firstly, it relates the VRJP to a random Schrödinger operator
with an explicit random potential with decorrelation at distance 2. Note that Anderson localization
was the main motivation in the papers of Disertori, Spencer, Zirnbauer ([9, 10]): in these works the
supersymmetric field related to the mixing measure of the VRJP (c.f. [14]) is viewed as a toy model
for some supersymmetric fields that appears in the physics literature in connection with random band
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matrices. Secondly, it enables one to couple the mixing fields of the VRJP starting from different
points. Finally, using the link between VRJP and ERRW [14], it yields an answer to an old question
of Diaconis about the direct computation of the normalizing constant of the ‘magic formula’ for the
mixing measure of ERRW.

Results of this paper are instrumental in [16], where the representation in terms of a random
Schrödinger operator is extended to infinite graphs. Interesting new phenomena appear in the tran-
sient case, where a generalized eigenfunction of the Schrödinger operator is involved in the represen-
tation. Several consequences follow on the behavior of the VRJP and the ERRW in [16]: in particular
a functional central limit theorem is proved for the VRJP and the ERRW in dimension d ≥ 3 at weak
reinforcement, and recurrence of the 2-dimensional ERRW is shown, giving a full answer to an old
question of Diaconis.

The paper is organized as follows. In Section 2, we define the new exponential family of distribu-
tions and give its first properties. In section 3, we discuss the link between the exponential family and
the Vertex reinforced jump processes. In Section 4 we consider the ERRW and answer the question
of Diaconis. Sections 5 and 6 provide the proof of the two main results, namely Theorem 1 and
Theorem 3.

2 A new exponential family

Let V = {1, . . . , n} be a finite set, and let (Wi,j)i 6=j be a set of non-negative reals with Wi,j =
Wj,i ≥ 0. Denote by E the edges associated to the positive Wi,j, i.e. consider the graph G = (V,E)
with {i, j} ∈ E if and only if Wi,j > 0, and write i ∼ j if {i, j} ∈ E. Let dG be the graph distance
on G.

When A is a symmetric operator on R
V (also be considered as a V × V matrix), write A > 0 if

A is positive definite, and |A| for its determinant.

Theorem 1. Let P = (Pi,j)1≤i,j≤n be the symmetric matrix given by

Pi,j =

{

0 i = j,

Wi,j i 6= j.

For any θ ∈ R
n
+, we have

(
2

π
)n/2

∫

1{2β−P>0}e
−〈θ,β〉 dβ

√

|2β − P |
= exp



−
∑

{i,j}∈E

Wi,j

√

θiθj



 ·
n
∏

i=1

1√
θi

(1)

where dβ = dβ1 · · · dβn, and 2β − P is the operator on R
V defined by

[(2β − P )f ](i) = 2βif(i)−
∑

j:j∼i

Wi,jf(j).

Definition 1. The exponential family of random probability measures νW,θ(dβ) is defined by

νW,θ(dβ) = 12β−P>0(
2

π
)n/2 exp



−〈θ, β〉+
∑

{i,j}∈E

Wi,j

√

θiθj





∏

i

√
θi

√

|2β − P |
dβ

where 〈θ, β〉 =
∑

i∈V θiβi. We will simply write νW for νW,1 in the case where θi = 1 for all i ∈ V .
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The proof of Theorem 1 is given in Section 5. We deduce the following simple but important
properties of the measure νW,θ.

Proposition 1. The Laplace transform of νW,θ is

∫

e−〈λ,β〉νW,θ(dβ) = exp



−
∑

{i,j}∈E

Wi,j

(

√

λi + θi
√

λj + θj −
√

θiθj

)



 ·
n
∏

i=1

√

θi
λi + θi

Moreover, if β is a random vector with distribution νW,θ, then

• The marginals βi are such that 1
2βiθi

is an Inverse Gaussian distribution with parameters

( 1
∑

j∼i Wi,j

√
θiθj

, 1)

• If V1 ⊂ V , V2 ⊂ V are two subsets of V such that dG(V1, V2) ≥ 2, then (βi)i∈V1 and (βj)j∈V2

are independent.

Proof. The Laplace transform of νW,θ can be computed directly from Theorem 1, from which we
deduce independence at distance at least 2. We can also deduce, by identification of the Laplace
transforms, that the marginals of this law are reciprocal inverse gaussian up to a multiplicative
constant.

The family can be reduced to the case θ = 1 by changing W , as shown in the next corollary.

Corollary 1. Let (βj)j∈V be distributed according to νW,θ. Then (θβ) is distributed according to

νW
θ

, where W θ
i,j = Wi,j

√

θiθj .

It is clear from the expression of the Laplace transform that if the graph has several connected
components then the random field (βj)j∈V splits accordingly into independent random subvectors.
Therefore, we will always assume in the sequel that the graph G is connected.

3 Link with the Vertex reinforced Jump process

3.1 Vertex Reinforced Jump Process: definition and main properties

In this section we explain the link between the exponential family of Section 2 and the Vertex
reinforced Jump Process (VRJP), which is a linearly reinforced process in continuous time, defined
in [5], investigated on trees in [3], and on general graphs by the first two authors in [14]. Consider
as in the previous section a conductance network (Wi,j) and the associated graph G = (V,E). Fix
also some positive parameters (φi)i∈V on the vertices. Assume that the graph G is connected.

We call VRJP with conductances (Wi,j) and initial local time (φi) the continuous-time process
(Yt)t≥0 on V , starting at time 0 at some vertex i0 ∈ V and such that, if Y is at a vertex i ∈ V at
time t, then, conditionally on (Ys, s ≤ t), the process jumps to a neighbour j of i at rate

Wi,jLj(t),

where

Lj(t) := φj +

∫ t

0

1{Ys=j} ds.

3



The following time change, introduced in [14], plays a central role. Let

D(t) =
∑

i∈V

(L2
i (t)− φ2

i ), (2)

define Zt as the time changed process
Zt = YD−1(t).

Let (ℓj(t)) be the local time of Z at time t (that is, ℓj(t) =
∫ t

0
1Zs=jds). Conditionally on the past,

at time t, the process Z jumps from Zt = i to a neighbour j at rate (c.f. [15], Lemma 3)

Wi,j

2

√

φ2
j + ℓj(t)

φ2
i + ℓi(t)

.

We state below one of the main results of [14], Proposition 1 and Theorem 2. The theorem was
stated in [14] in the case φ = 1, this version of the theorem can be deduced by a simple change of
time, details are given in Appendix B.

Theorem 2. Assume that G is finite. Suppose that the VRJP starts at i0. The limit

Ui =
1

2
lim
t→∞

(

log

(

ℓi(t) + φ2
i

ℓi0(t) + φ2
i0

)

− log

(

φ2
i

φ2
i0

))

exists a.s. and, conditionally on U , Z is a Markov jump processes with jump rate from i to j

1

2
Wi,je

Uj−Ui .

Moreover (Uj) has the following distribution on {(ui), ui0 = 0}

QW,φ
i0

(du) =

∏

j 6=i0
φj

√
2π

|V |−1
e−

∑
j∈V uje−

1
2

∑
{i,j}∈E Wi,j(e

ui−ujφ2
j+euj−uiφ2

i−2φiφj)
√

D(W,u) du, (3)

with du =
∏

j∈V \{i0}
duj and

D(W,u) =
∑

T

∏

{i,j}∈T

Wi,je
ui+uj

where the sum runs on the set of spanning trees T of G. We simply write QW
i0

for QW,1
i0

The fact that the total mass of the measure QW,φ
i0

is 1 is both a non-trivial and a useful fact: in
particular, it plays a central role in the delocalization and localization results of [9, 10]. In [14] it
is a consequence of the fact that it is the probability distribution of the limit random variables U .
In [10] it is proved using a sophisticated supersymmetric argument, the so-called localization principle.
Theorem 3 below provides a direct ’computational’ proof of that result, based on the identity (1) and
on the change of variable in Proposition 2 that relates the field (uj) to the random vector (βj) in
Definition 1.
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3.2 Link with the random potential β

The second main result of this paper enables us to construct the mixing field eu defined in the previous
subsection from the random potential (βj) defined in Definition 1. It gives also a natural way to
couple the mixing measure of VRJP starting from different points.

Let us first state the following Proposition 2, which provides some elementary observations on
the Green function.

Define
D = {(βi)i∈V ∈ (R+ \ {0})V , 2β − P > 0}.

Proposition 2. Let β ∈ D, and let G be the inverse of (2β − P ). Then (G(i, j)) has positive
coefficients. Define (u(i, j))i,j∈V by

eu(i,j) =
G(i, j)

G(i, i)
.

Then for i0 ∈ V , the function j → u(i0, j) is the unique solution j 7→ uj of the equation

{

∑

j∼i
1
2
Wi,je

uj−ui = βi, i 6= i0

ui0 = 0,
(4)

In particular (u(i0, j))j∈V is (βj)j∈V \{i0} measurable. Moreover, at the site i0 we have

βi0 =
1

2G(i0, i0)
+
∑

j:j∼i0

1

2
Wi0,je

u(i0,j).

Theorem 3. Let β be a random potential with distribution νW,φ2
(dβ) as in Definition 1, and let

(u(i, j))i,j∈V be defined as in Proposition 2. Then the following properties hold:

i) The random field (u(i0, j))j∈V has the distribution of the mixing measure QW,φ
i0

(du) of the VRJP
starting from i0 with initial local time (φi)i∈V .

ii) The random variableG(i0, i0) has the distribution of 1/(2γ), where γ is a gamma random variable
with parameters (1/2, 1/φ2

i0). Moreover, G(i0, i0) is independent of (βj)j 6=i0, and thus also of
the field (u(i0, j))j∈V .

The proofs of Proposition 2 and Theorem 3 are given in Section 6. The next Corollary 2 describes
how to construct the random potential β from the field u of Theorem 2.

Corollary 2. Consider a VRJP with edge weight (Wi,j) and initial local time (φi)i∈V , starting at i0.

Let (ui)i∈V be distributed according to QW,φ
i0

of Theorem 2. Let

β̃i =
1

2

∑

j:j∼i

Wi,je
uj−ui. (5)

Let γ be a Gamma distributed random variable with parameters (1
2
, 1/φ2

i0
), independent of (uj),

and let
βi = β̃i + 1i0γ. (6)

Then β has the law νW,φ2
of Definition 1.
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Corollary 2 indeed follows directly from Theorem 3 and Proposition 2: the law of β in (6) is
uniquely determined by the laws of (ui)i∈V and γ independent from (βi)i 6=i0, hence it is sufficient to
show that, if β has distribution νW,φ2

(dβ) and u is defined from (4) by Proposition 2, then (ui)i∈V
indeed has distribution QW,φ

i0
, and γ = βi0 − β̃i0 = 1/(2G(i0, i0)) has distribution Γ(1/2, 1/φ2

i0),
which follows from Theorem 3.

As mentioned in the introduction, Theorem 3 has several consequences. Firstly it explicitly
relates the VRJP to the random Schrödinger operator −∆W + V , where V is the random potential
Vi = 2βi −Wi. Secondly it yields a natural coupling between the random fields (uj)j∈V associated
with the VRJP starting from different sites, since the exponential family (βi)i∈V gives the same role
to each vertex of the graph, and (u(i, j))i,j∈V arises from these random variables (βi)i∈V . Finally

it also gives a computational proof of the identity
∫

QW,θ
i0

(du) = 1, for any θ, as a consequence of

Theorem 1 that allows to define νW,φ2
(dβ) as a probability measure.

4 Link with the Edge reinforced random walk and a question

of Diaconis

4.1 Definition and magic formula

The Edge Reinforced Random Walk (ERRW) is a famous discrete time process introduced in 1986
by Coppersmith and Diaconis, [4].

Let (ai,j){i,j}∈E be a set of positive weights on the edges of the graph G. Let (Xn)n∈N be a
random process that takes values in V , and let Fn = σ(X0, . . . , Xn) be the filtration of its past. For
any e ∈ E, n ∈ N, let

Zn(e) = ae +
n
∑

k=1

1{{Xk−1,Xk}=e} (7)

be the number of crosses of the (non-directed) edge e up to time n plus the initial weight ae.
Then (Xn)n∈N is called Edge Reinforced Random Walk (ERRW) with starting point i0 ∈ V and

weights (ae)e∈E, if X0 = i0 and, for all n ∈ N,

P(Xn+1 = j | Fn) = 1{j∼Xn}
Zn({Xn, j})

∑

k∼Xn
Zn({Xn, k})

. (8)

We denote by P
ERRW,(a)
i0

the law of the ERRW starting from the initial vertex i0 and initial weights
(a).

A fundamental property of the ERRW, stated in the next theorem, is that on finite graphs the
ERRW is a mixture of reversible Markov chains, and the mixing measure can be determined explicitly
(the so-called Coppersmith-Diaconis measure, or ‘magic formula’). It is a consequence of a de Finetti
theorem for Markov chains due to Diaconis and Freedman [7], and the explicit determination of the law
is due to Diaconis and Coppersmith [4, 11, 12]. It has also applications in Bayesian statistics [2, 1, 8].

Theorem 4. [4, 11]
Assume that G = (V,E) is a finite graph and set ai =

∑

j:{i,j}∈E ai,j for all i ∈ V . Fix an edge

e0 incident to i0, and define He0 = {y : ∀e ∈ E, ye > 0, ye0 = 1} (similarly let yi =
∑

i∈e ye).
Consider the following positive measure defined on He0 defined by its density

M(a)
i0
(dy) = C(a, i0)

√
yi0
∏

e∈E y
ae
e

∏

i∈V y
1
2
(ai+1)

i

√

D(y)
∏

e 6=e0

dye
ye
, (9)
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with
D(y) =

∑

T

∏

e∈T

ye,

where the sum runs on the set of spanning trees T of G, and with

C(a, i0) =
21−|V |+

∑
e∈E ae

√
π
|V |−1

·
∏

i∈V Γ(1
2
(ai + 1− 1i=i0))

∏

e∈E Γ(ae)

ThenM(a)
i0

is a probability measure on He0 , and it is the mixing measure of the ERRW starting from
i0, more precisely

P
ERRW,(a)
i0

(·) =
∫

Hi0

P
(y)
i0

(·)dM(a)
i0
(y),

where P
(y)
i0

denotes the reversible Markov chain starting at i0 with conductances (y).

4.2 The question of Diaconis

The fact that M(a)
i0
(dy) is a probability measure is a consequence of the fact that it is the mixing

measure of the ERRW. In fact it is obtained as the limit distribution of the normalized occupation
time of the edges [11]:

(

Zn(e)

Zn(e0)

)

e∈E

law−→M(a)
i0
.

One question raised by Diaconis is the following

(Q) Prove by direct computation that
∫

M(a)
i0
(dy) = 1. (10)

An answer was proposed by Diaconis and Stong [6] in the case of the triangle, using a subtle change
of variables. Also note that Merkl and Rolles offered in [12] analytic tools for the computation of
the ratio of the normalizing constants of the magic formula for two initial weights differing by integer
values, which may possibly be extended to provide the normalizing constant.

We provide below an answer to that question. A first simplification comes from [14], where an
explicit link was made between the VRJP and the ERRW.

Theorem 5 (Theorem 1, [14]). Consider (Yn) the discrete time process associated with the VRJP
(Yt) (i.e. taken at jump times) with conductances (Wi,j) and φ = 1. Take now the conductances
(We)e∈E as independent random variables with gamma distribution with parameters (ae)e∈E. Then
the ‘annealed’ law of Yn (i.e. the law after taking expectation with respect to the random (We)) is
the law of the ERRW (Xn) with initial weights (ae)e∈E .

This immediately implies an identity between the mixing measures M(a)
i0

and QW
i0
: indeed, by

Theorem 2, (Yn) is a mixture of Markov jump processes with conductances Wi,je
ui+uj , which implies

that for all 0-homogeneous bounded test functions φ (i.e. φ(λy) = φ(y), ∀λ > 0), we have

∫

He0

φ((ye))M(a)
i0
(dy) =

∫

RE

∏

e∈E

W ae−1
e e−We

Γ(ae)

(
∫

φ((Wi,je
ui+uj ))QW

i0 (du)

)

dW. (11)

with dW =
∏

e∈E dWe. This identity was checked by direct computation in section 5 of [14].

7



Now, the fact that
∫

QW
i0 (du) = 1 is a consequence of the computation of the integral (1) in

Theorem 1 and the change of variables in Theorem 3, as explained at the end of Section 3. Therefore
∫

ye0=1

dMa
i0(y) = 1.

Note that this fact can be used to prove directly that Ma
i0
(dy) is the mixing measure of the

ERRW starting from initial condition (a) and initial vertex i0. Indeed, for any finite path σ : i0 →
i1 → · · · → in, let N(i) (resp. N(e)) be the number of times vertex i (resp. edge e) is visited (resp.
crossed):

N(i) = |{k; 0 ≤ k ≤ n− 1, ik = i}|
N(e) = |{k; 0 ≤ k ≤ n− 1, {ik, ik+1} = e}|.

The probability of σ for the reversible Markov chain of conductance y is

pyi0(σ) =

∏

e∈E y
N(e)
e

∏

i∈V y
N(i)
i

The integration of pyi0(σ) w.r.t. dMa
i0
(y) can be computed by changing the constant Γ(ae) to Γ(ae+

Ne) and Γ(1
2
(ai + 1)) to Γ(1

2
(ai + 1) +Ni). Using the property Γ(x+ 1) = xΓ(x) and the notation

(a, n) =
∏n−1

k=0(a + k), we deduce
∫

pyi0(σ)dM
a
i0
(y) =

∏

e(ae, N(e))
∏

i(ai, N(i))

which is the probability of an ERRW to follow the path σ.

5 Proof of Theorem 1

Lemma 1. Let P = (Pi,j)1≤i,j≤n be a symmetric matrix with

Pi,j =

{

0, i = j,

Wi,j,∈ R
+ i 6= j,

and let β be a diagonal matrix with entries βi, i = 1, . . . , n, such that M = 2β − P is positive
definite.

Let L be the lower triangular n× n matrix and U be the upper unitary (with 1 on the diagonal)
upper triangular matrix such that M = LU (i.e. the LU decomposition of M), which exist and are
unique.

Then

U =









x1 −H1,2 · · · −H1,n

0 x2 · · · −H2,n

· · · −Hn−1,n

0 · · · 0 xn









,

where (xi)1≤i≤n and (Hi,j)1≤i<j≤n are defined recursively by











H1,j = W1,j j > 1

Hi,j =Wi,j +
∑i−1

k=1
Hk,iHk,j

xk
i ≥ 2, j > i

xi = 2βi −
∑i−1

k=1

H2
k,i

xk
i ≥ 1.

8



Furthermore,

xi =
M(1, . . . , i|1, . . . , i)

M(1, . . . , i− 1|1, . . . , i− 1)

where M(I|J) is the minor of matrix M that corresponds to the rows with index in I and columns
with index in J .

The result follows directly from (2.6) of [17], but we prove it in Appendix A for completeness’
sake.

Claim 1. For any θ1 > 0, θ2≥0,
∫ ∞

0

exp(−θ1x
2
− θ2

2x
)
1√
x
dx = exp(−

√

θ1θ2)

√

2π

θ1
.

Proof. The case θ2 = 0 corresponds to the normalisation of the Γ(1
2
) variable. The case θ2 > 0

corresponds to the normalization of the Inverse Gaussian law IG( θ1
θ2
, 1
θ2
).

Let us now prove Theorem 1. In the sequel we take the convention, given any real sequence
(ak)k∈N, that

∑m
k=n ak = 0 if n > m.

By Lemma 1,

n
∑

k=1

θlβl =

n
∑

k=1

θk(
xk
2

+

k−1
∑

l=1

H2
l,k

2xl
) =

n
∑

l=1

[

θlxl
2

+
1

2xl
(

n
∑

k=l+1

θkH
2
l,k)

]

.

Define

Ψ : (R+ \ {0})n −→ D

(xi)1≤i≤n 7−→ (βi)1≤i≤n =

(

xi
2
+

i−1
∑

k=1

H2
k,i

xk

)

1≤i≤n

.

Then Ψ is a bijection, since a symmetric matrix is positive definite if and only if all of its diagonal
minors are positive. Its Jacobian is 2−n, hence it is a diffeomorphism.

Therefore

I :=

∫

1{2β−P>0}
exp(−θβ)
√

|2β − P |
dβ =

∫

Rn
+

exp

(

−
n
∑

l=1

[

θlxl
2

+
1

2xl
(

n
∑

k=l+1

θkH
2
l,k)

])

1√
x1 · · ·xn

1

2n
dx.

Let, for all 1 ≤ l ≤ m ≤ n,

Rl,m =

(

n
∑

j=m+1

Hl,j

√

θj

)2

+
m
∑

k=l+1

θkH
2
l,k

Sl,m =
θlxl
2

+
Rl,m

2xl
.

Note that Rl,m (resp. Sl,m) only depends on x1, . . . xl−1 (resp. x1, . . . xl).
Let, for all 1 ≤ m ≤ n,

Im :=

∫

Rm
+

exp

(

−
m
∑

l=1

Sl,m

)

dx1 · · · dxm√
x1 · · ·xm

.

We will take the convention that, if m = 0, the integral of dx1 · · · dxm is 1, so that I0 = 1.
Note that I = In/2

n. We also have the following lemma.

9



Lemma 2. For all 1 ≤ m ≤ n, we have

Im =

√

2π

θm
exp

(

−
n
∑

j=m+1

Wm,j

√

θmθj

)

Im−1.

Proof. Using Claim 1, we deduce

Im =

∫

Rm
+

exp

(

−
[

θmxm
2

+
Rm,m

2xm
+

m−1
∑

l=1

Sl,m

])

dx1 · · · dxm√
x1 · · ·xm

=

∫

R
m−1
+

exp

(

−
√

Rm,mθm −
m−1
∑

l=1

Sl,m

)

dx1 · · · dxm−1√
x1 · · ·xm−1

. (12)

Now Rm,m =
(

∑n
j=m+1Hl,j

√

θj

)2

and

Hm,j =Wm,j +

m−1
∑

l=1

Hl,mHl,j

xl
,

so that
√

Rm,mθm =

n
∑

j=m+1

Wm,j

√

θmθj +

m−1
∑

l=1

Hl,m

√
θm

xl

n
∑

j=m+1

Hl,j

√

θj .

On the other hand, for all 1 ≤ l ≤ m− 1,

Sl,m − Sl,m−1 = −
Hl,m

√
θm

xl

n
∑

j=m+1

Hl,j

√

θj .

Therefore
√

Rm,mθm +
m−1
∑

l=1

Sl,m =
n
∑

j=m+1

Wm,j

√

θmθj +
m−1
∑

l=1

Sl,m−1,

which enables to conclude by (12).

We deduce from Lemma 2, by induction, that

I =
In
2n

=
1

2n

√

(2π)n

θn · · · θ1
exp



−
∑

{i,j}∈E

Wi,j

√

θiθj



 ,

which enables us to conclude.

6 Proof of Proposition 2 and Theorem 3

6.1 Proof of Proposition 2

Fix i0 ∈ V , and let β ∈ D. Let us first justify the existence and uniqueness of u(i0, i) defined by
the linear system (4). As (2β − P ) is an M-matrix, its inverse G satisfies G(i, j) > 0 for any i, j. A
solution (uj) of equation (4) is necessarily of the form euj = 2γG(i0, j) for some constant γ ∈ R.
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The normalization ui0 = 0 implies γ = 1
2G(i0,i0)

. Hence the unique solution of the system (4) is given

by uj = u(i0, j) defined in Theorem 3.
Consider the following map:

Φ : D → {(uj)j∈V ∈ R
V , ui0 = 0} × (R+ \ {0})

(β) 7→ ((uj), γ), (13)

where (uj) is the unique solution of the system (4) and γ = 1
2G(i0,i0)

.
We first prove that Φ is a diffeomorphism. By the previous argument it is well-defined and

injective. Reciprocally, starting from ((uj), γ) on the right hand side, we define (βi) by

βi =
∑

j∼i

1

2
Wi,je

uj−ui + 1i=i0γ. (14)

It is clear that with this definition, (uj) is the solution of (4) with (βj). It remains to prove that
2β − P > 0: it is a consequence Theorem (2.3)- (J30) of [13]:

Proposition 3. Let A ∈ Zn = {M ∈Mn(R), mi,j ≤ 0, if i 6= j}. Then A is positive stable1 if and
only if there exists ξ ≫ 02 with Aξ > 03 and

k
∑

j=1

ak,jξj > 0, k = 1, . . . , n. (15)

We will choose a bijection σ between V and {1, . . . , |V |}, and apply Proposition 3 with

A = ((2β − P )σ−1(i),σ−1(j))1≤i,j≤|V |, ξ = (euσ−1(i))1≤i≤|V |.

Obviously, ξ ≫ 0, and Aξ > 0 follows from (2β−P )eu. = δi0/(2G(i0, i0)). Now fix any spanning
tree T of the graph and its corresponding distance d on V throughout the tree. Choose σ so that
σ(i0) = |V |, and σ(i) < σ(j) if d(i0, i) > d(i0, j): this implies that, for all k < |V |, there exists
l > k such that Wσ−1(k),σ−1(l) > 0 and therefore that (15) holds. We conclude that 2β − P > 0.

6.2 Proof of Theorem 3

We give two proofs.
First proof: We make the change of variable given by Φ−1, in (13) and we now prove that if β

has distribution νW,φ2
, then (u, γ) = Φ−1(β) has distribution QW,φ

i0
⊗ Γ(1

2
, 1
φ2
i0

).

Let J be the Jacobian matrix of Φ−1 (i.e. Ji,j =
∂βi

∂uj
, j 6= i0 Ji,i0 =

∂βi

∂γ
), then

Ji,j =











δi,i0 if j = i0,
1
2
Wi,je

uj−ui if i 6= j, j 6= i0,

−βi if i = j 6= i0.

We can factorize the ith row of J by e−2ui for each i, then expand the resulting matrix according to
the i0th column, and we find that

|J | = 1

2|V |−1
e−2

∑
i uiD(W,u)

1All of its eigenvalues have positive real part.
2ξ ≫ η means for any coordinate i, ξi > ηi
3ξ > 0 means ξi ≥ 0 and ξ 6= 0
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On the other hand, by (14) we deduce

|2β − P | = 2γe−2
∑

i uiD(W,u).

Let ψ be a positive test function. We have
∫

ψ(u, γ)νW,φ2

(dβ)

=

∫

ψ(u, γ)2|V |/2

∏

i φi

π|V |/2

exp(−∑i βiφ
2
i +

∑

{i,j}∈EWi,jφiφj)
√

2γe−2
∑

i uiD(W,u)

1

2|V |−1
e−2

∑
i uiD(W,u)dudγ

=

∫

ψ(u, γ)

∏

i φi

(2π)(|V |−1)/2
e−

∑
i u(i0,i)e−

1
2

∑
i∼j Wi,j(e

ui−ujφ2
j+euj−uiφ2

i−2φiφj)
√

D(W,u) · e
−φ2

i0
γ

√
πγ

dudγ

=

∫

ψ(u, γ)QW,φ
i0

(du)
φi0e

−φ2
i0
γ

√
πγ

dγ.

This concludes the proof of Theorem 3 and of Corollary 2.
Second proof: This proof does not make use of the explicit expression of law QW,φ

i0
of U in (3),

but rather deduces its Laplace transfom from direct computation of the probability of a path. Note
that compared to the first proof, this one uses the representation of the VRJP as a mixture of Markov
Jump Processes, cf Theorem 2 of [14] or Theorem 2 in section 3, and hence it uses implicitly that
the measure QW,φ

i0
is a probability measure.

We will show that, if (u, γ) has distribution QW,φ
i0
⊗ Γ(1

2
, 1
φ2
i0

), then β = Φ(u, γ) has distribution

νW,φ2
, which clearly implies the result.

It follows by direct computation (see [15], proof of Theorem 3) that the probability that, at time
t, the VRJP Z has followed a path Z0 = x0, x1, . . ., Zt = xn with jump times respectively in
[ti, ti + dti], i = 1 . . . n, where t0 = 0 < t1 < . . . < tn < t = tn+1, is ptdt, where

pt = exp



−
∑

{i,j}∈E

Wi,j

(

√

φ2
i + ℓi

√

φ2
j + ℓj − φiφj

)





∏

i 6=i0

φi
√

φ2
i + ℓi

dt =
n
∏

i=1

1

2
Wxi−1xi

dti,

with (ℓi)i∈V = (ℓi(t))i∈V local time at time t.
On the other hand, using that, conditionally on U = (Ui)i∈V in Theorem 2, Z is a Markov jump

process with jump rate Wije
Uj−Ui/2 from i to j, this probability of a path is also qtdt, where

qt =

∫

e−
∑

i∈V β̃iℓiQW,φ
i0

(du)

and β̃ is defined in (5).
Let Γ = Γ(1

2
, 1
φ2
i0

). By identification of pt and qt we deduce that

∫

e−
∑

i∈V βiℓiQW,φ
i0

(du)Γ(dγ) =

∫

e−
∑

i∈V β̃iℓiQW,φ
i0

(du)

∫

e−ℓi0γΓ(dγ)

= exp



−
∑

{i,j}∈E

Wi,j

(

√

φ2
i + ℓi

√

φ2
j + ℓj − φiφj

)





(

∏

i 6=i0

φi
√

φ2
i + ℓi

)

1
√

1 + ℓi0/φ
2
i0

,

which shows that the distribution QW,φ
i0
⊗ Γ(1

2
, 1
φ2
i0

) has the same Laplace transform as νW,φ2
in

Proposition 1.
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A Proof of Lemma 1

Proof. We perform successive Gauss elimination on M to make it upper triangular. Denote by
l1, . . . , ln the n rows of any n× n matrix. Firstly, let

M (1) =M =











x
(1)
1 −H(1)

1,2 · · · −H
(1)
1,n

−H(1)
1,2 x

(1)
2 · · · −H(1)

2,n

· · · · · · · · · · · ·
−H(1)

1,n −H
(1)
n,2 · · · x

(1)
n











where we set, for any 1 ≤ i, j ≤ n, x
(1)
i = 2βi and H

(1)
i,j =Wi,j .

We define a sequence of matrices M (k) recursively, such that

M (k) =

































x
(1)
1 −H(1)

1,2 · · · · · · · · · · · · · · · −H(1)
1,n

0 x
(2)
2 −H(2)

2,3 −H(2)
2,n

... 0
. . .

. . .
...

...
. . . x

(k−1)
k−1 −H(k−1)

k−1,k · · · · · · −H(k−1)
k−1,n

... 0 x
(k)
k −H(k)

k,k+1 · · · −H(k)
k,n

...
... −H(k)

k,k+1

. . .
. . .

...
...

...
...

. . . −H(k)
n−1,n

0 0 · · · 0 −H(k)
k,n · · · −H(k)

n−1,n −x(k)n

































,

by the following rule: M (k+1) is constructed from M (k) by addition of columns lk+1 ← lk+1 +
H

(k)
k,k+1

x
(k)
k

lk, . . . , ln ← ln +
H

(k)
k,n

x
(k)
k

lk in M (k). In other words,

TkM
(k) =M (k+1), where [Tk]i,j =















1 i = j
H

(k)
k,i

x
(k)
k

i > j = k

0 otherwise

It is easy to check that (x
(k)
i )i≥k, (H

(k)
i,j )i,j≥k satisfy the following induction rule:











H
(k+1)
i,j = H

(k)
i,j +

H
(k)
k,i

H
(k)
k,j

x
(k)
k

, i, j ≥ k + 1,

x
(k+1)
i = x

(k)
i −

(H
(k)
k,i

)2

x
(k)
k

, i ≥ k + 1.

At step n, we have

Tn−1 · · ·T1M =M (n) =











x
(1)
1 −H(1)

1,2 · · · −H(1)
1,n

0 x
(2)
2 · · · −H(2)

2,n
...

. . .
. . . −H(n−1)

n−1,n

0 · · · 0 x
(n)
n











Hence, it gives the LU-decomposition of M where L−1 = T = Tn−1Tn−2 · · ·T1 and U = M (n). It is
easy to check that

{

xi = x
(i)
i i = 1, . . . , n

Hi,j = H
(i)
i,j i < j

satisfy the recursion in the statement, and that xi =M(1, . . . , i|1, . . . , i)/M(1, . . . , i−1|1, . . . , i−1).
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B Time rescaling

Let Ys be the VRJP with conductances (W ) and initial local time (φi)i∈V defined in Section 3. Recall

that Li(t) = φi +
∫ t

0
1Ys=ids. Consider the increasing functional A(s) =

∑

i(
Li(s)
φi
− 1), and the

time-changed process Ỹs̃ = YA−1(s̃). Let

L̃i(s̃) = 1 +

∫ t

0

1{Ỹs̃=i}ds̃.

We always denote by s̃ the time scale of Ỹ , we can write

s̃ = A(s), ds̃ =
ds

φYs

, Li(s̃) =
1

φi
Li(s).

Obviously, Ỹ is a VRJP with edge weightWi,jφiφj and initial local local time 1 : that is, conditionally

on F Ỹ
s̃ , Ỹ jumps from i to j at rate

Wi,jφiφjL̃j(s̃).

Note for simplicity
W φ

i,j =Wi,jφiφj .

We can apply [14] Theorem 2 to Ỹ . Let

D̃(s̃) =
∑

i

L̃i(s̃)
2 − 1,

and set Z̃t̃ = ỸD̃−1(t̃), with local time ℓ̃i(t̃) =
∫ t̃

0
1X̃u=idu. By proposition 1 of [14] translated in time

scale L (cf relation (2.1) of [14]), we have that log L̃i(s̃) − 1
N

∑

j∈V log L̃j(s̃) converges a.s. when
s̃→∞ to a random vector with distribution given by (3.1) of theorem 1 of [14], where the weights
(Wi,j) are replaced by (W φ

i,j). Changing to variables ui → ui − ui0, we deduce

lim
s̃→∞

log L̃i(s̃)− log L̃i0(s̃) = Ui

exists and has distribution

QWφ

i0 (du) =
1

√
2π

N−1
e−

∑
j∈V uje−

1
2

∑
i∼j W

φ
i,j(cosh(ui−uj)−1)

√

D(W φ, u) du,

and that Z̃ is a mixture of Markov Jump Process with jumping rates 1
2
W φ

i,je
Uj−Ui. We now come

back to (Zt). Recall that Zt = YD−1(t), where D(t) is defined in (2). ¿From this we have

t̃ = D̃(A(D−1(t))),

and

dt̃ =
1

φỸs̃

L̃Ỹs̃
(s̃)

LYs
(s)

dt =
1

φ2
Zt

dt.

This implies that (Zt) is a mixture of Markov Jump processes with jumping rates 1
2
Wi,je

Uj+logφj−Ui−log φi.
By simple change of variables, Ui + log φi − logφi0 has distribution

QW,φ
i0

(du) =

∏

j 6=i0
φj

√
2π

N−1
e−

∑
j∈V uje−

1
2

∑
i∼j Wi,j(e

ui−ujφ2
j+euj−uiφ2

i−2φiφj)
√

D(W,u) du.
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