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This study investigates the construction and identification of the probability distribution of
random modal parameters (natural frequencies and effective parameters) in structural
dynamics. As these parameters present various types of dependence structures, the
retained approach is based on pair copula construction (PCC). A literature review leads
us to choose a D-Vine model for the construction of modal parameters probability distribu-
tions. Identification of this model is based on likelihood maximization which makes it sen-
sitive to the dimension of the distribution, namely the number of considered modes in our
context. To this respect, a mode selection preprocessing step is proposed. It allows the
selection of the relevant random modes for a given transfer function. The second point,
addressed in this study, concerns the choice of the D-Vine model. Indeed, D-Vine model
is not uniquely defined. Two strategies are proposed and compared. The first one is based
on the context of the study whereas the second one is purely based on statistical consid-
erations. Finally, the proposed approaches are numerically studied and compared with
respect to their capabilities, first in the identification of the probability distribution of ran-
dom modal parameters and second in the estimation of the 99% quantiles of some transfer
functions.
1. Introduction

Probabilistic approaches are nowadays largely used in structural mechanics to handle quantification and propagation of
uncertainties through a mechanical model. A global methodology, introduced for example in [1], is now well established and
gives the framework to deal with parametric uncertainties affecting the inputs of a mechanical model. A critical point in this
methodology concerns propagation of randomness from the model inputs to its outputs.

In the field of deterministic linear structural dynamics, a common way to solve motion equation is to use modal super-
position method. It implies the resolution of an eigenvalue problem and the construction of transfer functions by linear com-
binations, involving both the eigenvalues and some terms of the eigenvectors, the so-called modal parameters.
), frank.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymssp.2017.04.024&domain=pdf
http://dx.doi.org/10.1016/j.ymssp.2017.04.024
mailto:sylvain.dubreuil@onera.fr
mailto:michel.salaun@isae.fr
mailto:emmanuel.rodriguez@icam.fr
mailto:frank.petitjean@icam.fr
mailto:frank.petitjean@icam.fr
http://dx.doi.org/10.1016/j.ymssp.2017.04.024
http://www.sciencedirect.com/science/journal/08883270
http://www.elsevier.com/locate/ymssp


In this context, probabilistic approach leads to a random eigenvalue problem. Determination of the probability distribu-
tions of eigenvalues and eigenvectors of randommatrices is addressed by randommatrix theory [2,3]. Nevertheless, this the-
ory mainly deals with random matrices defined by some specific probability distributions. For example, Gaussian ensembles
have been widely studied and many theoretical results describe the statistics of their eigenvalues and eigenvectors. Unfor-
tunately, random matrices encountered in engineering problems do not belong to these sets. In the field of linear stochastic
dynamical system, random matrix theory has been applied by [4] where Wishart random matrix model is studied and by
[5,6] where a non parametric random matrix model is constructed by the use of maximum entropy principle.

A large class of approximation methods has also been successfully applied to this problem. One of the first is based on
Taylor series or perturbation method [7]. The main idea is to use first or second order Taylor series expansions of the eigen-
values and eigenvectors in terms of the random inputs. Polynomial chaos expansion [8,9], which is based on the decompo-
sition of second order random variables into a polynomial expansion, has also been applied to random eigenvalue problems.
For example in [10], a comparison between polynomial chaos representation and perturbation method is provided, conclud-
ing that the former performed better than the latter except if the variability of random inputs is small. In [11] an asymptotic
approach is proposed which leads to an expression of the joint probability density function of the eigenvalues. According to
the presented results, this approximation approach outperforms second order perturbation approach. However, the random
effective parameters are not considered in this work. Polynomial chaos expansion has also been applied to various structural
dynamics application (see [12] for example). Another method, based on a dimensional decomposition of a random variable
[13], is applied to the random eigenvalues problem in [14]. Finally, metamodels approaches can also be applied such as sur-
face response [15]. It should also be noted that approximation methods have been applied to the resolution of random vibra-
tion analysis out of the framework of modal superposition. For example, proper generalized decomposition approximation is
used in [16] for the problem of uncertainty in structural dynamics, leading to a reduced order model based on deterministic
basis. As these methods are based on functional approximations, their computational cost increase with the number of ran-
dom inputs which is their main drawback.

One can also note that simulation based methods are relevant in this context as they are not sensitive to the stochastic
dimensionality of the problem and are usually easy to implement on industrial models. In theory, direct Monte Carlo Sim-
ulation (MCS) method could be used to solve any random eigenvalues problem. But the numerical cost, it involves, becomes
unrealistic when one deals with large industrial models. Consequently, research activities on this field are mainly devoted to
increasing the computation efficiency of the resolution of one realization of the random eigenvalues problem. For example,
[17,18] propose to use subspace iteration method and selection of smart starting vector to increase the efficiency of the
eigenvalues problem solver.

The method, we propose in the following, is based on the identification of the probability distribution of the modal
parameters involved in a given random transfer function. It should be noted that the identified probability distribution
can then be used to perform various statistical analysis of the transfer function at low computational cost (as the expression
of the transfer function with respect to the modal parameters is analytic). Especially, one can easily study the random trans-
fer function for a wide range of input excitation (external force or imposed motion of the junction). The keystone is then the
construction and identification of large dimension probability distribution. A relevant way to achieve this goal is proposed in
[19,20]. This method, called pair copula construction (PCC) of joint probability distribution, is based on identification of
bivariate copula [21]. We propose to apply this methodology to the identification of the probability distribution of modal
parameters. Objectives of this study are mainly to adapt this identification method to the context of structural dynamics
and to present the interests of this approach.

The next section of this paper gives some details about the problem that we are interested in: Identification of the modal
parameters probability distribution and computation of random transfer function by modal superposition. The third section
recalls basics on PCC. The fourth shows how to use PCC in identification of modal parameters probability distribution and
highlights specific difficulties. Section five gives applications of the proposed methodology. Finally a concluding part recalls
and discusses the results.
2. Modal superposition method and random eigenvalue problem

2.1. Deterministic case

We consider the vibratory motion of an elastic body excited either by an external force or by a junction displacement, in
the low frequency range. The structure is assumed to be discretized by the finite element method. Using the notations intro-
duced in [22], the motion equation reads
�x2 Mii Mil

Mli Mll

� �
þ jx

Cii Cil

Cli Cll

� �
þ Kii Kil

Kli Kll

� �� �
XiðxÞ
XlðxÞ

� �
¼ FiðxÞ

FlðxÞ
� �

ð1Þ
where j2 ¼ �1. A matrix Xil denotes a matrix of size ðni;nlÞ, where ni is the number of internal DOF (degrees of freedom),
indexed by i, and nl the number of junction DOF, indexed by l. Moreover, with these notations, Xli is the transposed matrix
of Xil and Xii is symmetric. ½M�; ½K� and ½C� are respectively the mass, stiffness and damping matrices of the structure, calcu-
lated for the mean values of input parameters. Xi is the vector of internal DOF, Xl the vector of junction DOF, Fi the vector of



external forces and Fl the vector of reaction forces. Finally, an underline subscribe indicates an extracted component (for
example, Xii refers to a line of matrix Xii).

In low frequency range, modal superposition is classically used to solve Eq. (1). It consists in a projection into a basis
formed by the nk first eigenvectors of Kii with respect to Mii. Let us set kk and uik, with k 2 ½1;nk�, the corresponding eigen-
values and eigenvectors (eigenvectors are classically normalized with respect to the mass matrix). The modal superposition
consists in the projection
Xi

Xl

� �
¼ uik wil

0lk Ill

� �
qk

Xl

� �

where wil are the static junction shapes. Then, solution of Eq. (1) is expressed thanks to transfer functions
XiðxÞ
FlðxÞ

� �
¼ GiiðxÞ TilðxÞ

�TliðxÞ SllðxÞ

� �
FiðxÞ
XlðxÞ

� �
ð2Þ
where ½G�iiðxÞ is the dynamic flexibility, ½T�ilðxÞ the dynamic transmissibility and ½S�llðxÞ the dynamic stiffness. Although the
proposed approach may be applied to any of these three transfer functions, the paper is focused on the dynamic transmis-
sibility defined by,
½T�ilðxÞ ¼ ½w�
il
þx2

Xni
k¼1

HkðxÞuikLkl; ð3Þ
where Hk is the dynamic amplification factor of mode k
HkðxÞ ¼ 1
�x2 þ kk þ 2jxnk

ffiffiffiffiffi
kk

p ð4Þ
where the modal damping ratio is 2nk
ffiffiffiffiffi
kk

p
for mode k. The other terms are given by
Lkl ¼ ½uki�ð½M�ii½w�il þ ½M�ilÞ

Eq. (3) shows that this transfer function results of a sum of products between the amplification factor of mode k and

another term depending on mode k, called effective parameter and linked to the eigenvector (the same remark can be done
for the two other transfer functions). More precisely, for the dynamic transmissibility, the effective parameters are called
effective transmissibilities and are equal to ½~T�il;k ¼ uikLkl for each mode k.

After this presentation of the deterministic problem, the next part introduces parametric uncertainties and describes the
stochastic problem.

2.2. Parametric model for random uncertainties

In the following it is assumed that the uncertain input parameters (material and geometric properties) of the finite ele-
ment model can be modeled by a random vector and that the probability distribution of this random vector is known. Con-
sequently, the responses of the model are also random quantities. As mentioned previously only the dynamic
transmissibility is studied in the following and more precisely its modulus. Thus, the paper focuses on the behavior of the
random process (indexed by x),
TacðxÞj j ¼ wac þx2
Xnk
k¼1

Hkðx;KkÞeTac;k

					
					 ð5Þ
where a denotes an internal DOF, c denotes a junction DOF and Kk; eTac;k are the nk random eigenvalues and random effective
parameters respectively (random modal parameters). Note that, to simplify notations, subscribes are no longer underlined
when they denote components and that no confusion with previous notation is possible as only one dimensional random
transfer functions are considered in the following.

In order to efficiently investigate the probability distribution of TacðxÞj j we propose to identify the joint probability dis-

tribution of the random vector VT ¼ Kk; eTac;k; k 2 ½1;nk�
n o

. Indeed, following equations Eqs. (3)–(5) one can note that the

random transfer function has a closed form expression with respect to the random vector VT . Hence, once the probability
of VT is identified, one can perform various statistical analyses of the random transfer function by Monte Carlo approach
at a very low computational cost. Moreover, one can note that it also allows to study the random transfer function with
respect to various input excitation (FiðxÞ and XlðxÞ), various damping coefficients nk and for several pulsations x. The main
contributions of the paper are thus to present, first, an identification method of the probability distribution of VT based on
PCC and, second, the possible benefits of this approach in the computation of the random transfer function high quantiles
compared to direct Monte Carlo approach. It should be noted that this possible benefit is expected due to the behavior of
the probability density function of the dynamic amplification factor of a single DOF system subjected to a random eigen-



value. Indeed, in [23,24] a detailed study of this bounded probability density function shows that, in the vicinity of the square
root of the mean eigenvalue, it tends to infinity at its upper bound (which is a deterministic value with a tractable analytical
expression in the single DOF case). Hence, the estimation of the upper quantiles is strongly influenced by the way the prob-
ability density function tends to infinity (and which depends on the expression of the dynamic amplification factor given by
Eq. (4)) and slightly by the probability distribution of the random eigenvalue. Hence, one can roughly estimate the proba-
bility distribution of the eigenvalue and then use it in the numerical integration of the expression of the probability distri-
bution of the dynamic amplification factor in order to get an accurate estimation of the upper quantiles.

In the framework of multi DOF systems, the analytic expression of the probability distribution of the transfer function Eq.
(5) does not have any closed form expression. However one can rely on Monte Carlo estimation to compute upper quantiles.
Moreover, based on the remark about single DOF system one may expect these upper quantiles to be only slightly influenced
by the probability distribution of the modal parameters. Hence, the idea we propose in this paper is to identify the joint prob-
ability density function of the modal parameters based on a small identification sample (as the creation of this sample
involves the resolution of costly eigenvalue problems) and then, to use it to estimate the probability distribution of the trans-
fer function based on a larger sample (but with a negligible numerical cost as the expression of the transfer function is ana-
lytic with respect to the modal parameters). Numerical examples provided in Section 5 will investigate the accuracy of the
proposed approach compared to direct Monte Carlo approach.

Remark on random eigenvalues realization: In the field of random linear structural dynamics, a large literature is
devoted to the study of mode degenerative phenomena [25] (such as mode crossing and mode veering). These phenomena
have been observed and studied not only numerically but also experimentally for example in [26]. A major difficulty is then
the association of the eigenvalues realization to the corresponding random eigenvalues. Various procedures have been pro-
posed (see [27–29] and [30,31] for meta-model approaches) to perform this association step (sometimes called mode track-
ing) and it should be emphasized that our approach is not dependent of the retained procedure. In the following numerical
examples, eigenvalues are associated with respect to their rank in ascending order. This methodology is retained for its sim-
plicity. Moreover, application examples will show that modes degenerative phenomena can be interpreted in terms of
dependence structure of the random effective parameters. More precisely, the numerical example introduced in Section 5.2,
presents an example of mode crossing between two close modes with very different effective parameters. Interpretation of
dependence structure between modal parameters for identification of more general mode degenerative phenomena must be
seen as a perspective of this work and need a dedicated study.
3. Pair copula construction of joint probability distribution

3.1. Bivariate copula

This part is devoted to a short presentation of copula theory, emphasizing the two dimensional case. Basics on copula
theory and construction of joint probability distributions can be found in [21,32]. For application in engineering and more
precisely in reliability, we refer to Lebrun and Dutfoy [33–35]. First of all, let us introduce the definition of a copula [21].

Bivariate copula. A bivariate copula is a function C defined on ½0;1�2 and such as

1. 8ðx; yÞ 2 ½0;1�2; Cðx;0Þ ¼ Cð0; yÞ ¼ 0
2. 8ðx; yÞ 2 ½0;1�2; Cðx;1Þ ¼ x and Cð1; yÞ ¼ y

3. 8ðx1; y1Þ 2 ½0;1�2; ðx2; y2Þ 2 ½0;1�2; such as 0 6 x1 6 x2 6 1 and 0 6 y1 6 y2 6 1
Cðx1; y1Þ � Cðx1; y2Þ � Cðx2; y1Þ þ Cðx2; y2Þ P 0

Let X be a two dimensional continuous random variable with cumulative distribution function (CDF) FXðx1; x2Þ, probabil-
ity distribution function (PDF) pXðx1; x2Þ, marginal CDF FX1 ðx1Þ and FX2 ðx2Þ and marginal PDF pX1

ðx1Þ and pX2
ðx2Þ, then there

exists a copula C such that (see [36]):
pXðx1; x2Þ ¼ cðFX1 ðx1Þ; FX2 ðx2ÞÞpX1
ðx1ÞpX2

ðx2Þ: ð6Þ
where
cðu1;u2Þ ¼ @2Cðu1;u2Þ
@u1@u2
Eq. (6) shows that the copula handles the dependence structure between the two random variables X1 and X2. This for-
malism allows to easily specify the dependence structure independently of the marginals. The two most famous parametric
copulas families are elliptical copulas and the archimedean copulas [37]. Let us precise that copulas can be generalized to
dimension n. Nevertheless, using a n variate copula implies the same dependence structure between all pairs of variables.
In order to construct a n variate probability distribution with different dependence structures, the next part introduces pair
copula construction of multivariate probability distributions.



3.2. Pair construction and Vine

First of all, let us recall that a PDF of dimension n can be factorized by using conditional PDF. Using copulas formalism this
implies that any PDF of dimension n can be written as the product of nmarginal PDF by nðn� 1Þ=2 bivariate copulas. Proof of
this result is given in [38]. To illustrate it, we consider X ¼ ðX1;X2;X3;X4Þ a continuous random variable of dimension n ¼ 4.
We call pX its PDF and pXi

; i ¼ 1; . . . ;4 its marginal PDF. Then, pX can be factorized as
pXðx1; x2; x3; x4Þ ¼ pX1
ðx1ÞpX2 jX1¼x1 ðx2ÞpX3 jX1¼x1 ;X2¼x2 ðx3ÞpX4 jX1¼x1 ;X2¼x2 ;X3¼x3 ðx4Þ ð7Þ
Then, noticing that
pX2 jX1¼x1
ðx2Þ ¼

pX1 ;X2
ðx1; x2Þ

pX1
ðx1Þ ¼ c1;2ðFX1 ðx1Þ; FX2 ðx2ÞÞpX2

ðx2Þ
and
pX3 jX1¼x1 ;X2¼x2 ðx3Þ ¼ pX1 ;X2 ;X3 ðx1 ;x2 ;x3Þ
pX1 ;X2 ðx1 ;x2Þ

¼ pX1 ;X3 jX2¼x2
ðx1 ;x3ÞpX2 ðx2Þ

pX1 jX2¼x2
ðx1Þ

¼ c1;3j2 FX1 jX2¼x2 ðx1Þ; FX3 jX2¼x2 ðx3Þ

 �

pX3 jX2¼x2 ðx3Þ
¼ c1;3j2 FX1 jX2¼x2 ðx1Þ; FX3 jX2¼x2 ðx3Þ


 �
c2;3ðFX2 ðx2Þ; FX3 ðx3ÞÞpX3

ðx3Þ
where ci;j is the derivative of the copula Ci;j modeling the dependence structure between Xi and Xj and Ci;jjk is the copula mod-
eling the dependence structure between XijXk ¼ xk and XjjXk ¼ xk. It is clear that each term of decomposition Eq. (7) can be
expressed as the product of bivariate copulas and one marginal PDF, leading to
pðx1; x2; x3; x4Þ ¼ pX1
ðx1ÞpX2

ðx2ÞpX3
ðx3ÞpX4

ðx4Þ
c1;2 FX1 ðx1Þ; FX2 ðx2Þ

 �

c2;3 FX2 ðx2Þ; FX3 ðx3Þ

 �

c3;4 FX3 ðx3Þ; FX4 ðx4Þ

 �

c1;3j2 FX1 jX2¼x2 ðx1Þ; FX3 jX2¼x2 ðx3Þ

 �

c2;4j3 FX2 jX3¼x3 ðx2Þ; FX4 jX2¼x2 ðx4Þ

 �

c1;4j2;3 FX1 jX2¼x2 ;X3¼x3 ðx1Þ; FX4 jX2¼x2 ;X3¼x3 ðx4Þ

 � ð8Þ
Let us remark that decomposition Eq. (8) is not unique as the order in the choice of conditional variables can be changed. In
order to organize the various possibilities, a model, called Vine decomposition, is introduced in [19]. In the following, we only
present the D-Vines (drawable vines), which reads
pXðx1; . . . ; xnÞ ¼
Yn�1

j¼1

Yn�j

i¼1

ci;ðiþjÞjðiþ1Þ;...;ðiþj�1Þ

 !Yn
k¼1

pXk
ðxkÞ ð9Þ
where
ci;jji1 ;...;ik :¼ ci;jji1 ;...;ik ðFXi jXi1
¼xi1 ;...;Xik

¼xik
ðxiÞ; FXj jXi1

¼xi1 ;...;Xik
¼xik

ðxjÞÞ:
For a better understanding of this expressions, Fig. 1 gives the graphical representation of a D-Vine in dimension n ¼ 4. This
decomposition involves n� 1 levels or trees, while each level, say Ll, has n� lþ 1 nodes standing for the variables of the
level. Hence, it counts nðn� 1Þ=2 bivariate copulas that must be constructed to describe the dependence structure of the
whole random vector.

Finally, one can remark that this decomposition is not uniquely defined as the order of the variables at the first level can
be exchanged. Section 4.2 will discuss these points.
Fig. 1. Example of D-Vine decomposition with n ¼ 4.



Remark: Among the various Vine decompositions introduced in [19], we retained the D-Vine as it gives the same weight
to all the variables of the first level (correlations are expressed in line). Contrarily, when a variable should be considered as a
central node, the C-Vine model could be used, in which all correlation are expressed with respect to this central node.

3.3. Identification

3.3.1. Simplified PCC and conditional cumulative distribution function
Eq. (9) and Fig. 1 show that, except for the first level, the bi-dimensional copulas are conditional and that the number of

conditioning variables increases by one at each level. In order to identify these copulas, it is generally assumed that these
conditional copulas are independent of the value of the conditioning variables. This assumption leads to simplified PCC. Effect
of this simplification has been studied in [39], concluding that, in many cases, a PCC is very well approximated by such a
simplified version. Moreover, this assumption is also discussed in [40] and the authors show that multivariate normal
and Student-t distributions are simplified PCC. Based on these conclusions, simplified PCC will be used in the following.

This assumption allows to create samples of conditional CDF recursively, from the results of the previous level in the Vine
decomposition (see the expression of the conditional CDF with respect to the copulas of the previous levels in [32]).

3.3.2. Stepwise semi parametric estimation
Identification of a PCC model involves 3 steps.

1. Choice of a Vine decomposition (D-Vine in our context).
2. Choice of the variables order at the first level.
3. Identification of the copulas of the retained model.

Steps 1 and 2 depend on the application and are the original development of this paper; it is discussed in Section 4.2. Step
3 needs two substeps which are, for each bivariate copula, the choice of the parametric copula and the determination of its
parameters values.

The choice of each bi-dimensional copula among a family of candidate copulas is performed by the use of Akaike infor-
mation criterion (AIC) [41].

Parameters identification is achieved by maximization of the log likelihood function (see expressions in [38]). More pre-
cisely, we rely on the stepwise semi parametric (SSP) estimation introduced in [38]. It consists in an optimization of the like-
lihood function at each level of the D-Vine which makes it numerically efficient compared to the optimization of the whole
likelihood function (stepwise optimization). Moreover, this approach is called semi parametric as it uses non parametric esti-
mation of the marginal PDF [42] (in practice we use kernel smoothing with standard normal kernel).

Finally, this estimation procedure has been implemented by [43] into a R package used in the following numerical
examples.

Remarks:

� The identification of each bivariate copula is parametric and thus suffers from the classical drawbacks of parametric iden-
tification. First, if none of the parametric copula available in the family of candidate copulas is suited to represent the
data, then one can expect a poor identification. However, the family of candidate copulas implemented in the R package
by [43] provides various copulas allowing to represent many shapes of dependence structure. Second, the size of the sam-
ple used to identify the copulas strongly influences the accuracy of the identification. In the following numerical exam-
ples, the accuracy with respect to this parameter will be systematically studied.

� Accuracy of the SSP compared to the optimization of the whole likelihood function is discussed in [44] and it appears that
SSP reduces the asymptotic efficiency of parameters estimators but, in most of the cases, ‘‘the performance of the SSP esti-
mator is overall rather good compared to SP” [44]. Concerning application in structural dynamics, a comparison is also pro-
vided in [24] concluding that the approximation introduced by the SSP is negligible.

4. Adaptation to random eigenvalue problem in structural dynamics

4.1. Modes selection

4.1.1. Deterministic truncation
Section 2.1 introduced the deterministic modal superposition and the basis uik made by the nk first eigenvectors of the

model, but did not discuss the choice of nk. In practice, modal superposition method is interesting in the case where a small
subset of modes nk can represent the dynamic behavior of the structure on a given frequency range of the form �0;Bup� Hz.
Due to the behavior of the amplification factor, a common practice is to keep all modes that have a natural frequency less
than CBup, where C > 1 is a constant often chosen equal to

ffiffiffi
2

p
.

It is assumed that the same number of modes is kept for the probabilistic approach, hence, the random vectors VT is of
dimension n ¼ 2nk. Even if nk is very low compared to the number of DOF, it can be equal to a few dozens. Then, it does not



seem reasonable to directly apply PCC for the construction of such a large random vector. To this respect, the next part pre-
sents a mode selection method.

4.1.2. Forward selection of relevant modes
Here is presented a simple way to select a relevant subset of modes for a given random transfer function TacðxÞ. For this,

let us introduce Tni
acðxÞ the approximation of TacðxÞ, constructed by using a subset of ni modes. In order to select a relevant

subset of size ni, the following approximation criterion is used
�ni ¼ E
Z 2pBup

0
ðjTacðxÞj � jTni

acðxÞjÞ2dx
� �

ð10Þ
where E stands for the mathematical expectation.
This criterion is estimated from a sample of size Ns. The pulsation range of interest is discretized into Np steps of same size

Dx. This leads to an estimator of Eq. (10), which reads
�̂ni ¼ Dx
Ns

XNs

r¼1

XNp

k¼1

ðjtðrÞac ðxkÞj � jtni ;ðrÞac ðxkÞjÞ2
 !
where tðrÞac and tni ;ðrÞac are realizations ðrÞ of the random transfer functions Tac and Tni
acðxÞ respectively.

A classical forward selection algorithm is set up to build the subset of size ni. The set of candidates modes at the ith step of
the algorithm is denoted by Ai (A0 is composed of the nk modes). The following algorithm is applied,

1. Evaluate �̂n0 .
2. For i ¼ 0 : nk

(a) For each mode m in Ai,
� Compute tniþm;ðrÞ
ac ðxkÞ ¼ tni ;ðrÞac ðxkÞ þ ~tðrÞac;mHðkðrÞm ;xkÞ; 8r 2 1; . . . ;Ns, where ~tðrÞac;m and kðrÞm are respectively realization ðrÞ

of the effective parameter and of the eigenvalue of mode m.
� Compute �̂niþm

(b) Find mH such that �̂niþmH ¼ minm2½1;nk�ni �ð�̂niþmÞ
(c) Set tniþ1 ;ðrÞ

ac ðxkÞ ¼ tni ;ðrÞac ðxkÞ þ ~tðrÞac;mHHðkðrÞmH ;xkÞ; 8r 2 1; . . . ;Ns.

(d) Mode mH is removed from the candidate modes Ai to form the new set Aiþ1

3. Choose a set of ni modes accurate enough according to �̂ni
�̂0 < �obj. Influence of the numerical value of �obj will be discussed

in the numerical examples (Section 5).

This method allows to select only the relevant modes to be part of vector VT . The modal parameters of the non selected
modes are set to their mean values. Section 5 will show that, in practical applications, a small subset ni of modes allows to
get an accurate representation of the studied random transfer function. Numerical convergence study of this criterion with
respect to the size Ns of the sample will also be discussed.

4.2. Variables ordering at the first level of the D-Vine

Concerning variables ordering at the first level, for small dimensions (n ¼ 3;4), [38] suggests to try all possibilities and to
choose the best one, according to a given criterion (likelihood for example). For higher dimensions, the number of possible
decompositions makes this approach infeasible and authors claim that ‘‘one should instead consider which bivariate relation-
ships that are most important to model correctly, and let this determine which decomposition(s) to estimate” [38]. In the following
two strategies are compared, each one corresponding to a vision of what is important to model correctly.

To introduce these two strategies, one can first note that, in a D-Vine decomposition, each variable is involved in two
bivariate relations, except the first and the last ones that are only involved in one relation. The two proposed strategies
are thus defined as follow.

� S1: The order of variables is chosen to model the bivariate relationship between the eigenvalue and the effective param-

eter of each mode. So, each variable is involved in one bivariate relation (Kk; eTac;k). Concerning the second bivariate rela-
tion, we propose to model the bivariate relationship between two successive modes. It leads to the following order
K1; eTac;1;K2; eTac;2;K3; eTac;3; . . . ;Kni ;
eTac;ni

In this case, a bivariate relation is important to model correctly, first, if it links modal parameters of a given mode and, sec-
ond, if it links close modes (with respect to their mean natural frequencies).



� S2: The bivariate relationships are chosen to be part of the first level according to the strength of their correlation measure
(in practice Kendall’s s [45] is retained as correlation measure). Contrary to S1, this strategy does not take into account the
context of the study and adopts a purely statistical vision. Practically, Kendall’s smatrix of vector VT is estimated from the
sample of size Ns and a greedy algorithm is set up to choose the variables ordering at the first level. It proceeds in the
following way.
1. Compute an estimation of Kendall’s smatrix from the sample of VT . Let si;j be the estimation of Kendall’s s coefficient

between components VTi and VTj of VT .
2. While card L1f g < 4ni � 2,
(a) Find siH ;jH ¼ maxðsi;jÞ for i < j 6 2ni.
(b) Check if the bivariate relation between VT

iH
and VT

jH
is compatible with the bivariate relations, already selected for

the first level of decomposition. In practice, a bivariate relationship may be incompatible for two reasons: if one of
the two variables is already engaged in two bivariate relationships, or if both variables are engaged in one bivariate
relationship and already linked by other bivariate relationships. An illustration of these compatibility conditions is
presented in the following remark.
– If relation is incompatible, then set siH ;jH ¼ 0 and restart from (a).
– If relation is compatible, then VT

iH
and VT

jH
are add to L1 and the bivariate relation is add to the first level. Set

siH ;jH ¼ 0 and restart from (a).
At the last iteration, the ordering of the 2ni variables for the D-Vine first level is obtained.
Remark: illustration of compatibility conditions.
We assume that the state of the first level of the decomposition at kth iteration is
VT5 � VT9 � VT11 � VT1 VT3 � VT4 � VT15
Then the following examples illustrates compatibility conditions.

– VT
iH

¼ VT9 ; VT
jH

¼ VT3 ) incompatible as VT9 is already engaged in two relationships.

– VT
iH

¼ VT5 ; VT
jH

¼ VT1 ) incompatible as both VT5 and VT1 are already engaged in one relationship and are linked by the

relationship between VT9 and VT11 .
– VT

iH
¼ VT1 ; VT

jH
¼ VT15 ) compatible.

Once variables ordered, the D-Vine model can be identified. It could then be used to perform MCS and to estimate differ-
ent statistics of the transfer function.
4.3. Summary of the proposed method

Here are recalled the different steps of the proposed approach.

1. Computation of Ns realizations of the random eigenvalue problem, from a random sample of size Ns of the input param-

eters. Creation of the sample kðrÞk ; ~tðrÞac;k; r 2 ½1;Ns�; k 2 ½1;nk�
� 

2. Mode selection leading to a subset of modes of size ni.
3. Determination of the variables ordering at the first level of the D-Vine decomposition.

4. Identification of the probability distribution of VT from the sample kðrÞk ; ~tðrÞac;k; r 2 ½1;Ni�; k 2 ½1;nk�
� 

. Let bVT be the iden-

tified random vector. A large sample (size NMC ¼ 100;000) is drawn from the probability distribution of bVT . This step is
detailed in Fig. 2.

5. Corresponding realizations of the transfer function are calculated analytically, with Eq. (5).
6. Estimators of TacðxÞj j statistics are computed by MCS. In practice we focus on the 99% quantiles of jTacj.

The numerical cost of these different steps has to be discussed. From now on, all the presented results have been obtained
with a quad core computer, with processors of 3:20 GHz and memory of 16 GB. As our objective is to deal with large finite
element models, it is assumed that the resolution of a single realization of the random eigenvalue problem could last from
few dozen of minutes to hours. Obviously, numerical cost of the first step, i.e. numerically solving Ns eigenvalue problems, is
linearly dependent on the cost of a resolution of a single realization of the random eigenvalue problem (acceleration meth-
ods such as the one proposed in [17] may be considered to improve the efficiency). Step 2 cost (forward modes selection) is
approximately quadratic with respect to the number of candidate modes and linear with respect to the size of the identifi-
cation sample Ns. In the worst numerical example we tested (number of candidates modes equal to 36 and Ns ¼ 100) it last



Fig. 2. Details of step 4: identification and simulation.
approximately for 13 s, which is negligible. Cost of step 3 has to be considered only for strategy S2. It appears that the greedy
algorithm, used by strategy S2, is very fast (in the following examples, the higher cost is less than one second for 15 selected
modes and Ns ¼ 100) and this step cost is also negligible.

Numerical cost of step 4 mainly concerns the substeps (4.3) and (4.5). The total cost of this step seems linearly sensitive to
the sample size Ns. Dependence to the number of selected modes ni is quadratic as the number of bidimensional copulas,
involved in the decomposition, is equal to niðni � 1Þ=2. In the following examples, the shortest time for step 4 was approx-
imately 18 s for ni ¼ 6 and Ns ¼ 10, whereas the longest one is about 100 s for ni ¼ 11 and Ns ¼ 100.

Numerical costs of steps 5 and 6 are mainly dependent on the sample size NMC and on the frequency discretization (step 5
is also slightly dependent of the number of selected modes but it is negligible for the range we study). In the following, we
set NMC ¼ 100;000 in order to obtain a correct approximation of the 99% quantiles of transfer function and frequency res-
olution is around 200 points. Let us add that these steps only involve computations of analytical transformations which jus-
tify such a large value for NMC . It leads to approximately 60 s for steps 5 and 6.

Finally, in the worst case (ni ¼ 11 and Ns ¼ 100), the total cost of the approach is around 3 min. So, for large industrial
structures, the cost of this approach remains negligible, compared to the one of a single random eigenvalue problem
realization.

5. Applications

5.1. Mass-spring-damper system

5.1.1. Description
This section illustrates some points of the proposed methodology on a 20 DOF mass-spring-damper system (Fig. 3 pre-

sents it and gives notation).
Random masses are modeled by independent Gamma random variables of mean 1 kg and variation coefficient of 10%.

Random spring coefficients are modeled by independent Log-normal random variables of mean 1 N:m�1 and variation coef-
ficient of 10%. Masses and spring coefficients are also independent. Finally, the probabilistic model of input parameters has
40 independent random variables. Moreover, it is added a modal damping, the shape of which is ci ¼ 2ni

ffiffiffiffiffi
Ki

p
where ni ¼ 0:02

for i ¼ 1; . . . ;20.
The transmissibility between the DOF u0 and u1 is studied over the pulsation range ½0;1:3� rad:s�1. Fig. 4 presents the

deterministic transmissibility modulus as well as the 99% quantiles computed by Monte Carlo Simulation with 100,000 sim-
ulations. These results are obtained using all the 20 modes and will be used as reference in the following.

Fig. 4 shows that, in this simple example, the modes are well separated and that there is almost no coupling phenomenon
between them.
Fig. 3. 20 DOF mass-spring-damper system.



A comparison between the proposed method and direct MCS is presented now. In order to quantify the accuracy of the
different methods, the following criterion is used:
� ¼ 1
Np

XNp

k¼1

jqref
99 ðxkÞ � q̂99ðxkÞj

qref
99 ðxkÞ

ð11Þ
where qref
99 ðxkÞ is the reference 99% quantile at the pulsation xk and q̂99 its estimation by one of the methods. In practice

Np ¼ 170.

5.1.2. Application of the identification approach
The first step deals with the deterministic truncation. The upper boundary of the pulsation range of interest is 1:3 rad:s�1.

Then are retained modes such as
ffiffiffiffiffi
kk

p
< 1:3

ffiffiffi
2

p
rad:s�1. In the deterministic case, this leads to select the 15 first modes. Hence,

only those first 15 modes are computed for each realization of the random eigenvalue problem.
Concerning the modes selection step, by the forward methodology introduced in Section 4.1.2, Fig. 5(i) presents the val-

ues of �̂ni=�̂0 for ni ¼ 0; . . . ;15, obtained with one sample of size Ns. Five values Ns ¼ 10;30;50;70;100 are tested, to quantify
the sensitivity with respect to the sample size. To illustrate the differences between the selected modes, Fig. 5(ii) gives the
number of differences between the selected subsets, for each subset size ni. To do this, the reference family of selected sub-
sets is obtained with a sample of size Ns ¼ 100, and the four other values of Ns are compared with it. So, if for a given Ns0 , the
difference is zero for a subset size ni, it means that the ni selected modes are the same with sample Ns0 and with sample of
size Ns ¼ 100.

Fig. 5(i) shows that the accuracy increases continuously with respect to ni. All the modes seem to influence the considered
transfer function. It should be noted that this result was expected as, for such a simple example, all the modes are in the
direction of excitation. Concerning influence of sample sizes Ns, Fig. 5(ii) reveals that subsets of size ni are almost composed
of the same modes for all the sampling sizes (only one inversion appears for Ns ¼ 10 and Ns ¼ 30 when ni ¼ 13). To conclude,
the modes selection procedure is not relevant for this simple academic example and its interest will be highlighted in the
next example. Based on this remark, the 15 first modes are kept to be part of the random vector VT , which is then of dimen-
sion 30.

Identification of the probability distribution of VT by D-Vine decomposition is illustrated for the two strategies proposed
in Section 4.2. The Kendall’s s correlation matrix is computed with the reference sample of size 100,000. Fig. 6(i) presents the

results, where Li stands for variables Ki and Ti for variables eTu1u0 ;i. Kendall’s s values are represented by circles which radius
are proportional to correlation strength.

These results show that, even with independent random variables as in our model input, strong correlations appear
between the modal parameters. In particular, all eigenvalues are positively correlated (yellow circles at each lines and col-
umns of variables Li). One can also note that correlation between effective parameters is significant only for the first four
modes. Another interesting point is that, here, effective parameters and eigenvalues are uncorrelated.

Identification strategies are now applied. To evaluate the dispersion of the different methods, 25 replicates are used.
Table 1 presents the sum of absolute errors between the reference results and the Kendall’s s computed from the identified
Fig. 4. jTu1u0 j transmissibility modulus between the DOF u0 and u1.



Fig. 5. (i) Evaluation of �̂ni =�̂0 for ni ¼ 0; . . . ;15. (ii) Number of differences in selected subsets with respect to the sample size Ns .

Fig. 6. (i) Reference Kendall’s s correlation matrix. (ii) Estimation of the mean absolute error in the computation of Kendall’s s by identification strategies S1
(lower triangular part) and S2 (upper triangular part) with Ns ¼ 50.
distribution for both strategies (evaluation of mean and its 95% confidence interval) with respect to the sample size Ns. Fig. 6
(ii) gives the mean absolute error between the reference results and the Kendall’s s computed from the identified distribu-
tion based on a samples of size Ns ¼ 50. Results of strategy S1 are cast into the lower triangular part of the matrices, whereas
results obtained by S2 are cast into the upper triangular part of the matrices (the same samples are used for both strategies).
Table 1
Estimation of the mean of the relative errors sum on Kendall’s s for strategies S1 and S2.

Ns 10 50 100

S1 1:45:10�1 � 6:35:10�3 8:11:10�2 � 3:73:10�3 6:55:10�2 � 2:74:10�3

S2 1:53:10�1 � 9:80:10�3 8:28:10�2 � 3:48:10�3 6:04:10�2 � 1:97:10�3



Some conclusions can be drawn from these first results. Obviously, accuracy of the identification approach increases with
the sample size for both strategies (as shown by Table 1). Moreover, it is difficult to identify which strategy performs better,
but one can note that the two strategies do not focus on the same correlations and, consequently, the absolute error matrix is
clearly not symmetric. More precisely, for strategy S1, Fig. 6(ii) shows that identification errors are not homogeneous
between pairs of variables. One can note that error increases with the distance to the first diagonal. This observation con-
firms that identification error increases with the level of the decomposition (we recall that for strategy S1 variable ordering
is the same as the one of Fig. 6(ii)). For the case of strategy S2 absolute errors are spread almost homogeneously between
correlated pairs of variables. With both strategies uncorrelated pairs of variables are perfectly identified.

We now discuss the influence of these differences in the computation of the 99% quantiles of jTu1u0 j. Fig. 7 gives evolution
of criterion defined by Eq. (11) for Ns ¼ 10;30;50;70;100. Results of both strategies are presented and a comparison with
results obtained by direct Monte Carlo simulation with the same samples is provided. In order to measure the influence
of dependence structure between modal parameters, Fig. 7 also presents results obtained by considering that all component
of VT are independent (caption Ind). Finally, dispersion of each methods is still evaluated by the use of 25 replicates (Fig. 7
presents estimation of mean values and their 95% confidence interval).

These results show that the 3 identification strategies outperform direct MCS. On this example, one can approximately
stand that direct Monte Carlo method needs a sample two times larger than the one used by identification strategy to reach
a comparable accuracy level. Comparison between the 3 identification strategies (S1; S2 and Ind) points out that there is no
relevant difference between them. This observation confirms that, in this example, the modes are well separated and that
each one can be considered as an independent one DOF system with random parameters.

To conclude, the following observations can be made:

� Comparison between the identification strategies S1 and S2 illustrates the results of the literature about D-Vine identifi-
cation and shows that variables ordering has a non negligible effect on the identification of the probability distribution of
VT (see Fig. 6(ii)).

� Interest of identification approaches compared to direct Monte Carlo simulation is shown in the context of small size
identification samples. This results confirms the possible extension of the results about single DOF system presented
in [23] and in [24].

� If modes are well separated, influence of correlation between modal parameters is negligible.

5.2. Composite truss

This section presents an industrial example, introduced in [46], in which it will be seen that the 99% quantile of the trans-
fer function is influenced by the interaction between modes.
5.2.1. Description
The structure is a composite truss which model is presented Fig. 8(i).
Each tubular member of this reticular structure has an internal radius of 0:08 m and a thickness of 3 mm. Longitudinal

and transversal beams are 1 m long so the diagonal beams are 1:4142 m long. Each beam is discretized by 4 beam finite ele-
ments. Materials used is carbon/epoxy composite, the angle-ply lamination sequence is �45�. Beam axial Young’s modulus E,
shear stiffness G and mass density q are modeled by normal and exponentially correlated random fields, correlation dis-
Fig. 7. Estimation of the mean of the criterion defined by Eq. (11) for the different methods.



Fig. 8. (i) Geometric model of the truss. (ii) jTac j transmissibility between the DOF c and a in the Y direction.
tances are assumed equal to 0:25 m for the three random fields. Mean values and coefficients of variation of the three ran-
dom fields are given in Table 2.

Discretization of the random fields is obtained by the midpoint method. This leads to a total of 300 random variables as
input of the model. We assume modal damping with all damping coefficients equal to nk ¼ 0:02; k ¼ 1; . . . ;ni. Finally, the
four corners of the structure are linked to the junction node c with rigid elements.

We investigate the dynamic transmissibility between Y translation DOF of node c and Y translation DOF of node a, over
the pulsation range �0;1400� rad:s�1. The transfer function, obtained with the mean values of the input parameters, is pre-
sented Fig. 8(ii). In the deterministic case, 36 modes are used to compute this transfer function. Among these 36 modes,
21 modes have a natural pulsation greater than 1000 rad:s�1. This example is thus well designed to illustrate an application
with a relatively important modal density. Fig. 8(ii) also presents the 99% quantile of jTacj computed by direct MCS with a
sample of size 100,000. These results will be used as reference in the following. Compared to the previous example, it is clear
that modes are not so well separated, and that modes coupling phenomenon influences the 99% quantiles, especially for
x > 1000 rad:s�1. Moreover, one can notice that two modes, which natural pulsations are approximatively 500 rad:s�1

and 980 rad:s�1, only appear on the 99% quantiles and not on the deterministic transfer function.

5.2.2. Selection of relevant modes by forward selection
The modes selection method developed in Section 4.1.2 is now applied. In order to quantify its sensitivity to the sample

size, 5 sizes are tested Ns ¼ 10;30;50;70;100. Estimation of the criterion �ni is given for i ¼ 0; . . . ;35 (as �ni ¼ 0 for
ni ¼ nk ¼ 36). Fig. 9(i) displays the values of �̂ni=�̂0 for i ¼ 0; . . . ;35. These results confirm that only a small subset of modes
is sufficient to get an accurate representation of a given random transfer function (an error of 10�6 is reach with about 10
modes). Another interesting point is that the main relevant modes are identified even with a low sample size. Additionally,
there is almost no differences in the number of selected modes to reach an accuracy of 10�6 with respect to the sample size.

Concerning the differences in the selected modes for a given subset size ni with respect to Ns, as for the mass-spring-
damper example, Fig. 9(ii) gives the number of differences between the subset selected for Ns ¼ 100 and the 4 others sample
sizes. Between ni ¼ 1 and ni ¼ 19, the differences number oscillates between 0 and 1. Moreover, Fig. 9(i) shows that these 19
modes are precisely the most important ones. So, these results confirm the capability of the method to select the most rel-
evant modes even with a sample of a rather small size.

In the following, 3 accuracy levels are tested for the construction of vector VT , say ~�ni=~�0 ¼ 10�4;10�5;10�6. Even if it
appears that the subset composition is almost not dependent of the sample size for these accuracy levels, in the following,
the same subset will be used for all sample sizes in order to observe convergence only with respect to Ns. Finally, we decide
to retain subsets selected for Ns ¼ 30.

Remark. Modes association and modes degenerative phenomenon.
In the following modes association is performed by eigenvalues ascending order. Nevertheless, in order to allow a para-

metric identification of copulas, one has to identify mode crossing phenomenon. Let us illustrate this on this truss example.
Table 2
Definition of the characteristics of each random fields.

Variable Mean cv (%)

E 8:13 GPa 10
G 15:4 GPa 10
q 1700 kg:m�3 5



Fig. 9. (i) Evaluation of ~�ni =~�0 for ni ¼ 0; . . . ;35. (ii) Number of differences in selected subsets with respect to the sample size Ns .
The two first selected modes are the second and the third of the structure. The dependence graph of their effective param-
eters is presented Fig. 10 for Ns ¼ 30. This graph is typical of a mode crossing phenomenon with an inversion between 2 close
modes. One can see that the effective parameter of mode 2 approximately belongs to ½0:5;0:6� when the effective parameter
of mode 3 is zero, and that the effective parameter of mode 3 approximately belongs to ½0:5;0:6� when the effective param-
eter of mode 2 is zero. It is clear that these realizations come from one mode with effective parameter equal to zero and one
mode with effective parameter in ½0:5;0:6�. In this case, the ‘‘two” modes are concatenated into one by only considering the
non zero realizations of the effective parameters (one can check that the sum of these non zero realizations is equal to Ns).

Table 3 gives the subsets sizes for each level of accuracy, after elimination of the fake modes due to mode crossing.

5.2.3. Variable ordering and identification of the probability distribution of VT

For sake of clarity, we propose to set �̂ni=�̂0 ¼ 10�4 which leads to the selection of 6 modes. This accuracy level is retained
in order to discuss the identification process with a limited number of variables. The results we obtained with the other
accuracy levels, are discussed in Section 5.2.5. Mean eigenvalues of these 6 modes, estimated by direct MCS with 100,000
simulations, are

ffiffiffiffiffiffiffiffiffiffiffi
E½K1�

p � 250 rad:s�1;
ffiffiffiffiffiffiffiffiffiffiffi
E½K2�

p � 750 rad:s�1,
ffiffiffiffiffiffiffiffiffiffiffi
E½K3�

p � 800 rad:s�1;
ffiffiffiffiffiffiffiffiffiffiffi
E½K4�

p � 1100 rad:s�1,
ffiffiffiffiffiffiffiffiffiffiffi
E½K5�

p �
1120 rad:s�1 and

ffiffiffiffiffiffiffiffiffiffiffi
E½K6�

p � 1150 rad:s�1.
The reference Kendall’s s matrix, estimated by MCS with 100,000 simulations, is presented Fig. 11. The lower triangular

part gives the absolute values of Kendall’s s whereas the upper presents dependence graphs from a subsample of size 100
(only 100 points were used to allow a correct visibility of points density).

This figure shows that only a small number of pairs of variables are correlated. Indeed only 17 pairs are such that
jsijj P 0:3. A study of the dependence structures gives relevant informations on modes coupling phenomenon. For example,
eigenvalues K4 and K5 (L4 and L5 in Fig. 11) are positively correlated, which implies that the peaks, produced by their
dynamic amplification factor on the transfer function, have a tendency to move ‘‘together”. The probability of large increase
of the transfer function due to a coupling is thus limited. Moreover, their effective parameters (T4 and T5 in Fig. 11) are neg-
atively correlated. Once again, this dependence structure is going to limit the probability of large increase of the transfer
function. This effect is also very important between modes 2 and 3 (T2 and T3 and in Fig. 11). It is also interesting to observe
Fig. 10. Illustration of mode crossing. Dependence graph of eTac;2 and eTac;3, with Ns ¼ 30.



Table 3
Number of modes in the selected subsets in
function of the targeted accuracy ~�ni =~�0 com-
puted with Ns ¼ 30.

~�ni=~�0 ni

10�4 6

10�5 9

10�6 11

Fig. 11. Reference Kendall’s s matrix.
the various shapes of the dependence structures. For example, dependence structure between K1 and K3 (L1 and L3 in Fig. 11)
presents strong correlation for higher values whereas small values are almost not correlated. Parametric bivariate copulas
are thus a relevant tool to describe those dependence structures.

After these qualitative remarks, we compare the results in the identification of the probability distribution of VT by strate-
gies S1 and S2. As for the previous example, Fig. 12 presents the mean absolute error between the reference results and the
Kendall’s s, computed from the identified distribution based on a sample of size Ns ¼ 100 (means are evaluated with 25
replicates). Results of strategy S1 are cast into the lower triangular part of the matrices whereas S2 ones are cast into the
upper triangular part.

Table 4 gives the estimation of the sum of the absolute errors in the computation of Kendall’s s, for both strategies (mean
values and their 95% confidence intervals estimated over the 25 replicates).

The remarks done on the first example are confirmed by the results of Fig. 12 and Table 4. First of all, Fig. 12 shows that
error matrix obtained with Ns ¼ 100 is not symmetric. Moreover, one can note that conclusion drawn with the first example
about homogeneity of the error level obtained with strategy S2 is confirmed. Table 4 shows that both strategies give very
close results. But, for small sample sizes, dispersion of the first strategy is smaller than the one of S2. In contrary, for
Ns ¼ 100; S2 performs better and is less dispersed.

Some results about strategy S2, obtained with a single sample, are now detailed. In particular, application of algorithm
described in Section 4.2 leads to the following order:

� Ns ¼ 10; K3 � eTac;1 � K1 � eTac;5 � eTac;4 �K6 �K5 � eTac;3 � eTac;2 �K2 � eTac;6 �K4

� Ns ¼ 50; K4 �K5 �K6 �K1 �K3 �K2 � eTac;2 � eTac;3 � eTac;6 � eTac;1 � eTac;5 � eTac;4

� Ns ¼ 100; eTac;1 � eTac;5 � eTac;4 � eTac;6 �K6 �K4 �K5 �K1 �K3 �K2 � eTac;2 � eTac;3

It is notable that, according to the reference results, on these 11 bivariate relationships, 3 are such that jsijj P 0:3 for
Ns ¼ 10;7 for Ns ¼ 50 and 8 for Ns ¼ 100. This clearly indicates that a sample of size Ns ¼ 10 is here not sufficient to detect
the correlated pairs of variables. The results obtained with Ns ¼ 50 and Ns ¼ 100 reveal the capability of strategy S2 to find a
‘‘path” that optimizes the correlation between pairs of variables. Additionally, with Ns ¼ 100, upon the 2nið2ni � 1Þ=2 ¼ 66



Fig. 12. Absolute error in the computation of Kendall’s s by identification strategies S1 (lower triangular part) and S2 (upper triangular part) with Ns ¼ 100.

Table 4
Estimation of the mean of the relative errors sum on Kendall’s s for strategies S1 and S2.

Ns 10 50 100

S1 1:60:10�1 � 7:44:10�3 8:86:10�2 � 5:36:10�3 6:55:10�2 � 4:24:10�3

S2 1:62:10�1 � 1:23:10�2 9:07:10�2 � 5:84:10�3 6:04:10�2 � 4:01:10�3
bivariate copulas that must be identified, 36 are independent ones. The 30 others are divided in 12 gaussian copulas, 7 Gum-
bel copulas, 5 Clayton copulas, 4 Frank copulas, 1 Student copula and 1 Joe Copula. This illustrates the important variety of
dependence structures involved in a random eigenvalues problem. Moreover, at the first level of the decomposition, none of
the bivariate copulas is an independent one, which confirms again the capability of strategy S2.

5.2.4. Estimation of the 99% quantiles of the transfer function
Estimation of the 99% quantiles of jTacj by the two identification strategies is now studied. These strategies are compared

with a direct Monte Carlo method. We precise that the same 6 modes are used in Monte Carlo method. It means only the
simulation methods are compared, and not the error due to the modes selection procedure. As previously, the methods vari-
ability is quantified by the use of 25 replicates. Results are presented Fig. 13.

The first obvious remark is that an identification approach that would assume independent components for random vec-
tor VT is not relevant. This shows that, when modes are not separated, dependence structure between modal parameters
strongly influence the behavior of the random transfer function. Results obtained with strategies S1 and S2 confirm this inter-
pretation. Moreover, as for the previous example, strategies S1 and S2 outperform direct Monte Carlo method even if the ben-
efit of identification methods decreases as the sample size increases.

The above comparison criterion is very global with respect to pulsation x. Now, a local comparison is provided by com-
puting, with each identification strategy, the 99% quantiles of jTacj from the same samples of size Ns ¼ 30, see Fig. 14 (mean
over the 25 replicates). We recall that, on this figure, the reference results are obtained by direct MCS with a sample of size
100,000.

First of all, forx < 1000 rad:s�1, the 3 identification approaches give very close and accurate results (one can also note the
effect of mode selection aroundx ¼ 500 rad:s�1). But, forx > 1000 rad:s�1, the number of considered modes is more impor-
tant and the coupling between them not negligible. So, assuming independent components for the random vector VT leads to
an overestimation of the 99% quantiles. In contrary, strategies S1 and S2 give more relevant results. Nevertheless, compared
to the reference result, it can be noted that both strategies slightly overestimate the 99% quantiles around 1100 rad:s�1. To
improve these results, the next section investigates the effect of increasing the number of considered modes.

5.2.5. Increasing the number of modes
This part only focuses on the estimation of the 99% quantiles of the transfer function. Fig. 15 presents the estimation of

criterion defined by Eq. (11) (as usually, estimation is performed over 25 replicates), for the 2 other accuracy levels (see



Fig. 13. Estimation of the mean of the criterion defined by Eq. (11) for the different methods ni ¼ 6.

Fig. 14. Comparison of the estimators of the 99% quantiles of jTac j computed by different methods. Mean values estimated on 25 replicates with Ns ¼ 30.

Fig. 15. Estimation of the mean of the criterion defined by Eq. (11) for the different methods. (i) ni ¼ 9, (ii) ni ¼ 11.



Fig. 16. Comparison of the estimators of the 99% quantiles of jTac j computed by strategies S1 and S2. Mean values estimated on 25 replicates with Ns ¼ 30.
(i) ni ¼ 9, (ii) ni ¼ 11.
Table 3) leading to ni ¼ 9;11. As for the last example, comparison with direct MCS is performed with the same number of
modes.

One can note that accuracy of the results obtained by direct MCS and by strategies S1 and S2 increases with the number of
considered modes. Nevertheless, even if the proposed approaches perform better than direct MCS, it seems that the improve-
ment is more important in the case of the MCS, especially from ni ¼ 9 to ni ¼ 11.

Finally, Fig. 16 presents a comparison of the estimators of the 99% quantiles of jTacj computed by strategies S1 and S2 with
Ns ¼ 30 and ni ¼ 9 (Fig. 16(i)) and ni ¼ 11 (Fig. 16(ii)). Once again, the reference results are obtained by direct MCS with a
sample of size 100,000. It is notable that increasing the number of modes from ni ¼ 6 (Fig. 14) to ni ¼ 9 (Fig. 16(i)) allows,
first, to catch the mode around 500 rad:s�1 and second, to increase the accuracy forx > 1000 rad:s�1 compared to the results
presented by Fig. 14. Moreover, increasing the number of modes to ni ¼ 11 (Fig. 16(ii)), only improves the results around
950 rad:s�1 but does not improve it for x > 1000 rad:s�1. This observation confirms the results presented in Fig. 15. One
could also note that, as for the other numerical examples, strategy S2 performed slightly better that S1.

This final results illustrate a limit of the proposed approach. Indeed, increasing the number of considered modes from
ni ¼ 9 to ni ¼ 11 does not improve the results for x > 1000 rad:s�1. This can be explained by the fact that the transfer func-
tion for these pulsations is influenced by too many random modes and that the proposed strategy failed to properly identify
such a large probability distribution (dimension 22). Some improvements are proposed in conclusion to tackle this issue.
6. Conclusion

The work presented in this article focuses on two objectives. First one is the identification of the probability distribution
of the modal parameters (eigenvalues and effective parameters) of a given random transfer function. To reach this goal a
method to construct and identify a D-Vine decomposition of this probability distribution is proposed. Numerical examples
illustrate the various dependence structures involved in the probability distribution of the modal parameters and the capa-
bilities of the proposed approach in their identification. Hence, the adaptation of the D-Vine construction presented in this
article is a relevant tool for identification of modal parameters probability distribution. Second objective is the construction
of estimator of the 99% quantiles of the random transfer function by post processing of the identified modal parameters
probability distribution. According to the numerical examples presented in Section 5 the proposed estimator outperforms
the classical Monte Carlo estimators in all the studied cases. Theoretical developments of this result is a perspective of this
work and it could be noted that a first attempt is proposed, for one dimensional case, in [24]. Nevertheless, it seems that the
benefit of the approach decreases with the number of modes i.e. the size of the identification problem. To this respect one can
conclude that the proposed approach is well suited to deal with vibration study of large industrial structures under paramet-
ric uncertainty involving a large number of random variables but a limited number of modes. Moreover, we would like to
emphasize that, in its actual form, the proposed identification procedure is only suited to deal with a fixed design of the
structure under study. In order to consider design under uncertainty issue, the identification procedure has to be done for
all new tested designs, which is not efficient. However, a relevant way to achieve the identification of the probability distri-
bution of modal parameters over a design space could be to consider the use of spacial Vine (see [47]). This enhancement for
structural dynamics must be seen as a perspective of this work.

Finally, two extensions of this work are proposed. First one concerns the adaptation to a larger number of modes. Indeed,
even if the modes selection step presented in Section 4.1.2 aims at reducing the number of relevant modes for the identifi-
cation, in some cases, this reduction may not be sufficient to allow a correct identification of the probability distribution (see



Section 5.2.5). With respect to this issue, an approach has been proposed in [23], which aims at splitting the identification
problem into several identification problems of smaller size by selecting only the most critical modes interaction. Second
one, is the evaluation of the dispersion of the proposed estimators. Indeed, in the present work, replicates are used to char-
acterize dispersion which is not relevant for practical applications. In [23,24] construction of bootstrap confidence interval is
presented to characterize the dispersion of the 99% quantile estimators at a reasonable computational cost.
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