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ON THE KRAMERS-FOKKER-PLANCK EQUATION
WITH DECREASING POTENTIALS IN DIMENSION ONE

RADEK NOVAK AND XUE PING WANG

Abstract. For quickly decreasing potentials with one position variable, the first
threshold zero is always a resonance of the Kramers-Fokker-Planck operator. In this
article we study low-energy spectral properties of the operator and calculate large time
asymptotics of solutions in terms of the Maxwellian.

1. Introduction

The Kramers equation is a special Fokker-Planck equation describing the Brownian
motion in an external field. This equation was derived and used by H. A. Kramers [13]
to describe kinetics of chemical reaction. Later on it turned out that it had more gen-
eral applicability to different fields such as supersonic conductors, Josephson tunnelling
junction and relaxation of dipoles ([19]). Mathematical analysis of the Kramers-Fokker-
Planck (KFP, in short) equation is initially motivated by trend to equilibrium for con-
fining potentials ([7, 9, 20]). Spectral problems of the KFP operator reveal to be quite
interesting, because this operator is neither elliptic nor selfadjoint. After appropriate
normalisation of physical constants and a change of unknowns, the KFP equation can
be written into the form

∂tu(t; x, v) + Pu(t; x, v) = 0, (x, v) ∈ Rn × Rn, t > 0, (1.1)

with initial data
u(0;x, v) = u0(x, v). (1.2)

Here x and v represent respectively position and velocity of the particle, P is the KFP
operator given by

P = −∆v +
1

4
|v|2 − n

2
+ v · ∇x −∇V (x) · ∇v, (1.3)

where the potential V (x) is supposed to be a real-valued C1 function verifying

|V (x)|+ ⟨x⟩|∇V (x)| ≤ C⟨x⟩−ρ, x ∈ Rn, (1.4)

for some ρ ∈ R and ⟨x⟩ = (1 + |x|2)1/2. Let m be the function defined by

m(x, v) =
1

(2π)
n
4

e−
1
2
( v

2

2
+V (x)). (1.5)

Then M = m2 is the Maxwellian ([19]) and m verifies the stationary KFP equation

Pm = 0 on R2n
x,v. (1.6)
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From the point of view of spectral analysis, large time behavior of solutions of (1.1) is
closely related to low-energy spectral properties of P . If V (x) ≥ C|x| for some constant
C > 0 outside some compact, then m ∈ L2(R2n

x,v) and zero is a discrete eigenvalue of P .
This case has been studied by many authors. It is known that

u(t)− ⟨u0,m⟩m = O(e−σt), t→ +∞, (1.7)

in L2(R2n), where σ > 0 can be evaluated in terms of spectral gap between zero eigen-
value and the real part of the other eigenvalues of P and V (x) is normalized by∫

Rn

e−V (x)dx = 1.

See [7, 9, 10, 20] and references quoted therein. If V (x) increases slowly: V (x) ∼ c⟨x⟩β
for some constants c > 0 and β ∈]0, 1[, then zero is an eigenvalue embedded in the
essential spectrum of P and it is known that (1.7) still holds with the right-hand side

replaced by O(t−∞) ([4, 5]) or more precisely by O(e−at
β

2−β
) for some a > 0 ([16]). For

decreasing potentials ( ρ > 0 in (1.4) ), zero is no longer an eigenvalue of P . It is proved
in [21] that for n = 3 and ρ > 2, one has

u(t) =
1

(4πt)
3
2

⟨u0,m⟩m+O(
1

t
3
2
+ϵ
), t→ +∞, ϵ > 0, (1.8)

in some weighted spaces. (1.8) shows that for rapidly decreasing potentials, space dis-
tribution of particles is still governed by the Maxwellian, but the density of distribution
decreases in times in the same rate as for heat propagation. Time-decay estimates of
local energies are also obtained in [21] for short-range potentials (ρ > 1) and in [16] for
long-range potentials (0 < ρ ≤ 1). See also [2, 8, 14, 15, 18] for other related works.

In this work we study one dimensional KFP equation with quickly decreasing poten-
tials. It is known that for Schrödinger operators, low-energy spectral analysis in one
and two dimensional cases is more difficult than higher dimensions and needs specific
methods ([1, 3, 11]) because zero is already a threshold resonance of the Laplacian in
dimension one and two. For the KFP operator with decreasing potentials, the notion of
thresholds and threshold resonances is discussed in [21]. Although m always verifies the
stationary KFP equation Pm = 0, a basic fact is that ⟨x⟩−sm ̸∈ L2(R2n) if n ≥ 3 and
1 < s < n

2
, while ⟨x⟩−sm ∈ L2(R2n) for any s > 1 if n = 1, 2. In language of threshold

spectral analysis, this means that for n ≥ 3, zero is not a resonance of P while for
n = 1, 2, zero is a resonance of P with m as a resonant state. This is the main difference
between the present work and [21].

Set P = P0 +W where

P0 = v · ∇x −∆v +
1

4
|v|2 − n

2
and W = −∇xV (x) · ∇v. (1.9)

P0 and P are regarded as operators in L2(R2n) with the maximal domain. They are then
maximally accretive. Denote e−tP0 and e−tP , t ≥ 0, the strongly continuous semigroups
generated by −P0 and −P , respectively. If ρ > −1, W is a relatively compact pertur-
bation of the free KFP operator P0: W (P0 + 1)−1 is a compact operator in L2(R2n).
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One can prove that
σess(P ) = σ(P0) = [0,+∞[ (1.10)

and that non-zero complex eigenvalues of P have positive real parts and may accumu-
late only towards points in [0,+∞[. It is unknown for decreasing potentials whether or
not the complex eigenvalues does accumulate towards some point in [0,+∞[.

The main result of this work is the following

Theorem 1.1. Let n = 1 and ρ > 4. Then for any s > 5
2
, there exists some ϵ > 0 such

that

e−tP =
1

(4πt)
1
2

(
⟨·,m⟩m+O(t−ϵ)

)
, t→ +∞ (1.11)

as operators from L2,s to L2,−s, where

L2,r = L2(R2
x,v; ⟨x⟩2rdxdv), r ∈ R.

To prove (1.11), the main task is to show that the resolvent R(z) = (P − z)−1 has an
asymptotics of the form

R(z) =
i

2
√
z
⟨·,m⟩m+O(|z|−

1
2
+ϵ) (1.12)

as operators from L2,s to L2,−s, for z near zero and z ̸∈ R+. Although (1.12) and the
decay assumption on the potential look the same as the resolvent asymptotics of one
dimensional Schrödinger operators in the case where zero is a resonance but not an
eigenvalue ([1, 3, 11]), its proof is quite different from the Schrödinger case. In fact, the
known methods for the Schrödinger operator can not be applied to the KFP operator,
mainly because the perturbation W is a first order differential operator. In this work
we use the method of [21] to calculate the low energy asymptotic expansion for the free
resolvent R0(z) = (P0 − z)−1 of the form

R0(z) =
1√
z
G−1 +G0 +

√
zG1 + · · · (1.13)

in appropriate spaces, where G−1 is an operator of rank one. By a careful analysis of the
space N of resonant states of P defined by (4.2), we prove that 1 + G0W is invertible
on L2,−s, s > 3

2
. (1.12) is derived from the equation

R(z) = D(z)(1 +M(z))−1R0(z) (1.14)

for z near zero and z ̸∈ R+, where

D(z) = (1 +R1(z)W )−1 with R1(z) = R0(z)−
1√
z
G−1

and

M(z) =
1√
z
G−1WD(z).

As in threshold spectral analysis for Schrödinger operators, a non-trivial problem here
is to compute the value of some spectral constants involving the resonant state of P .
Indeed, in most part of this work only the condition ρ > 2 is needed. The stronger
assumption ρ > 4 is used to show that some number m(z) is nonzero for z near 0 and
z ̸∈ R+ (see (5.24)), which allows to prove the invertibility of 1+M(z) and to calculate
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its inverse.

The organisation of this article is as follows. In Section 2, we recall some known
results needed in this work. The low-energy asymptotics of the free resolvent in di-
mension one is calculated in Section 3. The threshold spectral analysis of P is carried
out in Section 4. We prove in particular that zero resonance is simple and 1 +G0W is
invertible. The low-energy asymptotics of the full resolvent (1.12) is proved in Section
5, which implies in particular that if ρ > 4, zero is not an accumulation point of complex
eigenvalues of P . Finally, Theorem 1.1 is deduced in Section 6 by using a high-energy
resolvent estimate of [21] valid in all dimensions.

Notation. For r ≥ 0 and s ∈ R, introduce the weighted Sobolev space

Hr,s = {u ∈ S ′(R2n); (1−∆v + |v|2 + ⟨Dx⟩
2
3 )

r
2 ⟨x⟩su ∈ L2}.

For r < 0, Hr,s is defined as the dual space of H−r,−s with the dual product identified
with the scalar product of L2. The natural norm on Hr,s is denoted by ∥ · ∥r,s. When no
confusion is possible, we use ∥·∥ to denote the usual norm of L2(R2n) or that bounded op-
erators on L2. Set Hr = Hr,0 and L2,s = H0,s. Denote B(r, s; r′, s′) the space of continu-
ous linear operators fromHr,s toHr′,s′ . The weighted Sobolev spacesHr,s are introduced
in accordance with the sub-ellipticity of P0: although P0 does not map H1,s to H−1,s,
the sub-elliptic estimate of P0 (Corollary 2.4) implies that (P0 + 1)−1 ∈ B(−1, 0; 1, 0)
and a commutator argument shows that (P0 + 1)−1 ∈ B(−1, s; 1, s) for any s ∈ R.

2. Preliminaries

In this Section we fix notation and state some known results which will be used in
this work. Denote by P0 the free KFP operator (with ∇V = 0):

P0 = v · ∇x −∆v +
1

4
|v|2 − n

2
, x, v ∈ Rn. (2.1)

In terms of Fourier transform in x-variables, we have for u ∈ D(P0)

(P0u)(x, v) = F−1
x→ξP̂0(ξ)û(ξ, v), where (2.2)

P̂0(ξ) = −∆v +
v2

4
− n

2
+ iv · ξ, (2.3)

û(ξ, v) = (Fx→ξu)(ξ, v) ,
∫
Rn

e−ix·ξu(x, v) dx. (2.4)

Denote

D(P̂0) = {f ∈ L2(R2n
ξ,v); P̂0(ξ)f ∈ L2(R2n

ξ,v)}. (2.5)

Then P̂0 , Fx→ξP0F−1
x→ξ is a direct integral of the family of complex harmonic operators

{P̂0(ξ); ξ ∈ Rn}.
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For fixed ξ ∈ Rn, P̂0(ξ) can be written as

P̂0(ξ) = −∆v +
1

4

n∑
j=1

(vj + 2iξj)
2 − n

2
+ |ξ|2.

{P̂0(ξ), ξ ∈ Rn} is a holomorphic family of type A with constant domain D = D(−∆v+
v2

4
) in L2(Rn

v ). Its spectrum and eigenfunctions can be explicitly calculated. Let Fj(s) =

(−1)je
s2

2
dj

dsj
e−

s2

2 , j ∈ N, be the Hermite polynomials and

φj(s) = (j!
√
2π)−

1
2 e−

s2

4 Fj(s)

the normalized Hermite functions. For ξ ∈ Rn and α = (α1, α2, · · · , αn) ∈ Nn, define

ψα(v) =
n∏

j=1

φαj
(vj) and ψ

ξ
α(v) = ψα(v + 2iξ). (2.6)

One can check ([21]) that the spectrum of P̂0(ξ) is given by

σ(P̂0(ξ)) = {l + ξ2; l ∈ N}. (2.7)

Each eigenvalue l+ ξ2 is semi-simple (i.e., its algebraic multiplicity and geometric mul-
tiplicity are equal) with multiplicity ml = #{α ∈ Nn; |α| = α1 + α2 + · · · + αn = l}.
The Riesz projection associated with the eigenvalue l + ξ2 is given by

Πξ
lϕ =

∑
α,|α|=l

⟨ϕ, ψ−ξ
α ⟩ψξ

α, ϕ ∈ L2. (2.8)

The following result is useful to study the boundary values of the resolvent R0(z) =

(P0 − z)−1. Let R̂0(z) = (P̂0 − z)−1 and R̂0(z, ξ) = (P̂0(ξ) − z)−1 for z ̸∈ R+. Then

R0(z) = F−1
x→ξR̂0(z)Fx→ξ.

Proposition 2.1. Let l ∈ N and l < a < l + 1 be fixed. Take χ ≥ 0 and χ ∈ C∞
0 (Rn

ξ )
with supp χ ⊂ {ξ, |ξ| ≤ a+ 4}, χ(ξ) = 1 when |ξ| ≤ a+ 3 and 0 ≤ χ(ξ) ≤ 1. Then one
has

R̂0(z, ξ) =
l∑

k=0

χ(ξ)
Πξ

k

ξ2 + k − z
+ rl(z, ξ), (2.9)

for any ξ ∈ Rn and z ∈ C with Re z < a and Im z ̸= 0. Here rl(z, ξ) is holomorphic in
z with Re z < a verifying the estimate

sup
Re z<a,ξ∈Rn

∥rl(z, ξ)∥L(L2(Rn
v ))

<∞. (2.10)

See Proposition 2.7 of [21] for the proof. As a consequence of Proposition 2.1 and
known results for the boundary values of the resolvent of −∆x, we obtain the following

Corollary 2.2. Let n ≥ 1 and R0(z) = (P0 − z)−1, z ̸∈ R+.

(a). With the notation of Proposition 2.1, one has

R0(z) =
l∑

k=0

bwk (v,Dx, Dv)(−∆x + k − z)−1 + rl(z) (2.11)
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where rl(z) is B(L2)-valued holomorphic function for Re z < a and bwk (v,Dx, Dv) is the
Weyl pseudo-differential operator with symbol bk(x, ξ, η) given by

bk(v, ξ, η) =

∫
Rn

e−iv′·η/2

∑
|α|=k

χ(ξ)ψα(v + v′ + 2iξ)ψα(v − v′ + 2iξ)

 dv′. (2.12)

In particular,

b0(v, ξ, η) = 2
n
2 e−v2−η2+2iv·ξ+2ξ2χ(ξ). (2.13)

(b). Let I be a compact interval of R which does not contain any non negative integer.
Then for any s > 1

2
, one has

sup
λ∈I;ϵ∈]0,1]

∥R0(λ± iϵ)∥B(−1,s;1,−s) <∞ (2.14)

The boundary values of the resolvent R0(λ±i0) = limϵ→0+ R0(λ±iϵ) exist in B(0, s; 0,−s)
for λ ∈ I and is Hölder-continuous in λ.

Seeing (2.11), it is natural to define N as set of thresholds of the KFP operator P
([21]). Note that an exponential upper-bound in λ for R0(λ±iϵ), ϵ > 0 fixed, is obtained
in [16] by method of harmonic analysis in Besov spaces.

For high energy resolvent estimate, we need the following result proved in Appendix
A.2 of [18].

Theorem 2.3. There exists some constant C > 0 such that

∥(1−∆v + v2 + |ξ|
2
3 + |λ|

1
2 )(P̂0(ξ) +

n

2
+ 1− iλ)−1∥ ≤ C (2.15)

uniformly in ξ ∈ Rn and λ ∈ R.

As consequence, we obtain a uniform sub-elliptic estimate for the free KFP operator.

Corollary 2.4. One has

|λ|∥u∥2 + ∥∆vu∥2 + ∥|v|2u∥2 + ∥|Dx|
2
3u∥2 ≤ C∥(P0 +

n+ 2

2
− iλ)u∥2, (2.16)

for u ∈ S(R2n
x,v) and λ ∈ R. In addition, P0 defined on S(R2n

x,v) is essentially maximally
accretive.

Let us indicate that the essential maximal accretivity of P0 is discussed in [17]. Hence-
forth we still denote by P0 its closure in L2 with maximal domain D(P0) = {u ∈
L2(R2n

x,v);P0u ∈ L2(R2n
x,v)}. To determine the spectrum of P0 which is unitarily equiva-

lent with a direct integral of P̂0(ξ), ξ ∈ Rn, in addition to (2.7), one needs a resolvent
estimate uniform with respect to ξ ∈ Rn proved in [21]: ∀z ∈ C \ R+,

sup
ξ∈Rn

∥(P̂0(ξ)− z)−1∥ ≤ Cz. (2.17)
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See [6] for the necessity of such uniform resolvent estimate in order to determine the
spectrum of direct integral of a family of non-selfadjoint operators. (2.7) and (2.17)
show that

σ(P0) = ∪ξ∈Rnσ(P̂0(ξ)) = [0,+∞[. (2.18)

Under the condition (1.4) on V for some ρ > −1, |∇V (x)| → 0 as |x| → +∞. By
Corollary 2.4, W = −∇V (x) · ∇v is relatively compact with respect to P0. It follows
that

σess(P ) = [0,+∞[ (2.19)

and discrete spectrum of P is at most countable with possible accumulation points in-
cluded in [0,+∞[.

3. The free resolvent in dimension one

We use (2.11) with l = 0 to calculate the asymptotics of R0(z) near the first threshold
zero.

Proposition 3.1. Let n = 1. One has the following low-energy resolvent asymptotics
for R0(z): for s, s′ > 1

2
, there exists ϵ > 0 such that

R0(z) =
1√
z
(G−1 +O(|z|ϵ)), as z → 0, z ̸∈ R+, (3.1)

as operators in B(−1, s; 1,−s′). More generally, for any integer N ≥ 0 and s > N + 3
2
,

there exists ϵ > 0

R0(z) =
N∑

j=−1

z
j
2Gj +O(|z|

N
2
+ϵ), as z → 0, z ̸∈ R+, (3.2)

as operators in B(−1, s; 1,−s). Here the branch of z
1
2 is chosen such that its imaginary

part is positive when z ̸∈ R+ and Gj ∈ B(−1, s; 1,−s) for s > j+ 3
2
, j ≥ 0. In particular,

G−1 =
i

2
⟨·,m0⟩m0 (3.3)

G0 = F0 + F1, (3.4)

where

m0(x, v) = 1⊗ ψ0(v) (3.5)

with ψ0(v) =
1

(2π)
1
4
e−

v2

4 the first eigenfunction of harmonic oscillator, F0 is the operator

with integral kernel

F0(x, v; x
′, v′) = −1

2
ψ0(v)ψ0(v

′)|x− x′| (3.6)

and F1 ∈ B(−1, s; 1,−s′) for any s, s′ > 1
2
.

Proof. For z ̸∈ R+, (2.11) with l = 0 shows that

R0(z) = bw0 (v,Dx, Dv)(−∆x − z)−1 + r0(z), (3.7)
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with r0(z) ∈ B(−1, 0; 1, 0) holomorphic in z when Re z < a for some a ∈]0, 1[. Here
the cut-off χ(ξ) is chosen such that χ ∈ C∞

0 (Rn) and χ(ξ) = 1 in a neighbourhood of
{|ξ|2 ≤ a}. Therefore r0(z) admits a convergent expansion in powers of z for z near 0

r0(z) = r0(0) + zr′0(0) + · · ·+ zn
r
(n)
0 (0)

n!
+ · · ·

in B(−1, 0; 1, 0). It is sufficient to study the lower-energy expansion of bw0 (v,Dx, Dv)(−∆x−
z)−1.

Note that in one dimensional case, the integral kernel of the resolvent (−∆x − z)−1

is given by
i

2
√
z
ei

√
z|x−y|, z ̸∈ R+, x, y ∈ R (3.8)

where the branch of
√
z is chosen such that its imaginary part is positive for z ̸∈ R+.

The integral kernel of bw0 (v,Dx, Dv)(−∆x − z)−1, z ̸∈ R+, is given by

K(x, x′; v, v′; z) =
i

2
√
z

∫
R
ei

√
z|y−(x−x′)|Φ(v, v′, y) dy (3.9)

with

Φ(v, v′, y) = (2π)−
3
2 e−

1
4
(v2+v′2)

∫
R
ei(y−v−v′)·ξ+2ξ2χ(ξ) dξ

= ψ0(v)ψ0(v
′)Ψ(y − v − v′) (3.10)

where Ψ is the inverse Fourier transform of e2ξ
2
χ(ξ). Since χ ∈ C∞

0 , one has the
following asymptotic expansion for K(x, x′; v, v′; z) : for any ϵ ∈ [0, 1] and N ≥ 0

|K(x, x′; v, v′; z)−
N∑

j=−1

z
j
2Kj(x, x

′, v, v′)| ≤ CN,ϵ|z|
N+ϵ
2 |x− x′|N+1+ϵe−

1
4
(v2+v′2) (3.11)

where

Kj(x, x
′; v, v′) =

ij+2

2 (j + 1)!

∫
R
|y − (x− x′)|j+1Φ(v, v′, y)dy. (3.12)

Remark that for N ≥ 0, s′, s > N + 1
2
and 0 < ϵ < min{s, s′} −N − 1

2
and ϵ ∈]0, 1

2
]

⟨x⟩−s⟨x′⟩−s′|x− x′|N+ϵe−
1
4
(v2+v′2) ∈ L2(R4).

We obtain the asymptotic expansion for bw0 (v,Dx, Dv)(−∆x − z)−1 in powers of z
1
2 for

z near 0 and z ̸∈ R+.

bw0 (v,Dx, Dv)(−∆x − z)−1 =
N∑

j=−1

z
j
2Kj +O(|z|

N
2
+ϵ), as (3.13)

as operators in B(0, s′; 0,−s), s′, s > N + 3
2
. By the sub-elliptic estimate of P0, this

expansion still holds in B(−1, s′; 1,−s). This proves (3.2) with Gk given by

G2j = K2j +
r
(j)
0 (0)

j!
, G2j−1 = K2j−1, j ≥ 0. (3.14)
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To show (3.3) and (3.4), note that since χ(0) = 1, one has∫
R
Φ(v, v′, y) dy = ψ0(v)ψ0(v

′).

The first two terms in the expansion of K(x, x′; v, v′; z) can be simplified as

K−1(x, x
′, v, v′) =

i

2

∫
R
Φ(v, v′, y)dy =

i

2
ψ0(v)ψ0(v

′) (3.15)

K0(x, x
′, v, v′) = −1

2

∫
R
Φ(v, v′, y)|y − (x− x′)|dy (3.16)

= −1

2
ψ0(v)ψ0(v

′)|x− x′| − 1

2

∫
(|y − (x− x′)| − |x− x′|)Φ(v, v′, y)dy.

Therefore (3.3) is true and G0 can be decomposed as: G0 = F0 +F1 with F0 defined by
(3.6) and F1 = K0,1 + r0(0), K0,1 being the operator with the integral kernel

K0,1(x, x
′, v, v′) = −1

2

∫
R
(|y − (x− x′)| − |x− x′|)Φ(v, v′, y)dy,

which is a smooth function and

K0,1(x, x
′, v, v′) = O(ψ0(v)ψ0(v

′))

for |x − x′| large. Therefore K0,1 is bounded in B(−1, s; 1,−s′) for any s, s′ > 1
2
. This

shows that F1 = K0,1 + r0(0) has the same continuity property, which proves (3.4). �

Corollary 3.2. Let n = 1 and e−tP0, t ≥ 0, be the strongly continuous semigroup
generated by −P0. Then for any integer N ≥ 0 and s > 2N+ 1

2
, the following asymptotic

expansion holds for some ϵ > 0

e−tP0 =
N∑
k=0

t−
2k+1

2 βkG2k−1 +O(t−
2N+1

2
−ϵ), t→ +∞, (3.17)

in B(0, s, 0, s). Here βk is some non zero constant. In particular, the leading term
β0G−1 is a rank-one operator given by

β0G−1 =
1

(4π)
1
2

⟨·,m0⟩m0 : L2,s → L2,−s (3.18)

for any s > 1
2
.

The proof of Corollary 3.2 uses Proposition 3.1 and a representation formula of the
semigroup e−tP0 as contour integral of the resolvent R0(z) in the right half-plane. See
the proof of Theorem 1.1 for more details.

4. Threshold spectral properties

Assume that V ∈ C1(Rn;R) and

|V (x)|+ ⟨x⟩|∇V (x)| ≤ C⟨x⟩−ρ (4.1)
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for some ρ > 0. Consider the null space of P defined by

N = {u;u ∈ H1,−s, ∀s > 1 and Pu = 0}. (4.2)

Since zero is not an eigenvalue of P , N is the spaces of resonant states of P associated
with zero resonance. See [21] for the definitions in general case. Remark that for n = 1,
one can equally take s > 1

2
in the above definition, instead of s > 1. But the condition

s > 1 is necessary to define appropriately resonant states for n = 2. Clearly, m ∈ N . We
want to prove that in one dimensional case, one has: dimN = 1. In order to calculate
the leading term of the resolvent expansion at threshold zero, we need also to calculate
solutions of some integral equation.

Lemma 4.1. Let ρ > 0 and n = 1. If u ∈ H1,−s for some s < ρ + 1
2
and satisfies the

equation Pu = 0, then
⟨Wu,m0⟩ = 0, (4.3)

where
m0(x, v) = 1⊗ ψ0(v).

Proof. Suppose for the moment n ≥ 1. Since u ∈ H1,−s, one hasWu ∈ H0,ρ+1−s ⊂ L2.
Using the equation Pu = 0 and the ellipticity of P in velocity variables v, we deduce
that (−∆v + v2)u(x, ·) ∈ L2(Rn

v ) a.e. in x ∈ Rn. Taking scalar product of Pu with
ψ0(v) in v-variables, one has

⟨(Pu)(x, ·), ψ0⟩v = 0, a. e. x ∈ Rn.

Since ψ0 is the first eigenfunction of the harmonic oscillator in v, one has also

⟨Pu, ψ0⟩v = ⟨v · ∇xu, ψ0⟩v − ⟨∇xV (x) · ∇vu, ψ0⟩v
a. e. in x ∈ Rn. These two relations imply that

2∇x · ⟨∇vu, ψ0⟩v +∇xV (x) · ⟨∇vu, ψ0⟩v = 0. (4.4)

The above equation holds for n ≥ 1. In the case n = 1, ⟨∇vu, ψ0⟩v is a scalar function
in x and the differential equation (4.4) determines ⟨∇vu, ψ0⟩v up to some constant:

⟨∇vu, ψ0⟩v = Ce−
V (x)

2 , a. e. in x ∈ R (4.5)

for some constant C. It is now clear that in one dimensional case, one has

⟨Wu,m0⟩ = −
∫
R
V ′(x)⟨∂vu, ψ0⟩vdx = −C

∫
R
V ′(x)e−

V (x)
2 dx = 0, (4.6)

because V (x) → 0 as |x| → +∞. �

Lemma 4.1 is important in threshold spectral analysis of the KFP operator in dimen-
sion one. We believe that this result still holds when n ≥ 2, but the last argument above
does not hold if n ≥ 2. In fact when n ≥ 2, (4.4) only implies that the vector-valued
function ⟨∇vu, ψ0⟩v is of the form

⟨∇vu, ψ0⟩v = e−
V (x)

2
−→
F (x) (4.7)

where
−→
F ∈ L2(Rn; ⟨x⟩−2sdx) and ∇ ·

−→
F = 0 in sense of distributions, which are not

sufficient to conclude that ⟨Wu,m0⟩ = 0.
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From now on, assume that ρ > 2 and n = 1. Then by the sub-elliptic estimate for
P0, G0W is a compact operator in H1,−s for 3

2
< s < ρ+1

2
. We want to study solutions

of the integral equation
(1 +G0W )u = βm0 (4.8)

for u ∈ H1,−s and β ∈ C.

Lemma 4.2. Let ρ > 2 and u ∈ H1,−s for some 3
2
< s < ρ+1

2
such that (1 +G0W )u =

βm0 for some β ∈ C. Then Pu = 0. In particular, one has: ⟨Wu,m0⟩ = 0.

Proof. One has seen that

R0(z) =
G−1√
z

+G0 + o(1)

in B(−1, r; 1,−r) for any r > 3
2
. Therefore,

G0Wu = lim
z→0,z ̸∈R+

(R0(z)−
G−1√
z
)Wu

in H1,−r. Since P0G−1 = 0 in H−1,r, one has for λ < 0

P0(R0(λ)−
G−1√
λ
)Wu =Wu+ λR0(λ)Wu.

The m-accretivity of P0 implies

∥λR0(λ)W∥ ≤ 1, λ < 0.

It follows that

∥λR0(λ)Wu∥ ≤ ∥Wu∥ ≤ C∥u∥1,−s,
3

2
< s <

ρ+ 1

2
,

uniformly in λ < 0. In addition, if 1
2
< s′ < ρ+1

2
, one has

∥λR0(λ)Wu∥1,−s′ ≤ ∥λR0(λ)∥B(0,s′;0,−s′)∥Wu∥0,s′ ≤ C|λ|
1
2∥u∥1,−s

for λ < 0. These two bounds show that

w − lim
λ→0−

λR0(λ)Wu = 0, in L2(R2). (4.9)

Since u = −G0Wu+ βm0 and P0m0 = 0, the following equalities hold:

P0u = −w − lim
λ→0−

P0(R0(λ)−
G−1√
λ
)Wu = −Wu

in sense of distributions. This proves that Pu = 0. In particular Lemma 4.1 shows that
⟨Wu,m0⟩ = 0. �

Proposition 4.3. Let u ∈ H1,−s for some 3
2
< s < ρ+1

2
such that (1 + G0W )u = βm0

for some β ∈ C. Then one has

u(x, v) = (β − C1(x)− vC2(x))ψ0(v) + r(x, v) (4.10)

where Cj ∈ L∞ and C ′
j ∈ L1, j = 1, 2, and (1 + v2 − ∂2v)r ∈ L2(R2

x,v). In addition,

lim
x→±∞

C1(x) = ±d1, lim
x→±∞

C2(x) = 0 (4.11)
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where

d1 = −1

4

∫ ∫
R2

(x+
v

2
)ψ0(v)∇V (x)∇vu(x, v)dxdv. (4.12)

In particular, u ∈ H1,−s for any s > 1
2
.

Proof. Recall that G0 = K1 + r0(0) where r0(0) is bounded from H−1 to H1 and K1

is an operator of integral kernel

K1(x, x
′; v, v′) = −1

2

∫
R
|y − (x− x′)|Φ(v, v′; y)dy (4.13)

with

Φ(v, v′, y) =
1

2
ψ0(v)ψ0(v

′)Ψ(y − v − v′),

Ψ being the inverse Fourier transform of e2ξ
2
χ(ξ). Let u ∈ H1,−s, 3

2
< s < ρ+1

2
, such

that (1 +G0W )u = βm0. By Lemma 4.2,

⟨Wu,m0⟩ = 0. (4.14)

Set w = K1Wu. Then u + w − βm0 = −r0(0)Wu belongs to L2. Let us study the
asymptotic behavior of w as |x| → ∞. Put

F (x′, y, v, v′) = ψ0(v)ψ0(v
′)Ψ(y − v − v′)∇V (x′)∇vu(x

′, v′).

Making use of the asymptotic expansion

|y − (x− x′)| = |x− x′| − y(x− x′)

|x− x′|
+O(

y2

|x− x′|
)

for |x− x′| large, one obtains that

w(x, v) =
1

4

∫ ∫
R3

|y − (x− x′)|F (x′, y, v, v′)dydx′dv′

≃ 1

4

∫ ∫
R3

(|x− x′| − y(x− x′)

|x− x′|
)F (x′, y, v, v′)dydx′dv′ (4.15)

=
1

4

∫ ∫
R2

(|x− x′| − (v + v′)(x− x′)

|x− x′|
)ψ0(v)ψ0(v

′)∇V (x′)∇vu(x
′, v′)dx′dv′.

Here and in the following, “≃” means the equality modulo some term in L2(R2).

Recall that since Ψ is the inverse Fourier transform of e2ξ
2
χ(ξ), one has∫

R
Ψ(y)dy = 1,

∫
R
yΨ(y)dy = 0

and that according to Lemma 4.1∫
R2

ψ0(v
′)∇V (x′)∇vu(x

′, v′)dx′dv′ = −⟨Wu,m0⟩ = 0. (4.16)
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The term related to |x− x′| on the right-hand side of (4.15) is equal to

1

4

∫ ∫
R2

(|x− x′|)ψ0(v)ψ0(v
′)∇V (x′)∇vu(x

′, v′)dx′dv′

=
1

4

(∫ x

−∞
−
∫ +∞

x

)
(x− x′)ψ0(v)∇V (x′)⟨∇v′u(x

′, ·), ψ0⟩v′dx′ (4.17)

Applying (4.16), one has for x ≤ 0∣∣∣∣x(∫ x

−∞
−
∫ +∞

x

)
ψ0(v)∇V (x′)⟨∇v′u(x

′, ·), ψ0⟩v′dx′
∣∣∣∣

=

∣∣∣∣2x∫ x

−∞
ψ0(v)∇V (x′)⟨∇v′u(x

′, ·), ψ0⟩v′dx′
∣∣∣∣

≤ C|x|
{∫ x

−∞
⟨x′⟩−2(ρ+1−s)dx′

} 1
2

ψ0(v)∥u∥H1,−s

≤ C ′⟨x⟩−ρ+s+ 1
2ψ0(v)∥u∥H1,−s (4.18)

Since ρ > 2 and s < ρ+1
2

, this proves that the term

x

(∫ x

−∞
−
∫ +∞

x

)
∇V (x′)⟨∇v′u(x

′, ·), ψ0⟩v′dx′

is bounded for x ≤ 0 and tends to 0 as x → −∞. The same conclusion also holds as
x→ +∞, using once more (4.16). In the same way one can check that(∫ x

−∞
−
∫ +∞

x

)
x′∇V (x′)⟨∇v′u(x

′, ·), ψ0⟩v′dx′

is bounded for x ∈ R. The other terms in (4.15) can be studied in a similar way. Finally
we obtain that

w(x, v) ≃ (C1(x) + vC2(x))ψ0(v) where (4.19)

C1(x) =
1

4

∫ ∫
R2

(x− x′ − v′

2
)sgn (x− x′)ψ0(v

′)∇V (x′)∇vu(x
′, v′)dx′dv′(4.20)

C2(x) = −1

8

∫ ∫
R2

sgn (x− x′)ψ0(v
′)∇V (x′)∇vu(x

′, v′)dx′dv′. (4.21)

It follows from Dominated Convergence Theorem that the limits

lim
x→±∞

Cj(x) = ±dj (4.22)

exist, where

d1 = −1

4

∫ ∫
R2

(x′ +
v′

2
)ψ0(v

′)∇V (x′)∇vu(x
′, v′)dx′dv′ (4.23)

d2 = −1

8

∫ ∫
R2

ψ0(v
′)∇V (x′)∇vu(x

′, v′)dx′dv′ = 0. (4.24)

This proves that

u ≃ βm0 − w ≃ (β − C1(x)− vC2(x))ψ0(v)
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modulo some terms in L2(R2). In particular, u ∈ H1,−s for any s > 1
2
. Since ρ > 2, one

can also check that C ′
j(x) belongs to L

1(R), j = 1, 2. �

Theorem 4.4. Assume ρ > 2. If u ∈ H1,−s, 3
2
< s < ρ+1

2
, satisfies the equation

(1 +G0W )u = 0, then u = 0.

Proof. Let χ1 ∈ C∞
0 (R) be a cut-off with χ1(τ) = 1 for |τ | ≤ 1 and χ1(τ) = 0 for

|τ | ≥ 2 and 0 ≤ χ1(τ) ≤ 1. Set χR(x) = χ1(
x
R
) for R ≥ 1 and uR(x, v) = χR(x)u(x, v).

Then one has

PuR =
v

R
χ′(

x

R
)u.

Taking the real part of the equality ⟨PuR, uR⟩ = ⟨ v
R
χ′( x

R
)u, uR⟩, one obtains∫ ∫

R2

|(∂v +
v

2
)u(x, v)|2χR(x)

2 dxdv = ⟨ v
R
χ′(

x

R
)u, uR⟩. (4.25)

According to Proposition 4.3, u can be decomposed as

u(x, v) = z(x, v) + r(x, v) (4.26)

where z(x, v) = −(C1(x) + vC2(x))ψ0(v) and C1, C2 and r are given in Proposition 4.3.
Since ψ0(v) is even in v, the term ⟨ v

R
χ′( x

R
)z, χRz⟩ is reduced to

2Re ⟨v
2

R
χ′(

x

R
)C1ψ0, χRC2ψ0⟩ (4.27)

= −Re

∫ ∫
R2

v2ψ0(v)
2χR(x)

2 d

dx
(C1(x)C2(x))dxdv (4.28)

→ −Re

∫ ∫
R2

v2ψ0(v)
2 d

dx
(C1(x)C2(x))dxdv = 0 (4.29)

as R → +∞, because d
dx
(C1(x)C2(x)) belongs to L

1 and C1(x)C2(x) → 0 as |x| → +∞.
The term |⟨ v

R
χ′( x

R
)r, uR⟩| can be estimated by

|⟨ v
R
χ′(

x

R
)r, uR⟩| ≤ CR−(1−s)∥u∥L2,−s∥⟨v⟩r∥L2

for 1
2
< s < 1. Similar estimate also holds for |⟨ v

R
χ′( x

R
)z, χRr⟩|. Summing up, we proved

that

lim
R→+∞

⟨ v
R
χ′(

x

R
)u, uR⟩ = 0 (4.30)

which implies that (∂v +
v
2
)u(x, v) = 0 a.e. in x and v. Since u ∈ H1,−s for any s > 1

2

and Pu = 0, it follows that u is of the form u(x, v) = D(x)e−
v2

4 for some D ∈ L2,−s(R)
verifying the equation

D′(x) +
1

2
V ′(x)D(x) = 0 (4.31)

in sense of distributions on R. It follows that D(x) = αe−
V (x)

2 a.e. for some constant α.
Hence

u(x, v) = αe−
v2

4
−V (x)

2 .
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In particular, one has ∫ R

0

∫
Rv

u(x, v)dvdx =
√
παR +O(1) (4.32)∫ 0

−R

∫
Rv

u(x, v)dvdx =
√
παR +O(1) (4.33)

as R → +∞. But according to Proposition 4.3, one has for some constant d1∫ R

0

∫
Rv

u(x, v)dvdx = − d1√
2
R + o(R) (4.34)∫ 0

−R

∫
Rv

u(x, v)dvdx =
d1√
2
R + o(R). (4.35)

as R → +∞. One concludes that α = d1 = 0. Therefore u = 0. �

Since G0W is a compact operator on H1,−s, 3
2
< s < ρ+1

2
, it follows from Theorem

4.4 that 1 +G0W is invertible and

(1 +G0W )−1 ∈ B(1,−s; 1,−s). (4.36)

Theorem 4.5. Let ρ > 2. One has:

N = {u ∈ H1,−s; (1 +G0W )u = βm0 for some β ∈ C,
3

2
< s <

ρ+ 1

2
}. (4.37)

In particular, N is of dimension one and

(1 +G0W )m = m0 (4.38)

Proof. To prove (4.37), it remains to prove the inclusion

N ⊂
{
u ∈ H1,−s; (1 +G0W )u = βm0 for some β ∈ C,

3

2
< s <

ρ+ 1

2

}
. (4.39)

The inclusion in the opposite sense is a consequence of Lemma 4.2 and Proposition 4.3.

Let u ∈ N and λ < 0. Then u ∈ H1,−r for r > 1 and r close to 1 and P0u = −Wu ∈
L2,ρ+1−r. By Corollary 2.2, the resolvent R0(λ) can be decomposed as

R0(λ) = bw0 (v,Dx, Dv)(−∆x − λ)−1 + r0(λ) (4.40)

where
b0(v, ξ, η) = 2

3
2 e−v2−η2+2iv·ξ+2ξ2χ(ξ)

with χ a smooth cut-off around 0 with compact support, and r0(λ) is uniformly bounded
as operators in L2 for λ < a for some a ∈]0, 1[. One has

u+R0(λ)Wu = −λR0(λ)u = −λ
(
bw0 (v,Dx, Dv)(−∆x − λ)−1 + r0(λ)

)
u (4.41)

for λ < 0. Recall the following estimate for r0(λ) (see (2.85) in [21] ):

∥⟨x⟩−sr0(λ)⟨x⟩sf∥ ≤ C(∥f∥+ ∥H0f∥) (4.42)

for f ∈ D(H0), λ < a and s ∈ [0, 2], where H0 = −∆v + v2 −∆x. It follows from (4.42)
that

λr0(λ)u = O(|λ|), λ < 0, (4.43)
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in H1,−r.

Let ϕ ∈ S(R) such that
∫
R ϕ(x)dx = 1. Then

Π = ⟨·, ϕ⊗ ψ0⟩m0

is a projection on H1,−s for any s > 1
2
onto the linear span of m0. Set Π′ = 1 − Π.

The term Π′λbw0 (v,Dx, Dv)(−∆x − λ)−1u can be evaluated as follows. Making use of
the inequality

|e−a − e−b| ≤ |a− b|(e−a + e−b), a, b ≥ 0,

the quantity

|λΠ′bw0 (v,Dx, Dv)(−∆x − λ)−1u(x, v)|

=

√
|λ|
2

∣∣∣∣∫
R4

(e−
√

|λ||y−(x−x′)| − e−
√

|λ||y−(y′−x′)|)ϕ(y′)Φ(v, v′, y)u(x′, v′) dydy′dx′dv′
∣∣∣∣

is bounded by

|λ|
∫
R4

|x− y′|(e−
√

|λ||y−(x−x′)| + e−
√

|λ||y−(y′−x′)|)|ϕ(y′)Φ(v, v′, y)u(x′, v′)| dydy′dx′dv′.

The integral involving the term e−
√

|λ||y−(x−x′)| can be evaluated as follows:

|λ|
∫
R4

|x− y′|e−
√

|λ||y−(x−x′)||ϕ(y′)Φ(v, v′, y)u(x′, v′)| dydy′dx′dv′

≤ C1(1 + |x|)|λ|
∫
R3

e−
√

|λ||y−(x−x′)|∣∣Φ(v, v′, y)u(x′, v′)∣∣ dydx′dv′
= C2(1 + |x|)|λ|

∫
R3

e−
√

|λ||y−(x−x′)|∣∣ψ0(v)ψ0(v
′)Ψ(y − v − v′)u(x′, v′)

∣∣ dydx′dv′
≤ C3(1 + |x|)|λ|∥u∥L2,−r

×
{∫

R3

∣∣⟨x′⟩re−√|λ||y−(x−x′)|ψ0(v)ψ0(v
′)Ψ(y − v − v′)

∣∣2 dydx′dv′} 1
2

≤ C4(1 + |x|)1+r|λ|∥u∥L2,−r

{∫
R

∣∣⟨x′⟩re−√|λ||x′|∣∣2 dx′} 1
2

ψ0(v)

≤ C5(1 + |x|)1+r|λ|
3
4
− r

2∥u∥L2,−rψ0(v)

for some constants Cj. A similar upper-bound also holds for the integral involving the

term e−
√

|λ||y−(y′−x′)|. Putting them together, we obtain a point-wise upper-bound

|λ
(
Π′bw0 (v,Dx, Dv)(−∆x − λ)−1u

)
(x, v)| ≤ C(1 + |x|)1+r|λ|

3
4
− r

2ψ0(v)∥u∥L2,−r (4.44)

This proves that for 1 < r < 3
2
,

λΠ′bw0 (v,Dx, Dv)(−∆x − λ)−1u→ 0, as λ→ 0− (4.45)

in L2,−( 3
2
+r+ϵ), ϵ > 0. Applying Π′ to (4.41) and taking the limit λ→ 0−, we get

Π′(1 +G0W )u = 0. (4.46)
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This means that there exists some constant β ∈ C such that (1 +G0W )u = βm0. The
proof of (4.37) is complete.

Since 1+G0W is injective, one deduces from (4.37) that N is of dimension one. It is
clear that m ∈ N and (4.37) implies that

(1 +G0W )m = βm0 (4.47)

for some β ∈ C. Proposition 4.3 applied to m shows that m has asymptotic behavior

m(x, v) = (β ∓ d1 + o(1))ψ0(v), x→ ±∞
with d1 ∈ C given in Proposition 4.3. Comparing these relations with the trivial expan-
sion of m(x, v):

m(x, v) = (1 +O(⟨x⟩−ρ))ψ0(v)

for x→ ±∞, one concludes that β = 1 and d1 = 0, which prove (4.38). �

5. Low-energy expansion of the resolvent

Let Uδ = {z; |z| < δ, z ̸∈ R+}, δ > 0, and 3
2
< s < ρ+1

2
. Recall that (1 + G0W )−1

exists and is bounded on L2,−s. Since

1 +R0(z)W − 1√
z
G−1W = 1 +G0W +O(|z|ϵ) (5.1)

in L2,−s for z ∈ Uδ, 1 + R0(z)W − 1√
z
G−1W is invertible for z ∈ Uδ if δ > 0 is small

enough. Denote

D(z) =

(
1 +R0(z)W − 1√

z
G−1W

)−1

. (5.2)

If ρ > 2k + 2, one has

D(z) = D0 +
k∑

j=1

z
j
2Dj +O(|z|k+ϵ) (5.3)

in B(1,−s; 1,−s) for k + 3
2
< s < ρ+1

2
, where

D0 = (1 +G0W )−1 (5.4)

D1 = −D0G1WD0 (5.5)

D2 = (D0G1W )2D0 −D0G2WD0 (5.6)

It follows that
(1 +R0(z)W )−1 = D(z)(1 +M(z))−1 (5.7)

where M(z) = 1√
z
G−1WD(z). M(z) is an operator of rank one. In order to study the

invertibility of 1 +M(z), consider the equation

(1 +M(z))u = f, (5.8)

where f ∈ L2,−s is given and u = u(z) is to be determined. Take ϕ∗(x, v) = χ(x)ψ0(v)
with χ ∈ S(R) such that ∫

R
χ(x)dx = 1.
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Let Π0 = ⟨·, ϕ∗⟩m0. Then Π2
0 = Π0. Decompose f and u as f = f0 + f1 and u = u0 + u1

where f0 = Π0f , f1 = (1− Π0)f , and similarly for u. Equation (5.8) is equivalent with

u1 = f1 and (5.9)

C(z)(1 + ⟨M(z)m0, ϕ
∗⟩) = ⟨f, ϕ∗⟩ − ⟨M(z)f1, ϕ

∗⟩ (5.10)

where C(z) = ⟨u, ϕ∗⟩ is some constant to be calculated. If 1 + ⟨M(z)m0, ϕ
∗⟩ ̸= 0

for z ∈ Uδ , as we shall prove below, then C(z) is uniquely determined by (5.10).
Consequently, the equation (1 +M(z))u = f has a unique solution given by

u = C(z)m0 + f1. (5.11)

This will prove the invertibility of 1 +M(z) for z ∈ Uδ.

Let us now study

m(z) = 1 + ⟨M(z)m0, ϕ
∗⟩ (5.12)

for z ∈ Uδ. Applying (5.3) with k = 1 (we need here the condition ρ > 4), one obtains

⟨M(z)m0, ϕ
∗⟩ = i

2
√
z
⟨WD(z)m0,m0⟩ =

i

2
√
z

(
σ0 +

√
zσ1 +O(|z|

1
2
+ϵ)
)

(5.13)

where σj = ⟨WDjm0,m0⟩. By Theorem 4.5,

(1 +G0W )−1m0 = m. (5.14)

Consequently

σ0 = ⟨Wm,m0⟩ = 0 (5.15)

and

σ1 = ⟨(1 +G0W )−1G1W (1 +G0W )−1m0,Wm0⟩
= ⟨G1Wm, D∗

0Wm0⟩

Let J be the symmetry in velocity variable defined by J : g(x, v) → (Jg)(x, v) =
g(x,−v). Then J2 = 1 and

JPJ = P ∗, JWJ = −W and JP0J = P ∗
0 . (5.16)

It follows that (R0(z)W )∗ = JWR0(z)J , hence

(1 +G0W )∗ = J(1 +WG0)J. (5.17)

We derive that

D∗
0Wm0 = J(1 +WG0)

−1JWm0

= −J(1 +WG0)
−1Wm0

= −JW (1 +G0W )−1m0 = −JWm =Wm.

This shows

σ1 = ⟨G1Wm,Wm⟩. (5.18)
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Since G1 = 1√
z
(R0(z) − 1√

z
G−1 − G0) + O(|z|ϵ) in B(−1, s; 1,−s), s > 5

2
, noticing that

G−1Wm = 0, (1 +G0W )m = m0, one obtains for z = λ < 0

⟨G1Wm,Wm⟩ = − i√
|λ|

⟨R0(λ)Wm,Wm⟩+O(|λ|ϵ) (5.19)

= i
√

|λ|⟨R0(λ)m,Wm⟩+O(|λ|ϵ). (5.20)

Proposition 5.1. Assume ρ > 4. One has

⟨G1Wm,Wm⟩ = i lim
λ→0−

√
|λ|⟨R0(λ)m,Wm⟩ = 0. (5.21)

Proof. Let λ < 0 and Π′ be defined as in the proof of Theorem 4.5. Then ⟨R0(λ)m,Wm⟩ =
⟨Π′R0(λ)m,Wm⟩, since ⟨m0,Wm⟩ = 0. One has

R0(λ)m = (bw0 (v,Dx, Dv)(−∆x − λ)−1 + r0(λ))m (5.22)

in L2,−r for any r > 1
2
and it follows from (4.42) that√

|λ|r0(λ)m = O(
√

|λ|) (5.23)

in H1,−r. Let us evaluate
√
|λ|Π′bw0 (v,Dx, Dv)(−∆x − λ)−1m.√

|λ|Π′bw0 (v,Dx, Dv)(−∆x − λ)−1m(x, v)

=
i

2

∫
R4

(e−
√

|λ||y−(x−x′)| − e−
√

|λ||y−(y′−x′)|)ϕ(y′)Φ(v, v′, y)m(x′, v′) dydy′dx′dv′

=
i

2

∫
R4

(e−
√

|λ||y−(x−x′)| − e−
√

|λ||y−(y′−x′)|)ϕ(y′)Φ(v, v′, y)m0(v
′) dydy′dx′dv′

+
i

2

∫
R4

(e−
√

|λ||y−(x−x′)| − e−
√

|λ||y−(y′−x′)|)ϕ(y′)Φ(v, v′, y)(m(x′, v)−m0(v
′)) dydy′dx′

=
i

2

∫
R4

(e−
√

|λ||y−(x−x′)| − e−
√

|λ||y−(y′−x′)|)ϕ(y′)Φ(v, v′, y)(m(x′, v)−m0(v
′)) dydy′dx′

= O(
√
|λ||x|ψ0(v))

for (x, v) ∈ R2. The first term on the right-hand side of the second equality above
vanishes by first integrating with respect to x′ variable. In the last equality above, we
used the upper bound

|e−
√

|λ||y−(x−x′)| − e−
√

|λ||y−(y′−x′)|| ≤
√

|λ||x− y′|
(
e−

√
|λ||y−(x−x′)| + e−

√
|λ||y−(y′−x′)|

)
and the fact m−m0 = O(⟨x⟩−ρ)ψ0(v) to evaluate the integral. It follows that√

|λ|⟨Π′R0(λ)m,Wm⟩ = O(
√

|λ|), λ→ 0−

which finishes the proof of Proposition 5.1. �

Summing up, we proved that if ρ > 4, then m(z) = 1 + i
2
√
z
⟨WD(z)m0,m0⟩ verifies

m(z) = 1 +O(|z|ϵ), ϵ > 0, (5.24)
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for z ∈ Uδ. Therefore 1 +M(z) is invertible for z ∈ Uδ with δ > 0 small enough and
the solution u to the equation (1 +M(z))u = f is given by

u = f1 +
1

m(z)
(⟨f, ϕ∗⟩ − ⟨M(z)f1, ϕ

∗⟩)φ0

= f − ⟨f, ϕ∗⟩m0 +
1

m(z)
(⟨f, ϕ∗⟩ − ⟨M(z)(f − ⟨f, ϕ∗⟩m0), ϕ

∗⟩)m0

= f − 1

m(z)
⟨M(z)f, ϕ∗⟩m0. (5.25)

Taking notice that ⟨m0, ϕ
∗⟩ = 1, we proved the following

Proposition 5.2. Let ρ > 4. Then 1+M(z) is invertible in B(1,−s;−1, s), s > 3
2
, for

z ∈ Uδ. Its inverse is given by

(1 +M(z))−1 = 1− 1

m(z)
√
z
G−1WD(z). (5.26)

In addition, if ρ > 2k + 2 for some k ≥ 1, one has

(1 +M(z))−1 = 1− 1

m(z)
√
z
G−1W

(
D0 +

k∑
j=1

z
j
2Dj +O(|z|k+ϵ)

)
(5.27)

in B(1,−s; 1,−s) for k + 3
2
< s < ρ+1

2
, where Dj is given by (5.3).

Theorem 5.3. Let ρ > 4. Then there exists some constant δ > 0 such that if s > 5
2

R(z) =
i

2
√
z
⟨·,m⟩m+O(|z|−

1
2
+ϵ), z ∈ Uδ, (5.28)

in B(−1, s; 1,−s) for some ϵ > 0. In particular, P has no eigenvalues in Uδ. In addition,
the boundary values R(λ± i0) of R(z) exist in B(−1, s; 1,−s), s > 3

2
, for λ ∈]0, δ[ and

is Hölder continuous in λ ∈]0, δ[.
Proof. We see from the above calculation that (1 +M(z))−1 admits an asymptotic
expansion as z ∈ Uδ and z → 0. The existence of the asymptotics of the resolvent R(z)
follows from the equation

R(z) = D(z)(1 +M(z))−1R0(z) = D(z)

(
1− 1

m(z)
√
z
G−1WD(z)

)
R0(z). (5.29)

Let us calculate its leading term.(
1− 1

m(z)
√
z
G−1WD(z)

)
R0(z)

≡ − 1

m(z)z
G−1WD0G−1 +

1√
z

(
G−1 −

1

m(z)
(G−1WD0G0 +G−1WD1G−1)

)
.

Here and in the following, “≡” means equality module some term which is of order
O(|z|− 1

2
+ϵ) in B(−1, s; 1,−s), s > 5

2
. Recall that G−1 =

i
2
⟨·,m0⟩m0, D0 = (1 +G0W )−1

and (1 +G0W )−1m0 = m. It follows that

G−1WD0G−1 =
i

2
⟨Wm,m0⟩⟨·,m0⟩m0 = 0. (5.30)



THE KRAMERS-FOKKER-PLANCK EQUATION 21

Consequently

D(z)

(
1− 1

m(z)
√
z
G−1WD(z)

)
R0(z)

≡ 1√
z
D0

(
G−1 −

1

m(z)
(G−1WD0G0 +G−1WD1G−1)

)
Noticing that m(z) = 1 +O(|z|ϵ), one obtains

R(z) ≡ 1√
z
D0G−1(1−W (D0G0 +D1G−1)) (5.31)

=
i

2
√
z
⟨((1−W (D0G0 +D1G−1))·,m0⟩m

Recall that D∗
0Wm0 = Wm and ⟨G1Wm,Wm⟩ = 0 (see Proposition 5.1). One can

simplify the leading term as follows:

⟨(1−W (D0G0))·,m0⟩
= ⟨·,m0⟩+ ⟨·, G∗

0D
∗
0Wm0⟩ = ⟨·,m0⟩+ ⟨·, G∗

0Wm⟩
= ⟨·,m0⟩+ ⟨·, JG0JWm⟩ = ⟨·,m0⟩ − ⟨·, G0Wm⟩ = ⟨·,m⟩

and

⟨WD1G−1·,m0⟩

= −⟨WD0G1WD0G−1·,m0⟩ = − i

2
⟨·,m0⟩⟨WD0G1Wm,m0⟩

=
i

2
⟨·,m0⟩⟨G1Wm, D∗

0Wm0⟩ =
i

2
⟨·,m0⟩⟨G1Wm,Wm⟩ = 0.

This finishes the proof of (5.28). (5.28) implies that R(z) has no poles in Uδ, hence P has
no eigenvalues there. The last statement of Theorem 5.3 is a consequence of Corollary
2.2 (b) and (5.29), since the boundary values D(λ± i0) exist in B(1,−s; 1,−s), s > 3

2
,

for λ ∈]0, δ[ and are continuous in λ. �

6. Large time asymptotics of solutions

The following high energy resolvent estimate is proved in [21].

Theorem 6.1. Let n ≥ 1 and assume (1.4) with ρ ≥ −1. Then there exists C > 0 such

that σ(P ) ∩ {z; |Im z| > C,Re z ≤ 1
C
|Im z| 12} = ∅ and

∥R(z)∥ ≤ C

|z| 12
, (6.1)

and

∥(1−∆v + v2)
1
2R(z)∥ ≤ C

|z| 14
, (6.2)

for |Im z| > C and Re z ≤ 1
C
|Im z| 12 .
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Let S(t) = e−tP , t ≥ 0, be the one-parameter strongly continuous semigroup gener-
ated by −P . Then one can firstly represent S(t) as

S(t)f =
1

2πi

∫
γ

e−tzR(z)fdz (6.3)

for f ∈ L2(R2) and t > 0, where the contour γ is chosen such that

γ = γ− ∪ γ0 ∪ γ+

with γ± = {z; z = ±iC + λ ± iCλ2, λ ≥ 0} and γ0 is a curve in the left-half complexe
plane joining −iC and iC for some C > 0 sufficiently large, γ being oriented from −i∞
to +i∞.

Remark that under the condition (1.4) with ρ > 0, P has no eigenvalue on the
imaginary axis ([9]). Making use of analytic deformation and Theorem 5.3, one obtains
from (6.1) that

⟨S(t)f, g⟩ = 1

2πi

∫
Γ

e−tz⟨R(z)f, g⟩dz, t > 0, (6.4)

for any f, g ∈ L2,s with s > 5
2
. Here

Γ = Γ− ∪ Γ0 ∪ Γ+

with

Γ± = {z; z = δ + λ± iδ−1λ2, λ ≥ 0}

for δ > 0 small enough and

Γ0 = {z = λ+ i0;λ ∈ [0, δ]} ∪ {z = λ− i0;λ ∈ [0, δ]}.

Γ is oriented from −i∞ to +i∞.

Proof of Theorem 1.1. By (6.4), one has for f, g ∈ L2,s(R2) with s > 5
2

⟨S(t)f, g⟩ =
1

2πi

(∫
Γ0

+

∫
Γ−

+

∫
Γ+

)
e−tz⟨R(z)f, g⟩ dz

≡ I1 + I2 + I3.

For δ > 0 appropriately small and fixed, it follows from Theorem 6.1 that there exist
some constants C, c > 0 such that

|Ij| ≤ Ce−ct∥f∥ ∥g∥, t > 0, (6.5)

for j = 2, 3. Set

F−1 =
i

2
⟨·,m⟩m.
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Applying Theorem 5.3, one has

I1 =
1

2πi

∫ δ

0

e−tλ⟨(R(λ+ i0)−R(λ− i0))f, g⟩ dλ

=
1

πi

∫ δ

0

e−tλλ−
1
2 ⟨(F−1 +O(λϵ))f, g⟩ dλ

=
1

πi

∫ +∞

0

1√
λ
e−tλ⟨F−1f, g⟩ dλ+O(t−

1
2
−ϵ)∥f∥0,s∥g∥0,s

=
1

i
√
πt

⟨F−1f, g⟩+O(t−
1
2
−ϵ)

(6.6)

as t→ +∞ for some ϵ > 0. Using the formula for F−1, we arrive at

S(t) =
1

(4πt)
1
2

⟨·,m⟩m+O(t−
1
2
−ϵ), t→ +∞ (6.7)

as operators in B(0, s; 0,−s) with s > 5
2
. Theorem 1.1 is proved. �
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