
HAL Id: hal-01654706
https://hal.science/hal-01654706

Submitted on 4 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An evaluation of real-time RGB-D visual odometry
algorithms on mobile devices

Vincent Angladon, Simone Gasparini, Vincent Charvillat, Tomislav Pribanić,
Tomislav Petković, Matea Ðonlić, Benjamin Ahsan, Frédéric Bruel

To cite this version:
Vincent Angladon, Simone Gasparini, Vincent Charvillat, Tomislav Pribanić, Tomislav Petković, et
al.. An evaluation of real-time RGB-D visual odometry algorithms on mobile devices. Journal of Real-
Time Image Processing, 2019, 16 (5), pp.1643-1660. �10.1007/s11554-017-0670-y�. �hal-01654706�

https://hal.science/hal-01654706
https://hal.archives-ouvertes.fr


An Evaluation of Real-Time RGB-D Visual Odometry
Algorithms on Mobile Devices

Vincent Angladon1,2, Simone Gasparini1, Vincent Charvillat1, Tomislav Pribanić3,
Tomislav Petković3, Matea Ðonlić3, Benjamin Ahsan2, and Frédéric Bruel2

1Université de Toulouse; INPT – IRIT; 118 Route de Narbonne, F-31062 Toulouse,
France,

{vincent.angladon, simone.gasparini, vincent.charvillat}@irit.fr
2Telequid; Toulouse, France,

{benjamin.ahsan, frederic.bruel}@telequid.fr
3Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3,

HR-10000 Zagreb, Croatia,
{tomislav.pribanic, tomislav.petkovic.jr, matea.donlic}@fer.hr

Abstract
We present an evaluation and a comparison of different Visual Odometry algorithms, selected to be
tested on a mobile device equipped with a RGB-D camera. The most promising algorithms from the
literature are tested on different mobile devices, some equipped with the Structure Sensor. We evaluate
the accuracy of each selected algorithm as well as the the memory and CPU consumption, and we show
that even without specific optimization, some of them can provide a reliable measure of the device
motion in real time.

Index Terms— RGB-D Camera; Visual Odometry; Benchmark; Mobile device

Todo list

1 Introduction
In the past years, we have witnessed the development of consumer grade depth sensors such as the
Kinect for Xbox 360 (KinectSL). Although these sensors were initially meant for gaming and enter-
tainment, they found a large interest in various communities, such as computer vision, robotics, and
biomechanic communities, as they can provide 3D data at relatively low cost. Khoshelham et al . [24]
evaluated experimentally the accuracy of this technology and proposed a noise model which explains
why the depth error grows quadratically with the distance to the objects. The accuracy also depends
on the tilt of the surface normal w.r.t. the camera viewpoint [33] and the properties of the object
material.

In an escalating trend, manufacturers are now focusing their efforts on reducing the size of these
sensors in order to offer mobile devices the possibility to better sense and understand the world around
them. PrimeSense proposed first the now discontinued Capri 1.25 embeddable depth sensor, which was
followed by the Structure Sensor [37] and now the Structure Core from Occipital both. Other companies
including Intel R©, Mantis Vision, SoftKinectic, Inuitive and Oriense Tech, started at the same time to
follow this direction. Some early prototypes and products with integrated depth sensors were already
released, such as the Google Tango Peanut and Yellowstone devices [16], the Dell Venue 8 700 serie tablet,
Intel R© RealSense TM Smartphone, and the now discontinued Aquila tablet from Mantis Vision.

1



RGB-D
frame

Pre-
processing

Registration

Model or
previous

(key)frame

Post-
processing

Previous
camera poses

Camera
pose

Camera
pose

Figure 1: The different components of a VO pipeline.

Embedding depth sensors on everyday mobile devices can foster a whole new range of consumer
applications, from 3D reconstruction to augmented and virtual reality. While these problems have
been thoroughly addressed in the literature using desktop computers, the limited computational power
and hardware of mobile devices set new challenges for adapting or designing new and more efficient
algorithms able to process the depth data of these sensors. In this paper we propose a benchmark
and an evaluation of state-of-the-art Visual Odometry (VO) algorithms suitable for running in real
time on mobile devices equipped with an RGB-D sensor. Visual odometry is the task of estimating
the 3D pose (i.e., its position and orientation) of the camera from visual data [34] and, more in
general, from RGB-D data exploiting the 3D information provided by depth sensors [32]. VO is a
key component for any computer vision and robotic application requiring 3D reconstruction of the
surrounding environment, such as augmented reality or mobile navigation. It is then interesting to
evaluate the performances of current algorithms on mobile settings. In particular, we selected five
real-time VO algorithms among the most accurate in the literature and for which an implementation
was available. We first evaluated and compared their performances in terms of accuracy and resource
consumption on desktop settings using a standard dataset for the evaluation of RGB-D VO algorithms
[57]. We then performed a similar evaluation on mobile settings, specifically on a Structure Sensor [37].
To this purpose we recorded a new dataset with various luminosity levels and assessed the accuracy as
well as the memory and CPU usage of each of the selected algorithm. Although similar benchmarks
can be found in the literature for desktop environment [31, 13], to the best of our knowledge this is the
first attempt at benchmarking state-of-the-art algorithms on a mobile device equipped with a depth
sensor.

The paper is organized as follows: Section 2 gives a brief background on VO and a taxonomy of
the different approaches. Section 3 reviews some related works on benchmarking VO algorithms, while
Section 4 briefly introduces the methods used for this evaluation. Section 5 presents the process of
algorithms selection, followed by a mobile benchmark in Section 6. Finally, Section 8 concludes the
paper with some final remarks and perspectives.

2 Visual odometry
Visual Odometry is an incremental process which estimates the 3D pose of the camera from visual
data. The latest visual frame is registered against previous data to compute a rigid body transformation
between the current and the previous pose. Similarly to wheel odometry, the accuracy of the current
pose depends on the reliability of the previous pose. Therefore VO is prone to accumulation of errors
and the resultant trajectory can only be considered locally consistent.

A VO algorithm can be qualified small or large-baseline depending on its ability to handle large
changes of camera viewpoint between consecutive frames. Large camera displacement can occur during
fast camera movements or with a low camera frame rate. In this paper, we will focus on small-baseline
RGB-D VO using Primesense-based depth sensors with the assumption of static environments.

Generally, a VO algorithm can be seen as a registration procedure with a preprocessing and a post-
processing step as depicted in Figure 1. The depth maps provided by depth sensors are noisy and can
have missing values due to occlusions. Some VO implementation [32, 46] add a filtering preprocessing
step in order to enhance the depth maps and improve the registration step. To this end, bilateral filters
[59] can be applied to the raw depth data to reduce the noise and the missing data, yet preserving the
discontinuities.

The registration process takes as input the latest RGB-D frame and a previous frame (or a model)
to compute the current pose of the camera. There are different strategies for aligning two frames. In

2



the frame-to-frame matching strategy [23, 56], the current RGB-D frame is aligned with the previous
one. This strategy quickly leads to a large drift of the estimated trajectory as the pose errors are
cumulated. To mitigate this effect, the frame-to-keyframe strategy samples the sequence of RGB-D
frames into keyframes, usually having a larger spatial displacement among them [20, 35, 36]. The
current frame is then aligned w.r.t. to the previous keyframe, until a new keyframe is selected. The
selection of the keyframe is important in order to have an homogeneous sampling of the scene, and
it often relies on an heuristic evaluating the image quality (e.g . no motion blur) or the redundancy
of the visual information. For example, in [20] a threshold on the number of matched visual features
is used as an indicator of the overlapping part of the scene between the frames and of the movement
of the camera. Other methods [37] uses the IMU sensor and a threshold on the estimated rotations
and translations to select the keyframe. Another strategy, called frame-to-model, consists in building
a model of the explored scene and using this model to align the new frames. The model can be a
sparse 3D point cloud, as e.g . for CCNY [11], or a voxel grid of TSDF (Truncated Signed Distance
Function) for KinectFusion [32]. For the latter model, a synthetic view of the surface is generated,
usually in the form of a depth map at a predicted camera pose to perform the registration. This
strategy significantly reduces the small-scale drift and it is more accurate than the frame-to-keyframe
strategy [32]. Moreover, frame-to-model strategy allows to recover after tracking failures and relocalize
the device w.r.t. the model [6]. On the other hand, they still suffer from large-scale drift and may
require a heavy memory usage, which can be reduced by using only a subset of the model. For example,
CCNY [11] subsamples the 3D point cloud and Kintinuous [60] only loads the part of the scene taken
into consideration. Aligning a frame to a model requires more computation than aligning a frame with
another one. To speed up the registration process, it is necessary to take into consideration only the
part of the model that has an overlap with the current frame. A common approach for the voxel grid
of TSDF is to generate a depth map from the model at a predicted pose and to compare the current
frame with this depth map [32, 38]. We refer the reader to [31] for more detailed information on the
different registration methods.

On some (key)frame-to-frame VO approaches [64], a local optimization post-processing step is
added to refine the latest camera pose and reduce the trajectory drift. It cannot be applied on frame-
to-model strategies, unless the model can be updated when the previous camera poses are refined by
the optimization process.

During the registration process, only two frames are taken into account in order to efficiently com-
pute the camera pose at the current time with a closed form expression. The idea is that the current
pose could have been computed with earlier frames than the previous (key)frame. The local optimiza-
tion process takes several (key)frames as input of an optimization problem, often a windowed bundle
adjustment problem, and returns refined camera poses [64]. When this optimization is performed on
the whole trajectory, the purpose is to ensure a global consistency of the trajectory, and the algorithm
enters in the visual Simultaneous Localization and Mapping (vSLAM) category. As the name suggests,
vSLAM algorithms aim at building a map of the environment and, at the same time, localizing the
device. Typically, this is achieved thanks to a place recognition module that can identify previously
visited areas and perform the loop closure, thus ensuring global consistency of the map and the tra-
jectory. VO can be considered as vSLAM without place recognition (and, hence, unable to perform
loop closure). We refer the reader to [52] for a more detailed survey on camera pose optimization for
monocular VO.

A taxonomy for VO registration approaches has been proposed in [13], classifying the approaches
into three main categories: image-based, depth-based and hybrid-based (see Figure 2). In the following
we briefly summarize each category w.r.t. the methods evaluated in this paper. We also recommend
Yousif et al . review [62] on RGB-D VO algorithms which includes monocular VO and vSLAM algo-
rithms.

The image-based methods rely on the information of the RGB image [20, 23, 45] and it can be
further divided into feature-based methods and direct methods. The formers are sparse methods as
they use local image features to register the current frame w.r.t. a previous (key)frame. On desktop
computers, SIFT [29] and SURF [3] features are commonly used for their high robustness [12]. On the
other hand, their computational cost makes them unsuitable for mobile devices Hudelist et al . [21],
and other computationally cheap features such as BRISK [27], BRIEF [8] and ORB [49] must be used.
These methods perform well in highly textured scenes while they tend to fail in poor light conditions

3



RGB-D Visual
odometry

Image based

(sparse)
Visual features

(dense)
Direct

Depth based

(sparse)
3D features

(dense)
ICP

Hybrid

Joint-
optimization

Two-stage

Figure 2: Summary of the three classes taxonomy of registration approaches proposed for RGB-D VO.

and under fast motion of the camera, as the features are not robust to motion blur. Moreover, the
features are generally located at objects boundaries where the depth information provided by sensors
based on Structured Light technology [37] is the least reliable, thus affecting the registration accuracy.
The direct methods [23] are instead dense method, as the registration uses all the pixels of the images.
Under the assumption that the luminosity of the pixels is invariant to small viewpoint changes, they
estimate the camera motion that maximizes a photo-consistency criterion between the two considered
RGB-D frames. These methods works even in poor light conditions and low textured scenes, and they
can handle object occlusions. On the other hand, the viewpoint displacement between the considered
frames must be small, thus limiting the range of application to smooth and relatively slow movements.

The depth-based algorithms rely mostly on the information of the depth images [56, 45, 35]. The
sparse 3D feature-based methods rely on the extraction of salient features on the 3D point clouds.
The rigid body transform can be computed by matching the descriptors associated to the features
extracted in two frames. As for the feature-image-based algorithms, the majority of these features
are located at objects boundaries and areas with high curvatures. Again, due to the limitations of
the Structured Light technology, the depth values have low accuracy or can be missing in these areas,
leading to bad repeatability of the features and poor registration accuracy. The Iterative Closest Point
(ICP) methods refer to a class of registration algorithms which try to iteratively minimize the distance
between two point clouds without knowing the point correspondences [9, 5]. The alignment error is
computed with a given error metric such as point-to-point or point-to-plane distance, and the process
is repeated until this error converges or the maximal number of iterations is reached. Each iteration
improves the point clouds alignment, which in return enables the heuristic association function to
output more correct matches, and so on. Weighting strategies [50] are used for robust registration and
filtering outliers due to sensor noise or the non overlapping parts of the 3D point clouds. Similarly to
the direct-image-based methods, ICP converges well under the assumption of small viewpoint changes,
as it avoids local minima and converges to desired solution. Coarse-to-fine approach have also been
proposed to improve the convergence [32, 44]. For an exhaustive review of ICP algorithms, we refer
the reader to [39]. Depth-based algorithms can work well in poor light conditions as they rely on the
3D data, but on the other hand they might fail with scenes having low structure (e.g . only few planar
surfaces).

Finally, hybrid algorithms try to combine the best of the two worlds in order to handle scenes
having either low structure or little texture [43, 36]. They can be divided into two-stage methods and
joint-optimization methods. The two-stage methods use one approach (usually a sparse method) to
compute an initial guess of the registration, and use a second approach (usually a dense method) to
refine the transformation or just compute it in case of failure of the first approach [11]. The joint-
optimization strategy consists in designing an optimization problem which combines equations from
depth-based and image-based approaches [43, 60].

4



2.1 VO on mobile devices
Developing real-time VO algorithms is more challenging on mobile devices due to their limited memory
and processing power. Fine optimizations can be performed using SIMD instructions of the embedded
CPU and OpenGL ES shaders can be used for processing parallelizable tasks on the GPU. However this
highly increases the complexity of the implementation and requires low-level programming skills. On
modern mobile devices, one can also take advantage of the Inertial Motion Unit (IMU), and eventually
integrate the estimated rotation as a prior knowledge into the registration algorithm.

Regarding monocular VO algorithms, Schöps et al . [53] achieved a 30 FPS tracking performance
with a partial porting of the semi-dense LSD-Slam algorithm on a Sony Xperia Z1 phone. No code was
publicly released though. Commercial solutions also emerged in the past years, proposed by 13th Lab,
Metaio and RealityCap, before their recent acquisition by Occulus VR, Apple and Intel R© respectively.
The Google Project Tango [16] also proposes a proprietary monocular Visual and Inertial Odometry
(VIO) algorithm. It is designed for dedicated hardware using in particular a fisheye camera such as
the Tango Yellowstone tablet and the Intel RealSense R© smartphoneTM.

Lately, with the recent development of depth sensors for mobiles such as the Structure Sensor [37]
and Mantis Vision MV4D [30], new proprietary RGB-D VO algorithms for mobile devices have been
developed and they are available through their relevant SDKs. Presumably, these advances will lead
to more interests in the academic research on mobile RGB-D VO, even if developing algorithms that
fully exploit the low level hardware capabilities of the device is challenging. For example, Brunetto
et al . proposed a RGB-D vSLAM algorithm based on SlamDunk which can run on a Samsung Galaxy
Tab Pro 10.1 tablet [7], but due to the lack of low level optimizations it could only reach 10 FPS.

Visual Odometry is however an important component to enable computer vision applications on
mobile devices. Klingensmith [25] proposed a real-time mapping solution for indoor scenes that takes
advantage of the depth sensor and the VIO algorithm by Google Tango. Instead of allocating a fixed
grid of 3D voxels as in the traditional approaches, he creates on demand chunks of voxels according
to the observations of the scene, which is appropriate for indoor environments as they contain a lot
of free space. Schöps [54] addresses the outdoor mapping problem using the same hardware, which
prevents the use of the depth sensor. With the help of the provided VIO algorithm he computes and
filters depth maps from the fisheye camera and fuse them with a TSDF approach too in order to
reconstruct the scene. Live 3D reconstruction is a very challenging problem which requires to perform
the VO and the mapping in real time. Prisacariu et al . [40, 41] jointly estimate the pose and the
visual hull of the model with a probabilistic framework. The system is robust to motion blur, lack of
texture and can run at 20 FPS on an iPhone 5, but the resulting model is coarse and cannot contain
concavities. Tanskanen et al . [58] propose a monocular visual features tracking approach combined
with a multi-resolution stereo depth map estimation. The tracking runs at 15-30 FPS on a Samsung
Galaxy S3 but the generated dense 3D point cloud is only refreshed at 0.3-0.5 FPS while being GPU
optimized. Kolev et al . [26] improve the accuracy of the reconstructed model with a surfel approach
combined with weighted depth maps, but at the cost of a lower frame rate. Ondrúška et al . [38] propose
a faster solution (25 FPS on an Apple iPhone 6) which can generate medium accuracy 3D reconstructed
models. They use a direct method for the tracking, compute the depth maps by dense stereo matching
and perform the mapping with a TSDF approach.

3 Related works
Assessing and comparing the quality and the accuracy of VO algorithms is an important task. This
work relies on previous benchmarks that have been published in the last years, mostly in the robotics
community. Sturm et al . [57] introduced and publicly released the TUM dataset, a collection of different
RGB-D image sequences meant to benchmark the SLAM and visual odometry algorithms. Even if in
the paper no algorithms evaluation is carried out, it has become a seminal work as the dataset has
become a sort of standard for benchmarking new algorithms in the spirit of other computer vision
datasets, such as e.g . the KITTI dataset [14].

Morell-Gimenez et al . [31] performed a comparison of registration methods on scenes mapping and
object reconstruction scenarios. For the scenes mapping scenario, which is our topic of interest, they
evaluated five different algorithms: DVO [23], KinFu (an implementation of KinectFusion [32]), an

5



ICP approach, an imaged-based visual feature approach using a combination of FAST [48] keypoints
and BRIEF [8] descriptors, and an hybrid two-stage approach combining the two last ones where the
refinement step is provided by the ICP algorithm. The last three approaches were implemented by
Morell-Gimnenez et al . using the Point Cloud Library [51]. The results show that DVO and Kinfu are
the most accurate algorithms on the “fr1” scenes of the TUM dataset. The paper does not report any
information about the computational time and the memory consumption as the main objective of the
work was to assess the quality and the accuracy of each method.

Handa created the ICL-NUIM dataset [18] composed of synthetic images of indoor scenes generated
with POVRay. Although the main focus of the dataset is to provide a method to benchmark the
surface reconstruction accuracy, it has been used to evaluate different VO algorithms, thanks to the
ground truth provided by the synthetic data. The following algorithms are compared on a desktop
environment: DVO [23], Fovis [20], RGB-D [55], ICP KinectFusion flavour [32] and Kintinuous [60].
The evaluation on all scenes from ICL-NUIM with the ATE metric showed a clear advantage to
KinectFusion ICP registration while Fovis gives the less accurate results.

More recently, Fang and Zhang [13] compared different open-source VO implementations: Libviso2
[15], Fovis [20], DVO [23], FastICP, Rangeflow [22], 3D-NDT [1], CCNY [11] and DEMO [63]. The
evaluation is performed on two scenes of the TUM dataset and on a challenging dataset created by the
authors with illumination changes, fast motion and long corridors. The metrics taken into consideration
are the accuracy of the estimated camera motion and the performances of the algorithms (runtime
and CPU usage). The authors [13] provide an analysis of the success and failure cases of the different
algorithms w.r.t. the environment. In particular the study shows that there is no algorithm performing
well in all environments and some guidelines to choose a VO algorithm depending on the environment
are proposed. For example, when the scene is well illuminated, image-based and hybrid methods are
recommended, whereas depth-based methods are only really interesting in low light environments.

The evaluation we are proposing in this paper is similar in spirit to the mentioned works, but
our comparison is focused on the evaluation of algorithms for the mobile experiment, in which com-
putational cost and memory consumption are strong constraints. To the best of our knowledge this
is the first attempt at benchmarking state-of-the-art algorithms on mobile devices equipped with a
depth sensor. Our benchmark is similar in spirit to [13], but aimed at testing VO algorithm on mobile
devices. For this reason, we tested some algorithms that were not considered in [13] and, due to our
needs, we considered both the CPU and memory usage of the algorithms (whereas [13] only assesses
the CPU usage).

4 Tested visual odometry algorithms
For our evaluation we selected the algorithms to test based on two main criteria. Firstly, we only
considered the methods that performed better in other benchmark studies (see Section 3). Secondly,
the most important criteria was the availability of the code (or a SDK in the case of [37]), so that it
could be ported and tested on a mobile device. According to these criteria we selected DVO [23], Fovis
[20], MRSMAP [56], the 3 algorithms of the OpenCV RGB-D module [46] , and the VO algorithms that
come with the Occipital sensor [37]. For brevity purpose, we denote OCV (ICP, RGB-D, RgbdICP)
the three OpenCV algorithms we took into consideration. As pointed out in Section 3, only DVO and
Fovis were considered for the benchmark in [13]. Table 1 provides a classification of the considered
methods according to the taxonomy described in Section 2, and Table 2 collects more technical details
about the code available for each method.

In the remaining part of this section we briefly review the algorithms considered for our analysis.
For each algorithm we present a block diagram of the main pipeline. In the diagrams, blocks that are
vertically aligned in the pipeline are blocks that can potentially run in parallel.

4.1 Fovis
Fovis [20] is a fast visual odometry library developed for micro aerial vehicles (MAV). The visual odom-
etry (frontend) represented by the Figure 3 is performed on the MAV and the global consistency of the
trajectory (backend) is enforced off-board. The registration is feature-based with a frame-to-keyframe
matching strategy, employing FAST keypoints computed on multiple scales and on subdivisions of the

6



Algorithm Method class Registration Matching Strategy Local
optimization

Fovis [20] Image-based Feature-based frame-to-keyframe No
OCV RGB-D [45] Image-based Direct frame-to-frame No

DVO [23] Image-based Direct frame-to-frame No
OCV ICP [44] Depth-based ICP frame-to-frame No
MRSMAP [56] Depth-based Feature-based frame-to-frame No

STTracker depth [35] Depth-based ICP frame-to-keyframe Unknown
STTracker color [36] Hybrid Unknown frame-to-keyframe Unknown

OCV RgbdICP [43] Hybrid Joint-optimization frame-to-frame Nostrategy

Table 1: Overview of the different approaches proposed in the evaluated VO algorithms.

Algorithm Release License ROS SW HW
year binding dependencies dependencies

Fovis [20] 2011 GPLv3 Yes Eigen (x86 SSE2)
OCV RGB-D [45] 2012 MIT No (Eigen) No

DVO [23] 2013 GPLv3 Yes Eigen, OpenCV, (PCL) x86 SSE2
OCV ICP [44] 2012 MIT No (Eigen) No

MRSMAP [56] 2012 BSD Yes GSL, TBB, OpenCV, NoBoost, PCL
STTracker depth [35] 2014 Closed No No iPhone, iPad
STTracker color [36] 2014 Closed No No iPhone, iPad
OCV RgbdICP [43] 2012 MIT No (Eigen) No

Table 2: Technical overview of the evaluated VO algorithms. Dependencies in brackets are optional.

images to ensure a uniform repartition of the keypoints over the image. Each feature is assigned to
a descriptor containing the pixel values of the 9 × 9 patch centred in the keypoint. The descriptors
are matched across frames using a L1 distance. The matches are then validated using the associated
3D points: for each frame, the distances among the associated 3D points are calculated and compared
with those of the other frame. This allow to retain the inlier features used to estimate the rigid body
motion with Horn et al . method [19]. Several refinement are then applied to improve the robustness
of the computed camera pose.

4.2 OpenCV RGB-D module
Maria Dimashova developed the OpenCV RGB-D module which is available in the opencv_contrib
repository [46]. It offers a visual odometry algorithm which comes into three flavours : ICP, RGB-D
and RgbdICP.

OCV RGB-D Figure 4 illustrates the RGB-D flavour [45], which is based on a direct image-based
approach inspired by Steinbrucker et al . works [55] with a frame-to-frame matching strategy. Two
hypotheses are made. First, the light intensity of a 3D point is considered to be constant among
successive frames. Then, the angular and translational speed are supposed to be constant between
two frames. The algorithm finds the transformation relating two frames by minimizing the difference
in intensity between the warped current RGB-D frame and the previous one. The first hypothesis
enables to define the objective function as the sum of the square pixel intensities between the back-
projected frame and the previous one. Thanks to the second hypothesis, it is then possible to reduce
the minimization problem to a linear least square problem. Finally, to ensure better robustness with
large motion change, the authors apply a coarse to fine approach by working on an image pyramid.

7



RGB
image

Depth
image

Image
smoothing

FAST
keypoints
compu-
tation

Robust
keypoints
association

Relative
pose

estimation

Keyframe
selection

Camera
pose

3D key-

points

Keypoints

and pose

Figure 3: The pipeline of the Fovis algorithm. The preprocessing and registration steps are displayed
in orange and blue respectively.

Depth
image

RGB
image

Bilateral
filtering

Compute
image

pyramid

Compute
image

derivatives

Compute
point cloud
pyramid

Build warped
image differ-

ence minimiza-
tion system

Least
square
solving

Camera
pose

Previous
camera
pose

Repeat on each

pyramid level

Figure 4: The pipeline of the OCV RGB-D algorithm.

OCV ICP The ICP flavour [44], shown in Figure 5, is inspired by the point cloud registration
algorithm of KinectFusion [32]. KinectFusion ICP variant is based on a projection based heuristic
association function with a point-to-plane error metric. Assuming a small rotation between the two
frames, the minimization of the point-to-plane error is reduced to a linear least square problem. A
coarse-to-fine scheme is used to speed up the point cloud registration. It requires the computation of
image pyramids for the depth frames and the normal maps. A notable difference with KinectFusion
point cloud registration is that OpenCV is frame-to-frame whereas the other is frame-to-model.

OCV RgbdICP We have seen previously OCV RGB-D and OCV ICP were reduced to linear least
square problems. As illustrated in Figure 6, the joint-optimization hybrid approach of OCV RgbdICP
takes into consideration the concatenation of the equations of the two problems and solves it. It is the
same scheme Whelan proposed with his RGB-D and ICP Integration [60].

4.3 Dense Visual Odometry
Dense Visual Odometry (DVO) [23] depicted in Figure 7 is a direct image-based method with a frame-
to-frame matching strategy. As in Steinbrucker et al . works [55] described earlier, a residual is defined
with the difference of pixel intensities between the registered RGB-D frames. The minimization is per-
formed with a coarse-to-fine approach in a probabilistic way, defining a likelihood of the transformation
given the residual, and with the use of a sensor model and a motion model. The sensor model takes
the form of a weighting function giving more or less importance to a given residual which partially
originates from sensor noise. The motion model expresses the probability of a transformation. It can
depends on IMU data if available. The proposed motion model assumes a constant velocity in order
to avoid jitter in the estimated trajectory.

8



Depth
image

Bilateral
filtering

Compute point
cloud pyramid
and normal

map pyramids

Build point-
to-plane error
minimization

system

Least
square
solving

Camera
pose

Previous
camera
pose

Repeat on each

pyramid level

Figure 5: The pipeline of the OCV ICP algorithm.

Depth
image

RGB
image

Bilateral
filtering

Compute
image

pyramid

Compute
image

derivatives

Compute
point cloud
and normal

map pyramids

Build point-
to-plane error
minimiza-
tion system

Build warped
image differ-

ence minimiza-
tion system

Concatenate
equations
and least
square
solving

Camera
pose

Previous
camera
pose

Repeat on each

pyramid level

Figure 6: The pipeline of the OCV RgbdICP algorithm.

4.4 MRSMAP VO
Stückler et al . [56] proposed a 3D feature-based approach with a frame-to-frame matching strategy in
which each frame is viewed as an octree of surfels. The originality of the approach is that multiple levels
of resolution can be used simultaneously since each parent node of the octree encodes the information
of their children node. The uncertainty of 3D points w.r.t. the camera is modelled by using smaller
surfels for points closer to the camera. For optimization purpose, the coloured 3D points are not stored
in the nodes: the local geometry and the colour distribution of the 3D points are instead encoded by a
6D multivariate normal distribution of 3D points coordinates and the three components of the colour
in the Lαβ space. Each surfel is associated to a shape-texture descriptor which encodes the difference
of colour and normal orientations between the adjacent surfels in the form of three bins histograms.
The registration of a RGB-D frame illustrated in Figure 8 is performed at the level of their octree
representation. The surfels of the two octrees are first associated with a coarse-to-fine approach using
the shape-texture descriptor of the surfels. Then a likelihood based on the difference of the local
geometry encoded by the associated surfels is maximized in order to compute the transformation
between the two frames.

4.5 Occipital STTracker
Structure is a depth sensor manufactured by Occipital using Primesense’s technology and it uses
structured light to estimate the depth. The sensor does not support any RGB camera and it has to
take advantage of the mobile device rear camera to retrieve the RGB frames. Occipital provides an
iOS SDK with a VO algorithm in two flavours: depth-based [35] and hybrid [36].

9



Depth
image

Compute
point cloud
pyramid

RGB
image

Compute
image

pyramid

Compute
image

derivatives

Build
likelihood
function

Find
likelihood
maximum

Camera
pose

Sensor
model

Motion
model

Previous
camera
pose

Repeat on each

pyramid level

Figure 7: The pipeline of the DVO algorithm.

Depth
image

RGB
image

Coloured
(Lαβ)

point cloud

Build
surfels
frame-
octree

Associate
surfels

Estimate
the relative
transfor-
mation

Camera
pose

Create/Update
the surfels
map-octree

Previous
camera
pose

Repeat on each

pyramid level

Figure 8: The pipeline of the MRSMap algorithm. The nodes association and transformation estima-
tion steps are parallelized for each node and association respectively.

5 Algorithms selection
In order to limit the number of algorithms evaluated on the mobile devices, we performed a selec-
tion based on three criteria: the accuracy, the runtime and the memory footprint. As mentioned
in Section 3, most of the algorithms that we are considering were not used in previous benchmarks
[13, 31]. For these reasons, we needed an assessment of their performances in terms of accuracy and
resources consumption. Since all the algorithms mentioned earlier were designed for embedded or
desktop computers, we chose the latter platform which also enabled us to easily perform memory
monitoring. On the other hand, accuracy evaluations are not dependent of the computing platform.

5.1 Description of the dataset
As we mentioned earlier, the RGB-D TUM dataset for SLAM evaluation was interesting for the
evaluation because it offers various indoor acquisitions scenarios with ground truth trajectories. It is
divided into three sets of sequences: “fr1”, “fr2” and “fr3”.

The “fr1” sequences provide various scenes recorded in an office environment. They include two
simple scenes for debugging purpose: “xyz” and “rpy” with respectively translation only and rotation

10



only sensor movements, and two very challenging scenes : “floor” which as the name suggests has low
structure, and “360” with a high rotational motion and, thus motion blur.

The “fr2” sequences were recorded in a large industrial hall. Compared to the “fr1” sequences they
are generally longer and have a slower camera motion. It also contains two debugging series and a
“desk” scene. Three scenes are very challenging: “360 hemisphere”, “large no loop” and “large with
loop”, due to the low texture and the distant 3D points.

Finally, the “fr3” sequences feature a scene with a desk and various evaluation series to evaluate
the performances of algorithms on scenes with structure and/or texture.

At the time of writing, the STTracker class which implements the VO algorithm is designed to be
used with the RGB-D frames of the Structure Sensor only. The evaluation on this algorithm on the
TUM RGB-D SLAM Dataset was very difficult and required us to write an intermediate software layer
which supplied the Structure SDK with the required data.

5.2 Description of the metrics
Parameters All VO algorithms have parameters which must be tuned in order to give the best re-
sults. To simplify the experiments, we took the parameters recommended by the author’s algorithms in
their respective articles. For the Structure STTracker, we took the parameters STTrackerQualityAccurate
and STTrackerDepthAndColorBased.

Accuracy evaluation There are two well know metrics that can be used to estimate the accuracy of
the estimated camera poses over time, the Absolute Translational Error (ATE) and the translational
Relative Pose Error (RPE) [57]. They both assume that the ground truth and the estimated trajectory
are aligned, time-synchronized and equally sampled. At a given time step ATE computes the euclidean
distance between the estimated camera position and its ground truth. The ATE is then defined as the
mean squared error (RMSE) of these distances all along the trajectory. This metric is more suitable
for vSLAM evaluation because it assesses the global consistency of the estimated trajectory relatively
to the ground truth.

The RPE is instead used to measure the local accuracy of the estimated trajectory over a fixed
time interval ∆. Considering a sequence of estimated camera poses (rototranslations) P i ∈ SE(3), i =
1, . . . , n and their corresponding ground truth Q i ∈ SE(3), i = 1, . . . , n, the relative pose error E i at
time i is defined as

E i =
(
Q -1
i Q i+∆

) (
P -1
i P i+∆

)-1
The overall RPE of the sequence is then defined as the RMSE of the translation of each E i. The
RPE better represents the drift of the trajectory over time, which is useful for the evaluation of visual
odometry systems.

The accuracy comparison of the algorithms was performed during the desktop experiment. We
used the RPE metric with a time interval ∆ = 1 s. For each experiment, we computed and plotted the
RMSE, the mean and the standard deviation of the RPE values. We also plotted the graphs of the
RPE over the time for visual inspection purpose, in order to highlight the experiments with high and
narrow error peaks which would be masked by the RMSE measure.

As shown in Section 2, many parameters influence VO algorithms performances. For a proper
comparison, we should compare individually, for each VO algorithm, its registration performance,
using the same rigid body transformation estimation function, the same pre-processing and post-
processing steps. This would be unpractical, for this reason we only compared the full pipeline of the
algorithms, as an end-user would use it.

Performance evaluation Memory consumption evaluation can be quite controversial. It can be
heavily impacted by the optimizations performed by the kernel and the presence of a garbage collector.
For this reason, we provided values intended to give a general idea of the memory consumption of the
evaluated algorithms.

We used a computer with an Intel R©CoreTMi7-2600 CPU and 6 GB of RAM for the desktop
experiment. We monitored the performances of the VO algorithms by recording every second the
process information status given on GNU Linux operating systems by the files /proc/pid/stat and
/proc/pid/statm. To evaluate the memory consumption, we took into consideration the maximum

11



value of the Resident Set Size, also called virtual memory high water mark (VmHWM), and the
maximum value of the program data (Pgm Data).

The Resident Set Size is the actual part of the virtual memory used by the process which is mapped
into the RAM. Therefore it is a good indicator of the RAM requirements of the target platform. The
program data is the sum of the stack size, the heap size, and the size of the global plus static variables
(data+bss), in other words it is the sum of VmData and VmStck. It is mainly affected by the heap
size and may be partially mapped into the RAM.

We did not take into account the Virtual Memory Size, which is the total amount of virtual memory
used by a program. It includes the size of the binary and its linked shared libraries, the stack and
heap usage. Unused shared libraries can dramatically increase the Virtual Memory Size, leading to
misinterpretations.

To monitor the runtime performances, we took into consideration the number of processed frames
per seconds and the CPU usage1. Due to the Quad-Core CPU of our desktop computer, our CPU load
value are between 0 and 400 %.

In order to ensure the runtime performances were not affected by intensive I/O operations, we also
monitored the total I/O delays provided by delayacct_blkio_ticks. Since the I/O delays of all the
monitored algorithms was negligible compared to execution time, we did not include their values in
our results.

5.3 Accuracy results
Figure 9, Figure 10 and Figure 11 represent the bar graphs of the RPE of the evaluated algorithms
on the different scenes of the RGB-D TUM dataset for SLAM. In order to ease the comparison, the
different classes of VO algorithms are clustered with different hues: shades of red, green, and blue for
the image-based, depth-based, and hybrid algorithms.

A first simple observation of the different graphs is that the accuracy results significantly vary from
a scene to another. As stated by Fang [13], there is no algorithm which outperforms the others in all
environments. The results have to be analysed w.r.t. the scene characteristics. Therefore the choice
of VO algorithm depends on the target environment. Apart from the challenging scenes we described
earlier and correspond to higher RPE values, the slower “fr2” scenes obtain better results than the
“fr1” scenes. This illustrates well the importance of speed on the VO performances.

As the intuition suggests, the hybrid and image-based methods are the most accurate when the
environment has texture and no structure such as the scenes “fr1 floor”, “fr3 nostructure texture near
withloop” and “fr3 nostructure texture far”. Similarly, the environments with structure and low texture
favour the hybrid and depth-based algorithms as shown by the scene “fr3 structure notexture near”.
Nevertheless, with the scene “fr3 structure notexture far”, which has noisier depth data, the accuracy
of the ICP algorithm is comparable to the image-based algorithms. On this scene, the 3D feature-
based approach of MRSMAP enables to achieve the lowest RPE. When the environment is neither
flat nor textureless, e.g . the “fr3 structure notexture near” scene, we reproduced Fang [13] results, in
which image-based or hybrid-based methods are more robust than depth-based methods. However,
surprisingly the addition of texture on the “fr3 structure notexture near” scene deteriorated the results
of the depth-based methods. It must be noted that the results reported in [31] for the “fr3” scenes show
that the image-based methods have a higher RPE than the depth-based methods on the textured scenes
with low structure and vice-versa for the untextured scenes with low structure. After a comparison
with our DVO results, we found out that this discrepancy of results was due to the inversion of the plot
labels and to an incorrect scaling on the y-axis ticks in the paper of [31]. Also the accuracy difference
between the depth-based and image-based methods is very important, which might be explained by
the lack of structure in the scene. In contrast, the scenes recorded in the office also show the hybrid
and image-based methods are more robust, but the accuracy difference with the depth-based methods
is slighter. A trend emerge if we compare the most accurate algorithm on each scene of the “fr1” and
“fr2” series: OCV RgbdICP and Fovis have the lowest RPE on the scenes “fr1” and “fr2” respectively.

1We use the UNIX definition for CPU usage as
∑

c∈NumCores

time_spent_on_corec

elapsed_time
, where elapsed_time is the

delta of system clock between the start and the end of the execution, and time_spent_on_corec are the number of
system clocks spent on each of the NumCores of the machine [17].

12



DVO and OCV RGB-D generally come behind or between. There are some exceptions to this trend,
but not enough to draw conclusions on them.

fr1
xy

z

fr1
rp

y

fr1
36

0

fr1
de

sk

fr1
de

sk
2

fr1
ro

om

fr1
floo

r
100

101

102

103

R
P

E
tr

an
sl

at
io

na
lR

M
SE

(m
m

)

Comparison of the RMSE of the translational RPE

Fovis
OCV Rgbd
DVO
OCV ICP
MRSMap
ST ICP
ST hybrid
OCV RgbdICP

Figure 9: RPE comparison on the fr1 sequences of the TUM dataset.

fr2
xy

z

fr2
rp

y

fr2
36

0 hem
isp

her
e

fr2
de

sk

fr2
lar

ge
no loo

p

fr2
lar

ge
with

loo
p

100

101

102

103

104

R
P

E
tr

an
sl

at
io

na
lR

M
SE

(m
m

)

Comparison of the RMSE of the translational RPE

Fovis
OCV Rgbd
DVO
OCV ICP
MRSMap
ST ICP
ST hybrid
OCV RgbdICP

Figure 10: RPE comparison on the fr2 sequences of the TUM dataset.

13



fr3
str

uctu
re

tex
tu

re
far

fr3
str

uctu
re

tex
tu

re
nea

r

fr3
nos

tru
ctu

re
tex

tu
re

far

fr3
nos

tru
ctu

re
tex

tu
re

nea
r with

loo
p

fr3
str

uctu
re

note
xt

ure
far

fr3
str

uctu
re

note
xt

ure
nea

r

fr3
nos

tru
ctu

re
note

xt
ure

far

fr3
nos

tru
ctu

re
note

xt
ure

nea
r with

loo
p

fr3
lon

g offi
ce

hou
se

hold
100

101

102

103

R
P

E
tr

an
sl

at
io

na
lR

M
SE

(m
m

)

Comparison of the RMSE of the translational RPE

Fovis
OCV Rgbd
DVO
OCV ICP
MRSMap
OCV RgbdICP

Figure 11: RPE comparison on the fr3 sequences of the TUM dataset.

5.4 Performance results
Runtime performances Table 3 illustrates the runtime performances performed with VGA frames
on the TUM fr1 desk scene. It shows that only Fovis can run at the rate of the depth sensor which
is 30 FPS. All the imaged-based algorithms, DVO, Fovis and OCV RGB-D, can run at a frame rate
superior to 20 FPS, which is fast enough for real-time applications such as augmented reality.

The CPU load column from the Table 3 illustrates that all the algorithms do not fully take ad-
vantage of the multiple cores of the CPU. Surprisingly, the fastest algorithm, Fovis only uses one
thread, while the slowest, MRSMAP use several ones. Also the hybrid method OCV RgbdICP does
not take well advantage of threads, while its image-based and its depth-based approaches could be run
in parallel.

Memory consumption The memory performance evaluation illustrated by Table 3 reveals that
several algorithms require more than 500 MB of program data. In contrast the peak value of the
Resident Set Size (VmHWM) is generally below 100 MB which is low enough for mobile devices.
Again, Fovis is the least demanding algorithm with only 25 MB of maximal memory mapped into
the RAM while MRSMap, the most demanding uses 300 MB. This comparison between the program
data and the VmHWM also demonstrates that generally only a small amount of the program data is
mapped into the RAM.

5.5 Experiments conclusion
From this evaluation, we selected the algorithms to evaluate on the iPad. Concerning the depth-based
methods, we selected OCV ICP over MRSMAP for being slightly more accurate, less CPU-demanding
and easier to compile on the iPad. We selected OCV RgbdICP which was our only hybrid algorithm,
while for the image-based methods, we kept Fovis for its best runtime performance and high accuracy
while we dropped DVO as it has many x86 optimizations and a similar accuracy to OCV RGB-D.

14



Name FPS CPU load (%) VmHWM (MB) Pgm Data (MB)

MRSMap 9.3 200 332 811
OCV ICP 17.8 101 70 622
OCV RgbdICP 11.9 101 74 626
OCV Rgbd 22.7 94 50 602
DVO 23.8 288 89 536
Fovis 103.9 91 25 24

Table 3: Performance evaluation on the “TUM fr1 desk” scene with VGA frames performed on a
desktop computer.

6 Mobile experiments

6.1 Second accuracy experiment: Structure Sensor acquisitions
6.1.1 Description of the dataset and the metrics

The evaluated algorithms had their parameters optimized to give the best results on some series of
the TUM dataset which used a KinectSLas depth sensor. While the two sensors share the same core
technology, we wanted to check with a second experiment whether we could observe a different accuracy
trend with the Structure Sensor. We connected the Structure Sensor on the iPad Air used in the previous
experiment and we used a dedicated application to record locally the trajectory estimated from the
STTracker VO algorithm, the RGB-D frames and the IMU data.

We recorded three scenes in three different rooms (r1, r2, r3) with various luminosity levels, denoted
hl, ml and ll for high, medium and low luminosity respectively. For each scene, We also recorded
different camera motions, which we denoted hs, ms and ls for high, medium and low camera speed
respectively.

In the absence of motion capture cameras that could provide a ground truth for the device motion,
we constrained the camera motion on an horizontal plane (e.g . like a ground floor or the surface of
a table), using a home-made mount to secure the device in a vertical position. Therefore, instead of
evaluating the drift w.r.t. a known pose, we will rather evaluate the planarity of the device trajectory.
We also ensured the trajectories had their start and stop positions identical by putting the mount in
contact with the same reference object at the beginning and the end of the recording. This guarantees
almost perfect loop closure, any error made is negligible in comparison to the expected drift, as
measured from the desktop experiment.

As for the metric to evaluate the accuracy of the algorithms, we use both the loop closing error
and the RPE. The loop closing error is defined as the distance between the endpoints of the estimated
trajectory divided by the path length, and it is used by most of the authors [13, 64] to compare VO
algorithms. This metric evaluates the performances of the algorithms globally rather than locally, for
each time step. On one hand, algorithms with a low RPE may be penalized by this metric because of
one major drift; on the other hand, algorithms with high RPE may have a smaller distance because
of compensations between the various drifts, somewhat like in a perfect random walk. Therefore RPE
can give a better insight about the performance of the algorithm all over the device motion.

In our case, given that the trajectory is supposed to be planar and we cannot have a ground truth
for the device pose, we instead evaluate the RPE as the drift along the z-axis component (i.e. the
normal to the plane of the motion) to assess the quality of the estimated trajectory

6.1.2 Results and analysis

The Figure 12 represents the RPE along the z-axis for the evaluated algorithms. We compared our
metric with the loop closing error. In contrast with the experiments on the TUM datasets, the OCV
RGB-D and OCV ICP algorithms do not perform well. With the Structure Sensor dataset the STTracker
hybrid algorithms has generally the highest accuracy, matched only by OCV RgbdICP. These results
show that the trends are very different on some algorithms for the KinectSL RGB-D TUM dataset and

15



our Structure Sensor dataset.

r1
-h

l-l
s

r1
-h

l-m
s

r1
-ll

-m
s

r1
-m

l-m
s

r2
-h

l-m
s

r3
-h

l-h
s

100

101

102

103
R

P
E

tr
an

sl
at

io
na

lR
M

SE
(m

m
)

Comparison of the RMSE of the translational RPE along the Z axis

Fovis
OCV Rgbd
OCV ICP
ST hybrid
OCV RgbdICP

Figure 12: Comparison of the RMSE of the translational RPE along the z-axis.

r1
-h

l-l
s

r1
-h

l-m
s

r1
-ll

-m
s

r1
-m

l-m
s

r2
-h

l-m
s

r3
-h

l-h
s

0

5

10

15

20

25

30

O
ve

ra
ll

dr
if

t
pe

r
pa

th
le

ng
th

(%
)

Loop closing error

Fovis
OCV Rgbd
OCV ICP
ST hybrid
OCV RgbdICP

Figure 13: Loop closing error defined as the distance between the endpoints of the estimated trajectory
divided by the path length.

Figure 13 represents the same evaluation with the start-end distance metric. The trends between
the two figures seem very similar. However, on “r1-hl-ms”, “r1-ll-ms”, “r2-hl-ms” and “r2-hl-ms” the
ranking of the Fovis, OCV RGB-D and OCV ICP algorithms is very different with the two metrics.

6.2 Performance evaluation
The performance experiment was carried out on four mobile devices: two iOS devices, iPhone 5 and
iPad Air and two Android devices, Memo Pad 7 and Tango Yellowstone. As mentioned in the Section 2,
the Tango Yellowstone has a dedicated VIO module requiring different input: thus, it cannot be fairly
compared with the RGB-D VO algorithms, which are the object of this article. Table 4 displays

16



the characteristics of these mobile devices. The PassMark CPU benchmark assesses trough various
intensive parallel computational algorithms how fast a CPU is. The scores gives an indication of the
CPU speed, the faster is the processor, the higher is the score. We took the value of the Android2 and
iOS3 ranking available on November 17th, 2016. The scores indicate the iPhone 5 and the Memo Pad
7 can be considered as middle performance devices, whereas the iPad Air and the Tango Yellowstone
can be considered as high performances devices.

We compiled the previously selected VO algorithms with the -O3 optimization option and used
the “TUM fr1 desk” scene to evaluate their performance, with two different image resolutions: VGA
(640× 480) and QVGA (320× 240).

Manufacturer Model CPU CPU PassMark score RAM (GB)

Apple iPad Air Apple A7 37517 1.0
Apple iPhone 5 Apple A6 23914 1.0
Asus Memo Pad 7 K013 Intel R© Atom TMZ3745 27807 0.86
Google Tango Yellowstone Nvidia Tegra K1 38503 3.7

Table 4: The mobile devices used for the performance evaluation with some of their hardware specifi-
cations and their PassMark score (the faster the CPU the higher the score).

Algorithm Device QVGA (FPS) VGA (FPS)

Fovis

iPad Air 92.0 24.1
iPhone 5 38.7 10.2
Memo Pad 7 81.6 20.1
Tango Yellowstone 96.0 26.0

OCV RGB-D

iPad Air 28.6 6.7
iPhone 5 13.7 3.6
Memo Pad 7 8.9 2.4
Tango Yellowstone 17.2 4.3

OCV ICP

iPad Air 23.8 5.5
iPhone 5 9.7 2.5
Memo Pad 7 7.9 2.1
Tango Yellowstone 14.4 3.6

ST ICP iPad Air 43.7 42.6
iPhone 5 23.3 20.9

ST hybrid iPad Air 36.4 28.3
iPhone 5 19.2 16.7

OCV RgbdICP

iPad Air 14.3 3.2
iPhone 5 6.4 1.6
Memo Pad 7 4.3 1.2
Tango Yellowstone 8.1 2.0

Table 5: Performance evaluation on the “TUM fr1 desk” scene with QVGA (320 × 240) and VGA
(640× 480) images performed on the four mobile devices.

2http://www.androidbenchmark.net/cpumark_chart.html
3http://www.iphonebenchmark.net/cpumark_chart.html

17

http://www.androidbenchmark.net/cpumark_chart.html
http://www.iphonebenchmark.net/cpumark_chart.html


fr1
36

0

fr1
de

sk

fr1
de

sk
2

fr1
floo

r

fr1
ro

om

fr1
rp

y

fr1
xy

z
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

A
cc

ur
ac

y
ra

ti
o

Q
V

G
A

/V
G

A

Comparison of the accuracy ratio QVGA/VGA

Fovis
OCV Rgbd
OCV ICP
OCV RgbdICP

Figure 14: Comparison of the RPE ratio QVGA/VGA on the fr1 scenes of the TUM dataset.

Table 5 shows the results of the performance experiment. For each algorithm the frame rate (fps)
is reported for each device for which it was possible to port the algorithm. It must be noted that we
chose to report the frame rate as a performance measure as it can be used as a reference for assessing
the suitability of the algorithm for a given application. In general, computer vision applications are
usually considered to be real-time when they are able to assure a minimal throughput in terms of
images processed per second. This clearly depends on the target application and the type of time
constraints that must be guaranteed [4]. Visual odometry can be used to enable applications like
augmented reality or more general robotic applications, and in general, for this range of applications
a frame rate of 15 fps is commonly considered a minimal threshold to assure the responsiveness of the
application.

As it can be noted from the table, downsampling the images from a VGA resolution to QVGA
clearly improves the computational performances up to a factor of 4. However, this has sometimes an
impact on the estimated trajectory and the accuracy of the results. Figure 14 shows the ratio between
the VGA and the QVGA accuracy: using half resolution generally worsens the achievable throughput
(ratio greater than 1), with some exceptions in which we observed a slight improvement of accuracy
(ratio lesser than 1).

In the case of the STTracker, it can be noted that resolution does not affect the performances, as
there is only a slight difference between the two resolutions. Since the code is not available and the
documentation is not clear on this point, we can only speculate that the algorithm always downsample
input VGA images to ensure a high frame rate.

More generally, Fovis is the only algorithm that can achieve high frame rates at VGA resolution on
high-end devices, and it anyway outperforms the other algorithms on iPhone 5. It is worth noting that
Fovis’ SSE2 optimizations were disabled when running the tests on the Memo Pad 7 as they leaded
to a slight loss of performance. All the other algorithms fail to reach real-time performances at VGA
resolution, even on high end devices: OCV RGB-D and OCV ICP are the only ones passing 5 fps on
iPad Air. When using QVGA resolution, the performances of all algorithms improves and generally
iPad Air is the device getting higher frame rates for every considered algorithm. As for the OpenCV
family of algorithms, OCV RGB-D only fails to achieve real-time performances on Memo Pad 7, OCV
ICP can provide high frame rates only on the most powerful devices, iPad Air and Tango Yellowstone,
while OCV RgbdICP only comes close to the threshold of 15 fps on iPad Air.

Concerning the devices, the iPad Air is twice as faster as the iPhone 5, and the Memo Pad 7 is twice
as slower as the Tango Yellowstone, with the exception of the Fovis algorithm.

18



7 Discussion
Even if modern mobile devices can sport CPUs with 2 or 4 cores up to 2.3 GHz, their computational
power cannot be exploited at their full potential for long period of time without draining the battery and
risking some over-heating of the device. Since they are designed to be power efficient, their frequency is
often throttled down and their instructions set is reduced. Moreover the current hardware architectures
of mobile devices have reduced L1 and L2 cache and a reduced instruction set. Therefore, when
optimizing the implementation, developers should pay particular attention to the memory accesses, for
example taking advantage of the pre-fetching and maximizing the processing on small blocks of data.

As a general rule, polymorphism should be limited or used carefully, as it may introduce perfor-
mance overheads and it may lead to indirect function calls which are less likely to be optimized at
compile time [61]. For example, in a study over a large set of programs Driesen et al . [10] showed that,
in average, 5.3 % of the time is used to deal with polymorphism, and 13.7 % for “all virtual” versions
of the program. For the examined algorithms, we can note that OpenCV highly uses polymorphism
both for data structures and algorithms, while at the other end, Fovis uses polymorphism only for the
abstraction of the input data source.

Standard computer vision libraries such as OpenCV and ROS [42] are extremely useful tools for
developing, prototyping and testing algorithms. On the other hand, these libraries were originally
designed mostly for desktop environments, and only recently the porting to mobile environment has
been started. Despite these efforts, at the moment of writing, they still lack of adequate and complete
code optimization, supporting e.g . specific instruction set like ARM-NEON that could fully exploit
the specific hardware of modern mobile devices. Moreover, the use of float over double data type is
recommended for runtime and memory performance: even if the most recent ARM processors are 64
bit CPUs, for the time being there are no instructions that support double precision operations [2],
which introduces type conversion overheads that significantly affects the performances [28].

Parallelization can also improve the performances of the algorithm when ported in the mobile
environment. Computationally intensive algorithms for image processing can be parallelized by means
of shaders that can speed-up the computation by running on the GPU of the device. For example,
all the pre-processing blocks of Figures 3–6 used to pre-process the RGB-D image using classic image
processing algorithm (bilateral filtering, image smoothing, etc.) can be implemented as a shader.
Multithreading is also another natural way to optimize the pipeline execution. As showed in Section 4
when describing the algorithm pipelines, all the blocks that are vertically aligned can be actually
run in parallel by different threads. This is especially adapted for the algorithms that require to
process both the depth and the RGB image, such as OCV ICP, OCV RGB-D and DVO. Splitting
the processing of each input image into different threads will certainly benefit the performance of
the algorithm, and optimize the resource consumption. More sophisticated parallelization can also
be employed combining pipelining and look-ahead strategies [47], so that the device resources can be
fully exploited. For example, a pipelined version of OCV RGB-D (c.f . Figure 4) could reserve two
threads for processing the two input images as they are available instead of waiting for the whole pose
estimation process to end. This allows to improve the throughput of the algorithm at the cost of more
complexity of the implementation.

An IMU offers a good combination with VO algorithms because of its complementary with visual
sensors. Inertial data is computationally cheap, it deals well with rapid movements, but it suffers from
drift and measurement noise. On the other hand, visual data can provide more precise and stable
measurements, which can be used as reference to prevent the inertial measurements from drifting.
Inertial data are particularly adequate for algorithms based on iterative solvers that need a first initial
solution, and algorithms where a rough estimate of the motion is used. For the Fovis algorithm for
example, the “features matching” step takes advantage of the knowledge of the rotation between the
frames: the method uses pixel errors between images to infer the rotation, whereas as stated by the
authors, the IMU data could provide the same kind of information at a lower computational cost.
The DVO algorithm is designed to be used with a motion prior, again an inertial sensor can fulfil this
task. Brunetto et al . [7] demonstrated that higher robustness of the pose estimation of their features
image-based vSLAM algorithm SlamDunk can be achieved with the use of IMU data from a Samsung
tablet.

Considering the scenario of a mobile augmented reality application where 24 fps or higher is rec-

19



ommended, Fovis with QVGA images appears to be the best choice since it can runs at high frame
rates on middle and high performance mobile devices. In the case iOS, only the devices with high-
end specifications such as the iPad Air can achieve real-time performances, with the exception of the
STTracker algorithms, which are specifically optimized for this environment.

8 Conclusions
In this paper we presented a classification and a theoretical review of RGB-D VO algorithms. We
tested and analysed the performances on a mobile device of 6 visual odometry algorithms designed for
RGB-D sensors on different mobile devices covering the two most common mobile operating systems,
iOS and Android. We selected the most promising algorithms to test based on previous benchmarks
found in the literature, and our tests on desktop environment to assess the computational and memory
performances before porting them to the mobile environment. The performances of each algorithm
were analysed in terms of accuracy and time and memory consumption, which is a fundamental aspect
when deploying a visual odometry algorithm on a device with limited resources. We assessed and
confirmed the algorithms accuracy on the state-of-the-art RGB-D TUM dataset and we collected the
time and memory consumption of the algorithms to get a first rough estimation of the resources needed.

After selecting the most promising algorithms in terms of accuracy and resources consumption, we
run several tests on mobile devices to assess both the actual performances on the mobile devices and
the accuracy on our own dataset.

In general, results showed that only high-end devices such as iPad Air can guarantee some adequate
frame rate at normal resolution (VGA). Reducing the resolution of the input image proved to increase
the throughput, yet sometimes at the expense of the accuracy. On the other hand, algorithms provided
with the Structure SDK, the ST hybrid [36], can achieve a good accuracy and faster execution times
even at full resolution. Since the code for the latter is closed-source, we can only expect that the code
is specifically designed and optimized for the mobile settings. As for the open-source algorithms, only
Fovis could achieve frame rates up to 24 fps and perform adequately on all the four available mobile
devices. This could be explained by the fact the algorithm was already designed for running on micro
aerial vehicles, thus privileging a simpler implementation adapted to limited resources environment.
Results also shown that implementation relying on standard computer vision libraries such as OpenCV,
are still lacking a proper support for mobile architectures. These tools are quite useful for quickly
prototyping the implementation of an algorithm, but, for the time being, they are still oriented to the
desktop environment and their complexity is not well suited for mobile environments.

In the light of the evidences showed in this paper, it appears clearly that designing a VO algorithm
for mobile environments requires to thoughtfully adapt the implementation to the limited resources
available to achieve a good trade-off between accuracy and throughput. The VO algorithms provided
by the hardware makers such as Occipital are the best bases upon which building an application, as
they are finely tuned for the specific environment. On the other hand, developing an original VO
algorithm requires a thorough design of the algorithm from the ground-up.

Acknowledgements
This research was supported by the CIFRE grant ANRT contract #2014/0014 funding the collabora-
tion between the French company Telequid and INPT-IRIT laboratory, and in part by the Croatian
Science Foundation’s funding of the project IP-11-2013-3717. The authors also acknowledge the French-
Croatian Program “Cogito”, Hubert Curien partnership, funding the project “3D reconstruction using
smartphone” (project code 33059RF).

References
[1] H. Andreasson and T. Stoyanov. Real time registration of RGB-D data using local visual features

and 3D-NDT registration. In Proceedings of International Conference on Robotics and Automation
(ICRA) Workshop on Semantic Perception, Mapping and Exploration (SPME). IEEE Computer
Society, 2012. 6

20



[2] ARM. Arm compiler toolchain assembler reference v5.0 - neon instructions. http://infocenter.
arm.com/help/index.jsp?topic=/com.arm.doc.dui0489c/CJAJIIGG.html, 2016. 19

[3] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust features. In A. Leonardis,
H. Bischof, and A. Pinz, editors, Proceedings of the 2006 European Conference on Computer
Vision (ECCV 2006), volume 3951 of Lecture Notes in Computer Science, pages 404–417, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg. 3

[4] M. Ben. Principles of Concurrent and Distributed Programming, Second Edition. Addison-Wesley,
second edition, 2006. 18

[5] P. J. Besl and H. D. McKay. A method for registration of 3-d shapes. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 14(2):239–256, Feb 1992. 4

[6] J. Borenstein, H. R. Everett, and L. Feng. Navigating Mobile Robots: Systems and Techniques.
A. K. Peters, Ltd., Natick, MA, USA, 1996. 3

[7] N. Brunetto, S. Salti, N. Fioraio, T. Cavallari, and L. Di Stefano. Fusion of Inertial and Visual
Measurements for RGB-D SLAM on Mobile Devices. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV) Workshops. IEEE Computer Society, December 2015. 5,
19

[8] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF: Binary robust independent elementary
features. In Proceedings of the European Conference on Computer Vision (ECCV), volume 6314
LNCS, pages 778–792. Springer Verlag, 2010. 3, 6

[9] Y. Chen and G. Medioni. Object modeling by registration of multiple range images. In Proceedings
of the 1991 IEEE International Conference on Robotics and Automation (ICRA), pages 2724–2729
vol.3, Apr 1991. 4

[10] K. Driesen and U. Hölzle. The direct cost of virtual function calls in c++. SIGPLAN Not.,
31(10):306–323, Oct. 1996. 19

[11] I. Dryanovski, R. G. Valenti, and J. Xiao. Fast visual odometry and mapping from RGB-D data.
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages
2305–2310, 2013. 3, 4, 6

[12] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard. An evaluation of the
RGB-D SLAM system. In Proceedings of the 2012 IEEE International Conference Robotics and
Automation (ICRA), volume 1, pages 1691–1696. IEEE Computer Society, 2012. 3

[13] Z. Fang and Y. Zhang. Experimental Evaluation of RGB-D Visual Odometry Methods. Interna-
tional Journal of Advanced Robotic Systems, 12(3):1–16, 2015. 2, 3, 6, 10, 12, 15

[14] A. Geiger. Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In
Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR
2012), CVPR ’12, pages 3354–3361, Washington, DC, USA, 2012. IEEE Computer Society. 5

[15] A. Geiger, J. Ziegler, and C. Stiller. StereoScan: Dense 3D Reconstruction in Real-time. In
Proceedings of the Intelligent Vehicles Symposium (IV 2011). IEEE Computer Society, 2011. 6

[16] Google. ATAP Project Tango – Google. http://www.google.com/atap/projecttango/, 2014.
1, 5

[17] N. J. Gunther. White paper: UNIX Load Average – Part 1: How It Works. White paper
http://www.teamquest.com/pdfs/whitepaper/ldavg1.pdf, TeamQuest Corporation, 2010. 12

[18] A. Handa, T. Whelan, J. Mcdonald, and A. J. Davison. A Benchmark for RGB-D Visual Odom-
etry, 3D Reconstruction and SLAM. In Proceedings of the 2014 IEEE International Conference
on Robotics and Automation (ICRA 2014), pages 1524–1531. IEEE Computer Society, 2014. 6

21

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0489c/CJAJIIGG.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0489c/CJAJIIGG.html
http://www.google.com/atap/projecttango/
http://www.teamquest.com/pdfs/whitepaper/ldavg1.pdf


[19] B. K. P. Horn. Closed-form solution of absolute orientation using unit quaternions. Journal of
the Optical Society of America A, 4(4):629–642, 1987. 7

[20] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox, and N. Roy. Visual
Odometry and Mapping for Autonomous Flight Using an RGB-D Camera. In Proceedings of the
International Symposium of Robotics Research (ISRR 2011), pages 1–16, 2011. 3, 6, 7

[21] M. A. Hudelist, C. Cobârzan, and K. Schoeffmann. OpenCV Performance Measurements on
Mobile Devices. In Proceedings of International Conference on Multimedia Retrieval - ICMR ’14,
pages 479–482, New York, New York, USA, 2014. ACM Press. 3

[22] G. Jones. Accurate and Computationally-inexpensive Recovery of Ego-Motion using Optical Flow
and Range Flow with Extended Temporal Support. In Procedings of the British Machine Vision
Conference 2013, pages 75.1–75.11. British Machine Vision Association, 2013. 6

[23] C. Kerl, J. Sturm, and D. Cremers. Robust odometry estimation for RGB-D cameras. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation (ICRA 2013), pages
3748–3754. IEEE Computer Society, 2013. 3, 4, 5, 6, 7, 8

[24] K. Khoshelham and S. O. Elberink. Accuracy and resolution of Kinect depth data for indoor
mapping applications. Sensors (Basel, Switzerland), 12(2):1437–54, Jan. 2012. 1

[25] M. Klingensmith, I. Dryanovski, S. Srinivasa, and J. Xiao. Chisel: Real time large scale 3d
reconstruction onboard a mobile device. In Proceedings of the 2015 Robotics Science and Systems
Conference, July 2015. 5

[26] K. Kolev, P. Tanskanen, P. Speciale, and M. Pollefeys. Turning mobile phones into 3d scanners. In
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 3946–3953. IEEE Computer Society, June 2014. 5

[27] S. Leutenegger, M. Chli, and R. Y. Siegwart. BRISK: Binary Robust invariant scalable keypoints.
In Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV2011),
pages 2548–2555. IEEE Computer Society, nov 2011. 3

[28] N. Limare. Integer and floating-point arithmetic speed vs precision. http://nicolas.limare.
net/pro/notes/2014/12/12_arit_speed/#index3h2, 2014. 19

[29] D. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91–110, 2004. 3

[30] Mantis Vision. MV4D depth sensor for mobile devices. http://www.mv4d.com/mobile.php, 2014.
5

[31] V. Morell-Gimenez, M. Saval-Calvo, J. Azorin-Lopez, J. Garcia-Rodriguez, M. Cazorla, S. Orts-
Escolano, and A. Fuster-Guillo. A comparative study of registration methods for RGB-D video
of static scenes. Sensors (Switzerland), 14(5):8547–8576, 2014. 2, 3, 5, 10, 12

[32] R. A. Newcombe, D. Molyneaux, D. Kim, A. J. Davison, J. Shotton, S. Hodges, and A. Fitzgibbon.
KinectFusion: Real-Time Dense Surface Mapping and Tracking. In Proceedings of the IEEE
International Symposium on Mixed and Augmented Reality (ISMAR 2011), pages 127–136. IEEE
Computer Society, 2011. 2, 3, 4, 5, 6, 8

[33] C. V. Nguyen, S. Izadi, and D. Lovell. Modeling kinect sensor noise for improved 3d reconstruc-
tion and tracking. In Proceedings of the 2012 Second International Conference on 3D Imaging,
Modeling, Processing, Visualization & Transmission, 3DIMPVT ’12, pages 524–530, Washington,
DC, USA, 2012. IEEE Computer Society. 1

[34] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry. In Proceedings of the 2004 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR 2004), volume 1,
pages I–652–I–659 Vol.1. IEEE Computer Society, June 2004. 2

22

http://nicolas.limare.net/pro/notes/2014/12/12_arit_speed/#index3h2
http://nicolas.limare.net/pro/notes/2014/12/12_arit_speed/#index3h2
http://www.mv4d.com/mobile.php


[35] Occipital. ST depth. STTracker instance with the kSTTrackerTypeKey set to
STTrackerDepthBased, 2013. 3, 4, 7, 9

[36] Occipital. ST hybrid. STTracker instance with the kSTTrackerTypeKey set to
STTrackerDepthAndColorBased, 2013. 3, 4, 7, 9, 20

[37] Occipital Inc. The structure sensor. http://structure.io, 2014. 1, 2, 3, 4, 5, 6

[38] P. Ondrúška, P. Kohli, and S. Izadi. Mobilefusion: Real-time volumetric surface reconstruction and
dense tracking on mobile phones. IEEE Transactions on Visualization and Computer Graphics,
21(11):1251–1258, Nov 2015. 3, 5

[39] F. Pomerleau, F. Colas, and R. Siegwart. A Review of Point Cloud Registration Algorithms for
Mobile Robotics. Foundations and Trends in Robotics, 4(1-104):1–104, 2015. 4

[40] V. Prisacariu, O. Kähler, D. Murray, and I. Reid. Simultaneous 3d tracking and reconstruction on
a mobile phone. In Proceedings of the IEEE International Symposium on Mixed and Augmented
Reality (ISMAR 2013), pages 89–98. IEEE Computer Society, Oct 2013. 5

[41] V. A. Prisacariu, . Kähler, D. Murray, and I. Reid. Real-time 3d tracking and reconstruction on
mobile phones. IEEE Transactions on Visualization and Computer Graphics, 21(5):557–570, May
2015. 5

[42] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng. Ros:
an open-source robot operating system. In ICRA Workshop on Open Source Software, 2009. 19

[43] V. Rabaud and M. Dimashova. OpenCV ICP and RGBD visual odometry. Class
RgbdICPOdometry and function RGBDICPOdometryImpl() in the file https://github.com/
Itseez/opencv_contrib/tree/master/modules/rgbd/src/odometry.cpp, 2012. 4, 7

[44] V. Rabaud and M. Dimashova. OpenCV ICP-based visual odometry. Class ICPOdometry and func-
tion RGBDICPOdometryImpl() in the file https://github.com/Itseez/opencv_contrib/tree/
master/modules/rgbd/src/odometry.cpp, 2012. 4, 7, 8

[45] V. Rabaud and M. Dimashova. OpenCV RGBD-based visual odometry. Class RgbdOdometry and
function RGBDICPOdometryImpl() in the file https://github.com/Itseez/opencv_contrib/
tree/master/modules/rgbd/src/odometry.cpp, 2012. 3, 4, 7

[46] V. Rabaud and M. Dimashova. OpenCV RGBD module. https://github.com/Itseez/opencv_
contrib/tree/master/modules/rgbd, 2012. 2, 6, 7

[47] M. Raynal. Concurrent Programming: Algorithms, Principles, and Foundations. Springer Pub-
lishing Company, Incorporated, 2012. 19

[48] E. Rosten, R. Porter, and T. Drummond. Faster and Better: A Machine Learning Approach to
Corner Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1):105–
119, jan 2010. 6

[49] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An efficient alternative to SIFT or
SURF. In Proceedings of the IEEE International Conference on Computer Vision, pages 2564–
2571. IEEE Computer Society, 2011. 3

[50] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp algorithm. In Proceedings of the third
International Conference on 3-D Digital Imaging and Modeling., pages 145–152. IEEE, 2001. 4

[51] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library (PCL). In Proceedings of the 2011
IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13
2011. IEEE Computer Society. 6

[52] D. Scaramuzza and F. Fraundorfer. Visual Odometry [Tutorial]. IEEE Robotics & Automation
Magazine, 18(4):80–92, 2011. 3

23

https://github.com/Itseez/opencv_contrib/tree/master/modules/rgbd/src/odometry.cpp
https://github.com/Itseez/opencv_contrib/tree/master/modules/rgbd/src/odometry.cpp
https://github.com/Itseez/opencv_contrib/tree/master/modules/rgbd/src/odometry.cpp
https://github.com/Itseez/opencv_contrib/tree/master/modules/rgbd/src/odometry.cpp
https://github.com/Itseez/opencv_contrib/tree/master/modules/rgbd/src/odometry.cpp
https://github.com/Itseez/opencv_contrib/tree/master/modules/rgbd/src/odometry.cpp
https://github.com/Itseez/opencv_contrib/tree/master/modules/rgbd
https://github.com/Itseez/opencv_contrib/tree/master/modules/rgbd


[53] T. Schöps, J. Engel, and D. Cremers. Semi-dense visual odometry for AR on a smartphone.
In Proceedings of the IEEE International Symposium on Mixed and Augmented Reality (ISMAR
2014). IEEE Computer Society, September 2014. 5

[54] T. Schöps, T. Sattler, C. Häne, and M. Pollefeys. 3D Modeling on the Go: Interactive 3D
Reconstruction of Large-Scale Scenes on Mobile Devices. In Proceedings of the International
Conference on 3D Vision, Piscataway, NJ, 2015. IEEE Computer Society. 5

[55] F. Steinbrücker, J. Sturm, and D. Cremers. Real-time visual odometry from dense RGB-D images.
In Proceedings of the IEEE International Conference on Computer Vision, number 3, pages 719–
722. IEEE Computer Society, 2011. 6, 7, 8

[56] J. Stückler and S. Behnke. Multi-resolution surfel maps for efficient dense 3D modeling and
tracking. Journal of Visual Communication and Image Representation, 25(1):137–147, 2014. 3,
4, 6, 7, 9

[57] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for the evaluation
of RGB-D SLAM systems. In Proceedings of the IEEE International Conference on Intelligent
Robots and Systems (IROS 2012), pages 573–580. IEEE Computer Society, 2012. 2, 5, 11

[58] P. Tanskanen, K. Kolev, L. Meier, F. Camposeco, O. Saurer, and M. Pollefeys. Live metric 3d
reconstruction on mobile phones. In Proceedings of the 2013 IEEE International Conference on
Computer Vision (ICCV), pages 65–72. IEEE Computer Society, Dec 2013. 5

[59] C. Tomasi and R. Manduchi. Bilateral Filtering for Gray and Color Images. In Proceedings
of the 1998 IEEE International Conference on Computer Vision (ICCV), pages 839–846. IEEE
Computer Society, 1998. 2

[60] T. Whelan, H. Johannsson, M. Kaess, J. Leonard, and J. McDonald. Robust real-time visual
odometry for dense RGB-D mapping. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA 2013), Karlsruhe, Germany, May 2013. IEEE Computer Society.
3, 4, 6, 8

[61] D. Yang. C++ and Object-Oriented Numeric Computing for Scientists and Engineers. Springer
New York, New York, NY, 2001. 19

[62] K. Yousif, A. Bab-Hadiashar, and R. Hoseinnezhad. An overview to visual odometry and visual
slam: Applications to mobile robotics. Intelligent Industrial Systems, 1(4):289–311, 2015. 3

[63] J. Zhang, M. Kaess, and S. Singh. Real-time depth enhanced monocular odometry. In Proceedings
of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4973–
4980. IEEE Computer Society, sep 2014. 6

[64] J. Zhang, M. Kaess, and S. Singh. A real-time method for depth enhanced visual odometry.
Autonomous Robots, 41(1):31––43, 2015. 3, 15

24


	Introduction
	Visual odometry
	VO on mobile devices

	Related works
	Tested visual odometry algorithms
	Fovis
	OpenCVRGB-D module
	Dense Visual Odometry
	MRSMAP VO
	Occipital STTracker

	Algorithms selection
	Description of the dataset
	Description of the metrics
	Accuracy results
	Performance results
	Experiments conclusion

	Mobile experiments
	Second accuracy experiment: Structure Sensor acquisitions
	Description of the dataset and the metrics
	Results and analysis

	Performance evaluation

	Discussion
	Conclusions

