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Abstract—Convolutional Neural Network (CNN) techniques
improved accuracy and robustness of machine vision systems
at the price of a very high computational cost. This motivated
multiple research efforts to investigate the applicability of approx-
imate computing and more particularly, fixed point-arithmetic
for CNNs. In all this approaches, a recurrent problem is that
the learned parameters in deep CNN layers have a significantly
lower numerical dynamic range when compared to the feature
maps. This problem prevents from using of a low bit-width
representation in deep layers. In this paper, we demonstrate
that using the TanH activation function is way to prevent this
issue. To support this demonstration, three benchmark CNN
models are trained with the TanH function. These models are
then quantized using the same bit-width across all the layers.
Efficiency of this method is demonstrated on an FPGA based
accelerator, by inferring CNNs with the minimal amount of logic
elements1

I. INTRODUCTION

Convolutional Neural Networks (CNNs) [2] have become
the dominant approach in a variety of computer vision tasks.
However, a major drawback of such techniques remains their
heavy computational workload. Convolutional stages are the
most computationally intensive parts of a CNN and are re-
sponsible – in a typical implementation – for more than 90%
of the CNN execution time [3]. To accelerate the execution
of convolutional parts, multiple approaches advocate the use
of approximate computing with fixed point numerical repre-
sentation of data [4], [5], [6]. However, and as pointed in [4],
distinct parts of a CNN have a significantly different Dynamic
Range (DR) of data and parameters. More particularly, the
network learned parameters tend to be much smaller than the
layer outputs especially in the deep layers. As a result, CNNs
implementations based on approximate computing resort to
dynamic fixed point [4], [6], mini-float [6] ,or long word-
length fixed point representation of data [7], [8].

A possible way to address this issue is forcing CNN outputs
to be within a limited data-range that matches the DR of pa-
rameters. In this paper, the numerical dynamic range of CNN
activations is constrained at the output of each conventional
layer using the hyperbolic tangent TanH. As a consequence,
CNNs can be deployed with the same bit-width across all the
layers.

The rest of this paper is organized as follows. Section II
recalls the main features of CNNs from a computational point
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of view, focusing on those related to fixed-point computing
and numerical dynamic range. Section III shows how activa-
tion functions such Sigmoid or TanH benefits to fixed-point
computing of CNNs. An approximate version of the TanH
function is described in this section and is used to build Field-
Programmable Gate Array (FPGA)-based accelerators for the
Cifar10 CNN. Section IV reports resource utilization of these
accelerators.

II. FIXED POINT COMPUTATION OF CNNS

A typical CNN structure features a deep succession of (L)
convolutional layers where a set of 3D convolution kernels
carries the feature extraction process. Each output of a given
layer involves a multiplication of an input Φ with a kernel Θ,
an summation of C ×K2 + 1 terms –where C is the number
of inputs and K the size of the convolution kernel–. When
using a fixed-point implementation, the bit-width required to
cover all the numerical range of the latter processing can be
written as follows:

bf = bΘ + bΦ + log2(CK2 + 1) (1)

Where:
• bf : Bit-width of the layer output
• bΦ : Bit-width of the learned parameters
• bΘ : Bit-width of the layer input
This Multiply-ACcumulate process is followed by the appli-

cation of a non-linear activation function. The ReLU function
is wildly used in recent CNN topologies as it grants faster
convergence during training and less complex gradient com-
putation [9].

As shown in Fig 1-d, ReLU is defined from R to R+. Thus,
when applying this activation, the DR of CNNs is halved as all
the activations have positive values. As a result, the number of
bits required to represent the activations is 1 bit lower (ba =
bf − 1).

When stacking multiple layers, and since the ReLU function
has no upper threshold, the inputs of a layer (l) have the same
dynamic range as the outputs of layer (l − 1), as shown in
equation 2. Consequently, the numerical range of activations
increases over layers. In other words, deeper is the layer, wider
is the DR of its activations. This is especially true in the
last layers of CNNs where the activations have a significantly
larger dynamic range than the parameters DR. As a result,



an expansion of the bit-width is required to keep tolerable
precision and prevent overflow.

∀l = 1 : L

b(l)
a = b(l−1)

a + b
(l)
Θ + log2

[
C(l)K(l)2 + 1

]
− 1 (2)

With the number of bits increasing, the resource utilization
of a CNN hardware accelerator grows. For instance, in the
case of FPGAs, the hardware cost of fixed point multiplication
increases quadratically with the bit-width [10] leading the deep
layers of a CNN (the ones with the largest bit-width) to occupy
the majority of resources.

A. Controlling DR with activation functions

Training CNNs with ReLU non-linearities is responsible of
the expansion of the dynamic range of data, and thus, the bit-
width and the resource utilization of CNN accelerator. Using
activation functions with thresholds (cf Fig 1-d) such the TanH
or Sigmoid cancels this propagation of DR over layers as the
outputs of each activation are bounded with two thresholds.
As a result, the DR of the inputs of a given layer is constant
regardless of the depth of this layer. In this case, and by
contrast with equation 2, the DR of CNN outputs using TanH
activations can be written as follows:

∀l = 1 : L

b(l)
a = b

(l)
Φ + b

(l)
Θ + log2

[
C(l)K(l)2 + 1

]
(3)

III. HARDWARE FRIENDLY ACTIVATION FUNCTIONS

A. Training CNNs with constrained activation functions

Using the Caffe deep learning framework[11], three bench-
mark CNNs are trained with different activation functions and
learning curves are reported in figure 1. For the three networks,
ReLU activation function delivers the fastest convergence rates
during training. For the SVHN [12], using the TanH function
leads to a 2,93% loss in classification accuracy while for
the Cifar10 [13], 6% of classification accuracy is lost when
compared to the ReLU model. Finally, for LeNet5 [14], both
ReLU and TanH models delivers the same accuracy of 99.06%

B. Hardware implementation of TanH

Figure 2-a illustrates a piece-wise approximation of TanH
function used to infer CNNs. It is based on a function that
either applies a threshold or a linear transformation of the
output. The key advantage of such an approximation is that it
can be implemented using a small amount of logic elements.
As shown in figure 2-b, four comparators are used to check
the value of the input which controls a multiplexer that will
either output: a value of 1, a value of -1, a right arithmetic
shift of the inputs (division by two) or the original value.

Fig. 1. (a,b,c) Learning curves of 3 benchmark CNNs trained with different
activation functions plotted in (d)

Fig. 2. TanH function: a-Approximation, b-Implementation

IV. RESULTS

In order to evaluate the impact of using TanH function
on hardware resources, a small CNN graph with 3 layers
is mapped on a Cyclone V FPGA. Each layer respectively
involves 96, 1024 and 2048 convolutions of size 5 × 5.
Moreover, Three bit-widths are explored and, at each layer,
the mean number of logic elements instantiated to map a
single convolution is reported in figure 3. For this experiments,
neither dynamic fixed point arithmetic nor floating point have
been used.

Fig. 3 shows how logic elements required to map a con-

Fig. 3. Logic resources Implemented per convolution across a 3 layer CNN



volution grows when using the ReLU activation. By contrast,
applying hyperbolic tangent at the output of each layer con-
strains the DR of activations and prevents from expending the
bit-width in the deeper layers.
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