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Convolutional Neural Network (CNN) techniques improved accuracy and robustness of machine vision systems at the price of a very high computational cost. This motivated multiple research efforts to investigate the applicability of approximate computing and more particularly, fixed point-arithmetic for CNNs. In all this approaches, a recurrent problem is that the learned parameters in deep CNN layers have a significantly lower numerical dynamic range when compared to the feature maps. This problem prevents from using of a low bit-width representation in deep layers. In this paper, we demonstrate that using the TanH activation function is way to prevent this issue. To support this demonstration, three benchmark CNN models are trained with the TanH function. These models are then quantized using the same bit-width across all the layers. Efficiency of this method is demonstrated on an FPGA based accelerator, by inferring CNNs with the minimal amount of logic elements 1

I. INTRODUCTION

Convolutional Neural Networks (CNNs) [START_REF] Lecun | Deep learning[END_REF] have become the dominant approach in a variety of computer vision tasks. However, a major drawback of such techniques remains their heavy computational workload. Convolutional stages are the most computationally intensive parts of a CNN and are responsible -in a typical implementation -for more than 90% of the CNN execution time [START_REF] Cong | Minimizing computation in convolutional neural networks[END_REF]. To accelerate the execution of convolutional parts, multiple approaches advocate the use of approximate computing with fixed point numerical representation of data [START_REF] Courbariaux | Training deep neural networks with low precision multiplications[END_REF], [START_REF] Gupta | Deep Learning with Limited Numerical Precision[END_REF], [START_REF] Gysel | Hardwareoriented Approximation of Convolutional Neural Networks[END_REF]. However, and as pointed in [START_REF] Courbariaux | Training deep neural networks with low precision multiplications[END_REF], distinct parts of a CNN have a significantly different Dynamic Range (DR) of data and parameters. More particularly, the network learned parameters tend to be much smaller than the layer outputs especially in the deep layers. As a result, CNNs implementations based on approximate computing resort to dynamic fixed point [START_REF] Courbariaux | Training deep neural networks with low precision multiplications[END_REF], [START_REF] Gysel | Hardwareoriented Approximation of Convolutional Neural Networks[END_REF], mini-float [START_REF] Gysel | Hardwareoriented Approximation of Convolutional Neural Networks[END_REF] ,or long wordlength fixed point representation of data [START_REF] Sankaradas | A Massively Parallel Coprocessor for Convolutional Neural Networks[END_REF], [START_REF] Farabet | CNP: An FPGA-based processor for Convolutional Networks[END_REF].

A possible way to address this issue is forcing CNN outputs to be within a limited data-range that matches the DR of parameters. In this paper, the numerical dynamic range of CNN activations is constrained at the output of each conventional layer using the hyperbolic tangent TanH. As a consequence, CNNs can be deployed with the same bit-width across all the layers.

The rest of this paper is organized as follows. Section II recalls the main features of CNNs from a computational point of view, focusing on those related to fixed-point computing and numerical dynamic range. Section III shows how activation functions such Sigmoid or TanH benefits to fixed-point computing of CNNs. An approximate version of the TanH function is described in this section and is used to build Field-Programmable Gate Array (FPGA)-based accelerators for the Cifar10 CNN. Section IV reports resource utilization of these accelerators.

II. FIXED POINT COMPUTATION OF CNNS

A typical CNN structure features a deep succession of (L) convolutional layers where a set of 3D convolution kernels carries the feature extraction process. Each output of a given layer involves a multiplication of an input Φ with a kernel Θ, an summation of C × K 2 + 1 terms -where C is the number of inputs and K the size of the convolution kernel-. When using a fixed-point implementation, the bit-width required to cover all the numerical range of the latter processing can be written as follows:

b f = b Θ + b Φ + log 2 (CK 2 + 1) (1) 
Where:

• b f : Bit-width of the layer output • b Φ : Bit-width of the learned parameters • b Θ : Bit-width of the layer input This Multiply-ACcumulate process is followed by the application of a non-linear activation function. The ReLU function is wildly used in recent CNN topologies as it grants faster convergence during training and less complex gradient computation [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF].

As shown in Fig 1-d, ReLU is defined from R to R + . Thus, when applying this activation, the DR of CNNs is halved as all the activations have positive values. As a result, the number of bits required to represent the activations is 1 bit lower (b a = b f -1).

When stacking multiple layers, and since the ReLU function has no upper threshold, the inputs of a layer (l) have the same dynamic range as the outputs of layer (l -1), as shown in equation 2. Consequently, the numerical range of activations increases over layers. In other words, deeper is the layer, wider is the DR of its activations. This is especially true in the last layers of CNNs where the activations have a significantly larger dynamic range than the parameters DR. As a result, an expansion of the bit-width is required to keep tolerable precision and prevent overflow.

∀l = 1 : L b (l) a = b (l-1) a + b (l) Θ + log 2 C (l) K (l)2 + 1 -1 (2)
With the number of bits increasing, the resource utilization of a CNN hardware accelerator grows. For instance, in the case of FPGAs, the hardware cost of fixed point multiplication increases quadratically with the bit-width [START_REF] David | Hardware Complexity of Modular Multiplication and Exponentiation[END_REF] leading the deep layers of a CNN (the ones with the largest bit-width) to occupy the majority of resources.

A. Controlling DR with activation functions

Training CNNs with ReLU non-linearities is responsible of the expansion of the dynamic range of data, and thus, the bitwidth and the resource utilization of CNN accelerator. Using activation functions with thresholds (cf Fig 1-d) such the TanH or Sigmoid cancels this propagation of DR over layers as the outputs of each activation are bounded with two thresholds. As a result, the DR of the inputs of a given layer is constant regardless of the depth of this layer. In this case, and by contrast with equation 2, the DR of CNN outputs using TanH activations can be written as follows:

∀l = 1 : L b (l) a = b (l) Φ + b (l) Θ + log 2 C (l) K (l)2 + 1 (3) 

III. HARDWARE FRIENDLY ACTIVATION FUNCTIONS

A. Training CNNs with constrained activation functions

Using the Caffe deep learning framework [START_REF] Jia | Caffe: Convolutional Architecture for Fast Feature Embedding[END_REF], three benchmark CNNs are trained with different activation functions and learning curves are reported in figure 1. For the three networks, ReLU activation function delivers the fastest convergence rates during training. For the SVHN [START_REF] Netzer | Reading digits in natural images with unsupervised feature learning[END_REF], using the TanH function leads to a 2,93% loss in classification accuracy while for the Cifar10 [START_REF] Krizhevsky | Learning Multiple Layers of Features from Tiny Images[END_REF], 6% of classification accuracy is lost when compared to the ReLU model. Finally, for LeNet5 [START_REF] Lecun | Gradient Based Learning Applied to Document Recognition[END_REF], both ReLU and TanH models delivers the same accuracy of 99.06% 

B. Hardware implementation of TanH

IV. RESULTS

In order to evaluate the impact of using TanH function on hardware resources, a small CNN graph with 3 layers is mapped on a Cyclone V FPGA. Each layer respectively involves 96, 1024 and 2048 convolutions of size 5 × 5. Moreover, Three bit-widths are explored and, at each layer, the mean number of logic elements instantiated to map a single convolution is reported in figure 3. For this experiments, neither dynamic fixed point arithmetic nor floating point have been used. Fig. 3 shows how logic elements required to map a con-Fig. 3. Logic resources Implemented per convolution across a 3 layer CNN volution grows when using the ReLU activation. By contrast, applying hyperbolic tangent at the output of each layer constrains the DR of activations and prevents from expending the bit-width in the deeper layers.
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 2 Figure 2-a illustrates a piece-wise approximation of TanH function used to infer CNNs. It is based on a function that either applies a threshold or a linear transformation of the output.The key advantage of such an approximation is that it can be implemented using a small amount of logic elements. As shown in figure2-b, four comparators are used to check the value of the input which controls a multiplexer that will either output: a value of 1, a value of -1, a right arithmetic shift of the inputs (division by two) or the original value.
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 12 Fig. 1. (a,b,c) Learning curves of 3 benchmark CNNs trained with different activation functions plotted in (d)
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