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FV-MHMMmethod for reservoir modeling

J. Franc1 ·L. Jeannin2,4 ·G. Debenest1 ·R. Masson3

Abstract The present paper proposes a new family of mul-
tiscale finite volume methods. These methods usually deal
with a dual mesh resolution, where the pressure field is
solved on a coarse mesh, while the saturation fields, which
may have discontinuities, are solved on a finer reservoir
grid, on which petrophysical heterogeneities are defined.
Unfortunately, the efficiency of dual mesh methods is
strongly related to the definition of up-gridding and down-
gridding steps, allowing defining accurately pressure and
saturation fields on both fine and coarse meshes and the
ability of the approach to be parallelized. In the new dual
mesh formulation we developed, the pressure is solved on a
coarse grid using a new hybrid formulation of the parabolic
problem. This type of multiscale method for pressure equa-
tion called multiscale hybrid-mixed method (MHMM) has
been recently proposed for finite elements and mixed-finite
element approach (Harder et al. 2013). We extend here
the MH-mixed method to a finite volume discretization,
in order to deal with large multiphase reservoir models.
The pressure solution is obtained by solving a hybrid form
of the pressure problem on the coarse mesh, for which
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unknowns are fluxes defined on the coarse mesh faces. Basis
flux functions are defined through the resolution of a local
finite volume problem, which accounts for local heterogene-
ity, whereas pressure continuity between cells is weakly
imposed through flux basis functions, regarded as Lagrange
multipliers. Such an approach is conservative both on the
coarse and local scales and can be easily parallelized, which
is an advantage compared to other existing finite volume
multiscale approaches. It has also a high flexibility to refine
the coarse discretization just by refinement of the lagrange
multiplier space defined on the coarse faces without chang-
ing nor the coarse nor the fine meshes. This refinement can
also be done adaptively w.r.t. a posteriori error estimators.
The method is applied to single phase (well-testing) and
multiphase flow in heterogeneous porous media.

Keywords Multiscale method · Finite volume method ·
Reservoir modeling

1 Introduction

Upscaling and scaling laws in science remain a challenge.
Finding ways to deal with complex phenomena at a given
scale and then, producing a mathematical model able to
represent this physics, at the so-called macroscale, is dif-
ficult for many fields (hydrology, reservoir engineering,
meteorology, etc...) [25].

For single-phase incompressible flows in porous media,
pressure field obeys the following elliptic equation:

∇ · (−K(x)∇u) = f in �,

u = ug on ∂�. (1)

where K(x) is a symmetric and positive definite tensor
defined at the Darcy’s scale. The permeability distribution
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in space yields correlated structures that span several orders
of magnitude. The link between the local scale, that is the
Darcy-scale where K(x) is locally varying, to a larger scale
such as the reservoir scale was and continues to be the object
of much attention in order to predict accurate fluid flows in
porous media. When the medium is homogeneous or large
enough for length scales to be separated , the problem is well
understood and references are easy to find (see for instance
[21]). However, when there is no length scale separation
or when two-phase flow problems are studied (i.e., when
pressure field is coupled with a saturation field strongly
dependent on local heterogeneity), details of the permeabil-
ity at the Darcy-scale must be kept in order to correctly
describe flow in porous media.

Numerous multiscale algorithms are available to address
this problem. Unlike traditional methods, multiscale
approaches benefit from keeping information on the under-
lying details. Examples of these methods can be found
in multiscale finite element methods (MsFEM) [8, 15],
numerical subgrid methods (NSub) [2] or the multiscale
finite volume method (MsFv) [16, 17]. All these methods
address the problem by embedding Darcy-scale informa-
tions from resolution of the sub-problems into the resolution
of a reservoir-scale discretized problem. MsFEM [8, 15]
detailed and improved in [1], relies on the construction of
a local basis function suited to the heterogeneities. Local
velocity, ensuring mass conservation, is obtained using a
mixed formulation. NSub proposes a different approach
based on the decomposition of pressure into a coarse scale
pressure and its subscale variation on fine scale. Coarse
scale pressure is approximated using RT0 [20] or BDM1 [3]
spaces while subscale variations use RT0 spaces on the fine
scale. Eventually MsFv formulates a method that obtains
pressure as a linear combination of constructed coarse scale
basis functions that embed fine scale variations. MsFv has
to construct a dual grid in order to build its global system.
Applying boundary conditions can be tedious [10]. More-
over, it has been reported [24] that MsFv, without smoothing
steps, can not solve some of the 10th SPE [9] slices as it
only resolves low frequency errors. It will be highlighted in
the numerical tests.

This paper intends to develop a new finite volume mul-
tiscale method (FV-MHMM) derived from the multiscale
hybrid-mixed method (MHMM) formulated for finite ele-
ments and the mixed-finite element approach [12, 13]. The
pressure equation is solved using a hybrid formulation on
the coarse mesh, for which the unknowns are fluxes defined
on the coarse mesh faces. Basis functions required for the
construction of the coarse-scale system (referred to as the
global system) are obtained by solving two kinds of local
problems, which account for heterogeneities in the perme-
ability field but also for the treatment of the local source
terms (e.g., wellbore pressure). The pressure continuity

between coarse cells is then ensured by regarding flux basis
functions as Lagrange multipliers. Such a method ensures
mass conservation on both the local and global scales. It also
offers the possibility of improving the coarse scale solution
by refining the Lagrange multiplier space defined on coarse
faces without changing either the coarse discretization or
the fine mesh grid. This method offers the possibility of
adaptive refinement with respect to a posteriori estimators.

The first section is dedicated to the mathematical for-
mulation of the FV-MHMM method. The construction of
the two kinds of local basis functions and the formula-
tion of a global problem, including Lagrange multipliers as
flux unknowns, are exposed. The second section presents
selected numerical test cases. It is divided into three parts.
The first part studies the convergence behavior of the
method and gives the results on a heterogeneous perme-
ability field. The second part presents the adaptation of the
FV-MHMM method to slightly compressible flows and the
third part extends this approach to two-phase flow, coupling
the pressure equation with a fine scale updated equation of
saturation.

2 Mathematical development

2.1 Multiscale hybrid-mixed method

Let us define a polyhedral (polygonal in 2D) coarse mesh of
the domain � by its set MH of coarse cells K ∈ MH and its
set of coarse planar faces (edges in 2D) FH . On each coarse
face of FH , we define the unit normal vector n with a fixed
orientation taking care to ensure that it is oriented outward
on ∂�. For each coarse cellK ∈ MH , the unit normal vector
on ∂K oriented outward to ∂K is denoted by nK .

The multiscale hybrid-mixed method developed in [12,
13] is based on the following primal hybrid variational for-
mulation of Eq. 1 introduced in [20] which weakly enforces
the continuity of the solution at the coarse faces FH through
the action of Lagrange multipliers:

find (u, λ) ∈ V × � such that:∫
�

K(x)∇u · ∇vdx +
∑

K∈MH

∫
∂K

λn · nK v|Kdσ

+
∑

K∈MH

∫
∂K

μn · nKu|Kdσ =
∫

�

f vdx

+
∫

∂�

μugdσ for all (v, μ) ∈ V × �.

(2)

where V is the broken Sobolev space H 1(MH ) defined by

H 1(MH ) = {v ∈ L2(�) : v|K ∈ H 1(K), K ∈ MH },



� stands for the following Lagrange multipliers space

� :=
⎧⎨
⎩μ ∈

∏
K∈MH

H− 1
2 (∂K) : ∃σ ∈

×Hdiv(�) s.t. μ|∂K = σ · n|∂K, K ∈ MH

⎫⎬
⎭ ,

∇v is the broken gradient equal to ∇v|K on each coarse cell
K ∈ MH , Hdiv(�) is defined as:

Hdiv(�) := {σ ∈ [L2(�)]d : ∇ · σ ∈ L2(�)},
and H− 1

2 (∂K) is the dual space of the space H
1
2 (∂K) span

by the traces on ∂K of functions in H 1(K).
Let us denote by V0 the space of cellwise constant func-

tions in each coarse cell K ∈ MH and by WK the set
of functions in H 1(K) with zero mean value on K . Then,
W := �K∈MH

WK is a subspace of V such that we have the
orthogonal decomposition

V = V0 ⊕ W = V0 ⊕
⊕

k∈MH

WK.

Following this decomposition, each v ∈ V is uniquely
decomposed as v = v0,K +∑

K∈MH
ṽK with v0,K ∈ V0 and

ṽK ∈ WK which leads to the splitting of the previous vari-
ational formulation as the sum of two local problems set on
WK for each coarse cell K ∈ MH and a global problem set
on V0 × �.

For a given λ ∈ �, the first local problem, referred to
as the local lambda problem (LLP) in the following, writes
(see [12, 13] for details): Find ũK ∈ WK such that:∫

K

K(x)∇ũK ·∇ṽKdx +
∫

∂K

λn ·nKṽKdσ= 0 for all ṽK ∈ WK,

(3)

and we set ũK = TKλ.
The second local problem dealing with the source term

f and refered to as the local source problem (LSP) in the
following, writes (see [12, 13] for details): Find ũK ∈ WK

such that:∫
K

K(x)∇ũK · ∇ṽKdx =
∫

K

f ṽKdx for all ṽK ∈ WK,

(4)

and we set ũK = T̂Kf .
The global problem solve the coarse conservation equa-

tions together with the trace continuity equations at the
coarse interfaces (see [12, 13] for a detailed analysis of this
formulation): find u0,K ∈ R, K ∈ MH and λ ∈ � such that:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
K∈MH

∫
∂K

λn · nKdσ =
∫

K

f dx for allK ∈ MH ,

∑
K∈MH

∫
∂K

μn · nK(u0,K + TKλ + T̂Kf )dσ

= ∫
∂�

μug for all μ ∈ �.

(5)

The objective of the next subsection is to specify the
MHMmethod when a Two Point Flux finite volume scheme
is used to solve the local problems.

2.2 MHM method coupled with a two point flux
approximation (TPFA) of the local problems

Each coarse cell K is submeshed with an orthogonal fine
mesh and we denote by Mh,K the set of sub-cells, by F int

h,K

the set of interior faces and by Fext
h,K the set of boundary

faces. The set of faces of the cell X ∈ Mh,K is denoted by
FX ⊂ F int

h,K ∪ Fext
h,K . The set of two cells sharing the interior

face σ ∈ F int
h,K is denoted by Mσ = {X, Y } and the notation

X|Y will also be used to denote the face σ at the interface
between the two cells.

Let Vh,K be the space of cellwise constant functions in
each cell X ∈ Mh,K . For uh,K ∈ Vh,K , we denote by uX

the value of uh,K in the cell X for all X ∈ Mh,K . Vh will
denote the space of cell-wise constant functions on each cell
X ∈ Mh = ⋃

K∈MH
Mh,K and for uh ∈ Vh, uh,K denotes

the restriction of uh to the coarse cell K . Let us set

Wh,K = {uh,K ∈ Vh,K |
∑

X∈Mh,K

|X|uX =
∫

K

uh,K(x)dx = 0}.

Let us denote by Vh,∂K ⊂ L2(∂K) the set of piecewise
constant functions on each face σ ∈ Fext

h,K . For uh,∂K ∈
Vh,∂K , we denote by uK,σ the value of uh,∂K on the face
σ ∈ Fext

h,K . The approximate solution in each coarse cell K
and the approximate trace on ∂K , K ∈ MH will be denoted
by (uh,K, uh,∂K) ∈ Vh,K × Vh,∂K .

Let (vh,K, vh,∂K) ∈ Vh,K × Vh,∂K , the two point flux
approximation (TPFA) at the face σ ∈ FX ∩ F int

h,K outward
to the cell X is defined by

FX,Y (vX,vY ) = FX,σ (vX,vY ) = Tσ (vX−vY ), Mσ = {X, Y },

where Tσ is the transmissivity of the interior face σ , and the
TPFA at the boundary face σ ∈ FX ∩ Fext

h,K outward to the
cell X is given by

FX,σ (vX, vK,σ ) = TX,σ (vX − vK,σ ),

where TX,σ is the half transmissivity of the boundary face
σ .

Let �H denote a finite dimensional subspace of L2(FH ).

2.2.1 Local problems

Using the finite volume scheme with TPFA, the dis-
cretization of the LLP local problem (3) is given by the
following discrete variational formulation: given λ ∈ �H ,



find (uh,K, uh,∂K) ∈ Wh,K × Vh,∂K such that for all
(vh,K, vh,∂K) ∈ Wh,K × Vh,∂K one has⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
σ=X|Y∈F int

h,K

Tσ (uX − uY )(vX − vY )

+
∑

σ∈Fext
h,K ,σ∈FX

TX,σ (uX − uK,σ )(vX − vK,σ )

+
∑

σ∈Fext
h,K

∫
σ

vK,σ λn · nKdσ = 0.

Using a Lagrange multiplier to deal with the zero mean
value constraint for the test functions in Wh,K , it is easy to
show that this discrete variational formulation is equivalent
to the following finite volume conservation equations: find
(uh,K, uh,∂K) ∈ Wh,K × Vh,∂K such that

∑
σ=X|Y∈FX∩F int

h,K

Tσ (uX − uY ) +
∫

∂K∩∂X

λn · nKdσ

= |X|
|K|

∫
∂K

λn · nKdσ,

for all X ∈ Mh,K , and

FX,σ (uX, uK,σ ) = TX,σ (uX − uK,σ ) =
∫

σ

λn · nKdσ,

at each face σ ∈ Fext
h,K ∩ FX. Let us define the operators

(Th,K, Th,∂K) mapping �H to L2(K) × L2(∂K) and such
that (Th,Kλ, Th,∂Kλ) is equal to the solution (uh,K, uh,∂K)

of the previous local problem.
Similarly, the functions (T̂h,Kf, T̂h,∂Kf ) are defined for

f ∈ L2(�) by the solution (uh,K, uh,∂K) ∈ Wh,K × Vh,∂K

of the finite volume conservation equations discretizing the
LSP local problem (4):

∑
σ=X|Y∈FX∩F int

h,K

Tσ (uX − uY ) =
∫

X

f dx − |X|
|K|

∫
K

f dx,

for all X ∈ Mh,K , and uK,σ = uX for all σ ∈ Fext
h,K ∩ FX.

Let us remark that we have for all (λ, μ) ∈ �H × �H⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫
∂K

μn · nKTh,∂Kλdσ =
∫

∂K

λn · nKTh,∂Kμdσ

= −
∑

σ=X|Y∈F int
h,K

Tσ (uX − uY )(vX − vY )

−
∑

σ∈Fext
h,K ,σ∈FX

TX,σ (uX − uK,σ )(vX − vK,σ ),

with (uh,K, uh,∂K) = (Th,Kλ, Th,∂Kλ), (vh,K, vh,∂K) =
(Th,Kμ, Th,∂Kμ) which implies that the bilinear form

ah,K(λ, μ) = −
∫

∂K

μn · nKTh,∂Kλdσ,

on �H × �H is symmetric positive. The bilinear form ah,K

is also definite if the restriction of the space �H to ∂K is
not “finer” than the space of piecewise constant functions
on the fine faces of ∂K .
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Fig. 1 Convergence behavior of u0,K with respect to coarse grid
refinement for homogeneous permeability field

2.2.2 Global problem

The discrete global problem is just obtained by replacing in
(5) the vector space � by the discrete vector space �H and
the trace on ∂K of the continuous operators TK and T̂K by
respectively the operators Th,∂K and T̂h,∂K leading to the
following set of discrete equations:
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Fig. 2 Convergence for different �l space on a homogeneous Lapla-
cian case
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Fig. 3 Convergence for different�l space with sinusoidal source term

find u0,K ∈ R, K ∈ MH and λ ∈ �H such that:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
K∈MH

∫
∂K

λn · nKdσ =
∫

K

f dx for all K ∈ MH ,

∑
K∈MH

∫
∂K

μn · nK(Th,∂Kλ+u0,K)dσ =
∫

∂�

μugdσ

−
∑

K∈MH

∫
∂K

μn · nKT̂h,∂Kf dσ for all μ ∈ �H .

(6)

The first equation is a direct transcription of coarse
scale mass conservation while the second equation weakly
enforces the trace continuity at coarse interfaces.

Roughly speaking, this mixed linear system (or saddle
point problem) will be non singular if �H contains, for each
coarse face σ ∈ FH , at least one function supported on σ

with non zero mean value on σ , and if �H is not finer than
the space of piece-wise constant functions on the fine faces
of FH .

In the following 2D numerical test cases, the vector space
�H will be typically defined as the vector space of polyno-
mials of degree l on each coarse face of FH with l = 0, 1, 2.
These choices of �H will be denoted by �l , l = 0, 1, 2 in
the following.

Given a basis of �H denoted by λσ,i for all σ ∈ FH ,
i = 1, · · · , nσ , the assembly of the global matrix can be
done by computing on each coarse cell K the symmetric
negative local rigidity matrix defined by

(AK)
σ2,i2
σ1,i1

=
∫

∂K

λσ1,i1n · nKTh,∂Kλσ2,i2dσ, (7)

with σ1, σ2 ∈ Fh,K , i1 = 1, · · · , nσ1 , i2 = 1, · · · , nσ2 , as
well as the local vector defined by

(BK)σ,i =
∫

∂K

λσ,in·nKT̂h,∂Kf dσ, σ ∈Fh,K, i=1,· · · ,nσ .

(8)

and doing the global assembly in the finite element fashion.
In order to assess the amount of CPU workloads at each

time step, a complexity analysis similar to the analysis of

Fig. 4 Map of log permeability
of a fluvial and near-shore typed
slices of the 10th SPE case
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Fig. 5 Finite volume reference
solutions of a fluvial and
near-shore typed slices of the
10th SPE case
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[16] is reported in Appendix A. The time spent in the global
stage is indeed larger than in the MsFv method, but the
overall process is found to be faster for constant(l = 0) or
linear(l = 1) basis and as fast for quadratic (l = 2).

3 Numerical tests

In this section, numerical tests on different formulations
of the FV-MHMM algorithm are performed. In the first
subsection, convergence and heterogeneous test cases for
incompressible formulation are presented. The second sub-
section shows how to adapt the algorithm to slightly com-
pressible flows and presents a basic example of a production
wellbore in a bounded reservoir. In the last subsection, a
two-phase case permits to present the adaptation of the
method to multiphase flow and allows comparisons with
well-known Buckey-Leverret solution.

3.1 Incompressible algorithm

Incompressible formulation of the method is now tested in
various configurations. Firstly, the convergence characteris-
tic behavior of the method is assessed for two simple cases.
The convergence study on the piecewise constant coarse
cell unknown u0,K is reported to be h2-convergent inde-
pendently of case treated or �l considered. The analysis
for a homogeneous permeability field is chosen (see on
Fig. 1). The independence of u0,K convergence rate to the
polynomial functions’ subspace �l chosen is also denoted
in [12].

3.1.1 Convergence on a homogeneous permeability field

Simulations are performed solving Eq. 1 with an isotropic
permeability field, reducing the tensor K(x) to the scalar
parameter K = 1. For the first test, the source term value is
f (x, y) = 1 throughout the whole square domain of extend
a = 1. On the boundaries of the global domain, unknown
is weakly imposed to ug = 0. Meshgrids are uniformly dis-
cretized with the same number of cells along each direction.
Let us then define γ as the number of fine cells embedded
in a coarse cell along one direction. Convergence study is
performed keeping γ constant (see on Fig. 2).

The error is measured as L2-norm of the relative error
between reconstructed field uh = u0,K + ũλ + ũf to a semi-
analytical solution taken from [6]. The solution is expressed
as an infinite sum which is truncated for the study at n =
200:

u(x, y)= (a2 − x2)

2
− 16 a2

π3

∞∑
n=0

(−1)n cos((2n+1)πx/2a) cosh((2n+1)πy/2a)

(2n + 1)3 cosh((2n+1)π/2)
.

(9)

Convergence rate with respect to the coarse grid dis-
cretization depends on the �l space chosen. Refining �l

Table 1 Relative norm-L2 error level refining �l for a channelized
SPE

Basic Transmissivity-weighted

�1 0.033 0.0063

�2 0.022 0.0047



Fig. 6 Result of incompressible
single phase flow with basic and
transmissivity weighted basis
functions for �1 on SPE slice
with channelized medium (i.e.
fluvial typed)
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space ensures lower error levels for the same coarse grid
discretization as reported in [12] (see on Fig. 2).

3.1.2 Convergence including sinusoidal source term

For the second test, the same problem as the previous case is
performed, but including spatially varying source term. We
impose the unknown to be null on the boundaries and the
source term is modeled as a sinusoidal term following:

f (x, y) = 8π2sin(2πx)sin(2πy) (10)

Same remarks as previously can be drawn from Fig. 3.
The convergence behavior obtained for uh is hl+2-
convergence on �l, l ∈ {0, 1, 2}. This is comparable to the
results of [12].

3.1.3 Study of heterogeneous sample

The next example is based on the 83th and the 13th slices
proposed in the 10th SPE comparative solution project
[9]. The former is a highly contrasted channelized per-
meability field typical of fluvial media, while the latter
is heterogeneous typical of prograding near-shore environ-
ment. The domain is 370 × 670 m2. It is gridded using

Table 2 Relative norm-L2 error level refining �l for a near-shore
typed SPE slice

Basic Transmissivity-weighted

�1 0.0031 0.0010

�2 0.0017 5.9 10−4

uniform Cartesian cells (60 × 220) as prescribed by the data
set values for permeability. It is characterized respectively
by a mean permeability value of μ(K) = 5.38 10−10m2

and highly variable permeability background of variance
σ(ln(K)) = 12.17 for the channelized medium. The 13th
slice is characterized by a mean permeability value of
μ(K) = 6.07 10−10m2 and mildly variable permeability
background of variance σ(ln(K)) = 6.01. Their logarith-
mic map are shown on Fig. 4. We impose a constant pressure
drop, 
u = 1 Pa, between opposite faces in the y-direction.
A no-flux condition is imposed on the other boundaries. A
reference finite volume solution is obtained on the fine grid
and reported on Fig. 5. Software used is an OpenFOAM
developed code [14]. Performances of �l, l ∈ {1, 2} spaces
are evaluated on a coarse grid of 10x11 cells.

Let us consider first the case of a channelized permeabil-
ity. As expected, increasing the order of polynomial space
�l allows us to capture more details of the channelized flow.
However, the L2-norm error level for �2 remains high as
reported on Table 1.

It is then important to optimize the choice of test func-
tions used in the local problems (LLP and LSP). To this
effect, a fine scale transmissivity weighted method can be
used in the local LLP and global problems construction in

Table 3 Means and standard deviation of L2-norm error w.r.t the type
of heterogeneities

Tarbert facies Upper-Ness facies

MsFv 0.03(0.017) 0.438(0.589)

FV-MHMM-�2(reg) 2.61(0.41) · 10−3 0.072(0.029)

FV-MHMM-�2(tw) 1.57(0.31) · 10−3 0.011(0.007)
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Fig. 7 L2 relative errors of the pressure fields while solving incompressible single phase flow using MsFv, basic weighted and transmissivity
weighted basis functions for �1 on several of the SPE slices

the spirit of [23]. This consists in weighting the basis func-
tions of the space �l at each coarse face according to the
fine faces transmissivities leading to a weighted choice of
the Lagrange multiplier space �H .

To be more specific, let us denote by σ ∈ FH a given
coarse face. Let Fh,σ denote the set of fine faces of the
coarse face σ and Te denote the transmissivity of the fine
face e. The new basis functions of �H are defined on each
coarse face σ by

λσ,i(s) = si Te∑
e∈Fh,σ

Te

, i = 0, · · · , l,

where l is the polynomial degree of the space and s

the coordinate along the 1D face σ . This choice of the
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Fig. 8 Comparison between finite volume and FV-MHMM on injec-
tion case

basis functions emphasizes high permeability areas over
low permeability areas. It eases the flow to follow channel
paths.

From Table 1, readers can observe that including a
weighting scheme improves strongly the scheme conver-
gence compared to unweighted basic approach. Indeed,
the weighted scheme avoids trapping fluids in regions of
low permeability and does not show the numerical arte-
facts present in the unweighted basic approach. The L2-
norm error is then reduced more than 10 times using
transmissivity-based weights.

As an example, we plot on Fig. 6 the pressure fields on
the slice 73 comparing the basic and weighted schemes.
This illustrates the ability of the modified model to treat the
local heterogeneities related to high variations of the per-
meability fields. Consequently, when dealing with highly
contrasted heterogeneous media, it is required to use the
corrected FV-MHMM rather than the basic scheme.

Concerning the near-shore typed medium, FV-MHMM
is efficient in its original formulation and errors between
the two formulations of the same magnitude as reported in
Table 2.

To conclude this section on heterogeneous fields, sim-
ulations has been performed on several of the 10th SPE
heterogeneous slices comparing FV-MHMM with MsFv
algorithm as it is implemented in MRST2016a [18]. MsFv
is here considered as a stand-alone multiscale solver and no
iterations are used in the reported results. Relative L2-norm
errors with respect to the fine scale finite volume solution
for the�1 space are plotted on Fig. 7. The two main remarks
developed above are highlighted in that graph. In represen-
tation of prograding near-shore porous medium (slice from
number 1 to number 35), basic and weighted schemes for
deriving local basis functions produce errors of the same
order of magnitude. However, if a channelized medium
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Fig. 9 Compared Buckley-Leverett: on the left, saturation front from semi-analytical and FV-MHMM; on the right, finite volume solutions and
two-phase FV-MHMM

is considered, typical of fluvial environment (slice from
number 36 to number 85), transmissivity weighted scheme
improves significantly the accuracy. MsFv error reported on
Fig. 7 are truncated as the method struggles to find a solu-
tion on some slices. As a comparable situation, the reader
can refer to [24].

For the sake of completeness, Table 3 reports the mean
value (and standard deviation) of the errors, considering
slices by facies as if they were several equivalent realiza-
tions of an heterogeneous permeability field. On the Tarbert
facies, weighted and unweighted formulations produce error
of the same order of magnitude, but ten times smaller
than MsFv. They also produce less discrepancy between
the slices. The difficulties for MsFv to find a solution on
some of the Upper-Ness facies are highlighted by a higher
standard deviation values.

However, the latest development in the MsFv method
proposed an algebraic version of the algorithm [7]. The
method is then considered as a parallelizable precondition-
ner to a fine grid solver such as GMRES [19]. With this
algebraic approach, convergence is reached on all of the
10th SPE slices.

3.2 Slightly compressible algorithm

The FV-MHMM method can be adapted to slightly com-
pressible flows [13]. Introducing a compressibility parame-
ter c such as dρ

ρ
= c du, the porosity φ and the viscosity μ,

the elliptic system of (1) turns into the following parabolic
equation:

∇ ·
(−K(x)

μ
∇u(x, t)

)
+φc

∂u(x, t)
∂t

= f (x, t) ∀(x, t) ∈ � × R
+, (11)

−K(x)
μ

∇u · n = 0 ∀(x, t) ∈ ∂� × R
+,

u(x, 0) = 0 ∀x ∈ �.

Following [13], the FV-MHMM algorithm can be
adapted to solve such a parabolic problem based on the new
orthogonal decomposition of the space V :

V =
⊕

K∈MH

VK

with VK = H 1(K).
The local Lambda problem and local source problem can

be rewritten in each coarse cell K ∈ MH after an Euler
implicit time discretization (with time step 
t) and the
TPFA discretization in space as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
σ=X|Y∈FX∩F int

h,K

Tσ (uX − uY ) +
∫

X

φc/
tuXdx

+
∫

∂K∩∂X

λn · nKdσ = 0, for all X ∈ Mh,K,

∑
σ=X|Y∈FX∩F int

h,K

Tσ (uX − uY ) +
∫

X

φc/
tuXdx

=
∫

X

(f + cφ/
t un−1
X )dx, for all X ∈ Mh,K,

(12)



in which un−1
X stands for the pressure solution at the previ-

ous time step.
The previous time step solution on the right-hand side

of the local source-problem makes the solution of this
local source-problem time dependent. Moreover, if dynamic
time-stepping strategy is adopted, the basis functions of the
Local lambda problems need also to be updated at each time
step for which 
t is modified.

As a validation test, a comparison between the fine scale
finite volume method and FV-MHMM is given in Fig. 8.
The test case is a centered wellbore with a constant rate of
discharge q0 = −4.5 · 10−5 m3· s−1 embedded in a square
field of dimension a = 3500 m. The fine-mesh discretization
is 81 × 81 cells. The boundary conditions are considered to
be homogeneous Neumann as stated in (11). The wellbore
is active in the central cell. The homogeneous background
permeability field is taken as equal to K = 5·10−13m2

throughout the whole domain. The compressibility is set at
3.9 · 10−10 Pa−1 with viscosityμ = 10−3 Pa · s and porosity
φ = 0.25.

We clearly note the accordance between the two solu-
tions.

3.3 Two phase flow model

We generalized, in this section, the approach to incom-
pressible immiscible two-phase flow. The saturations of the
wetting and non-wetting phases are respectively referred to
as Sw and Sn. We also introduce phases mobilities λw(Sw)

and λn(Sn) as:

λw(Sw) = krw(Sw)

μw

(13)

λw(Sw) = krn(Sw)

μn

in which krw(Sw) and krn(Sw) denote the relative perme-
abilities respectively of the wetting and non-wetting phase.
The dynamic viscosities of the wetting and non-wetting
phases are introduced as μw and μn.

Let us introduce the generalized Darcy laws for the non-
wetting phase, noted with subscript n, and for the wetting
phase, noted with the subscript w, as :

vw = −K(x)λw(Sw)∇u, (14)

vn = −K(x)λn(Sw)∇u.

The total Darcy velocity is defined as:

v = −K(x)λt (Sw)∇u. (15)

Here, the capillary pressure has been neglected, i.e., the
wetting and non-wetting phase pressure are equal. From the

continuity equation of total flow and the mass balance in the
wetting phase, a two-phase flow system is derived coupling
an hyperbolic saturation equation with a parabolic pressure
equation :

∇ · (−K(x)λt (Sw)∇u) = f in �,

u = ug on ∂�D,

v · n = q0 on ∂�N (16)

φ
∂Sw

∂t
+ ∇ · (fw(Sw) v) = 0 in �,

vw · n = qw,0 on ∂�N.

in which the fractional flow of the wetting phase fw(Sw) =
λw(Sw)/λt (Sw) is defined.

Brooks and Corey models [4] for mobilities λw(Sw),
λn(Sw) and λt (Sw) are adopted here. They are written as:

λw(Sw) = 1

μw

(
Sw − Sn,res

1 − Sw,c − Sn,res

)2

,

λn(Sw) = 1
μn

(
1 − Sw − Sn,res

1 − Sw,c − Sn,res

)2

, (17)

λt (Sw) = λn(Sw) + λn(Sw).

introducing the saturation parameters, Sn,res and Sw,c

respectively residual non-wetting phase saturation and con-
nate wetting phase saturation.

FV-MHMM algorithm is used to solve the pressure equa-
tion of the two-phase flow system (16), introducing trans-
missivity terms depending on the saturation Tσ (Sn+1

w ). The
hyperbolic saturation equation is solved using a first order
upwind scheme. The two equations are coupled sequentially
in the spirit of impes algorithm [22].

In order to validate two-phase flow implementation, we
perform a Buckley Leverett test [5]. From this equation,
front position and saturation are determined. The viscos-
ity ratio is set to μw/μn = 1 and the injection rate is set
at q0 = qw,0 = 2 · 10−3 m3 · s−1. Mobility parameters
are defined as Sn,res = Sw,c = 0. The porosity is set to
φ = 0.5. On Fig. 9, the comparisons between front positions
determined using the semi-analytical and from two phase
flow FV-MHMM are reported. Here, a 6 × 1 coarse grid
is used overlaying a 48 × 1 fine discretization. There is no
loss of accuracy as shown on the right plot of Fig. 9, when
compared to a finite volume simulation run on the fine grid
discretization.

Next case involves a random permeability field through
which a cross flow is performed. The porosity and Brooks
and Corey parameters are kept at the previous values. Injec-
tion rate is set at q0 = 2 10−4 m3 · s−1. The injection of
fluid with the same viscosity μw = μn = 10−3 Pa · s is



Fig. 10 Detail of the
comparison on a multiphase
flow situation using FV-MHMM
method at different orders and
fine grid finite volume solution.
Respectively, on the top
logarithmic map of the
permeability, on the bottom;
from left to right, finite volume
solution, two-phase FV-MHMM
solution �1 and �2 for
saturation and related pressure
fields



studied. The overlaying coarse grid is kept at a 6 × 1 dis-
cretization level, while the fine grid is changed to a 48 × 4
discretization. A randomly generated permeability field is
defined with μ(K) = 4.97 · 10−10 m2 with values ranging
from 1.2 · 10−11 to 9.97 · 10−10 m2. The reference is the
fine grid solution obtained using OpenFOAM finite volume
solver [14]. On Fig. 10, this solution is plotted on the left
side. The saturation front is solely perturbed by local hetero-
geneities in permeability values. This reference is compared
to �1, in the middle of Fig. 10, and �2, on the right
side of Fig. 10, solution from two-phase FV-MHMM for
t = 34 s.

From Fig. 10, it can be noted again that refining �l

spaces switching from l = 1 to l = 2 allows us to capture
more and more details of the solution. It provides us a new
way of improving the solution without neither refining any
meshes nor reducing time-step size.

4 Conclusion

In this paper, a new multiscale FV-MHMM method has
been introduced for the resolution of the problem (1). This
approach is based on a hybrid formulation of the pressure
problem, where main unknowns are fluxes on the faces of
a coarse mesh. Two kinds of local problems are involved:
a local lambda problem (LLP) and a local source prob-
lem (LSP) in order to build the global problem. Each of
these problems embeds local heterogeneity details. Consid-
ering flux basis functions as Lagrange multipliers, pressure
continuity is weakly imposed on the coarse mesh. The math-
ematical formulation of this method has been presented and
convergence has been tested on various test cases. Exten-
sions of the FV-MHMM to slightly compressible cases and
two-phase cases have been introduced.

FV-MHMM method is a promising method. Local prob-
lems are indeed entirely localized and could be run on dif-
ferent processors. Moreover, unlike classical finite volume
methods, FV-MHMM offers possible degrees of refinement
in the educated choice for the tests functions μ defined in
spaces of polynomial functions �l . Including a posteriori
error estimators offers the possibility of local and adapted
refinement of the �l space.

Eventually, further works will focus on dealing with
highly heterogeneous media and with cross-comparison
with the main existing methods such as MsFv [16, 17],
MsFEM [1, 15], GMsFEM [11], or numerical subgrid meth-
ods [2].
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Appendix: A complexity analysis

[16] proposed a complexity analysis of their MsFv algo-
rithm. Following their example, we will here remind their
results and apply such an analysis on FV-MHMM to be able
to compare the two approaches. The notations that will be
used are introduced in Table 4.

Assuming that t1(n) ∼ ctmnα where tm is the time spend
for one multiplication, c and α constant depending on the
solver. This complexity analysis neglects time spent in the
reconstruction of the pressure and the fluxes leading to the
following time by steps:

tI ≈ Nnanctmγ α,

tII ≈ Nv(av + 1)ctmγ α

tIII ≈ ctmNα
v .

with the step I identified as construction of equivalent
transmissivities for coarse scale fluxes, the step II as the
construction of basis functions sets � on the primal grid and
the step III as the solution on the coarse grid.

In the same manner, FV-MHMM can be analyzed as:

tLLP ≈ 2d(l + 1)Nvctmγ α,

tLSP ≈ Nvctmγ α,

tGP ≈ ctm[Nv + (l + 1)Nf ]α.

where d is the dimension number, l the order of the poly-
nomial space used to approximate �H as introduced in
the paper. The step LLP is the local problem in terms of
Lambda, the step LSP is the local problem in terms of source
contribution and GP is the global problem also as introduced
in the paper.

Table 4 Notations for complexity analysis

nv Number of volumes in the fine grid

Nv Number of volumes in the coarse grid

Nn Number of nodes in the coarse grid

Nf Number of faces in the coarse grid

γ Coarsening ratio ∼ nv/Nv

an Number of adjacent coarse volume to a coarse node

av Number of adjacent coarse volume to a coarse volume

t1(n) Time to solve a linear system with n unknowns

Table 5 Parameters of comparison

nv Nv Nn d av an α c

8100 9 12 2 8 4 1.5 10



Fig. 11 Time spent for the
MsFv and the FV-MHMM in
terms of operations

Considering an average number of coarse faces as Nf ≈
d(N

1/d
v + 1)

d−1∏
i=1

N
1/d
v with the parameters of Table 5, time

used in term of tm for each steps of both algorithms are
represented on Fig. 11. It can be noticed that increasing
polynomial order of approximation of �H increases the
computational cost for solving LLP and GP.

Increasing the order l ∈ {0, 1, 2} of the polynomial space
that approximated �H , the speed up of FV-MHMM versus
the MsFv method is respectively of 2.86, 1.59, and 1.10.

Moreover, the step I and step III are reported to be
parallelizable for the MsFv method [16]. As for the FV-
MHMM, all the local problems lambda (LLP) and local
problems source (LSP) are independent from each other
and therefore embarrassingly parallel. Moreover, the TPFA
matrix for a selected coarse cell has to be generated only
one time and can be used for solving both LLP and LSP
associated with this coarse cell.
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