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Abstract
Most of the mechanical models for solid state materials are in a methodological frame-
work where a strain tensor, whatever it is, is considered as a thermodynamic state vari-
able. As a consequence, the Cauchy stress tensor is expressed as a function of a strain
tensor – and, in many cases, of one or more other state variables, such as the temperature.
Such a choice for the kinematic state variable is clearly relevant in the case of infinitesimal
or finite elasticity (see e.g. [Adkins-1961]; [Fu-2001]). However, one can ask whether
an alternative state variable could not be considered. In the case of finite elastoplasticity
(see e.g. [Mandel-1971]; [Asaro-1983]; [Boyce-1989]), the choice of a strain tensor as
the basic, kinematic state variable is not totally without issue, in particular in relation to
the physical meaning of the internal state variable describing the permanent strains. In
any case, this paper proposes an alternative to the strain tensor as a state variable, which
is not based on the deformation (Lagrangian) gradient: the average conformation tensor
of interatomic bonds. The purpose, however, is restricted: i – to a particular type of
materials, namely the pure substances (copper or aluminium, for instance) ; ii – to the
nanoscale ; iii – to the case of elasticity.
The very simple case of two atoms of a pure substance in the solid state is first consid-
ered. It is shown that the kinematics of the interatomic bond can be characterized by a
so called "conformation" tensor, and that the tensorial internal force acting on it can be
immediately deduced from a single scalar function, depending only on the conformation
tensor: the state potential of free energy (or interaction potential). Using an averaging
procedure, these notions are then extended to a finite set of atoms, namely an atom and its
first neighbors, which can be seen as the "unit cell" of a pure substance in the solid state
considered as a discrete medium. They are also transposed to the Continuum case, where
an expression of the Cauchy stress tensor is proposed as the first derivative of a state
potential of density (per unit mass) of average free energy of interatomic bonds, which
is an explicit function of the average conformation tensor of interatomic bonds. By ap-
plying a standard procedure in Continuum Thermodynamics (see e.g. [Coleman-1967];
[Garrigues-2007]), it is then shown that the objective part of the material derivative of
this new state variable, at least in the case when the pure substance can be considered as
an elastic medium, is equal to the symmetric part of the Eulerian velocity gradient, that
is the rate of deformation tensor. In the case of uniaxial tension, a simple relationship is
eventually set out between the average conformation tensor and a strain tensor, which is
correctly approximated by the usual infinitesimal strain tensor as long as the conforma-
tion variations (from an initial state of conformation) are "small". From this latter result,
and assuming an elastic behavior, a simple expression for the state potential of density of
average free energy is inferred, showing great similarities with – but not equivalent to –
the classical model of isotropic, linear elasticity (Hooke’s law).
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1 Introduction

Any mechanical behavior model for a solid state material is defined by a set of constitutive
equations, one of these equations generally linking the Cauchy stress tensor σσσ to a strain
tensor SSS and, if necessary, to so called internal variables (see e.g. [Coleman-1967]), such
as a plastic strain tensor or a damage variable. In most cases – and for the constitutive
equations to be thermodynamically admissible – the stress-strain equation is obtained by
differentiating a state potential of density (per unit mass) of Helmholtz free energy ψ,
namely:

σσσ = ρ
∂ψ

∂SSS
(1)

where ρ is the density of the material. Thus, like the eventual internal variables – and, in
Thermomechanics, the temperature – , a strain tensor SSS is one of the variables on which
ψ depends, in other words, it is a state variable. Let us recall here first that the tensor
field of current strains SSS(xxxt , t) links the current configuration (i.e. the set of position
vectors of the particles of a solid at current time t: Ωt = {xxxt} ∈ R3) to a reference one
(Ωr = {xxxr} ∈ R3), most often equal to the initial configuration. More precisely, and to
come to the local level, i.e. at any point of the solid, denoting by ϕϕϕ the Lagrangian
description of the solid motion (such that xxxt = ϕϕϕ(xxxr, t)), SSS, whatever it is, is built from
the gradient of this description, TTT = gradLϕϕϕ, usually called local deformation gradient.
In other words, a strain tensor, by construction, is irreducibly linked to a Lagrangian
gradient, which itself links Ωt to Ωr, whatever the evolution of the configuration between
tr and t.

Since the pioneer work of, among others, [Eringen-1980], this way of building a mechan-
ical model has been widely and successfully used. Most of the proven mechanical models
are built in such a way. They are sometimes called – at least in the isotropic, elastic case,
for which SSS is the only state variable to be taken into account – hyper-elastic models to
underline that the σσσ−SSS relation derives from a state potential (see e.g. [Adkins-1961];
[Fu-2001]). The important point that must be emphasized here is that all these models are
actually based on an implicit assumption, namely that the only kinematic variable which
can be associated with the Cauchy stress tensor is a strain tensor – or, in the elastoplas-
tic case, an elastic part of a strain tensor. The fact is that the multitude of experimental
results concerning the mechanical behavior of materials in the solid state does not dis-
prove this assumption, where some component (in a prescribed basis) of the stress tensor
undoubtedly depends on some component of a strain tensor. It is also true that the in-
numerable numerical simulations based on mechanical models obeying Eq.1 most often
lead to physically relevant results. But neither the experiments, nor the numerical simu-
lations definitely prove that a strain tensor SSS is the first and only kinematic variable which
can be associated with σσσ. At the very least, the question can be asked about the exis-
tence of an alternative kinematic variable. Although it seems without much interest in
the elastic case, the question of whether an alternative to a strain tensor SSS could be used
to express the stress tensor σσσ is therefore not without interest.
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The same question is both relevant and interesting when mechanical models more ad-
vanced than elasticity models are considered, where, in addition to SSS, other state variables
(the internal variables) have to be taken into account. Such models are clearly outside the
scope of this study, which is only devoted to elasticity. It is however interesting to men-
tion them, but only in this introduction, because they confirm the interest of looking for
an alternative kinematic variable to a strain tensor. The elastoplasticity models are well
known examples of such models. In the presence of finite strains, elastoplasticity models
are generally based on the assumption that the deformation (Lagrangian) gradient tensor
TTT must be multiplicatively decomposed into an elastic part, TTT e, and a plastic part, TTT p.
In the vast majority of cases, the following decomposition is selected : TTT = TTT e...TTT p (see
e.g. [Mandel-1971]; [Asaro-1983]; [Boyce-1989]). But it has to be said that this choice
is never clearly justified, either kinematically or physically. Moreover, this way of de-
composing TTT presupposes the existence of a so-called intermediate configuration of the
considered solid, which acts as a reference configuration for the calculation of TTT e.

Nevertheless, when the initial (reference) and current configurations are pure geometri-
cal, kinematical concepts, the intermediate configuration can be defined only on the basis
of a condition on the internal forces, namely that the stress field is zero, at least locally.
The definition of the intermediate configuration is therefore constrained by the mechan-
ical model. In other words, the intermediate configuration for a given model is not the
same as that for another model, when the real configurations – initial and current – are
always the same, whatever the model. Moreover, apart from some very particular and
simple cases, like that of the uniaxial tension of a laboratory specimen, the intermediate
configuration cannot be observed: it is fictitious and, consequently, physically question-
able. It is nevertheless from this ill-defined concept that a plastic deformation tensor, SSSp,
and an elastic deformation tensor, SSSe, are proposed. As for the elastoplasticity models
based on an additive decomposition of the rate of deformation tensor, DDD, in an elastic
part, DDDe, and a plastic part, DDDp (see e.g. [Rice-1971]), they purely and simply ignore the
issue of how the elastic and plastic strains might be described, which does not make it
easy to understand their physical meaning.

At best, these last remarks, linked to the previous ones on the intermediate configuration,
leave open the question of the physical meaning of SSSe and SSSp. At worst, they sow doubt
on their physical relevancy. At the very least, this calls for considering that the choice of
the deformation (Lagrangian) gradient tensor TTT as the basic, kinematical quantity, from
which all the other kinematical quantities are deduced, and, in the first place, the strain
tensors, raises some difficult, if not insoluble, issues. In any case, the present paper deals
with the problem of the existence of a state variable – denoted by ΓΓΓ in the continuous
case –, as an alternative to a strain tensor SSS and, more generally, without any connection
with the Lagrangian gradient of some vector field. Formally, and due to the fact that this
problem is closely linked to that of the definition of the Cauchy stress tensor σσσ, the main
question asked in this paper is the following one:

doesΓΓΓ 6= SSSexist and doesϒ(ΓΓΓ, ...) exist such thatσσσ = ρ
∂ϒ

∂ΓΓΓ
? (2)

where ϒ denotes the state potential of Helmholtz free energy density (per unit mass), and
where the state variable ΓΓΓ, if it exists, must be physically relevant and, especially, objec-
tive (see e.g. [Eringen-1980]; [Murdoch-2003]; [Liu-2004]). It should be mentioned here
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that, beyond the usual mechanical continuum approaches mentioned above, other works
exist where the problem of defining the Cauchy stress tensor, σσσ, in terms of quantities
other than a strain tensor is addressed. One can quote [Kuzkin-2015], where σσσ is ex-
pressed in terms of averaged interparticle distances and forces. In the paper in question,
the solids are indeed discrete. In this, the approach followed there has a point in common
with the one presented here, where the basic kinematic quantity, the conformation tensor,
is first defined in the discrete case. However, the purpose is not exactly the same in the
two cases: while the emphasis is put on the definition of σσσ from the interpaticle forces in
[Kuzkin-2015], the Cauchy stress tensor is defined in the present study only in the con-
tinuous case, and after the notion of conformation – initially introduced in the discrete
case – has been transposed to the continuous case, under precisely defined conditions.

For the sake of enhancement of the main, new ideas, the question asked in Eq. (2) is ap-
plied only to pure substances in the solid state, in the restricted sense of substances made
up of only one type of atom, and not only one type of molecules. Metallic crystals are a
good example of pure substance, in which defects, punctual or linear (dislocations), can
exist. Although it will be only illustrated for perfect defect-free crystals in this study, the
notion of conformation remains valid for crystals with defects, it is important to under-
line it. Moreover, the present study is limited to the elastic case (in the case of a crystal
with defects, it must be then assumed that they are in constant number and, for disloca-
tions at least, immobile). Although the issues linked to the usual way of modeling the
elastoplastic strains are one of the reasons to look for an alternative to a strain tensor
as a state variable, it is indeed necessary to demonstrate that an alternative variable to SSS
can be found in elasticity since, in most of the materials, the mechanical behavior is first
elastic before becoming, possibly, elastoplastic. Another important limitation is imposed
to the purpose of this study. It relates to the spatial scale at which ΓΓΓ is defined. As will be
seen, the elementary variable from which ΓΓΓ is deduced is defined for two atoms of a pure
substance in the solid state. As a consequence, a clear physical meaning can be given
to this new state variable only at the atomic scale, and the field described by ΓΓΓ is really
relevant only at the nanoscale – that of a grain in a metallic material, for instance. No
micro-macro methods will be used in the present paper to investigate the physical mean-
ing of the conformation tensor at larger scales. By contrast, an equivalent continuous
medium (in the sense of an equivalence of energy, in the present case) will be associated
to the real material where the conformation field, observed at the nanoscale, is discrete.

The paper is organized as follows: two atoms of a pure substance in the solid state, that
is to say linked by an interatomic bond, are considered in Section 2, in order to precisely
define the basic kinematical and force-like quantities, namely, the conformation tensor of
the interatomic bond and the associated, internal force tensor. The discrete modeling of
a "unit cell" defined by an atom and its first neighbors is adressed in Section 3, where an
average conformation tensor is defined, with a clear geometrical interpretation, as well as
a tensor of average internal forces. Section 4 is devoted to the Continuum description of a
pure substance in the solid state, where a continuous, quasi-uniform field of average con-
formation is first defined. As a direct consequence of the fact that the energy of the (real)
discrete unit cell and that of the (fictitious) continous one are equal, an average internal
forces tensor (per unit mass) is next proposed. Directly linked to the latter, a definition
is finally proposed for the Cauchy stress tensor. The quantities defined in Section 4 are
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considered from a thermodynamic point of view in Section 5. An expression is then given
for the objective part of the material derivative of the average conformation tensor, which
turns out to be the only possible one when the considered pure substance has an elastic
behavior. The uniaxial tension is examined in Section 6, for which a relationship is easily
established between the average conformation tensor and a strain tensor. The particular
case of "small", elastic conformation variations (with respect to an initial state of confor-
mation) is also discussed. From it, an expression for the state potential of the density of
free energy is inferred, which shows clear similarities with – but is not equivalent to –
that defining the classical model of isotropic, linear elasticity (Hooke’s law).

Note finally that all the arguments, hypotheses and equations detailed in this study con-
cern a "frozen" state of a pure substance in the solid state, observed at the generic time
t. In other words, the thermal and viscid effects are not taken into account. As a con-
sequence, the thermodynamic concepts of internal energy and Helmholtz free energy are
equivalent. The latter will be systematically used in all this paper.

2 Conformation tensor of an interatomic bond and internal force
tensor: definitions

Let a and b be two atoms of a pure substance in the solid state, that is to say, two atoms
linked by a so-called "interatomic bond" (e.g., a metallic bond). In this section, these
two atoms are assimilated to an isolated system, in the thermodynamic sense of the word.
They are therefore assumed to have no interaction of any kind with the other atoms of the
pure substance that surround them. On the other hand, they do interact with each other, a
force resulting from this interaction.

The characteristic size of these atoms is given by the Bohr radius, which is approximately
5×10−2nm, when the radius of an atomic nucleus is approximately 5×10−7nm: at the
atomic scale, the nuclei can be considered as points. Furthermore, the mass of a nucleon
is approximately 10−27 kg when that of an electron is approximately 10−30kg: the mass of
an atom is mainly concentrated in its nucleus. The distance between the nuclei is denoted
by r – which has the same value for all the observers in classical physics – and the unit
vector of the direction defined by the nuclei, by ±nnn, see Fig. 1. Both these quantities are
objective, and their product, ±rnnn, is nothing other than the vector of the relative position
of the atomic nuclei. The length of the bond when no force is applied can be considered
as a characteristic length, which will be denoted by rr (depending on the temperature,
which however will not be taken into account in this study, where all thermal effects are
neglected). Then, the normalized length of the interatomic bond – or, equivalently, the
normalized distance between the two nuclei – is defined by:

r =
r
rr

(3)

Since r and rr are objective quantities, r is also an objective quantity. The problem of
the non-uniqueness of the unit vector of the direction defined by the two nuclei, ±nnn, is
solved by considering the following second order tensor:

NNN = nnn⊗nnn = (−nnn)⊗ (−nnn) (4)
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±nnn

r

nucleus (point) of atom a

nucleus (point) of atom b

Figure 1: 2D, schematic representation of two atoms, a and b, of a pure substance in the solid state and of
the interatomic bond linking a and b – the scale figure is thus approximately 10−1nm. The mass of each
atom is mainly concentrated in its nucleus, which is considered as a point. The distance between the nuclei
is denoted by r, the unit vector of the direction defined by the nuclei, by ±nnn. The dashed circles provide a
simplistic image of the electron clouds.

As defined by Eq. (4), NNN is a symmetric, positive-definite tensor. Its first three invariants
are not independent since:

Tr(NNN) = Tr(NNN...NNN) = Tr(NNN...NNN...NNN) = 1 (5)

In other words, NNN is a uniaxial tensor with 1 as sole non-zero eigenvalue. The conforma-
tion tensor 1 of the interatomic bond is then defined by:

CCC = ln(r)NNN (6)

The only non-zero eigenvalue of the symmetric tensor CCC defined by Eq. (6) is ln(r). In
other words, CCC is a uniaxial tensor. Since it is defined as the product of two objective
quantities, it is also an objective quantity.

The energy of the interatomic bond linking atom a and atom b is then classically charac-
terized by a state potential, p(r) = q(r (r)), commonly called "interaction potential" – a
pair potential, in this case, since the system under consideration reduces to two atoms.
No particular expression is given to p(r) in this study. It should just be noted that the
miminum of this state potential is obtained for r = 1, that is, following Eq. (3), r = rr. In
the same classical way, the algebraic value of the internal force undergone by the atoms
is directly given by the first derivative of the state potential:

f = p′ (r) =
1
rr

q′ (r) (7)

since r = r
rr

, see Eq. (3). In Eq. (7), p ′ (resp. q ′) denotes the first derivative of p (resp.
of q). It will be conventionally assumed in the study that f > 0 (resp. f < 0) when the
internal force is a tensile one (resp. a compressive one). Furthermore, the direction of
the internal force is that defined by the two atomic nuclei, ±nnn. Hence, the internal force

1In chemistry, the word "conformation" refers to the spatial arrangement of atoms, linked by interatomic bonds, in a given
molecule. However, as far as the author is aware, the chemists do not give a tensorial representation to the conformation.
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vector is given by fff = ± fnnn. Like the vector of the relative position of the two nuclei,
±rnnn, fff is an objective quantity.

Another expression for the internal force can be proposed, which will make it possible to
once again overcome the problem of the non-uniqueness of the unit vector of the direction
defined by the two nuclei. The state potential is first rewritten as a function u(CCC). For the
value of this function for a given conformation tensor CCC to be an objective quantity, the
state potential u must depend only on the invariants of CCC, which are linked, as previously
mentioned. The square of the Euclidean norm of the conformation tensor, CCC:::CCC = ln2 (r),
is then considered as the only variable on which u depends. Obviously, the state of free
energy of the interatomic bond is the same whether the state potential of free energy is
expressed as a function of r or r or CCC. Thus, the following relation is necessarily verified:

u(CCC:::CCC) = q(r ) = p(r (r )) (8)

Given that:

2
ln(r)

r
u′ = rr p′ = q′ = rr f (9)

where u′ denotes the first derivative of u, and given also that, in agreement with Eq. (6):

∂u
∂CCC

= u′
∂ (CCC:::CCC)

∂ CCC
= 2u′CCC = 2 ln(r) u′NNN (10)

the following internal force tensor can then be defined, according to Eq. (9):

FFF =
1
r

∂u
∂CCC

= f NNN (11)

Indeed, thus defined, the symmetric tensor FFF has a single non-zero eigenvalue, p′ (r),
which is the algebraic value f of the internal force, see Eq. (7). Note also that all the
quantities appearing on the right hand side of Eq. (11) are objective. As a consequence,
FFF is an objective quantity.

3 Average conformation tensor of interatomic bonds and average in-
ternal forces tensor: discrete case

Any atom of a pure substance has an interatomic bond with some of its neighbors, the
first ones but also the second if not the third ones, the fourth... However, the interactions
between an atom and its first neighbors are clearly dominant. In any case, the latter are
the only ones which will be considered subsequently. At least in the case of metallic ma-
terials, this restriction of the range of interactions allows to consider the domain D of the
Euclidean space E occupied by an atom – numbered 1 throughout this paragraph – of a
pure substance and its first neighbors as a morphological characteristic of the material (the
"unit cell", in crystallography), see Fig. 2. According to the concepts defined in Section 2,
the bond between atom 1 and one of its first neighbors, j+1, is fully characterized by the
elementary conformation tensor CCC 1, j+1 = ln(r 1, j+1)NNN 1, j+1, where r 1, j+1 = r 1, j+1/rr
and NNN 1, j+1 = (±nnn 1, j+1)⊗ (±nnn 1, j+1). The average conformation tensor of atom 1, Ĉ̂ĈC

1,
can then be simply defined in the following way:

Ĉ̂ĈC 1=
1
Nl

Nl

∑
j=1

CCC 1, j+1 =
1
Nl

Nl

∑
j=1

ln(r1, j+1)NNN 1, j+1 (12)

7



eee1

eee2

eee3

Ĉ̂ĈC 1 = 1
12 ∑

12
j=1CCC1, j+1 = 1

12 ∑
12
j=1 ln(r1, j+1)NNN1, j+1

2

34

5

6 7

r1,2

8,11

9,12 10,13

1

±nnn1,5

D

Figure 2: An example of a material domain (a "unit cell") D – an hexagonal close-packed pattern, here.
The seven atomic nuclei – reduced to points in the study – belonging to the plane of the figure, including
the central one, numbered 1, are represented by black discs. An indication of the position of the six other
atomic nuclei, which are out of the plane, is given by the grey discs. Each of them correspond to the
projection, following eee3 and in the plane (1, eee1, eee2), of two atoms, one above the plane (numbered 8, for
instance), the other one below the plane (numbered 11, for instance). Thus defined, the unit cell D is a
cuboctahedron, i.e. a convex polyhedron with 14 faces, and 12 interatomic bonds are to be taken into
account, i.e. that of atom 1 with its 12 first neighbors. Each of these interatomic bonds is geometrically
characterized by an elementary conformation tensor CCC 1, j+1 = ln(r1, j+1)NNN 1, j+1, with r1, j+1 = r1, j+1/rr
andNNN 1, j+1 = (±nnn 1, j+1) ⊗ (±nnn 1, j+1), see also Eq. (6). The average conformation tensor Ĉ̂ĈC 1 is built from
these elementary tensors as shown in the figure and in Eq. (12).

where Nl is the number of interatomic bonds of atom 1 (or, equivalently, the number of
its first neighbors). In Fig. 2, Nl = 12.

Like CCC in Eq. (6), the tensor Ĉ̂ĈC
1 is symmetric. Unlike CCC, it has generally three different

non-zero eigenvalues. Since it is defined as the sum of objective quantities, Ĉ̂ĈC
1 is an

objective quantity. The trace of Ĉ̂ĈC
1 is given by (GGG is the metric tensor):

Tr
(

Ĉ̂ĈC 1)= 1
Nl

Nl

∑
j=1

(CCC 1, j+1 :::GGG) =
1
Nl

Nl

∑
j=1

ln(r 1, j+1) (13)

Denoting by r̂ the geometric mean of r = r/rr, the first invariant of Ĉ̂ĈC
1 is then simply

such that:

Tr
(

Ĉ̂ĈC 1)= ln(r̂ 1) = ln
(

r̂ 1

rr

)
1
Nl

Nl

∑
j=1

(CCC 1, j+1 :::GGG) (14)

From this first result, a geometrical interpretation of the three eigenvalues ĉ1k – which
are real since Ĉ̂ĈC

1 is symmetric – and the three eigenvectors p̂pp1k – which are mutually
orthogonal since Ĉ̂ĈC

1 is symmetric – of the average conformation tensor can be deduced.
The partition of Ĉ̂ĈC

1 in spherical and deviatoric parts immediately gives:

Ĉ̂ĈC 1:::(p̂pp1k⊗ p̂pp1k) =
1
3

Tr
(

Ĉ̂ĈC 1) + dev
(

Ĉ̂ĈC 1):::(p̂pp1k⊗ p̂pp1k) (15)

or, equivalently, due to Eq. (14):

Ĉ̂ĈC 1 :::(p̂pp1k⊗ p̂pp1k) =
1
3

ln
(

r̂ 1

rr

)
+ dev

(
Ĉ̂ĈC 1):::(p̂pp1k⊗ p̂pp1k) (16)
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from which we get, noting that Ĉ̂ĈC
1:::(p̂pp1k⊗ p̂pp1k) = ĉ1k and dev

(
Ĉ̂ĈC

1) :::(p̂pp1k⊗ p̂pp1k) = ĉ1k
d :

rr exp(3ĉ1k) = r̂ 1 exp(3ĉ1k
d ) (17)

where ĉ1k
d denotes the k−th eigenvalue of dev

(
Ĉ̂ĈC

1). The geometrical interpretation of this
result is given in the caption of Fig. 3.

4

5

6

spherical case

real conformation
7

3

2
1 1

average conformation tensor

r r
ex

p(3
ĉ
1k )

general case (non spherical)

p̂̂p̂p 12

average conformation tensorreal conformation

p̂̂p̂p11

3

7

4

6

2
1

1
5 rr exp(3ĉ11)r r

ex
p(

3ĉ
12
)

Figure 3: (NB: for the sake of simplicity, the figure is limited to the plane (1, eee1, eee2), see Fig. 2). Inter-
pretation of the eigenvalues and the eigenvectors of the average conformation tensor . The real (discrete)
conformations of the interatomic bonds are on the left part of the figure, their representation according to
the average conformation tensor, on the right part. The averaging process is inevitably accompanied by a
loss of information which makes it impossible to know the position of the first neighbors (grey discs in the
real conformation) of atom 1 (black disc). By contrast, it is possible to define the perimeter – the surface, in
the 3D case – to which they belong on average. Thus, in the spherical case (upper part of the figure), where
the three eigenvalues of the average conformation tensor are equal to ĉ1k = 1/3ln(r̂), the first neighbors of
atom 1 belong in average to the circle – the sphere, in the 3D case – with a radius r̂ = rr r̂ = rr exp(3ĉ1k).
In the non spherical case (lower part of the figure), they belong to the ellipse with semi-axes rr exp(3ĉ11)
and rr exp(3ĉ12) oriented along p̂pp11 and p̂pp12 – in the 3D case, to the ellipsoid with semi-axes rr exp(3ĉ11),
rr exp(3ĉ12) and rr exp(3ĉ13), oriented along p̂pp11, p̂pp12 and p̂pp13.

The energy of the Nl interatomic bonds of atom 1 – in other words, the conformation
energy of the discrete domain D – can be expressed as a function U of the Nl elementary
conformation tensors CCC 1, j+1. More precisely, so that the value of this function is an
objective quantity, U can depend on:

• the Euclidean norm of the elementary conformation tensors (which are objective,
see Section 2), i.e. the distances r1, j+1 between atom 1 and its Nl first neighbors
– the single non-zero eigenvalue of the elementary conformation tensor CCC 1, j+1 is
indeed ln(r 1, j+1) = ln(r 1, j+1/rr) –,

9



• the "crossed" invariants (see e.g. [Spencer-1971]; [Boehler-1987]) of these elemen-
tary tensors – since these tensors are objective, their cross-invariants are also objec-
tive –, i.e. the angles between interatomic bonds. Indeed, the "crossed" invariant of
the uniaxial tensors CCC 1, p and CCC 1,q simply reads:

CCC 1, p:::CCC 1, p = ln(r 1, p) ln(r 1,q)NNN 1, p:::NNN 1,q = ln(r 1, p) ln(r 1,q) cos2(ω p,q) (18)

where ω p,q is the angle between interatomic bonds 1− p and 1−q.

No particular expression of the multi-body potential U is given in this study. By constrast,
it is postulated that there exists a state potential U of average free energy depending only
on the average conformation tensor of the Nl interatomic bonds belonging to the unit cell
D, Ĉ̂ĈC

1, and such that:
U(Ĉ̂ĈC 1)=

1
Nl

U(CCC 1,2,CCC 1,3, ...,CCC 1,Nl+1) (19)

Following the process presented in Section 2, the average internal forces tensor acting on
the interatomic bonds is then defined by:

F̂̂F̂F 1=
1

r̂ 1
∂U
∂Ĉ̂ĈC 1 =

1
Nl

U(CCC 1,2,CCC 1,3, ...,CCC 1,Nl+1) (20)

For the average free energy of the interatomic bonds to be an objective quantity, the state
potential U must actually depend only on the three invariants of Ĉ̂ĈC

1 or, equivalently, on
its three eigenvalues. Since Ĉ̂ĈC

1 and r̂ 1 are objective quantities, F̂̂F̂F
1 is an objective quantity.

This symmetric tensor has generally three different, non-zero eigenvalues.
Three points can finally be emphasized about the average conformation tensor Ĉ̂ĈC

1 and the
average internal forces tensor F̂̂F̂F

1, namely:

• the average conformation tensor can be defined if the considered pure substance has
defects, punctual (e. g. vacancy defects) or linear (dislocations). In coherence with
the assumption of elastic behavior retained in all these studies, it is only required
that these defects are in constant number and, for dislocations at least, immobile.

• the directions of anisotropy ±nnn1, j+1 (those represented by the line segments in
Fig. 2, for instance) could be simply taken into account by uniaxial tensors NNN1, j+1 =
(±nnn1, j+1)⊗ (±nnn1, j+1), with 1 as the single non-zero eigenvalue. The tensors
NNN1, j+1 would then be new state variables on which the average free energy U, see
Eq. (19), would depend, via "crossed" invariants (see e.g. [Spencer-1971]; [Boehler-1987]),
such that Ĉ̂ĈC

1:::NNN1, j+1. The immediate consequence of such a choice would be that the
tensor of average internal forces, F̂̂F̂F

1, see Eq. (20), and that of average conformation,
Ĉ̂ĈC

1, would not have the same eigenvectors. Although the mechanical behavior of
crystalline structure, such as the one illustrated in Fig. 2, is undoubtedly anisotropic,
the directions of anisotropy NNN1, j+1 will be ignored in the following sections, in order
to focus attention on the main concept introduced in this study, namely the average
conformation tensor of interatomic bonds.

• from the average internal forces tensor F̂̂F̂F
1, the algebraic value of the average force

acting on the bond between atoms 1 and j+ 1, whose orientation is characterized
by the tensor NNN1, j+1, is immediately deduced, which reads:

F̂
1, j+1

= F̂̂F̂F 1:::NNN 1, j+1 (21)
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The net force resulting from all the forces exerted on atom 1 by its Nl neighbors
being zero (static equilibrium), the latter are necessarily such that:

Nl

∑
j=1

F̂
1, j+1

NNN 1, j+1 = 0 (22)

4 Average conformation tensor of interatomic bonds, average inter-
nal forces tensor and Cauchy stress tensor: continuum approach

The intrinsically atomistic nature of the matter has been taken into account in the discrete
approach detailed in Section 3. However, this approach leads to a tensorial expression of
the average internal forces from which it is not so easy to study the distribution of the
forces in a given domain (a grain in a metallic material, for instance) and, in particular,
how these forces are mutually balanced. It is therefore interesting to seek to associate
to the real, discrete medium an equivalent continuous medium, fictitious, for which the
equilibrium equations (balance of momentum) are well known, namely divE(σσσ)+ρ fff m =
0 where fff m is the density (per unit mass) of body forces ans where divE denotes the
Eulerian divergence.

In the present section and the following ones, any part of a pure substance in the solid
state, whatever its volume, is therefore considered as a continuum medium. A continuous
field of average conformation is supposed to exist in this domain. However, such a field
is only physically relevant if its link with the real, discrete state of interatomic bonds is
precisely defined. In a very first step, this requires to precise the scale at which the prob-
lem must be adressed. Since the average conformation tensor has been clearly defined for
a nanoscopic domain (the unit cell), and only in this case, see Eq. (12), the nanoscopic
scale appears to be the right one. The fact that the matter, first of all its mass, has un-
doubtedly a discrete distribution at this scale does not seem to be a priori compatible with
the idea of its description as a continuum. As we will see, this apparent incompatibility
can be overcame, provided that the continuous field of average conformation is precisely
defined, and then, physically interpretable.
A fictitious, continuum domain ∆ is thus associated to the real, discrete unit cell D con-
sidered in Section 3. These two domains are said to be equivalent if and only if all the
following conditions are verified:

• their volumes are equal: Vol(D) = Vol(∆), see also Fig. 4,

• the continuous field of average conformation acting in ∆, ΓΓΓ(xxx), has "slow" spa-
tial variations – in the sense that there exists a constant tensor ΓΓΓ such that ∀xxx ∈
∆, ΓΓΓ(xxx) ≈ ΓΓΓ – and is equal to the average conformation tensor defined in the dis-
crete case – and therefore has the same physical meaning as it, cf. Section 3, in
particular Fig. 3: ΓΓΓ = Ĉ̂ĈC

1,

• the energy of the discrete medium D – which reduces to the energy of the inter-
atomic bonds in the present study – is equal to that of the continuum medium ∆.
The calculation of this latter is based on the assumption that there exists a state
potential of free energy density (per unit mass) ϒ, depending only ΓΓΓ. Thus, from

11



Eq. (19), we have:

U(CCC1,2,CCC1,3, ...,CCC1,Nl+1) = NlU(Ĉ̂ĈC 1) ≈
∫

∆

ρ(xxx)ϒ(ΓΓΓ) dV (23)

As we will see later, the quasi-uniformity of the average conformation field acting
in ∆ implies that of the density ρ (cf. Section 5, Eq. (44)). We immediatly infer that
Eq. (23) can be rewriten:

U(CCC1,2,CCC1,3, ...,CCC1,Nl+1) = NlU(Ĉ̂ĈC 1) ≈ ρVol(∆)ϒ(ΓΓΓ) (24)

eee1

eee2

eee3

∆

equivalent continuous unit cell

2

34

5

6 7

r1,2

8,11

9,12 10,13

±nnn1,5

1

Ĉ̂ĈC 1 = 1
12 ∑

12
j=1CCC 1, j+1

D

real, discrete unit cell

∀xxx ∈ ∆, ΓΓΓ(xxx) ≈ ΓΓΓ = Ĉ̂ĈC 1

Figure 4: Left part of the figure: an example of a real, discrete domain D – the unit cell of an hexagonal
close-packed pattern, as in Fig. 2; right part of the figure: equivalent continuous unit cell ∆. The latter
is said to be "equivalent" to the former insofar as: i) their volumes are equal: Vol(D) = Vol(∆); ii) the
continuous field of average conformation acting in ∆, ΓΓΓ(xxx), is supposed to have "slow" spatial variations
– consequently, ΓΓΓ exists such that ∀xxx ∈ ∆, ΓΓΓ(xxx) ≈ ΓΓΓ; iii) the average conformation tensor associated to
the real, discrete unit cell D, Ĉ̂ĈC 1, and the one characterizing approximately the continuous field of average
conformation acting in ∆ are equal: ΓΓΓ = Ĉ̂ĈC 1; iv) the mechanical energy of the interatomic bonds, which
is the only energy considered in this study, is the same in the discrete case and in the continous case. In
other words, the free energy of D – 12U(Ĉ̂ĈC 1), according to Eq. (19) – and that of ∆ are equal, as shown
in Eq. (24), where ϒ denotes the state potential of free energy density (per unit mass), supposed to depend
only on ΓΓΓ.

The average internal forces tensor acting on the interatomic bonds, actually being a den-
sity (per unit mass) of internal forces, is then given by, as in Section 3:

ΦΦΦ =
1
r̂

∂ϒ

∂ΓΓΓ
(25)

where, according to Eq. (14), r̂ = rr exp(Tr(ΓΓΓ)). In strict logic, the internal forces define
a continuous field in ∆, ΦΦΦ(xxx). However, like those of average conformation and density,
this field is quasi-uniform and such that ∀xxx ∈ ∆, ΦΦΦ(xxx) ≈ ΦΦΦ.

If the state potential of average free energy density ϒ depends only on the three invariants
of ΓΓΓ, the quantity ϒ(ΓΓΓ) is objective. Since r̂ is an objective quantity, ΦΦΦ is thus also an
objective quantity. The average internal forces tensor as defined in Eq. (25), however, is
never taken into account in Continuum Mechanics, where the basic force-like quantity
unanimously used is the Cauchy stress tensor, σσσ. It is suggested here that the latter can
be directly deduced from Eq. (25), on the basis of a simple dimensional analysis. It reads
as follows:

σσσ = ρ r̂ΦΦΦ = ρ
∂ϒ

∂ΓΓΓ
(26)
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It has been underlined previously that ϒ must actually depend on the three invariants of ΓΓΓ

– and only on them if the anisotropy of the pure substance is not taken into account, which
is the case in the present study, as stipulated in the last part of Section 3. If choosing the
invariants Tr(ΓΓΓ), Tr(ΓΓΓ...ΓΓΓ) and Tr(ΓΓΓ...ΓΓΓ...ΓΓΓ), the Cauchy stress tensor is then expressed by:

σσσ = ρ

(
∂ϒ

∂Tr(ΓΓΓ)
GGG + 2

∂ϒ

∂Tr(ΓΓΓ...ΓΓΓ)
ΓΓΓ + 3

∂ϒ

∂Tr(ΓΓΓ...ΓΓΓ...ΓΓΓ)
ΓΓΓ...ΓΓΓ

)
(27)

This equation shows that, in the case of isotropic elasticity, the average conformation
tensor, ΓΓΓ, and the Cauchy stress tensor, σσσ, have the same eigenvectors. Furthemore, as
defined by Eq. (26) or Eq. (27), and since ρ, r̂ and ΦΦΦ are objective quantities, σσσ is an
objective quantity. But, above all, such a definition of the Cauchy stress tensor is a satis-
factory answer to the central question asked in the present study, as shown in Eq. (2): SSS
denoting some strain tensor, ΓΓΓ 6=SSS exists – physically relevant and, especially, objective –
and ϒ(ΓΓΓ) exists – is only supposed to exist, at the moment, with the general definition
given by Eq. (24) – such that σσσ = ρ∂ϒ/∂ΓΓΓ. It must be recalled, however, that the stresses
defined by Eq. (26) are relative to a "frozen" state of a pure substance in the solid state,
in other words, they do not take into account possible viscid effects.

There is a clear analogy between the previous definition of the Cauchy stress tensor and
that, usual in solid Mechanics, where the relation between σσσ and a strain tensor SSS is also
obtained by differentiating a state potential of free energy density, see Eq. (1). The two
points of view, however, differ in an essential way: when a strain tensor SSS, whatever it is,
is intrisically linked to a reference configuration (see Section 1), the average conforma-
tion tensor ΓΓΓ is independent of any reference configuration: its definition involves only
a reference length rr ∈ R+, which has been precisely defined in Section 2, i.e. for only
two isolated atoms, interacting only with each other. In other words, the average con-
formation tensor is defined on the current configuration at any time t only (that of ∆ on
Fig. 4 for example, that can be noted ∆t ∈ R3) – in the sense that it is not linked to any
Lagrangian gradient –, when a strain tensor is intrinsically linked to the transformation
between a reference configuration (time tr ; ∆r ∈ R3 in the case of Fig. 4) and the current
configuration since it is built from the deformation gradient TTT , see Section 1, which irre-
ducibly links these two configurations, whatever the evolution between times tr and t. It
can be also noted that, more generally, no Lagrangian gradient of any physical quantity
has been used in Sections 2 and 3 of this study, nor in the present section.

It should finally be noted that, if the transposition to the continuous case of the equi-
librium equation of the discrete case, see Eq. (22), is none other than the linear balance
momentum equation, that is, in the quasi-static case and neglecting the mass forces, such
as those due to gravity:

divE(σσσ) = 0 (28)

the relation between the Cauchy stress tensor σσσ (continuum case) and the interatomic
forces discussed in Section 3 (discrete case), see Eq. (21), is far from obvious. This
relation will not be studied in this paper, where the emphasis is clearly put on the geo-
metrical notion of conformation. It should be studied in future studies, based on the work
by Parthasarathy et al for example (see e.g. [Parthasarathy-2018]), where the notions of
static stress and vibration stress are defined at the atomic scale, on the basis of a refined
description of atomic motions.
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5 Thermodynamics and material derivative of the average confor-
mation tensor of interatomic bonds

Like a strain tensor SSS in the classical, thermodynamic approach to the modeling of the
mechanical behavior of materials in the solid state, the average conformation tensor of
interatomic bonds defined in Section 4, ΓΓΓ, is now considered as a state variable. By con-
strast, and unlike the material derivative of SSS, which is fully determined by the kinematics
of the considered body, the material derivative of ΓΓΓ is a priori unknown. The purpose of
this section is to determine the latter, following a thermodynamic approach. As previ-
ously mentioned, however, it is here restricted to the elastic case. From a nanoscopic
point of view, this means that, at any time of the evolution of the pure substance consid-
ered in the solid state:

• each atom has the same first neighbors. Defects such as dislocations can exist in the
lattice, but in constant number and immobile (in other words: no plasticity),

• each atom is always bonded to its first neighbors by active interatomic bonds. These
bonds can vary in length and direction but they cannot disappear or break (in other
words: no damage).

Neglecting all the thermal effects (that is, in particular, Ṫ = 0, where T is the absolute
temperature and where Ṫ denotes its material derivative), the first law of the Thermody-
namics reduces to (see e.g. [Coleman-1974]; [Garrigues-2007]):

ρ ė = σσσ:::DDD (29)

where e is the state potential of the density (per unit mass) of average internal energy,
depending only on ΓΓΓ in the present case, and DDD, the rate of deformation tensor, i.e. the
symmetric part of the Eulerian velocity gradient.
The state potentials of the density of average internal energy, e, and of the average free
energy, ϒ, are related by e = ϒ + sT , where s is the state function of the density (per unit
mass) of entropy. An alternative, local expression for the first law of the Thermodynam-
ics, see Eq. (29), is then immediately deduced, namely:

ρϒ̇+ρT ṡ = σσσ:::DDD (30)

which can be rewritten, since ϒ, like e, depends only on ΓΓΓ:

ρT ṡ = σσσ:::DDD−ρ
∂ϒ

∂ΓΓΓ
:::Γ̇ΓΓ (31)

The local expression of the second principle of the Thermodynamics – which expresses
that the (per unit volume) dissipated power or intrinsic dissipation, ω, is non-negative –
reads, in the isothermal case:

ω = ρT ṡ ≥ 0 ∀ΓΓΓ , ∀DDD (32)

where the quantifiers indicate that this inequality must always be fulfilled, that is, what-
ever the mechanical state, ΓΓΓ, and whatever the evolution, DDD. From Eq. (31), Eq. (32) can
be immediately rewritten:

ω = σσσ:::DDD−ρ
∂ϒ

∂ΓΓΓ
:::Γ̇ΓΓ ≥ 0 ∀ΓΓΓ , ∀DDD (33)
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or, equivalently, due to Eq. (26):

ω = σσσ:::
(

DDD− Γ̇ΓΓ

)
≥ 0 ∀ΓΓΓ , ∀DDD (34)

Therefore, the material derivative of the average conformation tensor turns out to be
constrained by the Thermodynamics, that is to say that ΓΓΓ is an internal state variable (see
e.g. [Coleman-1967]). By definition, the mechanical behavior of a material is referred
to as elastic when the intrinsic dissipation ω is zero for all the states and evolutions.
However, it should be kept in mind here that the material derivative of an objective, non
scalar quantity, whatever it is, cannot be objective (see e.g. [Garrigues-2007]). As is
also the case for Γ̇ΓΓ, which is necessarily the sum of an objective part Γ̂ΓΓ– directly linked
to the material derivative of its eigenvalues which, on the contrary, are objective – and a
non objective part Γ̌ΓΓ– due to the material derivative of its eigenvectors, which cannot be
objective. With the hypothesis of elasticity, this latter remark makes it possible to write:

ω = σσσ:::(DDD− Γ̇ΓΓ) = σσσ:::
(

DDD− (Γ̂ΓΓ+ Γ̌ΓΓ)
)

= 0 ∀ΓΓΓ , ∀DDD (35)

A first condition for this equality to be ever verified is easy to get since the rate of defor-
mation tensor, DDD, is objective. It simply reads:

Γ̂ΓΓ = DDD (36)

It is not so immediate to give a mathematical expression for Γ̌ΓΓ, knowing that its scalar
product with σσσ must always be equal to zero, see Eq. (35). The skew-symmetric part of
the Eulerian velocity gradient, WWW , is here helpful. It is such that, whatever the vector aaa,
the vector defined byWWW...aaa is orthogonal to aaa. Applied to the eigenvectors of ΓΓΓ, PPP k – which
are the same as those of the Cauchy stress tensor in the isotropic case, see Eq. (27) –, this
inherent property of the skew-symmetric tensors ensures that the following symmetric
tensor (γ k denote the eigenvalues of ΓΓΓ):

Γ̌ΓΓ =
3

∑
k=1

γ
k
(
(WWW...PPP k)⊗ PPP k + PPP k⊗ (WWW...PPP k)

)
(37)

is such that its scalar product with σσσ is always equal to zero, whatever the observer. Since
WWW is a non objective quantity, Γ̌ΓΓ as defined by Eq. (37) is a non objective quantity. From
Eq. (36) and Eq. (37), we immediately get that:

Γ̇ΓΓ = DDD +
3

∑
k=1

γ
k
(
(WWW...PPP k)⊗ PPP k + PPP k⊗ (WWW...PPP k)

)
(38)

is a condition for the intrinsic dissipation ω, see Eq. (35), to be always zero, whatever the
observer. It must however be noticed that this condition is sufficient but not necessary:
by multiplying the second term on the right hand side of Eq. (37) by any real number,
another expression for Γ̌ΓΓ is obtained which is also such that its scalar product with σσσ is
equal to zero. In any event, the expression for Γ̌ΓΓ must be such that its scalar product with
σσσ is equal to zero. Accordingly, the power density (per unit volume) of internal forces,
πint = −σσσ:::DDD, can always be written in the following way:

πint = −σσσ:::Γ̇ΓΓ (39)

15



It may also be noted that, from the expression of the average conformation tensor in the
orthonormal basis defined by its eigenvectors, namely:

ΓΓΓ =
3

∑
k=1

γ
k (PPP k⊗ PPP k) (40)

which immediately gives the following form to the material derivative:

Γ̇ΓΓ =
3

∑
k=1

γ̇
k (PPP k⊗ PPP k) +

3

∑
k=1

γ
k
(

ṖPP k⊗ PPP k + PPP k⊗ ṖPP k
)

(41)

the objective part of Γ̇ΓΓ, according to Eq. (36) – and due to the fact that the material deriva-
tives of the eigenvalues γ k are objective –, is such that:

Γ̂ΓΓ = DDD =
3

∑
k=1

γ̇
k (PPP k⊗ PPP k) (42)

and the non objective part of Γ̇ΓΓ, according to Eq. (37) – and due to the fact that the material
derivatives of the eigenvectors PPP k are non objective –, is such that:

Γ̌ΓΓ =
3

∑
k=1

γ
k
(
(WWW...PPP k)⊗ PPP k + PPP k⊗ (WWW...PPP k)

)
=

3

∑
k=1

γ
k
(

ṖPP k⊗ PPP k + PPP k⊗ ṖPP k
)

(43)

As defined by Eq. (37) or Eq.(43), Γ̌ΓΓ is a traceless tensor, i.e. Tr(Γ̇ΓΓ) = Tr(DDD). Fur-
thermore, from the local expression of the law of conservation of mass, we also have
Tr(DDD) =−ρ̇/ρ. Consequently:

Tr
(

Γ̇ΓΓ

)
= − ρ̇

ρ
(44)

or, equivalently, due to Eq. (14) – where ΓΓΓ can be substituted to Ĉ̂ĈC
1 since these two tensors

are equal, see Section 4:
˙̂r
rr

= − ρ̇

ρ
(45)

Denoting by ρ0 (resp. by r̂0) the density (resp. the average distance between the atomic
nuclei) at some initial time, Eq. (45) immediately gives:

r̂
r̂0

=
ρ0

ρ
(46)

which means that, if ρ→ 0, then r̂→ ∞, and if ρ→ ∞, then r̂→ 0. Since the mass of an
atom is essentially concentrated in its nucleus (see the very first part of Section 2), these
two limit cases are formally satisfactory. It must be underlined, however, that they are
physically irrelevant, at least in the present study: the first one, r̂→∞, because the length
of an interatomic bond, that is to say, the distance between two atomic nuclei, is always
finite in the solid state; the second one, r̂→ 0, because the fusion of atomic nuclei is
obviously not an elastic phenomenon.
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6 An example of an elasticity model based on the conformation ten-
sor

As noted previously, the average conformation tensor, ΓΓΓ, is not a strain tensor, SSS, because
its definition does not depend upon any Lagrangian gradient. However, from an exper-
imental point of view, it is not without interest to seek for a relationhip between ΓΓΓ – at
least some of its components – and SSS, whatever this strain tensor is: at the microscopic
scale, the tensor SSS – at least some of its components – is indeed measurable when the
tensor ΓΓΓ is only accessible by measurements at the nanoscale. Such a relationship can
be easily defined in the case of uniaxial tension, which is also interesting when the con-
formation variations (from an initial state of conformation) are "small" and reversible,
in the sense that it suggests a certain mathematical expression of the state potential of
specific free energy ϒ introduced in Section 4. Consider the gauge section of a flat ten-

eee2

eee1

L 0

W0

eee3O

x01 ∈ [0, L0]

x02 ∈ [−W0/2,W0/2]

x03 ∈ [−T0/2, T0/2]

t ≥ 0

dL1 (0, x02, x03, t) = 0

dL1 (L0, x02, x03, t) = L0 α t with α > 0

Figure 5: 2D representation of the gauge section of a flat tensile specimen. The Lagrangian displacement
field is denoted by dddL (xxx0, t), where xxx0 is the initial position vector – for the observer defined by point
O and the orthonormal basis (eee1, eee2, eee3) – of some point of the gauge section, and where t denotes the
time. The lateral edges of the gauge section are free from external stress while its upper and lower edges
are such that only the components following eee2 et eee3 of the external stress vector are zero. Moreover, the
constraint dL2 (x01, 0, x03, t) = 0 is added to the kinematic boundary conditions to avoid any rigid body
motion. All these boundary conditions and constraints are such that the Lagrangian gradient field of dddL
– and consequently, any strain field, whatever the considered strain tensor SSS is – is uniform in the entire
gauge section. Eventually, it may be noted that, from the kinematic boundary condition on the upper edge
of the gauge section, it is immediately deduced that α t is nothing else than the axial strain of the gauge
section, usually denoted by ε11 in the case of infinitesimal strains.

sile specimen whose dimensions are defined in Fig. 5 and whose constitutive material is
a pure monoatomic one. The pure metals are an example of such materials, which are
however often, at the microscopic or larger scale, in the form of polycrystals, i.e. a set of
crytallites or grains of varying sizes and orientations, and separated by grain boundaries.
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Obvioulsy, the concept of conformation, and even more this of average conformation,
introduced in the present study do not make sense physically on the interfaces that are the
grain boudaries. So we must also assumed that the constitutive material of the specimen
has no grain boundaries, which means that it is not only monoatomic but also monocrys-
talline. In other words, the characteristic size of the specimen (e.g. L0, see Fig. 5) must
be approximately this of the crystal of its constitutive material.
Due to the kinematic boundary conditions, the Lagrangian description of the displace-
ment field of the points of the gauge section, dddL, is simple – for the observer defined by
point O and the orthonormal basis (eee1, eee2, eee3), see Fig. 5. It reads:

dddL(xxx0, t) = x01 α t eee1 + x02 g(t)eee2 + x03 g(t)eee3 (47)

where α > 0 and where the function g(t), such that g(t0 = 0) = 0 and g′(t) < 0 ∀ t, does
not have to be more specified here. From the Lagrangian gradient of dddL, which defines
a uniform field in the gauge section, the field of deformation gradient is immediately
deduced, namely:

TTT = gradL(ddd) + GGG = (1 + α t)(eee1 ⊗ eee1) + (1 + g(t))(eee2 ⊗ eee2 + eee3 ⊗ eee3) (48)

It may here be noted that any strain field, whatever the considered strain tensor SSS, inherits
the property of uniformity of TTT , including the infinitesimal strain field:

εεε = α t (eee1 ⊗ eee1) + g(t)(eee2 ⊗ eee2 + eee3 ⊗ eee3) (49)

From Eq. (47), the uniform field of the Eulerian velocity gradient vvv is also deduced:

gradE(vvv) =
α

1+α t
(eee1 ⊗ eee1) +

ġ(t)
1+g(t)

(eee2 ⊗ eee2 + eee3 ⊗ eee3) (50)

hence, since the tensor gradE(vvv) thus defined turns out to be symmetric:

DDD = sym(gradE(vvv)) = gradE(vvv) ; WWW = skw(gradE(vvv)) = 0 (51)

The solution to the equation governing the material derivative of ΓΓΓ, see Eq. (38), is then
immediately obtained. It reads at any time (and at any point, since the field defined by ΓΓΓ

is uniform in the entire gauge section):

Γ11(t)−Γ11(0) = ln(1 + α t)
Γ22(t)−Γ22(0) = ln(1 + g(t)) = Γ33(t)−Γ33(0)
Γi j(t)−Γi j(0) = 0 when i 6= j

(52)

There is no physical argument to claim that the initial state of average conformation,
ΓΓΓ(0), is zero. Quite the contrary, from Eq. (17) and the caption of Figure 3, ΓΓΓ(0) 6= 0
describes a quite realistic physical condition, namely that the first neighbors of some atom
initially belong to the ellipsoid with semi-axes rr exp(3γ1

0 ), rr exp(3γ2
0 ) and rr exp(3γ3

0 ),
oriented along PPP1

0, PPP2
0 and PPP3

0 (here, γ i
0 denotes the i-th eigenvalue of ΓΓΓ(0) and PPP i

0, its i-th
eigenvector; it can also be recalled that rr is a reference length.) However, and in order
to facilitate the presentation of the main results, it will be assumed here that ΓΓΓ(0) = 0 –
which is also a realistic condition, but very particular in the sense that the first neighbors
of some atom initially belong to the sphere with a radius rr. With this initial condition,
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Γ11(t) is nothing else than the true (natural) longitudinal strain, and Γ22(t) = Γ33(t),
the true transverse strain. But it is well known that the true strains, as long as they
remain "small", are adequatly approximated by the corresponding components of the
infinitesimal strain tensor, see Eq.(49). Thus, in the case when α t � 1 and |g(t)| � 1,
Eq. (52) simply becomes:

Γ11(t) ≈ ε11(t) = α t
Γ22(t) = Γ33(t) ≈ ε22(t) = ε33(t) = g(t)
Γi j(t) = εi j(t) = 0 when i 6= j

(53)

In other words, in the case of uniaxial tension restricted to the "small" strains, and for the
observer defined by point O and the orthonormal basis (eee1, eee2, eee3), see Fig. 5, ΓΓΓ ≈ εεε. In
no way can this particular result be generalized, mainly because, as already mentioned, ΓΓΓ

is not a strain tensor. However, this same result suggests – but definitely not proves – that,
in the case of "small", elastic variations of conformation, that is to say when the eigen-
values of ΓΓΓ are such that

∣∣γk
∣∣� 1, an expression of the average specific free energy of

the interatomic bonds could be analogous to that underlying the very classical isotropic,
linear elasticity model, namely:

ϒ(ΓΓΓ) =
1
ρ0

(
1
2

λ(Tr(ΓΓΓ))2 + µTr(ΓΓΓ...ΓΓΓ)
)

with µ > 0 and λ > −2
3

µ (54)

where ρ0 is the initial density, and where λ and µ are analogous to the Lamé parameters.
From Eq. (54), and in agreement with the general expression of the Cauchy stress tensor
previously defined, see Eq. (26), we get :

σσσ =
ρ

ρ0
(λTr(ΓΓΓ)GGG + 2µΓΓΓ) (55)

With the additional hypothesis that ρ/ρ0 ≈ 1, which is not inadmissible in the case of
infinitesimal strains, Eq. (55) is therefore equivalent to the famous Hooke’s law, where
the infinitesimal strain tensor is replaced by the average conformation tensor ΓΓΓ. But
when Hooke’s law is such that the initial stresses are zero – since, from the definition of
the strains with respect to an initial state, the latter are zero at initial time –, the stresses
defined by Eq. (55) might well be non zero since the initial state of conformation has no
reason to be zero – in Eq. (53), it has been assumed that ΓΓΓ(0) = 0 only for the sake of
brevity.

If one accepts, for "small" conformation variations, Eq. (55) as isotropic, elasticity model,
a generic structural problem based on the average conformation tensor can be formulated.
In agreement with one of the main hypotheses adopted in this study, it relates only to
structures whose constitutive material is a pure substance in the solid state. As always
in the field of Mechanics, two equivalent formulations of the problem can be envisaged,
a Lagrangian one and an Eulerian one. To highlight the fact that ΓΓΓ is without any con-
nection with the Lagrangian gradient of some vector field, the problem is here written
in Eulerian description, for the material fields – such that ΓΓΓE(xxxt , t), Eulerian field of the
average conformation existing in the current configuration, Ω t , of the considered struc-
ture – as well as for the differential operators – such that divE(σσσ), Eulerian divergence
of the stress field. The Eulerian field of the current position vector of the points of the
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considered structure is denoted by ΞΞΞE(xxxt , t) (thus, trivially, ΞΞΞE(xxxt , t) = xxxt). The givens of
the problem are as follows:

• the material parameters µ > 0 and λ > −(2/3)µ,

• the initial configuration – for any observer – of the considered structure, Ω0,

• the initial fields of density ρ0 (xxx0) – e.g. ρ0 (xxx0) = ρ0 –, of average conformation
ΓΓΓ0 (xxx0) – e.g. ΓΓΓ0 (xxx0) = 0 –, and of Cauchy stresses σσσ0 (xxx0) – e.g. σσσ0 (xxx0) = 0,

• the velocity field, VVV t (xxxt), acting on the part ∂ΩV
t of the current boundary ∂Ω t of the

structure, and the stress vector rate field, fff t(xxxt), acting on the part ∂Ω
f
t of ∂Ω t ,

• the field of density (per unit mass) of body forces, fff m(xxxt), acting in Ω t – e.g. fff m = 0
or fff m = ggg, gravitational acceleration.

The static equilibrium problem is then to find the current configuration, Ω t , and the fields
– defined on the whole configuration – ΞΞΞE(xxxt , t), ρE (xxxt , t), ΓΓΓE (xxxt , t) and σσσE (xxxt , t) such
that:

Ω t = {ΞΞΞE(xxxt , t) = xxxt}
ρ̇E = −ρE Tr

(
gradE(Ξ̇ΞΞ)

)
Γ̇ΓΓE = sym

(
gradE(Ξ̇ΞΞ)

)
+ 2 ∑

3
k=1 γ k

E sym
((

skw
(

gradE(Ξ̇ΞΞ)
)
...PPP k

E

)
⊗ PPP k

E

)
σσσE = ρE

ρ0
(λTr(ΓΓΓE)GGG + 2µΓΓΓE)

divE(σσσ) + ρE fff m = 0

(56)

satisfying the following initial conditions (t0 = 0):

Ω0 = {ΞΞΞE(xxx0, 0) = xxx0}
ρE (xxx0, 0) = ρ0 (xxx0) in Ω0
ΓΓΓE (xxx0, 0) = ΓΓΓ0 (xxx0) in Ω0
σσσE (xxx0, 0) = σσσ0 (xxx0) in Ω0

(57)

and satisfying the following boundary conditions (nnnE denotes the outward unit normal
vector to ∂Ω

f
t ):

Ξ̇ΞΞE(xxxt , t) = VVV t (xxxt) on ∂ΩV
t ; σ̇σσE(xxxt , t)...nnnE(xxxt , t) = fff t(xxxt) on ∂Ω

f
t

with ∂ΩV
t ∩∂Ω

f
t = /0 and ∂ΩV

t ∪∂Ω
f
t = ∂Ω t

(58)

In Eq. (56), the number of equations is equal to the number of unknown fields – that is, 16
scalar fields, taking into account the symmetry of ΓΓΓ and that of σσσ –, which is a necessary
condition for the static equilibrium problem to be well-posed. However, existence and
uniqueness of solutions would require further study, which could be subjected to some
constraints, in addition to that on the Lamé parameters, see Eq. (54), and that on the
boundary conditions, see Eq. (58). In any case, it must be again emphasized that the
structural problem here defined is different from the usual one, based on the infinitesimal
strain tensor. Thus, it is inevitable that the solution of the latter, which involves only the
symmetric part of the displacement Lagrangian gradient, is generally different from that
of Eq. (56), where both the symmetric and skew-symmetric parts of the velocity Eulerian
gradient appear.
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7 Conclusion

The three main results achieved in this study, in the case when a pure substance in the
solid state is considered as a Continuum, are that: i – as a state variable, the average con-
formation tensor of interatomic bonds is an objective and relevant variable. Furthermore,
and as opposed to a strain tensor, the average conformation tensor is independent of the
transformation linking the current configuration to the reference (or initial) one; ii – apart
from the viscid effects, the Cauchy stress tensor can always be expressed as a function
of the average conformation tensor, which is the first derivative of a state potential of the
free energy density (per unit mass) of the interatomic bonds; iii – when the mechanical
behavior of a pure substance can be considered as elastic, the objective part of the ma-
terial derivative of the average conformation tensor is equal to the rate of deformation
tensor.
However, for these results to be of a real importance in the field of Solid Mechanics,
they must be expanded and/or enhanced from two points of view – in addition to the
consideration of the second, the third, ..., the umpteenth neighbors, which, however, is
not a real problem, since an average conformation tensor, quite similar to that defined in
this study, can be easily defined for each of these neighbors. The first is related to the
class of materials to which these results can be actually applied. In the present paper,
this class was restricted to pure substances in the solid state, in order to focus on the
main idea of this study, as noted in Section 1. Nevertheless, the process followed in Sec-
tions (2), (3), (4) and (5) seems to be broad enough to be applied to materials which are
not pure substances, that is to say, materials composed of at least two types of atoms. A
precise theoretical study, however, aiming to prove that the notion of the average confor-
mation tensor of interatomic bonds is relevant for this kind of materials in the solid state,
still remains to be done.
Future studies should also investigate the problem of the irreversible mechanical behavior
– in the sense of a non-zero intrinsic dissipation – of materials, which is always observed,
whatever the material, when the supplied, mechanical energy becomes too high. More
precisely, and considering that the thermodynamic results obtained in this study are valid
in the only case of an elastic behavior, the following questions must be answered: i –
which state variable(s) must be added to the average conformation tensor of interatomic
bonds in a physically relevant model of the irreversible mechanical behavior (elastoplas-
tic, for instance) of materials? ii – how is (are) the material derivative(s) of this (these)
state variable(s), including that of the average conformation tensor of interatomic bonds,
constrained by the Thermodynamics? If precise, rigorous answers can be given to these
questions, the average conformation tensor of interatomic bonds might become, as an
alternative to a strain tensor, an interesting new state variable, in the essential sense that
it is independent of the transformation linking the current configuration to the reference
configuration, like the absolute temperature and the density.
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