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Introduction

Droughts are extreme hydrological events and representative of natural hazards, which impose serious challenges to ecosystems and human societies. Droughts may affect a wide variety of sectors such as agriculture or hydroelectric power generation, with diverse geographical and temporal extent. Droughts have multiple aspects and may be classified into four main types: meteorological, agricultural, hydrological and socioeconomic droughts [START_REF] Dracup | On the definition of droughts[END_REF][START_REF] Heim | A Review of Twentieth-Century Drought Indices Used in the United States[END_REF]. Meteorological droughts are related to the deficiency of precipitation over an extended period of time, from which other types of drought originate.

Agricultural droughts relate to insufficient water to meet the need of crop production, or plant growth [START_REF] Heim | A Review of Twentieth-Century Drought Indices Used in the United States[END_REF].

Drought indices are useful tools to detect, monitor, and evaluate drought events [START_REF] Zargar | A review of drought indices[END_REF]. Several indices have been developed for drought monitoring [START_REF] Mishra | A review of drought concepts[END_REF]. Among these, Standardized Precipitation Index (SPI) is one of the most commonly used, applied to local, regional, and global scale studies. SPI is widely used, primarily for its simplicity, standardized nature, and flexibility of use across different time scales (e.g., 1-, 6-, 12-month). On the other hand, SPI has potential limitations. The assumption of one suitable probability distribution function for precipitation data could be inconsistent under different window sizes and could not account for seasonal variability. Moreover, the selection of one single time scale could be too simplistic or misleading in practical applications to water resource managers, decision-makers, and users. Using a novel approach, [START_REF] Bazrafshan | Drought monitoring using the multivariate standardized precipitation index (MSPI)[END_REF] proposed the Multivariate Standardized Precipitation Index (MSPI) using the 1st principal component of SPI aggregates at different time windows. They showed the superiority of MSPI, when the appropriate time window for a drought study had not been identified in advance.

However, drought analyses based on a single variable may not be sufficient because drought phenomena have complex dynamics involving multiple variables (e.g., precipitation, runoff, and soil moisture) [START_REF] Hao | Multivariate Standardized Drought Index: A parametric multi-index model[END_REF]. Moreover, a single drought index may not be sufficient to describe all aspects of drought onset, persistence and termination (see e.g., [START_REF] Dracup | On the definition of droughts[END_REF][START_REF] Kao | A copula-based joint deficit index for droughts[END_REF][START_REF] Hao | Drought characterization from a multivariate perspective: A review[END_REF][START_REF] Waseem | Development of a new composite drought index for multivariate drought assessment[END_REF][START_REF] Hao | A theoretical drought classification method for the multivariate drought index based on distribution properties of standardized drought indices[END_REF]. For example, indices which are used to monitor meteorological droughts usually capture the drought onset earlier [START_REF] Behrangi | Utilizing Humidity and Temperature Data to Advance Monitoring and Prediction of Meteorological Drought[END_REF], while soil moisture index describes the drought persistence more reliably [START_REF] Entekhabi | Mutual interaction of soil moisture state and atmospheric processes[END_REF][START_REF] Heim | A Review of Twentieth-Century Drought Indices Used in the United States[END_REF]. The characterization of droughts with a composite perspective is to go over the inadequacy of drought characterization using a single variable. This can be done by developing drought indices combining multiple hydrological variables, or drought indices [START_REF] Hao | Drought characterization from a multivariate perspective: A review[END_REF].

Recently, several composite drought indices have been developed combining different drought indicators to improve drought characterizations from multiple aspects (e.g. [START_REF] Waseem | Development of a new composite drought index for multivariate drought assessment[END_REF][START_REF] Rajsekhar | Multivariate drought index: An information theory based approach for integrated drought assessment[END_REF]Azmi et al., 2015). Hao andAghaKouchak (2013, 2014), using theoretical and empirical copula functions, presented parametric and non-parametric versions of the Multivariate Standardized Drought Index (MSDI), respectively. MSDI is an agro-meteorological drought index based on the bivariate distribution of SPI and SSI (standardized soil moisture index). To obtain MSDI, the joint cumulative probability is transformed with the inverse CDF of a standard normal distribution. However, it is important to note that since the joint cumulative probability is not uniformly distributed on [0,1], the transformation will not result in normally-distributed index.

In addition, copula function, to be applied, needs input data to be time-independent, which does not hold for SPI and SSI in general.

The objective of the present paper is to develop a composite agro-meteorological drought index, properly defined, copula-based, addressing seasonality and auto-correlation issues.

Furthermore, the proposed framework could be used to assimilate two or more standardized drought indices, into a single drought index that may be useful for comprehensive decisionmaking.

Methods

In section 2.1, SPI and SSI indices have been briefly recalled. To avoid lack of information in drought monitoring, and include all within-year variations, SPI and SSI are computed at twelve time windows, from 1 to 12 months. In section 2.2, the modified SPI (SPI 𝑚 ) and the modified SSI (SSI 𝑚 ), subgrouped by the ending month m, have been considered to account the seasonality of the variables. In section 2.3, SPI 𝑤 𝑚 at 12 time windows (w=1,...,12 months) combined, through the principal component analysis, in the multivariate standardized precipitation index, MSPI. Similarly, it has been done for SSI 𝑤 𝑚 in the multivariate standardized soil moisture index, MSSI. These indices are standardized (subtracting the mean and dividing by the standard deviation) to remove the seasonality. In section 2.4, the autocorrelation within MSPI and MSSI time series has been removed through a whitening procedure, building whitened series indicated by MSPI wh and MSSI wh , respectively. In section 2.5, a new agrometeorological drought index, denominated AMDI-SA, has been introduced combining together MSPI wh and MSSI wh using the concept of copula and the Kendall function. In section 2.6, an interpretation of the proposed index has been presented.

SPI and SSI indices

The most common drought index is the Standardized Precipitation Index (SPI), introduced by [START_REF] Mckee | The relationship of drought frequency and duration to time scales[END_REF]. SPI is calculated with reference to different time scales, and can assess drought severity. As it is a standardized index, the frequency of extreme drought events at different locations and time scales are consistent and comparable. Let Xw and FXw(x) denote the accumulated precipitation at time scale w and its corresponding probability distribution function, respectively. FXw(x) is transformed into the standard normal precipitation index (SPI) at time scale w as:

SPIw=Φ -1 (FXw(x)), where Φ -1 is the inverse of the standard normal distribution.

Sometimes it is hard to discriminate among canonical forms of FXw(x), or they may not provide a good fit to the data [START_REF] Soláková | Comparison between Parametric and Nonparametric Approaches for the Calculation of Two Drought Indices: SPI and SSI[END_REF][START_REF] Lall | An Empirical, Nonparametric Simulator for Multivariate Random Variables with Differing Marginal Densities and Nonlinear Dependence with Hydroclimatic Applications[END_REF]. On the other hand, using different distribution functions could lead to different tail behavior and thus inconsistencies in characteristics of extremes across space (Farahmand and AghaKouchak, 2015). Therefore, a nonparametric approach is used to obtain the probability values of Xw. The Gringorten plotting position is used to calculate the cumulated frequency of non-zero values, Fi=(i-0.44)/(n+0.12),

where n denotes the sample size of non-zero values, and i refers to the rank of the non-zero observation x(i), ordered from the smallest to the largest. Since there are zero values of precipitation data, the frequency of zeros has to be added to the plotting position of non-zero values to estimate FXw. The method of handling zeros proposed by [START_REF] Stagge | Candidate distributions for climatological drought indices (SPI and SPEI)[END_REF] is used, which is superior to using the relative frequency for the probability of zero values. Thus, FXw(x) is calculated as:

F X 𝑤 (𝑥) = { 𝑛 0 𝑛 tot +1 + (1 - 𝑛 0 𝑛 tot +1 ) (𝑖 -0.44) (𝑛+0.12) , for 𝑥 = 𝑥 (𝑖) 𝑛 0 +1 2(𝑛 tot +1) , for 𝑥 = 0 ( 1 
)
where n0 is the number of zero values, and ntot=n+n0.

The standardized soil moisture index (SSI) (e.g., AghaKouchak, 2014) can be defined in a similar way to SPI. Here, SSI has been derived from soil moisture data averaged up to 100 cm depth.

However, SSI, like SPI, has two weaknesses:

1) The index does not take into account the seasonal variability within the annual regime. In other words, it fits all data (whether it has been observed in wet or dry season) to the same probability distribution.

2) Increasing the temporal window (w), it increases the temporal overlap between two successive values of the index, introducing more auto-correlation to the time series of the index, and bias in the probability distribution fitting. [START_REF] Kao | A copula-based joint deficit index for droughts[END_REF] proposed the following modification in the calculation of SPI to account for the seasonal variability of data. The aggregated precipitation Xw, at a given time window w, is grouped according to the ending month m (m=1 means January, ..., m=12 December). Thus, the series {Xw} is subdivided into 12 smaller subseries corresponding to 12 months of the year, {Xw m }. Xw m (y) is the aggregated precipitation over the time window w, having m as the ending month and relative to the year y. Thus, X1 10 (y) is the value of the year y, with a window size 1 having October as ending month, while X5 10 (y) is the value of the year y, with a window size 5 from May to October. In doing so, observations in each set {Xw m } will not have overlapping information, when w≤12, and reduce the auto-correlation among the samples {Xw m }. In addition, observations in each set {Xw m } are subject to the same seasonal effect, and hence, the seasonal variation is accounted for, properly [START_REF] Kao | A copula-based joint deficit index for droughts[END_REF]. Then for each of the 12 variables Xw m , the empirical frequency gives an estimation of the probability distribution, FXw m (x), and the modified index

Modified SPI and SSI indices

SPI 𝑤 𝑚 = Φ -1 (F X 𝑤 𝑚 (𝑥)) is obtained.
Similarly, it is possible to calculate the modified index SSI 𝑤 𝑚 . 𝑂 𝑘 with k=1,...,K, where PCi is the ith principal component, 𝐸 𝑖 𝑇 is the ith eigenvector of Cv sorted in descending order of corresponding eigen values and eki is the kth element of the ith eigenvector of Cv. These components are: firstly, extracted in such a way that the first one (PC1) justifies the greatest percentage of variance of K original variables mutually uncorrelated; secondly, this linear combination is mutually uncorrelated the components can be at most as many as the original variables; and thirdly, the components are extracted in such a way that the first one (PC1) justifies the greatest percentage of variance of K original variables [START_REF] Wilks | Statistical methods in the atmospheric sciences[END_REF]. The PCA can be useful if the correlation among the original variables is high.

MSPI and MSSI indices

Here, the PCA technique was applied to each of two sets of variables SPI 𝑤 𝑚 and SSI 𝑤 𝑚 with w=1,...,12 months. However, it can be applied to any arbitrary set and may include other time scales depending on the research needs. Thus, the first component of SPI 𝑤 𝑚 is indicated as P 1

𝑚

and is equal to

P 1 𝑚 = ∑ 𝑒𝑝 𝑤1 SPI 𝑤 𝑚 12 𝑤=1 (2)
where 𝑒𝑝 𝑤1 is the wth element of the first eigenvector of covariance matrix of SPIs. Similarly, the first component of SSI 𝑤 𝑚 is indicated as S 1 𝑚 and equal to

S 1 𝑚 = ∑ 𝑒𝑠 𝑤1 SSI 𝑤 𝑚 12 𝑤=1 (3)
where 𝑒𝑠 𝑤1 is the wth element of the first eigenvector of covariance matrix of SSIs. P 1 𝑚 and S 1 𝑚 are characterized by seasonality and are not comparable among different months or places.

Therefore, normalized variables P ̂1 and S ̂1 are introduced, respectively for P 1 𝑚 and S 1 𝑚 , subtracting the mean and dividing by the standard deviation:

MSPI = P 1 𝑚 -𝜇 𝑃 1 𝑚 𝜎 𝑃 1 𝑚 ≈ P 1 𝑚 𝜎 𝑃 1 𝑚 (4) MSSI = S 1 𝑚 -𝜇 𝑆 1 𝑚 𝜎 𝑆 1 𝑚 ≈ S 1 𝑚 𝜎 𝑆 1 𝑚 (5) 
where 𝜇 𝑃 1.

Whitening MSPI and MSSI

Since MSPI or MSSI are auto-correlated and input variables of copula function must be free of auto-correlation (statistically "white"), the temporal dependence has been filtered out.

A classical whitening procedure [START_REF] Box | Time series analysis: forecasting and control[END_REF] has been applied to MSPI and MSSI, assuming that these can be described by autoregressive moving-average (ARMA) models.

Whitened residuals of MSPI and MSSI are indicated as MSPI wh and MSSI wh . Details about ARMA models can be found in [START_REF] Box | Time series analysis: forecasting and control[END_REF] and [START_REF] Hipel | Time series modeling of water resources and environmental systems[END_REF]. The Ljung-Box test has been used to assess the absence of auto-correlation in MSPI wh and MSSI wh time series, at a significance level of 0.05 [START_REF] Ljung | On a measure of lack of fit in time series models[END_REF][START_REF] Hipel | Time series modeling of water resources and environmental systems[END_REF]. [START_REF] Wang | Uncertainty analysis of hydrological processes based on ARMA-GARCH model[END_REF].

Composite Drought Index AMDI-SA

To have a comprehensive description of droughts, a drought index has been considered combining whitened residuals MSPI wh and MSSI wh together within the copula framework. With reference to the bivariate case, the copula C(u,v) is a cumulative distribution function of uniform marginals in the unitary interval, u,v[0,1] [START_REF] Joe | Multivariate models and multivariate dependence concepts[END_REF][START_REF] Salvadori | Extremes in Nature: An Approach Using Copulas[END_REF][START_REF] Nelsen | An introduction to copulas[END_REF]. Thanks to the Sklar's theorem [START_REF] Sklar | Fonctions de répartition à n dimensions etleursmarges: Université Paris 8[END_REF], the joint cumulative distribution function of MSPI 𝑤ℎ and MSSI 𝑤ℎ , F MSPI 𝑤ℎ ,MSSI 𝑤ℎ , can be written in terms of copula as:

F MSSI 𝑤ℎ ,MSPI 𝑤ℎ (𝑝,𝑠) = C (F MSPI 𝑤ℎ (𝑝),F MSSI 𝑤ℎ (𝑠)) (6) 
where F MSPI 𝑤ℎ and F MSSI 𝑤ℎ are the marginals and C is the copula.

The Kendall distribution function (KC(t)), also called Kendall's measure, is the probability

measure of the set {(F MSPI 𝑤ℎ , F MSSI 𝑤ℎ )∈[0,1] 2 : C(F MSPI 𝑤ℎ , F MSSI 𝑤ℎ )⩽t}, with t [0,1]. It is defined as: KC(t)=Pr[C(F MSPI 𝑤ℎ ,F MSSI 𝑤ℎ )⩽t] (7)
where KC(t) is a univariate probability distribution. For some copula families, like (counter-monotonicity copula) and M (co-monotonicity copula), also referred as the upper and lower Frechet-Hoeffding bounds. In particular, the co-monotonicity copula describes the case of perfect positive dependence, and is given by M(u,v)=min{u,v}. The relation W CM is written in terms of Kendall distribution function as t = KM(t) KC(t)  KW(t) = 1, representing the bounds of the Kendall function [START_REF] Nelsen | Kendall distribution functions[END_REF].

In the next, five copula families are considered: Gaussian, Student's t, Frank, Gumbel and Clayton. For the last three families, the Kendall distribution function is explicitly given. For others, empirical Kendall function has been used.

The Maximum Likelihood method is used for the estimation of the copula parameter, and the Akaike Information Criterion (AIC) used to rank the copulas and select the best one, provided that it well describes the empirical copula. To check the adequacy of parametric copula with the empirical one, the bivariate Kolmogorov-Smirnov goodness-of-fit test has been used. The empirical process ℂ 𝑛 = √𝑛(C 𝑛 -C 𝜃 𝑛 ) has been considered, where C n is the empirical copula with sample size n, and C 𝜃 n is the parametric copula estimated from a sample of size n. The statistic of the Kolmogorov-Smirnov test (T 𝑛 (C) ), defined as supremum of ℂ 𝑛 , has been used as measure of adequacy. If T 𝑛 (C) is smaller than the critical value associated to 5% significance level, the best-fitted parametric copula is used [START_REF] Genest | Goodness-of-fit tests for copulas: A review and a power study[END_REF].

AMDI-SA is defined as the inverse normal transformation of KC(t):

AMDI-SA = Φ -1 (KC(t)) (8) 
The program's objective criteria [START_REF] Svoboda | The drought monitor[END_REF]. Drought classes are described in Table 1.

A drought event occurs any time when the index reaches a severity less than or equal to -0.5.

The event ends when the index becomes more than this cut-off value. Each drought event has a duration defined by its beginning and ending.

Since the drought index in Eq.( 8) is based on KC, in cases where the theoretical KC is significantly different from the empirical one, according to the univariate Kolmogorov-Smirnov test with 5% significance level, Least Squares method has been applied between the empirical and theoretical KC function to re-estimate the parameter of the copula, and select the one with the smallest value of the maximum difference. The Kolmogorov-Smirnov test has been used to check the goodness-of-fit. If this test is not passed, then the empirical KC is used in Eq.( 8).

Interpretation of AMDI-SA

Without loss of generality, the threshold level for drought severity is assumed to be AMDI-SA=-0.5 corresponding to KC(t) = 0.3 (the 30th percentile). Fig. 1 illustrates the isoline of Kc=0.3 and its corresponding drought domain, i.e., all the points located under this isoline, in F MSPI 𝑤ℎ -F MSSI 𝑤ℎ plane. Also included, are the empirical copula isoline C(u,v) = 0.3 and the L-shaped isoline of the co-monotonicity copula M(u,v) = min{u,v} = 0.3. The co-monotonicity copula is considered, since it represents the riskiest dependence structure. Namely, it has a conservative approach which identifies critical condition if at least one of its components is in a critical situation.

In Fig. 1, the L-shaped isoline of the co-monotonicity copula is placed under the copula isoline and above the KC isoline. Regardless of the choice of copula, this is true due to W  C

M and t=KM(t)  KC(t).

What does it mean in terms of drought index? If the copula isoline is used to identify the drought domain (as done in Hao and AghaKouchak, 2013 with MSDI), then are considered droughts also conditions where both the two variables (MSPI wh and MSSI wh ) do not indicate drought (i.e., points located between the copula isoline and L-shaped isoline of the comonotonicity copula). This criterion seems to overestimate the drought conditions. If the comonotonicity copula is used to identify the drought domain, then drought condition in one variable means drought condition of the (multivariate) index. Again this criterion seems too precautionary in identifying the drought conditions. If the KC isoline is used to identify the drought domain (as proposed here), the drought condition in one variable (e.g., precipitation through MSPI wh ) does not imply drought condition of the (multivariate) index. In other words, the drought severity detected by the multivariate index is in between the severity of the input indices. The difference between the drought domain associated to the co-monotonicity copula isoline and the one with the KC isoline, is represented by the two light-grey areas. Notice that there is a region (Z in Fig. 1), within which the KC isoline does not indicate the drought even if both variables are in drought conditions. This could represent a weakness of choosing the KC isoline. However, this area is extremely small and thus can be easily neglected. In conclusion, the drought condition identified by the AMDI-SA (KC isoline) seems more prudent in identifying drought conditions with respect to the use of copula isolines.

Study Area

Urmia lake basin is an endorheic basin, located between 37°4′ to 38°17′ latitude and 45°13′ to 46° longitude in northwestern Iran (Fig. 2). Three provinces share the Lake Urmia basin:

East Azerbaijan (19000 km 2 ), West Azerbaijan (21500 km 2 ), and Kurdistan (5000 km 2 ) [START_REF] Yekom | Environmental impacts (qualitative and quantitative) of Water Resources Development Projects in Urmia Lake Basin[END_REF]. Major use of water is for the agriculture sector, which is mainly supported by dryland farming with low efficiency [START_REF] Hesami | Changes in irrigated land and agricultural water use in the Lake Urmia basin[END_REF]. The climate of Urmia lake basin is harsh and continental, affected mainly by the mountains surrounding the lake (Ghaheri and Baghal-Vayjooee,1999). Considerable seasonal fluctuations in air temperature occur in this semi-arid region. The temperature in the region ranges between 0 and 23°C in winter and up to 39°C in summer (IRIMO, 2009). The annual average precipitation is about 500 mm falling mostly between November and April, while summer months are typically dry.

Monthly precipitation data for the basin are available at daily 0.25° × 0.25° resolution from PERSIANN-CDRdataset (Ashouri et al., 2015). It is retrieved for the period of 1983-2010. The accuracy of PERSIANN precipitation data for Iran and Urmia lake basin has been assessed by [START_REF] Moazami | Comparison of PERSIANN and V7 TRMM Multi-satellite Precipitation Analysis (TMPA) products with rain gauge data over Iran[END_REF][START_REF] Bodagh-Jamli | Validation of Satellite-Based PERSIANN Rainfall Estimates Using Surface-Based APHRODITE Data over Iran[END_REF][START_REF] Ghajarnia | Comparison and evaluation of high resolution precipitation estimation products in Urmia Basin-Iran[END_REF][START_REF] Katiraie-Boroujerdy | Evaluation of satellite-based precipitation estimation over Iran[END_REF] Soil moisture data are derived using ERA-Interim-Land surface fluxes and near-surface meteorology to force the land surface model HTESSEL for the period 1983-2010 [START_REF] Balsamo | ERA-Interim/Land: a global land surface reanalysis data set[END_REF]. It is considered that most of the vegetation roots are within the first 3 layers of soil in HTESSEL model (0-7cm, 7-28cm and 28-100cm). The weighted average of the water content over these three layers has been calculated to obtain a single value for soil moisture for each 0.25° × 0.25° pixel. To investigate the spatial distribution of droughts, 79 pixels covering the basin (not only the lake) are considered and processed.

Results

It is necessary to assess the stationarity of timeseries before any other analysis (Adeloye and Montaseri, 2002). Non-parametric Mann-Kendall procedure [START_REF] Hamed | Significance of statistical tests and persistence in hydrologic processes[END_REF] was used to test the presence of trends in MSPI wh and MSSI wh time series using a significance level of 0.05.

The results of the test indicated the absence of trends for all the data points of Urmia lake basin.

The Ljung-Box test (Wang et al., 2012) has been used to assess the presence of autocorrelation within MSPI wh and MSSI wh time series at a significance level of 0.05. The test statistic was placed always in region of acceptance for all data points within Urmia lake basin, indicative of no statistically significant autocorrelation.

In this study, MSPI and MSSI calculation is based on the scores of the first Principal Component (PC1) of the 12 modified variables for selected time windows (w=1,2,…,12)

representing seasonal variations throughout the year. To show the variability justified by the first principal component (PC1), the scree plots of the modified SPI/SSI variables have been illustrated for the whole basin as an average in Fig. 3.

To show the statistical dependence between MSPI wh and MSSI wh , the scatter plot of the couples, at point A in Fig. 2, is given in Fig. 4. Soil moisture conditions respond to precipitation anomalies on a relatively short time lag or even no significant lag. The Kendall's tau association measure between MSPI wh and MSSI wh for the whole basin is in the range of 0.18-0.36. The positive association depicted by positive values of Kendall's tau in the basin may be due to the direct impact of precipitation on soil moisture in the basin.

Input variables of copula function needs to be statistically white. To assess the effectiveness of the adopted whitening procedure, values of the auto-correlation coefficient of monthly MSPI, MSSI, MSPI wh and MSSI wh time series at point B (in Fig. 2) for lags 1-24 are given in Fig. 5.

AMDI-SA reflects the combined effect of soil moisture and precipitation. Worthwhile to mention that sample points (A, B and C) in Fig. 2 are selected randomly to cover the whole basin, close to the lake and in mountainous area. The same result can also be achieved by reporting any other data points in the basin.

Discussion

According to Fig. 3, the justified variabilities in the modified SPI and modified SSI by the first principal component (PC1) are 72% and 89%, respectively. Such high values show capability of PCA technique to integrate the great part of within-year variability existing in modified SPI and modified SSI time series into one series. Since soil moisture shows less variability than precipitation, PC1 is able to justify greater percentage of variability of modified SSI throughout the year.

As shown in Fig. 5, the auto-correlation in MSSI is greater than MSPI for all lags. This may be due to relatively stronger memory of soil moisture. However, in whitened MSPI and MSSI series, the auto-correlation is not significant indicating the effectiveness of the adopted ARMA whitening procedure.

According to Fig. 6, since AMDI-SA reflects the combined effect of soil moisture and precipitation, it mostly lies between MSPI wh and MSSI wh . In contrast to MSPI wh , MSSI wh and AMDI-SA, MSPI and MSSI are auto-correlated time series and cannot capture rapid changes in wetness condition. As showed in Fig. 7, drought severity class detected by AMDI-SA is less severe than both or one of input indices, MSPI wh and MSSI wh . Moreover, severe drought detections of MSPI and MSSI may be the effect of auto-correlation.

As stated before, in case of significant difference between empirical and theoretical values of the Kendall distribution function, empirical values have been used to calculate AMDI-SA.

An example of such case occurs at point C (in Fig. 2). First, a Gumbel copula is selected due to its lowest value of Akaike Information Criterion (AIC). However, since there is a significant difference between theoretical and empirical values of KC, a Least Squares fitting on KC function has been done for copulas with closed-form of KC. In Fig. 8, there is the comparison between theoretical and empirical KC, and the Least Squares estimates are indicated with the "LS" suffix. Since, neither the LS estimates are close enough to the empirical Kendall function, empirical values are used to calculate AMDI-SA.

According to AIC, Gumbel and Gaussian copulas are the selected families, in 41 (52%)

and 38 (48%) cases, respectively. In 9 cases, where the Gumbel family was selected, the theoretical Kendall function was not close enough to the empirical one. Finally, in 32 cases the Gumbel copula, in 38 cases the Gaussian model, and in 9 cases the empirical copula have been selected (Fig. 9).

The Gumbel copula, compared to the Gaussian copula, has more probability concentrated in the tails, especially in the right one, i.e. higher values of one variable is more likely to be followed by higher than normal values of the other. The ability of Gumbel copula to justify the dependence between MSPI wh and MSSI wh may imply saturated condition of soil moisture for months with upper-normal precipitation. In other words, for upper-normal precipitation condition, soil moisture will not be depleted, rapidly. It may be due to poor vegetation cover in these locations.

Conclusions

A single distribution function may not fit the global precipitation/soil moisture data and hence, the original parametric SPI/SSI may not be applicable. In this study, the proposed approach does not require the assumption of a parametric distribution function for describing drought-related variables. It is also worth pointing out that unlike parametric indices, the suggested nonparametric framework does not require parameter estimation and goodness-offit evaluation. However, due to the use of a nonparametric framework to derive SPI/SSI, the The properties of AMDI-SA can be summarized as follows: (a) AMDI-SA is a properly defined normal-distributed drought index gaining information from both precipitation and soil moisture; (b) using appropriate whitening procedure and normalization, AMDI-SA accounts for auto-correlation and seasonality; (c) Due to its probabilistic nature, it can be used for drought risk assessment tool and aid to decision-makers in drought mitigation and response plans. (d) Typically, precipitation detects the drought earlier and soil moisture better describes the persistence events (Farahmand et al., 2015). AMDI-SA generally captures the drought onset similar to the precipitation and drought persistence similar to the soil moisture, combines the properties of both. Though, soil moisture levels may remain high even long after precipitation.

However, since it uses whitened time series of MSPI and MSSI, shows even more quick reflection to drought onset and more fluctuation than both MSPI and MSSI.

The proposed framework for creating AMDI-SA is rather general, and other indices can be integrated together to form such a composite drought index which could be considered a strength of the approach. Such a methodology can potentially improve drought monitoring if each of the selected drought-related variables can capture certain aspects of droughts. Efforts are underway to extend the AMDI-SA concept by integrating more drought indicators such as evapotranspiration. The distinct advantages of the AMDI-SA include its assessment of drought from the aggregate perspective of meteorological and agricultural water shortages, and its direct mathematical formulation, which can be rapidly applied to new observational data in a straightforward manner.

It seems that AMDI-SA is not meant to replace the currently available indices. Rather, it uses additional information that can potentially improve drought modeling. Finally, it should be noted that the best choice for a set of drought indicators to be combined may vary, depending on the problem at hand. Figure 8. Different Kendall distribution functions (KC) for a grid cell in Urmia lake basin (for point C in Fig. 2). t stands for the level of probability. Figure 9. Selected copula families to model the dependence between MSPI 𝑤ℎ and MSSI 𝑤ℎ for each pixel of Urmia lake basin. 

Adeloye

Category

W0

Abnormally wet [0.5, 0.8)

W1

Moderately wet [0.8, 1.3)

W2

Severely wet [1.3, 1.6)

W3

Extremely wet [1.6, 2.0)

W4

Exceptionally wet ≥2.0

  Archimedean ones, KC(t) has an analytical form; and for others, like elliptical copulas, it has not a closed-form, and thus, it is calculated numerically. For more details on the Kendall distribution function, see[START_REF] Nelsen | Kendall distribution functions[END_REF];[START_REF] Salvadori | Extremes in Nature: An Approach Using Copulas[END_REF];[START_REF] Salvadori | Multivariate multi-parameter extreme value models and return periods: A copula approach[END_REF]. Every copula C(𝑢,𝑣) satisfies the relation W C M on [0,1] 2 , with W

  figure, AMDI-SA mostly lie between MSPI wh and MSSI wh .In Fig.7, spatial patterns of drought using MSPI, MSSI, MSPI wh , MSSI wh and AMDI-SA

  , A. J., & Montaseri, M. (2002). Preliminary streamflow data analyses prior to water resources planning study. Hydrological Sciences Journal, 47(5), 679-692. AghaKouchak, A. (2014). A baseline probabilistic drought forecasting framework using standardized soil moisture index: application to the 2012 United States drought. Hydrol. Earth Syst. Sci., 18(7), 2485-2492. doi: 10.5194/hess-18-2485-2014 Ashouri, H., Hsu, K.-L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., Prat, O. P. (2015). PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society, 96(1), 69-83.
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 1 Figure 1. Example to describe the properties of AMDI-SA.Figure2. Urmia lake basin in the northwest of Iran and discretization in some pixels (displayed as circles on the left). Results of this study reported in the randomly selected sample points A, B and C in the basin. Figure3. Scree plots of the SPI and SSI time series for the time scales set of 1-12 months. Figure4. Scatter plot showing pairs of MSPI 𝑤ℎ and MSSI 𝑤ℎ data (for point A in Fig.2) with Kendall's tau= 0.26. Figure5. Influence of the whitening process on auto-correlation; auto-correlation versus different time lags of (a) MSPI and MSPI 𝑤ℎ , (b) MSSI and MSSI 𝑤ℎ . Figure6. (a) MSPI and MSSI, (b) MSPI 𝑤ℎ and MSSI 𝑤ℎ in comparison with AMDI-SA during 1998-2002 for a grid cell in Urmia lake basin (for point B in Fig.2). Figure7. Spatial variation of drought severity classes based on MSPI, MSSI, MSPI 𝑤ℎ , MSSI 𝑤ℎ and AMDI-SA for each pixel of Urmia lake basin in March 1999. Figure8. Different Kendall distribution functions (KC) for a grid cell in Urmia lake basin (for point C in Fig.2). t stands for the level of probability. Figure9. Selected copula families to model the dependence between MSPI 𝑤ℎ and MSSI 𝑤ℎ for each pixel of Urmia lake basin.
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  Kendall distribution function, different to the copula C, is a uniform variable in [0,1],thus allowing a proper definition of the drought index, i.e., a normal distributed variable.In this study, 11 classes for drought severity classification are used for AMDI-SA, MSPI, MSSI, MSPI 𝑤ℎ and MSSI 𝑤ℎ . The classification is according to US drought monitor (USDM)

	AMDI-SA is a multivariate composite drought index, correctly defined, which accounts
	seasonality and auto-correlation. It can be compared across regions with markedly different
	climates. Like any other standard indices, e.g. SPI, AMDI-SA can explain drought

characteristics. It should be noted that AMDI-SA, similar to univariate SPI and SSI, provides probability of occurrence, and thus, it can be used for risk analysis as well.

  proposed methodology requires long-term observations to derive the joint distribution of precipitation and soil moisture, and a short record of observations could lead to biases in the indices values. On the other hand, given that satellite-based hydro-climate data records are emerging, the authors expect that, in the near future, more research will be devoted to

	investigating spatial patterns of climate extremes using space-borne observations specially soil
	moisture data.
	Drought mitigation and response plans often rely on different indicator variables and
	drought triggers. No single index can represent all aspects of drought so it is best to use a multi-
	index approach for operational drought monitoring. However, many drought indicators are not
	directly statistically comparable (Steinemann and Cavalcanti, 2006). Moreover, limited
	statistical models are currently available for linking or merging different drought-related
	variables into one composite map.

AMDI-SA, a multivariate composite agro-meteorological drought index, is suggested, which joints together two drought indices, namely Multivariate Standardized Precipitation Index and the Multivariate Standardized Soil moisture Index through the copula concept and the Kendall function.

Table 1 .

 1 Drought classification for normal distributed indices, according to U.S. Drought Monitor (USDM) classification for drought severity.