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Introduction

Anosov representations ( [START_REF] Labourie | Anosov flows, surface groups and curves in projective space[END_REF][START_REF] Guichard | Anosov representations: Domains of discontinuity and applications[END_REF]) from a hyperbolic group to a semi-simple Lie group are characterized by their dynamical nature. In the context of projective Anosov representations, we [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF] previously associated a metric Anosov flow to such a representation and showed that the (thermo)dynamical properties of this flow yield in turn new structures on the deformation space of these representations: entropy functions, (pressure) intersections and a pressure metric.

In this paper, we focus on Hitchin representations of a surface group into PSL d (R). We associate a wealth of flows to a Hitchin representation, and hence geodesic currents, entropies, pressure forms etc., depending essentially on an element in the Weyl chamber.

Let us be more specific. If E is a real vector space of dimension d and S is a closed surface, a representation ρ : π 1 (S) → PSL(E) is d-Fuchsian if it is the composition of a Fuchsian representation into PSL(2, R) and an irreducible representation of PSL(2, R) into PSL(E). A representation ρ : π 1 (S) → PSL(E) is a Hitchin representation if it may be continuously deformed to a d-Fuchsian representation. Hitchin [START_REF] Hitchin | Lie groups and Teichmüller space[END_REF] showed that the Hitchin component H d (S) of (PGL(E)conjugacy classes of) Hitchin representations into PSL(E) is an analytic manifold diffeomorphic to R (d 2 -1)|χ(S)| . Labourie [START_REF] Labourie | Anosov flows, surface groups and curves in projective space[END_REF] showed that a Hitchin representation is a discrete, faithful quasiisometric embedding and that the image of every non-trivial element γ is diagonalizable over R with eigenvalues of distinct modulus:

λ 1 (ρ(γ)) > λ 2 (ρ(γ)) > • • • > λ d (ρ(γ)) > 0.
Moreover, there are Hölder-continuous, ρ-equivariant limit curves ξ ρ : ∂ ∞ π 1 (S) → P(E) and ξ * ρ : ∂ ∞ π 1 (S) → P(E * ) whose images are C 1+α -submanifolds. This last feature is very specific to Hitchin representations -see subsection 3.2 (Theorem 3.2) and Guichard [START_REF] Guichard | Composantes de Hitchin et représentations hyperconvexes de groupes de surface[END_REF] for details. Let G(S) = ∂ ∞ π 1 (S) 2 \ ∆ be the space of distinct points in the Gromov boundary ∂ ∞ π 1 (S) of π 1 (S). We say that a flow over G(S) is an R-principal bundle L over G(S) equipped with a properly discontinuous and co-compact action of π 1 (S) by bundle automorphisms. The R-action on the quotient space U L = L/π 1 (S) is a flow, which justifies the terminology. Given a geodesic current ω, i.e. a π 1 (S)-invariant locally finite measure on G(S), we define a pairing

ω | L := U L ω ⊗ dt
where dt is the element of arc length given by the R action. We focus on the simple root flows associated to a Hitchin representation ρ (see Section 3.3). For each i ∈ {1, . . . , d -1} there is a flow L α i ρ over G(S) such that if δ γ is the geodesic current with Dirac measure one on every (oriented) axis of an element conjugate to γ, then

δ γ | L α i ρ = L α i (ρ(γ)) := log λ i (ρ(γ)) λ i+1 (ρ(γ)) .
Equivalently, if we let U α i (ρ) be the quotient flow with associated element of arc length ds α i ρ , then the period of U α i (ρ) associated to γ ∈ π 1 (S) is given by L α i (ρ(γ)), the L α i -length function.

We also consider the Hilbert flow L H (ρ) associated to ρ which is determined, up to Hölder conjugacy, by

δ γ | L H ρ = L H (ρ(γ)) := log λ 1 (ρ(γ)) λ d (ρ(γ)) ,
for any non-trivial γ ∈ π 1 (S).

Potrie and Sambarino show that the entropy of simple root flows is constant and characterize Fuchsian representations in terms of the entropy of the Hilbert flow.

Theorem 1.1. (Potrie-Sambarino [START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF]) The topological entropy of a simple root flow is 1 for all Hitchin representations. Moreover, a Hitchin representation ρ ∈ H d (S) is d-Fuchsian if and only if the topological entropy of the Hilbert flow is 2 d-1 . One of the main constructions of our paper is to single out, amongst all geodesic currents associated to a Hitchin representation, a specific asymmetric current called the Liouville current ω ρ . This Liouville current was introduced in [START_REF] Labourie | Cross ratios, surface groups, SL(n, R) and diffeomorphisms of the circle[END_REF] and characterized by the cross ratio b ρ of ρ as discussed in Section 4.1. If (t, x, y, z) are four points in cyclic order in ∂ ∞ π 1 (S), then

ω ρ ([t, x] × [y, z]) = 1 2 log u | Φ v | Ψ u | Ψ v | Φ .
where u, v, Φ and Ψ are non zero elements in ξ ρ (t), ξ ρ (x), ξ * ρ (y) and ξ * ρ (z) respectively. As a consequence of Labourie's work on cross ratios for Hitchin representations [START_REF] Labourie | Cross ratios, surface groups, SL(n, R) and diffeomorphisms of the circle[END_REF], this gives an embedding of the space of all Hitchin representations into the space of geodesic currents. 

The current ω ρ is the unique current -up to scalar multiplication -in the class of the Lebesgue measure for the C 1 structure on G(S) associated to the embedding (ξ, ξ * ). [START_REF] Bowen | Periodic orbits for hyperbolic flows[END_REF] The measure ω ρ ⊗ ds α 1 ρ is -up to scalar multiplication-the unique measure maximizing entropy for the flow U α 1 (ρ).

(3) If µ is a geodesic current, then i(µ, ω ρ ) = µ | L H ρ . Our Liouville current is closely related to the symmetric Liouville currents defined by Bonahon [START_REF] Bonahon | The geometry of Teichmüller space via geodesic currents[END_REF], when d = 2, and Martone-Zhang [START_REF] Martone | Positively ratioed representations[END_REF]. In fact, one may view their Liouville currents as symmetrizations of our Liouville current.

We define the Liouville volume of a representation, by

vol L (ρ) = i(ω ρ , ω ρ ),
and establish the following volume rigidity result, which is motivated by work of Croke and Dairbekov [START_REF] Croke | Lengths and volumes in Riemannian manifolds[END_REF].

Theorem 1.4. If ρ, η ∈ H d (S), then inf γ∈π 1 (S)\{1} δ γ | L H ρ δ γ | L H η 2 vol L (ρ) vol L (η) sup γ∈π 1 (S)\{1} δ γ | L H ρ δ γ | L H η 2
and equality holds in either inequality if and only if either ρ = η or ρ = η * where η * is the contragredient of η.

When d = 3, we apply work of Tholozan [START_REF] Tholozan | Volume entropy of Hilbert metrics and length spectrum of Hitchin representations into PSL(3, R)[END_REF]Thm. 3] to obtain a simpler volume rigidity result.

Corollary 1.5. If ρ ∈ H 3 (S), then vol L (ρ) 4π 2 |χ(S)|.
Moreover, equality holds if and only if ρ is 3-Fuchsian.

We return to the themes explored in [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF], by constructing a new, hopefully more tractable, pressure metric on a Hitchin component. If ρ, η ∈ H d (S), we define their Liouville pressure intersection to be

I α 1 (ρ, η) := 1 ω ρ | L α 1 ρ ω ρ | L α 1 η . If ρ ∈ H d (S), we define a function (I α 1 ) ρ : H d (S) → R by letting (I α 1 ) ρ (η) = I α 1 (ρ, η).
Using the thermodynamic formalism developed by Bowen [START_REF] Bowen | Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms[END_REF], Ruelle [START_REF] Ruelle | Thermodynamic Formalism[END_REF] and Parry-Pollicott [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF] we show that (I α 1 ) ρ has a minimum at ρ, and its Hessian P α 1 at ρ is positive semi-definite. We call P α 1 the Liouville pressure quadratic form. This construction is motivated by Thurston's version of the Weil-Petersson metric on Teichmüller space (see Wolpert [START_REF] Wolpert | Thurston's Riemannian metric for Teichmüller space[END_REF]) as re-interpreted by Bonahon [START_REF] Bonahon | The geometry of Teichmüller space via geodesic currents[END_REF], McMullen [START_REF] Mcmullen | Thermodynamics, dimension and the Weil-Petersson metric[END_REF] and Bridgeman [START_REF] Bridgeman | Hausdorff dimension and the Weil-Petersson extension to quasifuchsian space[END_REF].

We show that P α 1 is non-degenerate, hence gives rise to a Riemannian metric, and apply work of Wolpert [START_REF] Wolpert | Thurston's Riemannian metric for Teichmüller space[END_REF] to see that it restricts to a multiple of the Weil-Petersson metric on the Fuchsian locus.

Theorem 1.6. The Liouville pressure quadratic form P α 1 is a mapping class group invariant, analytic Riemannian metric on H d (S), that restricts to a scalar multiple of the the Weil-Petersson metric on the Fuchsian locus.

The main tool in the proof of the non-degeneracy of P α 1 is that the L α 1 -length functions of elements of π 1 (S) generate the cotangent space of the Hitchin component. More precisely, if

γ ∈ π 1 (S), let L γ α 1 : H d (S) → R be given by L γ α 1 (ρ) = L α 1 (ρ(γ)) = δ γ | L α 1 ρ . Theorem 1.7. If ρ ∈ H d (S), then the set {D ρ L γ α 1 } γ∈π 1 (S)
generates, as a vector space, the cotangent space T * ρ H d (S). We can also give an interpretation of I α 1 in terms more reminiscent of the construction in [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]. This interpretation generalizes to give pressure quadratic forms associated to other simple roots. If T > 0 and i ∈ {1, . . . , d -1}, let

R α i (ρ, T ) = {[γ] ∈ [π 1 (S)] \ {[1]} | L α i (ρ(γ)) T }.
We then define an associated pressure intersection

I α i (ρ, η) = lim T →∞ 1 #R α i (ρ, T ) γ∈Rα i (ρ,T ) L α i (η(γ)) L α i (ρ(γ))
.

The associated function (I α i ) ρ has a minimum at ρ, and we again obtain, by considering the Hessian of (I α 1 ) ρ , a positive semi-definite quadratic pressure form P α i . It is natural to ask when P α i is non-degenerate. In a final section, we observe that P αn is degenerate on H 2n (S) at any Hitchin representation with image (conjugate into) PSp(2n), see Proposition 8.1.

We recall that our original pressure metric from [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF] was obtained as the Hessian of a renormalized pressure intersection

J(ρ, η) = h(ρ) h(η) lim T →∞ 1 #R 1 (ρ, T ) γ∈R 1 (ρ,T ) L 1 (η(γ)) L 1 (ρ(γ))
where

L 1 (ρ(γ)) = log λ 1 (ρ(γ)), R 1 (ρ, T ) = {[γ] ∈ [π 1 (S)]\{[1]} | L 1 (ρ(γ)) T } and the spectral radius entropy h(ρ) is the exponential growth rate of R 1 (ρ, T ).
There are two main advantages of the Liouville pressure metric with respect to the pressure metric defined in [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]. First, due to work of Potrie and Sambarino [START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF], we do not have to renormalize the pressure intersection by an entropy. Second, the Bowen-Margulis measure associated to the first simple root is directly related to the cross ratio of the representation. We hope that these two facts will make the Liouville pressure metric more accessible to computation. It follows from work of Zhang [START_REF] Zhang | Degeneration of Hitchin representations along internal sequences[END_REF] and Theorem 1.4 that the Liouville volume is non-constant on H d (S) when d 3, so one cannot directly use the Hessian of intersection to construct a metric, as Bonahon [START_REF] Bonahon | The geometry of Teichmüller space via geodesic currents[END_REF]Thm. 19] does to reconstruct the Weil-Petersson metric when d = 2.
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Dynamical background

In Sections 2.1 and 2.2 we recall the thermodynamic formalism of Bowen and Ruelle ([3,[START_REF] Bowen | The ergodic theory of axiom A flows[END_REF][START_REF] Ruelle | Thermodynamic Formalism[END_REF]), which was further developed by Parry and Pollicott [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF]. We then discuss geodesic currents (in Section 2.3) and describe the relationship between contracting line bundles and flows (in Section 2.4).

2.1. Basic definitions. Let X be a compact metric space and φ = {φ t : X → X} t∈R be a topologically transitive, metric Anosov flow on X. (Metric Anosov flows were first defined by Pollicott [START_REF] Pollicott | Symbolic dynamics for Smale flows[END_REF] who called them Smale flows.) Let O φ be the collection of periodic orbits of the flow φ and and define

R φ (T ) = {a ∈ O φ | ℓ(a) T }
where ℓ(a) is the period of a. The topological entropy of the flow φ is given by

h(φ) = lim T →∞ log #R φ (T ) T .
If α > 0, let Hol α (X, R) be the space of α-Hölder continuous functions on X.

If f ∈ Hol α (X, R), let ℓ f (a) = X f d δa
where δa is a φ-invariant measure supported on a with total mass ℓ(a). Let

R φ (f, T ) = {a ∈ O φ | ℓ f (a) T } and define h φ (f ) = lim T →∞ log #R φ (f, T ) T .
If f is positive, we obtain a new flow φ f on X by reparametrizing φ by f . Concretely, φ f is determined by the formula

φ f k f (x,t) (x) = φ f t (x)
where k f (x, t) = t 0 f (φ s x)ds for all x ∈ X and t ∈ R. Notice that if ds is an element of arc length for the flow lines of φ, then f ds is an element of arc length for the flow lines of φ f . The flow φ f is Hölder orbit equivalent to φ and if a ∈ O φ = O φ f , then ℓ f (a) is the period of a in the flow φ f . In this case, h φ (f ) is the topological entropy h(φ f ) of the flow φ f .

We will say that f, g ∈ Hol α (X, R) are Livšic cohomologuous if there exists U : X → R such that for all x ∈ X one has

f (x) -g(x) = ∂ ∂t t=0 U (φ t x).
Recall that f and g are Livšic cohomologous if and only if ℓ f (a) = ℓ g (a) for all a ∈ O φ . Moreover, if f and g are positive, then φ f and φ g are Hölder conjugate if and only if f and g are Livšic cohomologuous (see Livšic [START_REF] Livšic | Cohomology of dynamical systems[END_REF]). If M φ is the space of φ-invariant probability measures on X and m ∈ M φ , let h(φ, m) be the metric entropy of m. Then, for f ∈ Hol α (X, R), the topological pressure is

P φ (f ) = sup m∈M φ h(φ, m) + X f dm .
A measure that attains this supremum is called an equilibrium state for f and an equilibrium state for the zero function is called a measure of maximal entropy.

If f ∈ Hol α (X, R) is positive, Bowen [2, Thm. 5.11] (see also Pollicott [31,Thm. 9]) showed that the measure of maximal entropy for φ f is given by the Bowen-Margulis measure for φ f lim

T →∞ 1 #R φ (f, T ) a∈O X δa ℓ f (a)
where δa is the product of Dirac measure on the orbit a and the element of arc length on a in φ f . We make use of the following result of Sambarino [START_REF] Sambarino | Quantitative properties of convex representations[END_REF]Lemma 2.4].

Lemma 2.1. Suppose that f ∈ Hol α (X, R) is positive. If m -h φ (f )f is the equilibrium state of -h φ (f )f , then dm # = f dm -h φ (f )f f dm -h φ (f )f
is the measure of maximal entropy of φ f .

If f, g ∈ Hol α (X, R) are positive, we define their pressure intersection 1 by

I(f, g) = lim T →∞ 1 #R φ (f, T ) a∈R φ (f,T ) ℓ g (a) ℓ f (a) = gdm -h(f )f f dm -h(f )f . (1) 
The last equation follows from [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]Sec. 3.4]. We define the renormalized pressure intersection by

J(f, g) = h φ (g) h φ (f ) I(f, g).
1

We emphasize the terminology pressure intersection which is meant to distinguish pressure intersection from the intersection defined by Bonahon [START_REF] Bonahon | The geometry of Teichmüller space via geodesic currents[END_REF].

In [7, Cor. 2.5, Prop 3.11 and 3.12], we used results of Parry-Pollicott [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF] and Ruelle [START_REF] Ruelle | Thermodynamic Formalism[END_REF] to prove the following. Proposition 2.2. If φ is a topologically transitive metric Anosov flow on a compact metric space X, then

(1) If f ∈ Hol α (X, R) is positive, then the function J f defined by J f (g) = J(f, g) has a global minimum at f. Therefore, Hess J f is positive semi-definite. (2) If {f t } t∈(-ǫ,ǫ) ⊂ Hol α (X, R) is a smooth one-parameter family of positive functions, then

∂ 2 ∂t 2 t=0 J(f 0 , f t ) = 0
if and only if, for every a ∈ O φ , one has

∂ ∂t t=0 h φ (f t )ℓ ft (a) = 0.
(3) If {f u } u∈M and {g v } v∈M ′ are analytic families of positive α-Hölder functions parametrized by analytic manifolds M and M ′ , then J(f u , g v ) is an analytic function on M × M ′ .

2.2. Expansion on periodic orbits. Assume now that X is a manifold and that φ is a C 1+α Anosov flow with unstable bundle E u . Denote by λ u φ : X → (0, ∞) the infinitesimal expansion rate on the unstable direction, defined by

λ u φ (x) = ∂ ∂t t=0 1 κ κ 0 log det(d x φ t+s |E u )ds
for some κ > 0.

We record the following observations (see [START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF]Section 2.2] for further discussion):

(1) If a ∈ O φ , then

ℓ λ u φ (a) = a λ u φ = log det(d x φ ℓ(a) |E u )
is the total expansion of φ along a.

(2) The Livšic-cohomology class of λ u φ does not depend on κ. (3) If φ -1 is the inverse flow φ -1 t = φ -t , it follows from Livšic's Theorem ( [START_REF] Livšic | Cohomology of dynamical systems[END_REF]) that φ preserves a measure in the class of Lebesgue if and only if λ u φ is Livšic cohomologuous to λ u φ -1 . We make crucial use of the following classical result of Sinai, Ruelle and Bowen.

Theorem 2.3 (Sinai-Ruelle-Bowen [START_REF] Bowen | The ergodic theory of axiom A flows[END_REF]). Let φ be a C 1+α Anosov flow on a compact manifold X, then P(-λ u φ ) = 0. Moreover, if φ preserves a measure in the class of Lebesgue, then this measure is the equilibrium state of -λ u φ .

Bowen and Ruelle state their result in the C 2 setting, but the proof may be extended to the C 1+α setting by applying [START_REF] Hasselblatt | Introduction to the modern theory of dynamical systems[END_REF]Prop. 19.16 and 20.4.2].

Geodesic currents.

Let Γ be a hyperbolic group which is not virtually cyclic. Let G(Γ) be the space of pair of distinct points, which we think of as the space of oriented geodesics, on the Gromov boundary ∂ ∞ Γ of Γ:

G(Γ) := {(x, y) ∈ ∂ ∞ Γ | x = y} .
A geodesic current for Γ is a Γ-invariant locally finite measure on G(Γ). If γ is a primitive infinite order element of Γ with attracting fixed point γ + ∈ ∂ ∞ Γ and repelling fixed point γ - and δ (x,y) is the Dirac measure supported at (x, y) ∈ G(Γ), we define the geodesic current

δ γ := γ∈[γ] δ (γ -,γ + ) .
where [γ] is the conjugacy class of γ in Γ. If α = γ n where α is primitive and n > 0, we let δ α = nδ γ .

We let C(Γ) denote the space of geodesic currents on Γ and endow it with the weak-* topology. When Γ = π 1 (S), for a closed surface S, we write G(S) and C(S) for G(π 1 (S)) and C(π 1 (S)).

Following Bonahon [1, Section 4.2], we define a continuous, symmetric, bilinear pairing, called the intersection i :

C(S) × C(S) → R so that if α, β ∈ Γ, then i(δ α , δ β )
is the geometric intersection number of the curves on S representing α and β. Let DG(S) ⊂ G(S) × G(S) denote the space of pairs (x, y) and (u, v) of oriented geodesics which intersect, i.e. so that x and y lie in distinct components of

∂ ∞ π 1 (S) -{u, v}. We then define i(µ, ν) = DG(S)/π 1 (S) dµ ⊗ dν .
A geodesic current is symmetric if it is invariant by the involution ι : (x, y) → (y, x). Bonahon [START_REF] Bonahon | The geometry of Teichmüller space via geodesic currents[END_REF] works entirely in the setting of symmetric geodesic currents. In fact, he defines a geodesic current as a measure on the space

G(Γ) = G(Γ)/ι of unordered pairs of distinct points in ∂ ∞ Γ.
A geodesic current µ in our sense naturally pushes forward to a geodesic current μ in the sense of Bonahon. Moreover, if µ, ν ∈ C(S), then i(µ, ν) agrees with the intersection, in the sense of Bonahon, of μ and ν.

2.4.

Contracting line bundles and flows. Gromov [START_REF] Gromov | Hyperbolic groups[END_REF] defined a geodesic flow U(Γ) for a hyperbolic group Γ, which is well-defined up to Hölder orbit equivalence, see Champetier [START_REF] Champetier | Petite simplification dans les groupes hyperboliques[END_REF] and Mineyev [START_REF] Mineyev | Flows and joins of metric spaces[END_REF] for detailed constructions. The closed orbits of U(Γ) are in one-to-one correspondence with conjugacy classes of infinite order elements of Γ. There is a trivial Hölder R principal bundle L Γ = Ũ(Γ) over G(Γ) equipped with a properly discontinuous action of Γ by bundle automorphisms, so that L Γ /Γ equipped with the flow coming from the action of R is Hölder orbit equivalent to U(Γ). Moreover, U(Γ) may be parametrized as G(Γ) × R where the action of R is by translation in the second factor. We will mostly be interested in the situation where U(Γ) is metric Anosov.

In [7, Section 5], we showed that, whenever a Γ admits an Anosov representation, U(Γ) is indeed metric Anosov. In this paper, we will focus on the case where Γ = π 1 (S), in which case U(Γ) may be taken to be the geodesic flow on the unit tangent bundle of a hyperbolic surface Y homeomorphic to S, and will be denoted U(S), and L Γ may be identified with the geodesic flow on the unit tangent bundle of the universal cover of Y , and will be denoted U( S).

A flow over G(Γ) is a Hölder R-principal line bundle L over G(Γ) equipped with a properly discontinuous action of Γ by Hölder bundle automorphisms, so that the quotient flow on U L := L/Γ is Hölder orbit equivalent to the geodesic flow of Γ. In other words, one may think of a flow over G(Γ) as a parametrization of the geodesic flow of Γ.

Given a geodesic current ω and a flow L over G(Γ), we define a pairing

ω | L := U L ω ⊗ dt
where dt is the element of arc length on U L given by the R-action. Given a flow L the function

ω → ω | L from C(Γ) to R is continuous.
We observe that, for every non trivial element γ in Γ, δ γ | L is the length of the periodic orbit associated to γ in U L , or, equivalently, the translation distance of the action of γ on the fiber L (γ -,γ + ) . The map γ → δ γ | L is the length spectrum of L. If U(Γ) is metric Anosov, then, by Livšic's Theorem, the length spectrum determines the quotient flow U L up to Hölder conjugacy.

Let M be a Hölder line bundle over U(Γ), equipped with a lift of the geodesic flow {ψ t } t∈R on U(Γ) to a Hölder flow {Ψ t } t∈R on M by bundle automorphisms (i.e. the restriction of Ψ t is a linear automorphism from M z to M ψt(z) for all z ∈ U(Γ) and all t ∈ R). We say that M is contracting if there exist a metric • on M and t 0 > 0 so that

Ψ t 0 (u) 1 2 u ,
for all u in M. Every such line bundle has a contraction spectrum γ → c(γ), where if the periodic orbit of U(Γ) associated to γ ∈ π 1 (S) has period t γ , then

Ψ tγ (v) = e -c(γ) v
for any vector v in a fiber over the periodic orbit. Again Livšic's Theorem guarantees that two line bundle with the same contracting spectrum are isomorphic. The notions of contracting line bundles and flow are equivalent.

Proposition 2.4. Let Γ be a hyperbolic group whose geodesic flow is metric Anosov. Then

(1) Given a contracting line bundle M over U(Γ), there exists a flow over G(Γ) whose length spectrum coincides with the contracting spectrum of M. (2) Conversely, given a flow L over G(Γ), there exists a contracting line bundle over U(Γ) whose contracting spectrum is the length spectrum of L.

Proof. Given a contracting line bundle M over U(Γ), we construct a flow L M over G(Γ) by the following procedure

(1) First, lift M to a line bundle M over U(Γ) and let { Ψ t } t∈R be the lift of the flow {Ψ t } t∈R on M. (2) We consider the corresponding R-principal line bundle L M over U(Γ) equipped with an action of Γ by bundle automorphisms; concretely the fiber of L M over (x, y, s) ∈ U(Γ) is ( M (x,y,s) -{0})/ ± 1, i.e. non-zero vectors up to sign, and the action of

t ∈ R takes [v] ∈ ( L M ) (x,y,s) to [e t v]. (3) Let π : Ũ(Γ) → G(Γ). We define L M := π * L M ,
that is the bundle whose sheaf of sections are the sections of L M invariant by the flow: More explicitly, for all t ∈ R, (x, y, s

) ∈ U(Γ) and [v] ∈ ( L M ) (x,y,s) , we identify [v] with [ Ψ t (v)
] and notice that the quotient is a principal R-bundle over G(Γ).

The proof of [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]Prop. 4.2] generalizes immediately to yield the first part of our proposition. We now establish our second claim. Let L be a flow over G(Γ). Consider the trivial bundle M = L × R over L equipped with the trivial lift of the action of Γ given by γ(x, v) = (γx, v). Lift the flow { φt } t∈R on L to the flow

Ψ t (x, v) = ( φt (x), e -t v)
on M. These two actions commute and we obtain a contracting line bundle M := M/Γ over U L equipped with the quotient flow {Ψ t } t∈R whose contracting spectrum agrees with the length spectrum of L.

As an immediate consequence, the tensor product on principal R bundles gives rise to an inner product, also called the tensor product,

(L 0 , L 1 ) → L 0 ⊗ L 1 ,
on geodesic flows, which is equivalent to the tensor product of the corresponding contracting line bundles. The length spectrum of the tensor product is then the sum of the two length spectra and thus for any geodesic current µ ∈ C(Γ)

µ | L 0 ⊗ L 1 = µ | L 0 + µ | L 1
since any current may be approximated by linear combinations of currents associated to group elements. Given a positive number t, which we may view as an element of Aut(R), we can renormalise the action of R on the R-bundle L to obtain a new bundle L t so that

µ | L t = t µ | L .
One can check then that for a positive integer n,

L n = n L ⊗ . . . ⊗ L .

Hitchin representations and their associated flows

In Sections 3.1 and 3.2 we recall the definitions and basic properties of projective Anosov and Hitchin representations. In Sections 3.3 and 3.4 we use the techniques of Section 2.4 to construct families of flows associated to such representations.

3.1. Projective Anosov representations. It will occasionally be useful to work in the more general class of projective Anosov representations. A representation ρ : Γ → SL(d, R) with domain a hyperbolic group Γ has transverse projective limit maps if there exist continuous, ρ-equivariant functions ξ ρ :

∂ ∞ Γ → P(R d ) and ξ * ρ : ∂ ∞ Γ → P((R d ) * ) so that if x and y are distinct points in ∂ ∞ Γ, then ξ ρ (x) ⊕ ker ξ * ρ (y) = R d .
Recall that a representation ρ : Γ → SL(d, R), with domain a hyperbolic group Γ, gives rise to a flat R d -bundle E ρ over U(Γ) and that the geodesic flow φ on U(Γ) lifts to a flow ψ ρ parallel to the flat connection on E ρ . Explicitly, let Ẽρ = U(Γ) × R d and let ( ψρ ) t (z, v) = ( φt (z), v) where φt is the lift of the geodesic flow φ t on U(Γ) to U(Γ). The group Γ acts on Ẽρ by the action of Γ on the first factor and ρ(Γ) on the second factor, and the quotient is the flat bundle E ρ and the flow {( ψρ ) t } t∈R descends to a flow ψ ρ on E ρ .

A representation ρ with transverse projective limit maps determines a ψ ρ -invariant splitting Ξ ρ ⊕ Θ ρ of the flat bundle E ρ over U(Γ). Concretely, the lift Ξρ of Ξ ρ has fiber ξ ρ (x) and the lift Θρ of Θ ρ has fiber ker ξ * ρ (y) over the point (x, y, t) ∈ U(Γ). One says that ρ is projective Anosov if the resulting flow on the associated bundle

Hom(Θ ρ , Ξ ρ ) = Ξ ρ ⊗ Θ * ρ is contracting.
Projective Anosov representations are quasi-isometric embeddings with finite kernel, see [START_REF] Guichard | Anosov representations: Domains of discontinuity and applications[END_REF]Thm 5.3] and [22, Thm 1.0.1] for Hitchin representations. The following result is also a standard consequence of the definitions, see, for example, [7, Prop. 2.6]). Lemma 3.1. If ρ : π 1 (S) → SL(d, R) is projective Anosov and γ ∈ π 1 (S) is non-trivial, then ρ(γ) is proximal with attracting line ξ(γ + ) and repelling hyperplane θ(γ -). Moreover, there exist positive constants B and C such that

log λ 1 (ρ(γ)) λ 2 (ρ(γ)) Bℓ(γ) -C
where ℓ(γ) is the reduced word length of γ.

Hitchin representations. If

ρ : π 1 (S) → PSL d (R) is a Hitchin representation, it admits a lift ρ : π 1 (S) → SL(d, R
). We will abuse notation and denote the flat bundle E ρ associated to this lift by E ρ . (The flat bundle depends on the choice of lift, but this choice will not matter for our purposes). Labourie [START_REF] Labourie | Anosov flows, surface groups and curves in projective space[END_REF] showed that every Hitchin representation ρ admits a continuous ρ-equivariant limit map ξρ : ∂ ∞ π 1 (S) → F d where F d is the space of complete flags in R d . We summarize its crucial properties below. Theorem 3.2 (Labourie [START_REF] Labourie | Anosov flows, surface groups and curves in projective space[END_REF]). If ρ ∈ H d (S), there exists a unique ρ-equivariant Hölder continuous map ξρ :

∂ ∞ π 1 (S) → F d such that (1) If d = n 1 + • • • + n k , where each n k ∈ N, and {z 1 , . . . , z k } ⊂ ∂ ∞ π 1 (S) are pairwise distinct, then ξ(n 1 ) ρ (z 1 ) ⊕ • • • ⊕ ξ(n k ) ρ (z k ) = R d .
(

) The image ξ(1) ρ (∂ ∞ π 1 (S)) is a C 1+α manifold for some α > 0. (3) The splitting d i=1 2 

Mi

ρ of E ρ into line bundles so that ( Mi

ρ ) (x,y,t) = ξ(i) ρ (x) ∩ ξ(n-i+1) ρ (y) descends to a splitting d i=1 M i ρ of E ρ into line bundles, so that M i ρ ⊗(M j ρ ) * is contracting if i < j.
It is well-known that any exterior power of a (lift of a) Hitchin representation is projective Anosov (see for example Pop. 4.4]). Guichard has shown conversely in [START_REF] Guichard | Composantes de Hitchin et représentations hyperconvexes de groupes de surface[END_REF] that the existence of such limit maps characterize Hitchin representations.

Proposition 3.3. If ρ ∈ H d (S), ρ : π 1 (S) → SL(d, R) is a lift of ρ, k ∈ {1, . . . , d -1}, and E k ρ : π 1 (S) → SL(Λ k R d ) is the k th exterior power of ρ, then E k ρ is projective Anosov. If ρ ∈ H d (S), then ξ ρ = ξ ρ = ξ(1) ρ and ker ξ * ρ (x) = ker ξ * ρ (x) = ξ(d-1) ρ (x), i.e. ξ * ρ (x) is the projective class of linear functionals with kernel ξ(d-1) ρ (x). More generally, if ρ ∈ H d (S), we may choose for each x ∈ ∂ ∞ π 1 (S) a basis {e i (ρ, x)} for R d so that ξ(j) ρ (x
) is spanned by {e 1 (ρ, x), . . . , e j (ρ, x)}. The limit maps for E k ρ are given by

ξ E k ρ(x) = e 1 (ρ, x) ∧ • • • ∧ e k (ρ, x) and ker ξ * E k ρ(x) = e j 1 (ρ, x) ∧ • • • ∧ e j k (ρ, x) | 1 j 1 < j 2 < • • • < j k , j k > k .
One may check directly that Hom(Θ E k ρ, Ξ E k ρ) is contracting and hence that E k ρ is projective Anosov, by applying part (3) of Theorem 3.2.

If we apply Lemma 3.1 to the exterior product E i ρ of a (lift of a) Hitchin representation we obtain: Lemma 3.4. If ρ ∈ H d (S) and i ∈ {1, . . . , d -1}, then there exist B i > 0 and C i so that

log λ i (ρ(γ)) λ i+1 (ρ(γ)) B i ℓ(γ) -C i
where ℓ(γ) is the reduced word length of γ.

Lemma 3.4 can also be derived directly from part (3) of Theorem 3.2. (2) The simple root length

L α i (ρ(γ)) := log( λ i (ρ(γ)) λ i+1 (ρ(γ)) ). (3) The Hilbert length L H (ρ(γ)) := log( λ 1 (ρ(γ)) λ d (ρ(γ))
). More generally, given any positive linear combination L φ = a 1 L α 1 + . . . + a d-1 L α d-1 of the simple root length functions, we can find a flow U φ (ρ) so that the period of γ ∈ π 1 (S) is given by

L φ (ρ(γ)) = a 1 L α 1 (ρ(γ)) + . . . + a d-1 L α d-1 (ρ(γ)).
(See the discussion in Section 2.4.) Finally, we observe that, by Theorem 3.2 and [32, Prop. 6.2], the flow M 1 ρ is obtained as a pullback of a smooth line bundle over the C 1+α -submanifold (ξ ρ × ξ * ρ )(G(S)) of P(R d ) × P * (R d ), so L 1 ρ inherits the structure of a C 1+α -flow. Potrie and Sambarino [START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF]Prop. 6.2] show that the unstable manifold E u ρ for L 1 ρ at a point above (x, y) ∈ G(S) may be identified with Hom( ξ(2)

ρ (x) ∩ ξ(d-1) ρ (y), ξ (1) 
ρ (x)) and so the infinitesmal expansion rate λ u ρ of U 1 (ρ) has the property that

γ λ u ρ ds 1 ρ = L α 1 (ρ(γ))
for all ρ ∈ H d (S), where ds 1 ρ is the element of arc length of U 1 (ρ). It follows that the reparametrization of U 1 (ρ) by λ u ρ is Hölder conjugate to U α 1 (ρ). They then apply results of Sinai, Ruelle and Bowen [START_REF] Bowen | The ergodic theory of axiom A flows[END_REF], to conclude that the entropy of U α 1 (ρ) is 1. They further show, with a more sophisticated argument in the general case, that all the simple root flows have entropy 1. Remark: One may also construct a flow Hölder conjugate to U α i (ρ) by constructing, as is done in Sambarino [START_REF] Sambarino | Quantitative properties of convex representations[END_REF], a positive Hölder function on U(S) whose periods are given by L α i (ρ(γ)), see also Potrie-Sambarino [START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF].

3.4. The spectral radius flow of a projective Anosov representation. Proposition 2.4 implies that if ρ : Γ → SL(d, R) is projective Anosov, then the contracting line bundle Ξ ρ over U(Γ) gives rise to a spectral radius flow L ρ 1 over G(Γ) with quotient U 1 (ρ) so that the closed orbit associated to γ ∈ Γ has period L 1 (ρ(γ)) = log(λ 1 (ρ(γ)).

The spectral radius flow U 1 (ρ) is Hölder orbit equivalent to U(Γ). In [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF], we prove that, up to Hölder conjugacy, the reparametrization function can be chosen to vary analytically in a neighborhood of ρ. Proposition 3.6. ([7, Prop 6.2]) Let {ρ u : π 1 (S) → SL(d, R)} u∈D be a real analytic family of projective Anosov homomorphisms parameterized by a disk D about the origin 0. Then, there exists a sub-disk D 0 about 0, α > 0 and a real analytic family {f u : U(Γ) → R} u∈D 0 of positive α-Hölder functions such that if γ ∈ Γ, then ℓ fu (γ) = log λ 1 (ρ u (γ)).

Liouville currents for Hitchin representations

In Sections 4.1 and 4.2 we recall Labourie's cross ratio, define our Liouville current and prove that it determines the Hitchin representation. In Section 4.3 we establish relationships between the Liouville current, Hilbert length L H , the Bowen-Margulis current µ ρ for U α 1 (ρ), and the equilibrium state m -λ u ρ for the (negative of the) infinitesmal expansion rate on U 1 (ρ). 4.1. Labourie's cross ratio. If V is a finite dimensional real vector space, let 4) = {(L, Φ, D, Ψ) : L / ∈ ker Ψ and D / ∈ ker Φ} . Consider the cross ratio on P (4) defined by

P (2) = P(V ) × P(V * ) -{(L, Φ) : L ∈ ker Φ} and P ( 
B(L, Φ, D, Ψ) = ϕ(u) ψ(u) ψ(v) ϕ(v) ,
where ϕ ∈ Φ, ψ ∈ Ψ, u ∈ L and v ∈ D are all non-zero. Notice that the result does not depend on the choices of ϕ, ψ, u and v. Labourie observes that B is the polarized cross-ratio associated to a symplectic form on P (2) .

Proposition 4.1. (Labourie [20, Prop. 4.7, Prop. 5.4]) There exists a symplectic form Ω on P (2) so that if (L, Φ, D, Ψ) ∈ P (4) , then

B(L, Φ, D, Ψ) = e G * Ω
where G : [0, 1] 2 → P (2) is a map such that the images of the vertices of [0, 1] 2 are (L, Φ), (L, Ψ), (D, Φ) and (D, Ψ) and the image of every boundary segment is contained in either

P(V ) × {•} or {•} × P(V * ).
Moreover, if ρ is Hitchin, the restriction of the symplectic form Ω to the C 1+α -submanifold

(ξ ρ × ξ * ρ )(G(S)) is non-degenerate. Given ρ ∈ H d (S), Labourie defined a cross ratio b ρ on ∂ ∞ π 1 (S) (4) = {(x, y, z, t) ∈ ∂ ∞ π 1 (S) 4 | x = t, y = z} by setting b ρ (x, y, z, t) = B ξ ρ (x), ξ * ρ (y), ξ ρ (z), ξ * ρ (t) .
Labourie and McShane [23, Thm. 9.0.3] show that b ρ (x, z, t, y) > 1 if (t, x, y, z) is cyclically ordered in ∂ ∞ π 1 (S). Labourie [START_REF] Labourie | Cross ratios, surface groups, SL(n, R) and diffeomorphisms of the circle[END_REF]Thm 1.1] proves that this cross ratio determines the representation and has rank d. For any pair of (p + 1)-tuples of pairwise distinct points X = (x 0 , . . . , x p ) and Y = (y 0 , . . . , y p ) in ∂ ∞ π 1 (S), we define (4) satisfying the basic properties of a cross ratio. 4.2. Liouville currents: basic definitions. Let ω ρ be the geodesic current defined by 

χ p (b ρ )(X, Y ) = det b ρ (x i , y j , x 0 , y 0 ) i,
ω ρ ([t, x] × [y, z]) = 1 2 log b ρ (x,
ω ρ ([t, x] × [y, z]) = 1 2 ξρ([t,x])×ξ * ρ ([y,z]) Ω,
so ω ρ is a measure on G(S) which is absolutely continuous with respect to the Lebesgue measure obtained by identifying G(S) with the C 1+α -manifold (ξ ρ × ξ * ρ )(G(S)). We call ω ρ the Liouville current.

We observe that the Liouville current also determines the Hitchin representation. 

ρ (x, y, z, t) = ω ρ ([z, x] × [t, y]) = ω η ([z, x] × [t, y]) = b η (x, y, z, t)
whenever (z, x, t, y) is cyclically ordered. Similarly, if (z, x, y, t) is cyclically ordered, then

b ρ (x, y, z, t) = 1 ω ρ ([z, x] × [y, t]) = 1 ω η ([z, x] × [y, t]) = b η (x, y, z, t)
(One may summarize these two observations, by saying that b ρ (x, y, z, t) = b η (x, y, z, t) whenever the pairs (x, z) and (y, t) have non-intersecting axes, i.e. y and t lie in the same component of

∂ ∞ π 1 (S) -{x, z}.) Suppose that m > d. Let X = (x 0 , x 1 , . . . , x m-1
) and Y = (y 0 , . . . , y m-1 ) be two m-tuples in ∂ ∞ π 1 (S) so that (x 0 , x 1 , . . . , x m-1 , y 0 , y 1 , . . . , y m-1 ) is cyclically ordered. It follows from the previous paragraph that b ρ (x i , y j , x 0 , y 0 ) = b η (x i , y j , x 0 , y 0 ) for all i, j > 0. Theorem 4.2 then implies that every (d + 1) × (d + 1) minor of b ρ (x i , y j , x 0 , y 0 ) i,j∈{1,...,m-1} is zero, yet det b ρ (x i , y j , x 0 , y 0 ) i,j∈{1,...,m-1} = det b η (x i , y j , x 0 , y 0 ) i,j∈{1,...,m-1} = 0 which is impossible. Therefore, we may assume that m = d. By Theorem 4.2, it suffices to prove that ω ρ determines the cross-ratio b ρ (x, y, z, t) of any 4-tuple (x, y, z, t) ∈ ∂ ∞ π 1 (S) (4) . By the observations in the first paragraph, and symmetry, it suffices to also consider the case where (x, y, z, t) is cyclically ordered.

Fix a cyclically ordered configuration (x d , y d , x 0 , y 0 ) ∈ ∂ ∞ π 1 (S) (4) . Choose pairwise distinct points {x 1 , . . . , x d-1 } and {y 1 , . . . , y d-1 } in ∂ ∞ π 1 (S) so that (x 0 , x 1 , . . . , x d-1 , y 0 , . . . , y d-1 , x d , y d ) is cyclically ordered. Let X = (x 0 , . . . , x d ) and Y = (y 0 , . . . , y d ). Theorem 4.2 implies that

χ d (b ρ )(X, Y )) = det b ρ (x i , y j , x 0 , y 0 ) i,j∈{1,...,d} = det b σ (x i , y j , x 0 , y 0 ) i,j∈{1,...,d} = χ d (b η )(X, Y ) = 0.
If i and j are not both d, then either (x 0 , x i , y 0 , y j ) or (x 0 , x i , y j , y 0 ) is cyclically ordered, so b ρ (x i , y j , x 0 , y 0 ) = b η (x i , y j , x 0 , y 0 ). One sees that all the coefficients in the matrices above agree except for the term where i = j = d, moreover, again applying Theorem 4.2, we see that the minors det b ρ (x i , y j , x 0 , y 0 ) i,j∈{1,...,d-1}

= det b σ (x i , y j , x 0 , y 0 ) 

* ρ * = ξ ρ . Therefore, w ρ * ([t, x] × [y, z]) = w ρ ([y, z] × [t, x]) = w ρ ι([t, x] × [y, z]
) whenever (x, y, z, t) is cyclically ordered. It follows that ω ρ is symmetric if and only if ω ρ = ω ρ * . Theorem 1.2 then completes the proof. 4.3. Liouville currents, equilibrium states and Bowen-Margulis measures. We define the current µ ρ = lim

T →∞ 1 #R α 1 (ρ, T ) [γ]∈Rα 1 (ρ,T ) 1 γ | L α 1 ρ δ γ , (2) 
where R α 1 (ρ, T ) is the set of closed orbits of U α 1 (ρ) of period at most T . As was discussed in Section 2.1, the measure of maximal entropy for U α 1 (ρ) is the Bowen-Margulis measure for U α 1 (ρ), given by

µ ρ ⊗ ds α 1 ρ = lim T →∞ 1 #R α 1 (ρ, T ) [γ]∈Rα 1 (ρ,T ) 1 γ | L α 1 ρ δγ where ds α 1
ρ is the element of arc length on U α 1 (ρ). We will refer to µ ρ as the Bowen-Margulis current for U α 1 (ρ).

The following result is an enlarged version of Theorem 1.3 from the introduction.

Theorem 4.4. Suppose that ρ ∈ H d (S), ω ρ is its Liouville current, λ u ρ is the infinitesmal expansion rate of U 1 (ρ) and µ ρ is the Bowen-Margulis current for U α 1 (ρ).

(

) If γ ∈ π 1 (S), then i(δ γ , ω ρ ) = L H (ρ(γ)) = δ γ | L H ρ . (2) If µ ∈ C(S), then i(µ, ω ρ ) = µ | L H ρ . (3) 1 
The equilibrium state m -λ u ρ for the Hölder potential -λ u ρ on U 1 (ρ) is a scalar multiple of ω ρ ⊗ ds 1 ρ where ds 1 ρ is the element of arc length on U 1 (ρ). ( 4) The equilibrium state m -λ u ρ is a scalar multiple of µ ρ ⊗ ds 1 ρ . (5) The measure of maximal entropy for U α 1 (ρ) is a scalar multiple of ω ρ ⊗ ds α 1 ρ .

(6) The Liouville current ω ρ is a scalar multiple of the Bowen-Margulis current µ ρ .

Proof. A standard computation, see for example [START_REF] Labourie | Cross ratios, surface groups, SL(n, R) and diffeomorphisms of the circle[END_REF]Prop 5.8], shows that, for all γ ∈ π 1 (S),

i(δ γ , ω ρ ) = ω ρ ([γ + , γ -] × [x, γ(x)]) + ω ρ ([γ + , γ -] × [y, γ(y)]) = 1 2 log b ρ (γ -, γ(x), γ + , x) + log b ρ (γ -, γ(y), γ + , y) = log λ 1 (ρ(γ)) λ d (ρ(γ)) = L H (ρ(γ)) = δ γ | L H ρ where x and y are in distinct components of ∂ ∞ π 1 (S) -{γ -, γ + }.
Since every current is a limit of positive linear combinations of currents associated to elements of π 1 (S) and the intersection function is continuous in the weak-* topology, we see that

i(µ, ω ρ ) = µ | L H ρ whenever µ ∈ C(S).
Since ω ρ is a measure on G(S) which is absolutely continuous with respect to the pullback of the Lebesgue measure on the C 1+α -submanifold (ξ ρ × ξ * ρ )(G(S)), ω ρ ⊗ ds 1 ρ is in the class of the Lebesgue measure on the C 1+α manifold U 1 (ρ). Theorem 2.3 implies that ω ρ ⊗ ds 1 ρ is a scalar multiple of the equilibrium state m -λ u ρ for -λ u ρ on U 1 (ρ), i.e.

m -λ u ρ = ω ρ ⊗ ds 1 ρ ω ρ | L 1 ρ . (3) 
Since U α 1 (ρ) is Hölder conjugate to the reparametrization of U 1 (ρ) by λ u ρ and U α 1 (ρ) has topological entropy 1, the equilibrium measure m -λ u ρ is a scalar multiple of the pullback of the measure of maximal entropy µ ρ ⊗ ds α 1 ρ for U α 1 (ρ) to U 1 (ρ), see Lemma 2.1, i.e.

m -λ u ρ = µ ρ ⊗ ds 1 ρ µ ρ | L 1 ρ . (4) 
Since, by Equations ( 3) and ( 4), µ ρ ⊗ ds 1 ρ is a scalar multiple of ω ρ ⊗ ds 1 ρ , we see that µ ρ is a scalar multiple of ω ρ . Therefore, the measure of maximal entropy µ ρ ⊗ ds α 1 ρ for U α 1 (ρ) is a scalar multiple of ω ρ ⊗ ds α 1 ρ .

As an immediate corollary, we obtain an expression for the intersection of two Liouville currents. 

Liouville volume rigidity

Recall that we define the Liouville volume of ρ ∈ H d (S) by vol L (ρ) = ω ρ | L H ρ so Corollary 4.5 implies that vol L (ρ) = i(ω ρ , ω ρ ). In this section, we apply Corollary 4.5, an argument of Labourie [START_REF] Labourie | Fuchsian affine actions of surface groups[END_REF]Lemma 5.1] and a length spectrum rigidity result [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]Theorem 11.2] to obtain a Liouville volume rigidity result.

Theorem 5.1. If ρ, η ∈ H d (S), then vol L (ρ) vol L (η) inf γ∈π 1 (S)-{1} L H (ρ(γ)) L H (η(γ)) 2 .
Moreover, equality holds if and only if either ρ = η or ρ = η * where η * is the contragredient of η.

Notice that, inf γ∈π 1 (S)-{1}

L H (ρ(γ))
L H (η(γ)) is finite and non-zero, since Hitchin representations are well-displacing (see [START_REF] Labourie | Cross ratios, Anosov representations and the energy functional on Teichmüller space[END_REF]Thm. 6.1.3]). However, if d > 2, it can be arbitrarily close to 0 or ∞ (see Zhang [START_REF] Zhang | Degeneration of Hitchin representations along internal sequences[END_REF]).

Proof. Let K = inf γ∈π 1 (S)-{1} L H (ρ(γ)) L H (η(γ)) so that if γ ∈ π 1 (S) -{1}, then i(δ γ , ω ρ ) = L H (ρ(γ)) KL H (η(γ)) = K i(δ γ , ω η ).
Since ω ρ and ω η are both limits of positive linear combinations of currents associated to elements of π 1 (S), this implies that

i(ω ρ , ω ρ ) K i(ω ρ , ω η ) and i(ω η , ω ρ ) K i(ω η , ω η ).
Therefore, using the fact that i is symmetric,

vol L (ρ) = i(ω ρ , ω ρ ) K i(ω ρ , ω η ) = K i(ω η , ω ρ ) K 2 i(ω η , ω η ) = K 2 vol L (η). Now assume that, in addition, vol L (ρ) = K 2 vol L (η), so i(ω ρ , ω ρ ) = K i(ω ρ , ω η ) and i(ω ρ , ω η ) = K i(ω η , ω η ).
Since U H (ρ), U H (η) and U α 1 (η) are all Hölder orbit equivalent to U(S), we may assume that, up to Hölder conjugacy, there exist positive Hölder functions g : U(S) → R and j : U(S) → R so that ds H ρ = gds H η and jds α 1 η = ds H η . So, applying Corollary 4.5,

gdω η ⊗ ds H η = dω η ⊗ ds H ρ = i(ω η , ω ρ ) = K vol L (η) and (g -K) dω η ⊗ ds H η = g dω η ⊗ ds H η -K dω η ⊗ ds H η = K vol L (η) -K vol L (η) = 0. ( 5 
)
On the other hand, since

L H (ρ(γ)) KL H (η(γ)), γ (g -K) ds H η = L H (ρ(γ)) -KL H (η(γ)) 0
for all γ ∈ π 1 (S) -{1}.

Let f = (g -K)j. We will apply the argument of [START_REF] Labourie | Fuchsian affine actions of surface groups[END_REF]Lemma 5.1] to establish our rigidity claim. If γ ∈ π 1 (S), then

γ f ds α 1 η = γ (g -K) ds H η 0.
Since measures supported on periodic orbits are dense in the space M Uα 1 (η) of all flow invariant probability measures on U α 1 (η) (see Sigmund [START_REF] Sigmund | On the space of invariant measures for hyperbolic flows[END_REF]), we see that

f dµ 0 , (6) 
for all µ ∈ M Uα 1 (η) . Since µ η is a multiple of ω η , equation ( 5) implies that

f dµ η ⊗ ds α 1 η = (g -K)j dµ η ⊗ ds α 1 η = (g -K) dµ η ⊗ ds H η = 0, (7) 
so

sup µ∈M Uα 1 (η) h(µ) -f dµ sup µ∈M Uα 1 (η) h(µ) = h(µ η ⊗ ds α 1 η ) = h(µ η ⊗ ds α 1 η ) -f dµ η ⊗ ds α 1 η sup µ∈M Uα 1 (η) h(µ) -f dµ
where the first inequality follows from inequality (6), the equality in the second line holds because µ η ⊗ ds α 1 η is the measure of maximal entropy for U α 1 (η), the equality in the third line follows from equation [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF] and the final inequality holds by definition. Therefore,

P(-f ) = sup µ∈M Uα 1 (η) h(µ) -f dµ = h(µ η ⊗ ds α 1 η ) -f dµ η ⊗ ds α 1 η ,
so µ η ⊗ ds α 1 η is the equilibrium state for -f . Since ω η ⊗ ds α 1 η is also the equilibrium state for the zero function, [START_REF] Hasselblatt | Introduction to the modern theory of dynamical systems[END_REF]Prop 20.3.10] implies that -f is Livšic cohomologuous to a constant function A. However, A = 0 since

f dω η ⊗ ds α 1 η = 0.
It follows that for all γ ∈ π 1 (S),

L H (ρ(γ)) -KL H (η(γ)) = γ f ds α 1 η = 0 . Therefore, L H (ρ(γ)) = KL H (η(γ)) for all γ ∈ π 1 (S).
We recall that since ρ and σ are projective Anosov, Adρ and Ad(σ) are also projective Anosov (see [START_REF] Guichard | Anosov representations: Domains of discontinuity and applications[END_REF]Section 10.2]). Since λ 1 (Adρ(γ)) = L H (ρ(γ)) for all γ ∈ π 1 (S), [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]Theorem 11.2] implies that K = 1 and either Adρ = Adη or Adρ = Adη * . Therefore, either ρ = η or ρ = η * . (When d = 3, we could apply earlier results of Cooper-Delp [START_REF] Cooper | The marked length spectrum of a projective manifold or orbifold[END_REF] or Kim [START_REF] Kim | Rigidity and deformation space of strictly convex real projective structures[END_REF].)

We obtain the following corollary, stated in the introduction as Theorem 1.4, by symmetry.

Corollary 5.2. If ρ, η ∈ H d (S), then inf γ∈π 1 (S)\{1} L H (ρ(γ)) L H (η(γ)) 2 vol L (ρ) vol L (η) sup γ∈π 1 (S)\{1} L H (ρ(γ)) L H (η(γ))
2 and equality holds in either inequality if and only if either ρ = η or ρ = η * .

If ρ ∈ H 3 (S), Tholozan [START_REF] Tholozan | Volume entropy of Hilbert metrics and length spectrum of Hitchin representations into PSL(3, R)[END_REF]Thm. 3] showed that there exists a 3-Fuchsian representation σ = τ 3 • σ 0 , where σ 0 : π 1 (S) → PSL(2, R) is Fuchsian and τ 3 : PSL(2, R) → PSL d (R) is the irreducible representation, so that ρ dominates σ, i.e. L H (ρ(γ)) L H (σ(γ)) for all γ ∈ π 1 (S). Since ω σ = 2ω σ 0 and i(ω

σ 0 , ω σ 0 ) = π 2 |χ(S)| (see Bonahon [1, Prop. 15]), Corollary 5.2 implies that vol L (ρ) vol L (σ) = 4π 2 |χ(S)|. Corollary 5.3. If ρ ∈ H 3 (S), then vol L (ρ) 4π 2 |χ(S)|.
Moreover, equality holds if and only if ρ is 3-Fuchsian.

If ρ ∈ H 3 (S), then, see Choi-Goldman [START_REF] Choi | The classification of real projective structures on compact surfaces[END_REF], there exists a strictly convex open domain Ω ρ in RP 2 so that ρ(π 1 (S)) acts properly discontinuously and cocompactly on Ω ρ . It would be interesting to explore the relationship between vol L (ρ) and other notions of volume for Ω ρ /ρ(π 1 (S)).

If σ = τ d • σ 0 ∈ H d (S) is d-Fuchsian, then ω σ = (d -1)ω σ 0 , so vol L (σ) = (d -1) 2 π 2 |χ(S)|. It is known that not every ρ ∈ H d (S)
dominates a Fuchsian representation, but one might still ask the following question.

Question: Is it true that, for all d > 3,

vol L (ρ) (d -1) 2 π 2 |χ(S)|
for all ρ ∈ H d (S)? If so, does equality hold if and only if ρ is d-Fuchsian?

Pressure quadratic forms associated to simple roots

In [8, Section 3], we describe a general procedure for producing pressure metrics on deformation spaces of representations based on the constructions in McMullen [START_REF] Mcmullen | Thermodynamics, dimension and the Weil-Petersson metric[END_REF], Bridgeman [START_REF] Bridgeman | Hausdorff dimension and the Weil-Petersson extension to quasifuchsian space[END_REF] and [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]. The first step in the process is to associate a flow to each representation. One then defines an associated pressure intersection and renormalized pressure intersection. Fundamental properties from the thermodynamic formalism, as summarized in Proposition 2.2, then guarantee that the Hessian of the renormalized intersection gives rise to a non-negative quadratic form on the tangent space to the deformation space. The resulting quadratic form may or may not be positive definite and the analysis of its degeneracy is typically the most difficult step in this procedure.

Recall that, in Section 3.3, we associated a family U α i (ρ) of simple root flows to a Hitchin representation. We interpret the next result to say that this family of flows varies analytically over the Hitchin component. Proposition 6.1. For all i ∈ {1, . . . , d -1} and ρ ∈ H d (S), there exists a neighborhood V i of ρ in H d (S), ν i > 0 and an analytic map

T i : V i → Hol ν i (U(S)) such that if σ ∈ V i , then T i (σ) is positive and ℓ T i (σ) (γ) = L α i (σ(γ)) for all γ ∈ π 1 (S).
Notice that the conclusion of Proposition 6.1 implies that the reparametrization of U(S) by T i (σ) is Hölder conjugate to U α i (σ).

Proof. Let ρ ∈ H d (S). Proposition 3.6 implies that there exists a neighborhood W 1 of ρ, β 1 > 0 and an analytic map S 1 : W 1 → Hol β 1 (U(S)), so that

ℓ S 1 (σ) (γ) = log λ 1 (σ(γ))
for all γ ∈ π 1 (S) and σ ∈ W 1 . Similarly, since for all i ∈ {2, . . . , d -1}, the exterior power E i ρ of a lift of ρ is projective Anosov, by Proposition 3.3, Proposition 3.6 implies that there exists a neighborhood W i of ρ in H d (S), β i > 0 and an analytic map S i :

W i → Hol β i (U(S), R) so that if σ ∈ W i , then ℓ S i (σ) (γ) = log λ 1 (E i σ(γ)) = log λ 1 (σ(γ))λ 2 (σ(γ)) • • • λ i (σ(γ)) for all γ ∈ π 1 (S). Let V 1 = W 1 ∩ W 2 and ν1 = min{β 1 , β 2 } and define an analytic map T 1 : V 1 → Hol ν1 (U(S)) by setting T 1 (σ) = 2S 1 (σ) -S 2 (σ). Then ℓ T 1 (σ) (γ) = 2 log λ 1 (σ(γ)) -log λ 1 (E 2 σ(γ)) = log λ 1 (σ(γ)) λ 2 (σ(γ)) = L α 1 (σ(γ)) for all γ ∈ π 1 (S) and σ ∈ V 1 . More generally, if i ∈ {2, . . . , d -2}, let V i = W 1 ∩ W 2 ∩ • • • ∩ W i+1
and νi = min{β 1 , . . . , β i+1 }, and define T i : V i → Hol νi (U(S)) by setting

T i (σ) = 2S i (σ) -S i+1 (σ) -S i-1 (σ).
One easily checks that ℓ T i (σ) (γ) = L α i (σ(γ)) for all γ ∈ π 1 (S) and σ ∈ V i . Finally, we define

T d-1 : V 1 → Hol νd-1 (U(S)), where νd-1 = ν1 , by T d-1 (σ) = T 1 (σ) • F where F : U(S) → U(S) is given by F (v) = -v, and check that ℓ T d-1 (σ) (γ) = L α 1 (σ(γ -1 )) = L α d-1 (σ(γ)) for all γ ∈ π 1 (S) and σ ∈ V d-1 = V 1
It remains to alter each T i so that, after restricting to a sub-neighborhood of V i , the image consists of positive functions. Since T i (ρ) has positive periods, it is Livšic cohomologous to a positive τ i -Hölder function f i , for some τ i > 0 (see [START_REF] Sambarino | Quantitative properties of convex representations[END_REF]Lemma 3.8]). Define T i : V i → Hol ν i (U(S)), where ν i = min{ν i , τ i }, by setting

T i (σ) = T i (σ) + (f i -T i (ρ)).
We now check that T i has the properties we claimed.

(1) Since T i is analytic, and T i is a translate of T i , T i is also analytic.

(2) Since f i -T i (ρ) is Livšic cohomologous to 0, T i (σ) is Livšic cohomologous to T i (σ). In particular, they have the same periods, so

ℓ T i (σ) = ℓ T i (σ) (γ) = L α i (σ(γ)) for all γ ∈ π 1 (S) and σ ∈ V 1 .
(3) Since U(S) is compact, the set of positive functions is an open subset of Hol ν i (U(S)).

Since T i (ρ) is a positive function and T i is analytic, hence continuous, there is a neighbourhood V i ⊂ V i of ρ so that T i (σ) is a positive function for all σ ∈ V i .

We then define the pressure intersection

I α i (ρ, η) = lim T →∞ 1 #R α i (ρ, T ) γ∈Rα i (ρ,T ) L α i (η(γ)) L α i (ρ(γ)) = I(f i ρ , f i η )
for all ρ, η ∈ H d (S), where

R α i (ρ, T ) = {[γ] ∈ [π 1 (S)] \ {[1]} | L α i (ρ(γ)) T }
and the reparametrizations of U(S) by f i ρ and f i η are Hölder conjugate to U α i (ρ) and U α i (η). For fixed ρ ∈ H d (S), we further define (I α i ) ρ : H d (S) → R by

(I α i ) ρ (σ) = I α i (ρ, σ)
for all σ ∈ H d (S). If V i is the neighorhood of ρ and T i is the map provided by Proposition 6.1, then

I α i (σ, η) = I(T i (σ), T i (η))
for all σ, η ∈ V i . By Theorem 3.5, U α i (σ) has entropy 1, for all σ ∈ H d (S) and all i, so

I α i (σ, η) = I(T i (σ), T i (η)) = J(T i (σ), T i (η))
for all σ, η ∈ V i . Proposition 2.2 then implies that

P α i | TρH d (S) = Hess ρ (I α i ) ρ
is positive semi-definite and varies analytically over H d (S). By construction, the extended mapping class group and the contragredient preserve each P α i . It follows immediately from work of Wolpert [START_REF] Wolpert | Thurston's Riemannian metric for Teichmüller space[END_REF], that the restriction of each P α i to the Fuchsian locus is a positive multiple of the Weil-Petersson metric. Since L α i (ρ(γ)) = L α d-i (ρ(γ -1 )) for all ρ ∈ H d (S) and γ ∈ π 1 (S), we see that

I α i (ρ, σ) = I α d-i (ρ, σ) for all ρ, σ ∈ H d (S), so P α i = P α d-i for all i.
We combine these observations with the non-degeneracy criterion provided by Proposition 2.2 to obtain: Proposition 6.2. For each i ∈ {1, . . . , d -1}, there exists a positive semi-definite, analytic, quadratic form P α i on TH d (S), which is invariant under the action of the mapping class group and restricts to a multiple of the Weil-Petersson metric on the Fuchsian locus. Moreover, if {ρ t } t ∈ (-ǫ, ǫ) is a smooth one-parameter family in H d (S), then ρ0

2 Pα i = 0 if and only if ∂ ∂t t=0 γ | L α i ρt = ∂ ∂t t=0 L α i (ρ t (γ)) = 0
for all γ ∈ π 1 (S).

Remark: Labourie and Wentworth [START_REF] Labourie | Variations along the Fuchsian locus[END_REF] evaluate the original pressure metric at the Fuchsian locus. They remark [START_REF] Labourie | Variations along the Fuchsian locus[END_REF]Sec. 6.6] that their analysis should extend to the pressure quadratic forms P α i .

Finally, we observe that, as was claimed in the introduction, we may rewrite the Liouville pressure intersection I α 1 as

I α 1 (ρ, η) = 1 ω ρ | L α 1 ρ ω ρ | L α 1 η .
Notice that, by Theorem 4.4, ω ρ is a scalar multiple of µ ρ so ω ρ = c ρ µ ρ for some c ρ ∈ R. Since

µ ρ = 1 #Rα 1 (ρ,T ) Rα 1 (ρ,T ) δγ Lα 1 (ρ(γ)) , we see that ω ρ | L α 1 ρ = c ρ and ω ρ | L α 1 η = c ρ lim T →∞ 1 #R α 1 (ρ, T ) Rα 1 (ρ,T ) δ γ | L α 1 η L α 1 (ρ(γ)) = c ρ lim T →∞ 1 #R α 1 (ρ, T ) Rα 1 (ρ,T ) L α 1 (η(γ)) L α 1 (ρ(γ)) Therefore, 1 ω ρ | L α 1 ρ ω ρ | L α 1 η = lim T →∞ 1 #R α 1 (ρ, T ) Rα 1 (ρ,T ) L α 1 (η(γ)) L α 1 (ρ(γ)) = I α 1 (ρ, η).
7. The Liouville pressure quadratic form is a Riemannian metric

The main work of this section is to show that the derivatives of the L α 1 -length functions generate the cotangent space of the Hitchin component. 

{D ρ L γ α 1 } γ∈π 1 (S)
generates the cotangent space T * ρ H d (S). Theorem 1.7 and Proposition 6.2 together imply that the Liouville pressure quadratic form is a Riemannian metric.

Theorem 1.6. The Liouville pressure quadratic form P α 1 is a mapping class group invariant, analytic Riemannian metric on H d (S), that restricts to a scalar multiple of the the Weil-Petersson metric on the Fuchsian locus.

Proof of Theorem 1.6: Suppose that v ∈ T ρ H d (S) and v Pα 1 = 0. Proposition 6.2 implies that D ρ L γ α 1 (v) = 0 for all γ ∈ π 1 (S). Theorem 1.7 then implies that v = 0. Therefore, since we already know it is positive semi-definite, P α 1 is positive definite. The remainder of the theorem follows from Proposition 6.2. ✷ The remainder of the section will be taken up with the proof of Theorem 1.7. Theorem 1.7 generalizes [7, Prop. 10.1], which asserts that derivatives of the spectral radius functions generate the cotangent space, and its proof follows a similar outline. We use an analysis of the asymptotic behavior of the L α 1 -length functions to show that if D ρ L γ α 1 (v) = 0 for all γ, then the derivatives of functions which record the eigenvalues are also trivial in the direction v. We then apply [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]Prop. 10.1] itself to finish the proof, but we could also have observed that the derivatives of all trace functions are trivial in the direction v and applied standard facts about character varieties. 7.1. Transversality results. Let ρ(γ) be the lift of ρ(γ) to SL(d, R) so that all of its eigenvalues are positive. Suppose that {e 1 (ρ(γ)), . . . , e d (ρ(γ))} is a basis of R d consisting of eigenvectors for ρ(γ) so that

ρ(γ)(e i (γ)) = λ i (ρ(γ))e i (ρ(γ))
for all i. Then we may write

ρ(γ) = d i=1 λ i (ρ(γ))p i (ρ(γ))
where p i (ρ(γ)) is the projection onto the eigenline spanned by e i (ρ(γ)) parallel to the hyperplane spanned by the other basis elements.

In [START_REF] Bridgeman | Simple length rigidity for Hitchin representations[END_REF], we prove that if α and β have non-intersecting axes and ρ ∈ H d (S), then the bases {e i (ρ(α))} and {e i (ρ(β))} have strong transversality properties, which generalize the transversality properties established by Labourie in [START_REF] Labourie | Anosov flows, surface groups and curves in projective space[END_REF]. If ρ ∈ H d (S) and S 2 ρ : π 1 (S) → SL(S 2 (R d )) is the second symmetric product of a lift of ρ to a representation into SL(d, R), then

S 2 ρ(γ) = d i j λ i (ρ(γ))λ j (ρ(γ))p ij (ρ(γ)) and if E 2 ρ : π 1 (S) → SL(E 2 (R d )) is the second exterior product of a lift of ρ to a representation into SL(d, R), then E 2 ρ(γ) = d i<j λ i (ρ(γ))λ j (ρ(γ))q ij (ρ(γ))
where p ij (ρ(γ)) is the projection onto the eigenline spanned by e i (ρ(γ)) • e j (ρ(γ)) and q ij (ρ(γ)) is the projection onto the eigenline e i (ρ(γ)) ∧ e j (ρ(γ)) parallel to the hyperplane spanned by the other products of basis elements. (Notice that E 2 ρ and S 2 ρ are independent of the choice of lift of ρ to a representation into SL(d, R).) Then

p ii (ρ(γ))(v • w) = p i (ρ(γ))(v) • p i (ρ(γ))(w), p ij (ρ(γ))(v • w) = p i (ρ(γ))(v) • p j (ρ(γ))(w) + p j (ρ(γ))(v) • p i (ρ(γ))(w) for i = j, and q ij (ρ(γ))(v ∧ w) = p i (ρ(γ))(v) ∧ p j (ρ(γ))(w) -p j (ρ(γ))(v) ∧ p i (ρ(γ)) (w) 
. We use Theorem 7.1 to prove that various terms arising in our asymptotic analysis are nonzero. 

Tr q ij (ρ(α))q kl (ρ(β)) = 0 if i, j, k, l ∈ {1, . . . , d}, i = j and k = l, (3) T r p ii (ρ(α))S 2 ρ(β) = 0 if i ∈ {1, . . . , d}, and (4) Tr q ij (ρ(α))E 2 ρ(β) = 0 if i, j ∈ {1, . . . , d} and i = j.

Proof. We fix ρ ∈ H d (S) and identify ρ(γ) with γ, for all γ ∈ π 1 (S), throughout the proof for notational simplicity. Choose bases {e 1 (α), . . . , e d (α)} and {e 1 (β), . . . , e d (β)} and define t ij (α, β) so that p i (α)(e j (β)) = t ij (α, β)e i (α) for all i, j ∈ {1, . . . , d}. Theorem 7.1 implies that t ij (α, β) = 0 for all i and j, so

Tr p ii (α)p kk (β) = t ik (α, β) 2 t ki (β, α) 2 = 0.
If i < j and k < l, we define s ijkl (α, β) by the equation

e k (β) ∧ e l (β) r =i,j e r (α) = s ijkl (α, β)   e i (α) ∧ e j (α) r =i,j e r (α)   . Theorem 7.1 implies that s ijkl (α, β) = 0, so Tr q ij (α)q kl (β) = s ijkl (α, β)s klij (β, α) = 0.
Notice that we may choose the basis {e i (βαβ -1 )} d i=1 = {β(e i (α))} d i=1 , in which case S 2 ρ(β)(e i (α) • e i (α)) = e i (βαβ -1 ) • e i (βαβ -1 ).

One then computes that

Tr p ii (α)S 2 ρ(β) = t ii (α, βαβ -1 ) 2 = 0.

(Notice that if α and β have non-intersecting axes, then so do α and βαβ -1 .)

Similarly, Tr

q ij (α)E 2 ρ(β) = s ijij (α, βαβ -1 ) = 0. 7.2. Trace asymptotics. If γ ∈ π 1 (S), let Λ γ α 1 : H d (S) → R be given by Λ γ α 1 (ρ) = λ 1 (ρ(γ)) λ 2 (ρ(γ))
and notice that L γ α 1 = log Λ γ α 1 . An asymptotic analysis of traces yields:

Lemma 7.3. If α, β ∈ π 1 (S) have non-intersecting axes and ρ ∈ H d (S), then lim n→∞ Λ α n β n α 1 (ρ) Λ α n α 1 (ρ)Λ β n α 1 (ρ) = Tr(p 11 (ρ(α))p 11 (ρ(β))) Tr(q 12 (ρ(α))q 12 (ρ(β))) = 0 and lim n→∞ Λ α n β α 1 (ρ) Λ α n α 1 (ρ) = Tr p 11 (ρ(α))S 2 ρ(β) Tr (q 12 (ρ(α)E 2 ρ(β)) = 0 
Proof. We again fix ρ ∈ H d (S) and identify ρ(γ) with γ throughout the proof for notational simplicity. One can compute that

Tr(S 2 ρ(α n β n )) Tr(E 2 ρ(α n β n )) = 1 i j d λ i (α n β n )λ j (α n β n ) 1 i<j d λ i (α n β n )λ j (α n β ) ) = λ 1 (α n β n ) 2 (1 + a n ) λ 1 (α n β n )λ 2 (α n β n )(1 + b n ) Since lim n→∞ λ j (α n β n ) λ i (α n β n ) = 0 if i > j, by Lemma 3.4, a n → 0 and b n → 0 as n → ∞. Similarly, Tr(S 2 ρ(α n )S 2 ρ(β n )) Tr(E 2 ρ(α n )E 2 ρ(β n )) = Tr i j λ i (α n )λ j (α n )p ij (α) i j λ i (β n )λ j (β n )p ij (β) Tr i<j λ i (α n )λ j (α n )q ij (α) i<j λ i (β n )λ j (β n )q ij (β) = Λ α n α 1 (ρ)Λ β n α 1 (ρ) Tr p 11 (α)p 11 (β) (1 + c n ) Tr q 12 (α)q 12 (β) (1 + d n )
where c n → 0 and d n → 0. Since the two expression are equal, we may take limits to obtain the first equality in the statement. Notice that Lemma 7.2 is being used to guarantee that Tr(p 11 (α)p 11 (β)) and Tr(q 12 (α)q 12 (β)) are non-zero so that the right-hand expression makes sense and is non-zero.

To establish the second equality, we compute that Tr(S 2 ρ(α n β))

Tr(E 2 ρ(α n β)) = λ 1 (α n β) 2 (1 + a ′ n ) λ 1 (α n β)λ 2 (α n β)(1 + b ′ n )
, where a ′ n → 0 and b ′ n → 0, and that Tr(S 2 ρ(α n )S 2 ρ(β))

Tr(E 2 ρ(α n )E 2 ρ(β)) = Tr i j λ i (α n )λ j (α n )p ij (α) S 2 ρ(β)

Tr i<j λ i (α n )λ j (α n )q ij (α) E 2 ρ(β) = Λ α n α 1 (ρ)
Tr p 11 (α)S 2 (ρ(β) (1 + c ′ n ) Tr q 12 (α)E 2 ρ(β) (1 + d ′ n ) where c ′ n → 0 and d ′ n → 0. We obtain the second equation by setting the two expressions above equal, taking limits and applying Lemma 7.2 to guarantee that the right-hand expression makes sense and is non-zero. Proof. We first divide by nw n 1 and take the limit to see that We then subtract nb 1 w n 1 from each side, divide by w n 1 , and pass to a limit to conclude that a 1 = c 1 .

We may then remove the first order terms and proceed iteratively.

Proof of Proposition 7.4. We will show that, if γ ∈ π 1 (S), then D ρ (log

λ γ i )(v) = D ρ (log λ γ 1 )(v) for all i. Since λ γ 1 • • • λ γ d = 1, D ρ (0)(v) = D ρ (log λ γ 1 )(v) + • • • + D ρ (log λ γ d )(v) = d D ρ (log λ γ 1 
)(v) = 0, which in turn implies that D ρ λ γ i (v) = 0 for all i. We first notice that, since D ρ L γ α 1 (v) = 0, D ρ (log λ γ 2 )(v) = D ρ (log λ γ 1 )(v) for all γ ∈ π 1 (S). We proceed iteratively. Assume that D ρ (log λ γ i )(v) = D ρ (log λ γ 1 )(v) for all i < m and γ ∈ π 1 (S). Notice that this is equivalent to the claim that D ρ λ γ i (v) = D ρ λ γ 1 (v) for all i < m and γ ∈ π 1 (S). Fix α ∈ π 1 (S) -{1} and let β be an element of π 1 (S), so that α and β have non-intersecting axes and consider the family of analytic functions {F n : H d (S) → R} n∈N defined by Tr q 12 (ρ(α))q 12 (ρ(β))

.

Notice that, by Lemma 7.3, the numerator of F n is an analytic function which is a limit of analytic functions which, by assumption, have derivative zero in the direction v, so the numerator has derivative zero in direction v. We may similarly use our assumptions and Lemma 7.3 to show that the denominator of F n has derivative zero in direction v. Therefore, D ρ F n (v) = 0 for all n ∈ N. We adopt the shorthand λ i = λ ρ i (β) and expand the above equation to see that , b ij (ρ) = Tr(q 12 (ρ(α))q ij (ρ(β))) Tr(q 12 (ρ(α))q 12 (ρ(β))) , u i = λ i λ 1 , and v i = λ i λ 2 .

F n (ρ) = i j a ij (ρ) λ i
In particular, a 

a ij ḃkl + na ij b kl uk u k + vl v l U n ijkl .
We group terms where U ijkl agree and order so that, as sets, {w s } M s=1 = {U ijkl } i j,k<l and w i > w i+1 > 0 for all i. We may rewrite the expression above as By our iterative hypothesis, D ρ (log λ i )(v) = D ρ (log λ 1 ) for all i < m, and m > 2. Therefore, ui = vi = 0 for all i < m. Since m > 2, the iterative step of the proof will be completed if we show that either um = 0 or vm = 0.

Consider s 1 such that w s 1 = U 111m = v m and notice that

B s 1 = {i j, k<l | U ijkl =vm} a ij b kl ui u i + uj u j . If w s 1 = U ijkl , then U ijkl = u i u j u k v l = v m . Since 1 = u 1 > u 2 > • • • > u d > 0 and 1 v i > u i
for all i 2, we see that u j u i u j u k v l = v m > u m , so i j < m. Since ui = 0 if i < m, we see that B s 1 = 0. A similar analysis yields that if U ijkl = u i u j u k v l = v m , then k < m and l m. Therefore, uk = 0 and vl = 0 if l = m. However, if l = m, then i = j = k = 1, so

D s 1 = {i j ,k<l | U ijkl =vm} a ij b kl uk u k + vl v l = a 11 b 1m vm v m = b 1m vm v m ,
so, since D s 1 = B s 1 = 0, we conclude that b 1m vm = 0. Since we have previously observed that b 1m = 0, it must be that vm = 0 which completes the proof. ✷
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 3 Flows for Hitchin representations. Theorem 3.2 provides several contracting line bundles over U(S) associated to a Hitchin representation ρ ∈ H d (S).(1) The spectral radius line bundleM 1 ρ . (2) The simple root line bundles M α i ρ := M i ρ ⊗ (M i+1 ρ ) * . (3) The Hilbert line bundle M H ρ := M 1 ρ ⊗ (M d ρ ) * . Proposition 2.4 shows that the associated flows (1) The spectral radius flow U 1 (ρ) := L 1 ρ /π 1 (S). (2) The simple root flows U α i (ρ) := L α i ρ /π 1 (S). (3) The Hilbert flow U H (ρ) := L H ρ /π 1 (S). are all Hölder orbit equivalent to U(S). The corresponding length spectra are (1) The spectral radius length L 1 (ρ(γ)) := log(λ 1 (ρ(γ))).

Theorem 3 . 5 .
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  j∈{1,...,p} . Theorem 4.2. (Labourie [20, Thm. 1.1]) If ρ, σ ∈ H d (S), then b ρ = b σ if and only if ρ = σ. Moreover, χ d (b ρ ) ≡ 0 and χ d-1 (b ρ ) never vanishes. Labourie [20, Thm. 1.1] also shows that the facts that χ d (b ρ ) ≡ 0 and χ d-1 (b ρ ) never vanishes characterize cross ratios of Hitchin representations into PSL d (R) among all π 1 (S)-invariant functions on ∂ ∞ π 1 (S)

Theorem 1 . 2 .

 12 If ρ ∈ H d (S) and η ∈ H m (S), then ω ρ = ω η if and only if ρ = η. Proof of Theorem 1.2. Suppose that ω ρ = ω η . By definition, b

  non-zero. It follows that, b ρ (x d , y d , x 0 , y 0 ) = b η (x d , y d , x 0 , y 0 ). This completes the proof. ✷ Corollary 4.3. The Liouville current is symmetric if and only if ρ = ρ * . Proof. There is a natural identification of P(R d ) with P((R d ) * ), given by identifying v ∈ R d to the linear functional w → v • w. So, given a representation ρ ∈ H d (S), ξ ρ * = ξ * ρ and ξ

Corollary 4 . 5 .

 45 If ρ ∈ H m (S) and η ∈ H d (S), then i(ω ρ , ω η ) = ω ρ | L H η . Remark: Since symmetric geodesic currents are determined by their periods [29, Thm. 2], our Liouville current ω ρ pushes forward to Bonahon's Liouville current on G(S), if d = 2, and to the symmetric Liouville current defined by Martone and Zhang [26], if d > 2.

Theorem 1 . 7 .

 17 If ρ ∈ H d (S), then the set

Theorem 7 . 1 .

 71 [START_REF] Bridgeman | Simple length rigidity for Hitchin representations[END_REF] Cor. 4.1]) If ρ ∈ H d (S), α, β ∈ π 1 (S) -{1} and α and β have nonintersecting axes, then any d elements of {e 1 (ρ(α)), . . . , e d (ρ(α)), e 1 (ρ(β)), . . . , e d (ρ(β))} span R d . In particular, p i (ρ(α))(e j (ρ(β))) = 0 for any i, j ∈ {1, . . . , d}.

Lemma 7 . 2 .

 72 If α, β ∈ π 1 (S) have non-intersecting axes and ρ ∈ H d (S), then (1) Tr p ii (ρ(α))p kk (ρ(β)) = 0, for all i, k ∈ {1, . . . , d},

7. 3 .

 3 Derivatives of eigenvalue functions. Let λ γ i : H d (S) → R be given by λγ i (ρ) = λ i (ρ(γ)). Proposition 7.4. If v ∈ T ρ H d (S) and D ρ L γ α 1 (v) = 0 for all γ ∈ π 1 (S), then D ρ λ γ i (v) = 0, for all i = 1, . . . , d and all γ ∈ π 1 (S).Notice that the assumptions of Proposition 7.4 are equivalent to the assumption that D ρ Λ γ α 1 (v) = 0 for all γ ∈ π 1 (S). The proof of Proposition 7.4 makes use of the following elementary lemma:Lemma 7.5. Let a i , b i , c i , d i , w i ∈ R, for i = 1, . . . k, with w 1 > w 2 > . . . > w k > 0. If, for every n ∈ N, k i=1 (a i + nb i )w n i = k i=1 (c i + nd i )w n i ,then a i = c i and b i = d i for all i.

  + nd i )w n i = d 1 .

F

  n (ρ) = Tr(p 11 (ρ(α))S 2 ρ(β n )) Tr(q 12 (ρ(α))E 2 ρ(β n )) (Λ β 1 (ρ)) n Tr p 11 (ρ(α))p 11 (ρ(β))

λ 1 n λ j λ 1 n i<j b ij (ρ) λ i λ 1 n λ j λ 2 n

 112 = i j a ij (ρ)u n i u n j i<j b ij (ρ)u n i v nj where a ij (ρ) = Tr(p 11 (ρ(α))p ij (ρ(β))) Tr(p 11 (ρ(α))p 11 (ρ(β)))

  11 = b 12 = 1 and, by Lemma 7.2, b 1m = 0 for allm. Since D ρ F n (v) = 0 for all n ∈ U ijkl = u i u j u k v l , this becomes i j,k<l ȧij b kl + na ij b kl ui u

(

  A s + nB s )w n s = M s=1 (C s + nD s )w n s where A s , B s , C s and D s are constants depending only on s and not on n. Lemma 7.5 implies that A s = C s and B s = D s for all s.

7.4. Proof of Theorem 1.7. If v ∈ T ρ H d (S) and D ρ L γ α 1 (v) = 0 for all γ ∈ π 1 (S), then, by Proposition 7.4, D ρ λ γ i (v) = 0 for all i and all γ ∈ π 1 (S). However, Proposition 10.1 in [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF] guarantees that {D ρ λ γ 1 } γ∈π 1 (S) generates the cotangent space to H d (S) at ρ, so our proof is complete. ✷ 8. Degeneracy of P αn on H 2n (S) Bridgeman [START_REF] Bridgeman | Hausdorff dimension and the Weil-Petersson extension to quasifuchsian space[END_REF] showed that the pressure metric on quasifuchsian space is degenerate on the Fuchsian locus. In [8, Section 5.8], we construct a pressure metric on H d (S) which is associated to the Hilbert length of elements of the image and similarly prove that this metric is degenerate on the fixed point locus of the contragredient involution. A very similar argument yields that P αn is degenerate on H 2n (S).

Recall that the contragredient involution τ : H 2n (S) → H 2n (S) fixes the submanifold H(S, PSp(2n)) of Hitchin representations with image in PSp(2n).

Proposition 8.1. The pressure quadratic form P αn on H 2n (S) is degenerate on H(S, PSp(2n)).

Proof. Suppose that ρ ∈ H(S, PSp(2n)), v ∈ T ρ H d (S) and Dτ ρ (v) = -v. We choose a path {ρ t } t∈(ǫ,ǫ) in H 2n (S) such that ρ0 = v and τ (ρ t ) = ρ -t for all t ∈ (-ǫ, ǫ). Since λ i (σ(γ -1 )) = (λ 2n-i (τ (σ)(γ))) -1 for all i and all σ ∈ H 2n ,

for all t ∈ (-ǫ, ǫ) and γ ∈ π 1 (S). Therefore,

for all γ ∈ π 1 (S), so Proposition 6.2 implies that ρ0 Pα n = v Pα n = 0.

It is natural to wonder whether a similar symmetry is responsible for all degeneracies of pressure metrics constructed in this fashion.