
HAL Id: hal-01654518
https://hal.science/hal-01654518v1

Submitted on 6 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TULIP 5
David Auber, Daniel Archambault, Romain Bourqui, Maylis Delest, Jonathan
Dubois, Antoine Lambert, Patrick Mary, Morgan Mathiaut, Guy Melançon,

Bruno Pinaud, et al.

To cite this version:
David Auber, Daniel Archambault, Romain Bourqui, Maylis Delest, Jonathan Dubois, et al.. TULIP
5. Reda Alhajj; Jon Rokne. Encyclopedia of Social Network Analysis and Mining, Springer, pp.1-28,
2017, 978-1-4614-7163-9. �10.1007/978-1-4614-7163-9_315-1�. �hal-01654518�

https://hal.science/hal-01654518v1
https://hal.archives-ouvertes.fr


TULIP 5

David Auber1, Daniel Archambault4, Romain Bourqui1, Maylis Delest1,
Jonathan Dubois1, Antoine Lambert2, Patrick Mary1, Morgan Mathiaut1, Guy

Melançon1, Bruno Pinaud1, Benjamin Renoust3, and Jason Vallet1

1 University of Bordeaux, CNRS UMR 5800 LaBRI, Talence, France
firstname.lastname@u-bordeaux.fr

2 Inria Centre de recherche de Paris, France
antoine.lambert@inria.fr

3 National Institute of Informatics & CNRS UMI 3527 JFLI, Tokyo, Japan
renoust@nii.ac.jp

4 Swansea University, Departement of Computer Science, United Kingdom
d.w.archambault@swansea.ac.uk

Author’s version. The final manuscript can be found at: https://doi.org/
10.1007/978-1-4614-7163-9_315-1.

1 Introduction

Although this article presents a system and discusses its design, its content
goes much further. Throughout the following pages, we summarize more than a
decade of lessons learned working in graph and information visualization, devel-
oping new visualization techniques, and building systems for users. The strategy
we have adopted is to develop, maintain, and improve the Tulip framework,
aiming for an architecture with optimal data structure management from which
target applications can be easily derived. We use Tulip to reproduce and reuse
the work published by others and of course for experimenting and validating our
research. The architecture of Tulip was designed to promote extensibility and
reusability.Thanks to visualization, the framework also serves as a powerful tool
to demonstrate our expertise and know-how when interacting with scientific col-
laborators or data expert users. Overall, Tulip facilitate scientific collaboration
and technology adoption. As we shall argue, the evolution path of our framework
brings it into full coherence with Munzner’s nested model [38] and serves all
aspects of Information Visualization and Visual Analytics for the creation and
analysis of visualization systems. Tulip has software support for validation at
any level of this model.

Tulip offers the possibility to efficiently define and navigate into graph hier-
archies or cluster trees (nested subgraphs). These techniques have been a central
visual paradigm within our research group, as it often provides answers to data
analysts. The reason is quite simple: large graphs must be clustered to reduce
visual complexity, turning the data exploration process into a hierarchy visual-
ization which is built by a clustering algorithm. Hence, Tulip’s low-level data
structure was designed since its first version to support the creation of nested
and/or overlapping subgraphs and to integrate at the core of the system a prop-
erty heritage mechanism that provides both coherence and optimal space usage.



2 Auber, Bourqui, Melançon, Pinaud et al.

Tulip started after David Auber decided to enter the huge graph visualiza-
tion arena [8, 9, 11]. The framework was originally designed to deal with graphs
(relational data), focusing on graph topology as the main ingredient for visual
encodings and mainly exploiting node-link diagrams (vertices and straight lines)
as a central visual metaphor.

Scalability was also a requirement to be able to work on huge data sets;
the core architecture and low-level data structures of Tulip are optimized to
reach ambitious goals in terms of graph size (nodes and edges) that could be
handled and visualized. After these initial efforts, Tulip found a place within
our research group and soon became an everyday experimental tool. Because
data analysis and combinatorial mathematics are companion fields to graph vi-
sualization, Tulip included a rather long list of node and edge metrics that
could be mapped to color or size. Obviously, Tulip initially served as an ex-
perimental framework from which the design of drawing algorithms and visual-
ization techniques were developed, tested, and validated. Nowadays, Tulip can
be seen as an information visualization framework and it is still evolving (see
http://tulip.labri.fr for more information).

The growth of our community helped us gain visibility, and we were soon
asked to cooperate with data expert users to build visualization applications
in many domains such as producing automated drawing for secondary RNA
structures [12], visualizing software reverse engineering graphs [24], social net-
works [10], air passenger traffic [45], or graph rewriting [42]. Other examples are
given throughout this paper. The graph hierarchy paradigm residing deep within
Tulip was later fully exploited by the work of [4–7] and more recently by [42].
Over the years, Tulip have evolved from an algorithmic-centered graph draw-
ing system to a visual data analytics dashboard combining different visualization
techniques (see Fig. 1).

The Tulip architecture is designed to promote extensibility and reusability
of results. As such, from a software engineering perspective, it heavily relies on
object composition rather than inheritance. Even if object composition is often
more complex for the programmer, it considerably reduces code duplication and
dependencies between modules. We are constantly improving and refactoring
the framework to minimize code duplication and re-implementation to ease the
addition of future research results, and to preserve architecture scalability.

The rest of this paper is structured as follows: Section 2 gives an overview
of Tulip. Section 3 describes previous and related software systems that in-
spired the design of many parts of Tulip. Section 4 describes the architecture
of the Tulip libraries and software. In this section, we describe elements that
support each level of validation in Munzner’s nested model: algorithm plug-
ins (section 4.1.2) provide support for validating algorithm design, views and
interactors (Sect. 4.3.1 and Sect. 4.3.2) provide support for validating encod-
ing/interaction technique design, and perspectives (Sect. 4.4) provide support
for validating data/operation abstraction design and domain problem character-
ization. Section 5 presents recent applications of the Tulip library made in our
research group. Finally, Section 7 presents some conclusions and future work.



TULIP 5 3

Fig. 1. Tulip 5 is a framework that enables visualization researchers and application
designers to operate on an algorithm, technique/interaction, and visual encoding level.
The figure on the top shows an overview of Tulip with some graph drawing made with
different algorithms and metrics. The figure on the bottom shows several views of the
same data set with custom interactions. The data comes from [53] (cars data set).

2 Key Points

The Tulip framework consists of five packages. The first package, the Tulip
core library, provides an efficient and fine-tuned data structure designed for



4 Auber, Bourqui, Melançon, Pinaud et al.

abstract data visualization. The second package is a complete OpenGL rendering
engine (Tulip OGL) tailored for information visualization techniques. The third
package is a library of GUI components created using the Qt library (Tulip
GUI). The fourth package is a complete binding of the C++ API to Python. It
makes the usage of Tulip inside Python code straightforward. Finally, Tulip
software is an application where users can embed their algorithm, visualization
technique, or complete information visualization pipeline. Figure 2 summarized
the connections between these different libraries.

Fig. 2. Tulip architecture overview. The Tulip framework consists of four packages.
Tulip core provides an efficient data structures for relational data. Tulip graphics
is a complete OpenGL rendering engine. Tulip GUI is a collection of widgets built on
top of Qt library for the purpose of information visualization. Finally, Tulip software
is an application for embedding algorithms, visualization techniques/interaction, and
complete information visualization systems. All these packages can be dynamically
extended through the plugin architecture of Tulip.

3 Historical Background

Developing a framework over an extended period of time often means being
compared to or challenged by competitor systems and libraries. This section
presents a subset of the libraries that are closest in spirit to our work. We briefly
discuss the philosophy or underlying principles of each, contrasting them to
Tulip.



TULIP 5 5

3.1 Libraries

3.1.1 LEDA/AGD/OGDF [23, 35, 39] The LEDA/AGD/OGDF graph
drawing libraries were built to provide a collection of efficient graph drawing
algorithms. These libraries include some of the most powerful, sophisticated,
and complex algorithms to produce graph drawings. However, the aim of these
libraries is to draw graphs –that is, to decide the positions of nodes in the
plane. These libraries do not tend to focus on a fully integrated information
visualization library but rather concentrate on graph topology. Therefore, extra
information linked to nodes and edges of the graph is difficult to integrate into
the visualization process. That said, LEDA/AGD have inspired our work (see
Section 4.1.2, “Algorithms”). Note that OGDF graph drawing algorithms are
integrated into Tulip (see Sect. 4.1.2 for more details).

3.1.2 GraphViz [26] This library is similar to OGDF and supports extrinsic
data (i.e., labels, size, and orientation of graph elements). GraphViz has been
successful from both end user and InfoVis community member perspective. It
offers one of the best solutions for drawing hierarchical (directed and acyclic)
graphs. However, the library does not focus on fully integrating its algorithms
into a completely functional information visualization system.

3.1.3 VTK/Titan [47,54] VTK is a library for producing applications sup-
porting scientific visualization techniques. Recent developments of this library
extend its scope to information visualization even though VTK was not orig-
inally designed to support the visualization of abstract (non-geometric) data.
The original strength of the library was its efficient rendering of meshes in three
dimensions, and optimizations can be made under the assumption that most in-
formation visualization techniques are focused on rendering information in two
dimensions. However, information visualization often focuses on user interaction
and visual data manipulation, requiring efficient methods for tracking changes
to the data, needs to be supported, and this library does not appear to directly
support this functionality.

3.2 Toolkits

Toolkits provide to users an environment for the development of information
visualization applications. They offer an off-the-shelf data import/storage solu-
tion and often include a variety of widely used graph layouts and node/edge
metrics. The two toolkits we comment on here primarily support the design,
development, and validation of new interactive visualization techniques, rather
than offering sophisticated support for graph drawing algorithms.

3.2.1 Prefuse/Flare [31] This framework provides a comprehensive set of in-
teractive information visualization techniques. Its clever design and management
of interaction make it widely used for information visualization applications. On



6 Auber, Bourqui, Melançon, Pinaud et al.

the other hand, the toolkit supports only a few graph drawing algorithms and
node/edge metrics.

3.2.2 InfoVis Toolkit [28] The InfoVis Toolkit shares similarities with Pre-
fuse and offers a comprehensive set of information visualization techniques, for
instance, node-link diagrams, tree maps, or matrix views. As such, it has many
of the advantages and disadvantages of Prefuse. The toolkit supports few but
relevant graph drawing algorithms and metrics. The concept of multi-views im-
plemented in this framework has inspired a similar design in Tulip.

3.3 Software

3.3.1 ASK-GraphView/CGV [1, 51] This software system shares an im-
portant feature with Tulip as it relies on the computation of subgraph hier-
archies and implements multi-scale graph drawing techniques to explore large
data sets that do not necessarily fit into the main memory. ASK-Graph view is
part of the few scalable graph visualization frameworks. However, it essentially
offers a single visualization technique relying on multi-scale graph drawing as a
central visual paradigm.

3.3.2 GUESS [2] GUESS uses a scripting language to perform basic tasks
(searching and filtering, etc.). This scripting language is very powerful and useful
for users with programming experience in Python. However, direct manipulation
of the data through interactive techniques may be preferable for some users,
which is the focus of Tulip. However, we have integrated a powerful Python
bindings in Tulip to allow easy and quick Python scripting. See Sect. 4.6 for
more details.

3.3.3 Pajek [17] The Pajek software focuses on the analysis of large graphs
(social networks), providing several powerful tools such as k-core computation,
Eccentricity, and others. It is widely used for social network analysis (SNA). In
its first versions, Tulip shared many similar ideas with this software. However,
few visualization techniques outside node-link diagrams are supported by Pajek.

3.3.4 Gephi [16] After self-announcing to be the ‘Photoshop’ for graph vi-
sualization, Gephi rapidly became one of the most popular graph visualization
software. It integrates multiple metric and layout algorithms, features dynamic
graphs, interactive data manipulation and visualization in the same spirit of
Tulip. The software is open-source, developed in Java, and focuses on user-
friendly interfaces, so it rapidly gain a wide audience and an active community
of users. The target audience are non-programming users, whose graphs are often
of limited size. Gephi’s limitation is tied to the memory allocated in the Java
Virtual Machine, and can hardly reach beyond 100,000 nodes and 1,000,000
edges.



TULIP 5 7

3.3.5 Cytoscape [48] Cytoscape was originally a dedicated software for vi-
sualization of networks in biology. Now, it is a complete framework for complex
network analysis. In many ways, it shares many ideas with the Tulip framework.
Once again, the use of Java to implement the software may be problematic when
working on huge graph as more memory and more CPU time is needed, especially
when the garbage collector is active.

4 Tulip Main Features

4.1 Tulip Core

The Tulip core library was created for the purpose of manipulating data sets
consisting of entities and relations between them. It enables to efficiently store
into memory these entities/relations as well as attributes attached to them. Fur-
thermore, it provides the necessary functions to access these data as well as
standard useful algorithms. For instance, it includes functions to test whether
or not a graph is planar, or to compute a uniform quantification of a set of val-
ues. The Tulip core library also integrates a generic plugin mechanism [14]. It
is used many times in our library to enable easy extensions of our framework.
The principle of that plugin mechanism is to enable each plugin to specify their
input/output requirements as well as their dependency with other plugins. It
is possible to call these plugins directly in a program or to use them directly
through an automatically generated user interface. Furthermore, since plugins
are dynamically loaded, a dependency mechanism enables us to check the coher-
ence of a set of plugins.

In the following, we describe the Tulip meta-model that is, from our point
of view, the part that differentiates the most Tulip from all other information
visualization software. For more details on the basic data structure or functions
(matrix, convex hulls, etc.) provided by Tulip, the interested reader should refer
to the API manual available inside the software or on the Tulip website at http:
//tulip.labri.fr/Documentation/current/doxygen/html/index.html.

4.1.1 Meta-Model Based on the previous Tulip version [9], the Tulip meta-
model focuses on minimizing the amount of memory used while providing effi-
cient operations on the data set. The original idea behind the data structure
was to manage high-level operations used in the visual analysis process in the
data structure. Integration of all these operations provides a global optimization
during the interactive exploration of abstract data.

As shown in Fig. 3, the Tulip meta-model user only has access to the class
called Graph. In terms of design pattern terminology, this class is a facade,
meaning it provides simplified and centralized access to a set of complexly in-
teracting classes. Programmers do not need to understand the behavior of the
manipulated objects through the facade. Furthermore, it eases the implementa-
tion of data storage optimizations into the library as internal modules are not



8 Auber, Bourqui, Melançon, Pinaud et al.

directly accessed. One should note that this facade can be used even when work-
ing on non-relational data. This property is due to the fact that a graph data
structure with an unbounded set of attributes is extremely versatile and allows
to store a wide variety of data (relational, multidimensional, geospatial, etc.). In
the following section, we present some of the operations provided by this facade.

ObservableGraph

Graph

GraphDecoratorAbstractGraph

PlanarGraph

ObservableProperty

Property

GraphViewGraphImpl

User

Fig. 3. Overview of the meta-model class diagram. Instead of providing a complex
set of classes, Tulip philosophy is to provide centralized access to the data structure
through the Graph interface. The resulting implementation provides an optimized and
extensible data structure.

Subgraph hierarchy. One of the first requirements was to provide efficient man-
agement of subgraphs. As a subgraph generalizes the notion of a subset to rela-
tional data, it is often used in graph visualization systems that follow the Shnei-
derman mantra [49]: “overview first, zoom and filter, then details-on-demand”.
In Fig. 3, we see the facade currently uses two classes inheriting from Abstract-
Graph: GraphImpl is responsible of storing the entities and relations, while
GraphView is responsible of storing subgraphs by using a filtering mechanism
on a Graph. This approach is efficient in terms of memory, because, in most
cases, storage needed for entities and relations in a filter can be done in a single
bit (worst cases appear when fragmentation of these indexes are maximal). Fur-
thermore, when a subgraph structure is implemented with filtering, entities and
relations used are exactly the same. Thus, no overhead is required for correspon-
dence between entities and relations in the different subgraphs. To guarantee the
coherence in the subgraph hierarchy, every modifying operation on a subgraph
is applied recursively to its sub-subgraphs or its supergraphs when necessary.
Thanks to this implementation, Tulip can manage a very large number of sub-
graphs. Using the current implementation, a graph having 1,000,000 nodes and
5,000,000 edges with 200,000 subgraphs requires about 825 MB on a 64-bit ar-
chitecture. If one is only interested in graph partitions, where elements must be



TULIP 5 9

strictly contained in a subgraph and all its ancestors to the root, this data struc-
ture can still be optimized. However, Tulip does not support this optimization
as it would limit visualization techniques for overlapping subgraphs and clusters.
HGV [43] implements this efficient data structure, and we refer any interested
reader to the associated paper.

Property sharing. Our second requirement was to support the storage of an unre-
stricted number of properties, or attributes, on graph elements. We have chosen
to create a single object for each property rather than store them inside the
entities and relations. Even if this data structure appears slightly less intuitive
for a programmer, this choice is necessary to enable global optimization and in-
crease cache hits during iteration of entities (especially during rendering). This
idea is also used in the IVTK [28] framework. In order to enable sharing of prop-
erties between subgraphs, we provide an inheritance mechanism for properties.
As shown in Figure 4, each subgraph inherits its supergraph properties and can
also redefine or create its own properties, comparable to the inheritance mecha-
nism in object-oriented languages.In all the visualization techniques and systems
we have developed, this property sharing mechanism has been a key feature for
synchronization to provide efficient “overview+detail” implementations.

Aggregation (meta-nodes/edges). The third requirement enables hierarchical ag-
gregation [27] of entities/relations, one of the forte of the Tulip meta-model
which has been especially extended and optimized for this purpose. First in-
troduced in [13] and perfected after working on several multi-scale problems [6,
7, 20, 42], the meta-model presented above supports efficient aggregations and
disaggregations. of subgraphs. Also, we have introduced aggregation functions
in order to be able to modify the way aggregated values are computed.

Observable data structure. Interactive visualization often requires the modifica-
tion of graph topology (graph structure), decomposition (subgraph or aggrega-
tion), and attributes (properties). To prevent static links between the Tulip data
structure and external algorithms or systems, we provide an observer mechanism
that listens for all modifications and applies them to the data structure.

State management. One of the most powerful feature of the Tulip meta-model
is it ability to save the current state of the data structure very efficiently. Like
the OpenGL matrix stack, we provide two functions: push and pop. These two
functions can save or restore the current state of the data structure through a
stack. A naive implementation of this feature (copy the whole data-structure)
would be suboptimal when dealing with a large number of graph elements and
their properties. In Tulip, this mechanism has been designed with the proxy
design pattern. It allows objects to behave like other objects, hiding direct ma-
nipulation of the data structure from the user and allowing data sharing to
be globally optimized. Using the state stack, it is possible to write an efficient
implementation of the command design pattern, and thus to provide effec-
tive undo/redo operations on large data sets. For instance, a graph with 40,000



10 Auber, Bourqui, Melançon, Pinaud et al.

Fig. 4. Graph Hierarchy (figure created with Tulip): Tulip provides management of
a hierarchy of subgraphs through an efficient filtering mechanism of graphs. The in-
heritance mechanism of graph properties in the hierarchy maximizes the number of
properties shared between subgraphs. For instance, Subgraph 1 inherits the layout of
the root graph. The inheritance mechanism is also able to redefine properties in sub-
graphs like one would do in an object-oriented programming language. Subgraph 2, for
example, has redefined its layout property but inherits the color, size and shape prop-
erties of its parent, whereas Subgraph 1.2 inherits its parent layout but uses different
color and shape properties.

nodes and 80,000 edges under the following modifications, “change all the size,”
“change the layout,” “change all the colors,” requires less than 115 MB (including
Tulip GUI, 3D rendering engine, and plugin memory usage), enabling immedi-
ate undo/redo on a recent computer.

Alternative graph model. Tulip also proposes an alternative, yet simpler, imple-
mentation of a graph structure calledVectorGraph offering very efficient access
and modification times. On the other hand, and in opposition to the meta-model,
VectorGraph does not support subgraphs, observers and meta-graphs. This al-
ternative structure is very effective when addressing problems where no nested
hierarchy, subgraphs or meta-elements are needed.

4.1.2 Plugins Several kinds of algorithms have been published and are used
in information visualization. In Tulip, these algorithms are defined as plugins
managed by the Tulip plugin system. A Tulip plugin has an unlimited number



TULIP 5 11

of input parameter types, and thus, by using the dynamic parameter declara-
tion mechanism, a programmer can implement a large variety of algorithms.
Nonetheless, in order to categorize algorithm major classes and ease automatic
connections with the user interface, we provide models and interfaces for plugins
to only modify a single Tulip property and we guarantee that the rest of the
data-structure is left untouched.

Standard graph drawing algorithms, for instance, only need to modify node
positions or the number and position of edge bends, both stored in a Tulip
layout property. Based on this idea, we distinguish the layout plugins as specific
plugins to draw all kind of graphs (hierarchical, tree, planar, . . . ), apply force-
directed layouts, render spectral methods, map entities on space-filling curves or
create edge bundling. The layout plugin collection of Tulip is also enlarged by
the different layout algorithms provided in the open graph drawing framework
(OGDF) library.

Themeasure plugins follow the same concept and are used to compute real
values on entities and relations. The standard Tulip distributions provides many
plugins like k-cores computation, eccentricity, betweenness centrality, pagerank,
(bi/tri)connected component, strength metric, Louvain clustering measure.

Tulip proposes additional variations based on the available types of prop-
erties such as color plugins, size plugins or selection plugins. We also
provide a more general plugin type which can modify any element of the data
structure and any property. This type of plugin are simply called “Algorithms”.
Furthermore, while a plugin is running, a call-back mechanism allows interactive
visualization of the plugin’s results.

4.1.3 Data Import and Export Import/Export of a variety of data formats
are mandatory for building generic information visualization libraries. In Tulip
import/export is part of the plugin architecture even for the tulip file format (see
below). Therefore, programmers can extend the import and export capabilities
of Tulip by designing their own plugins for custom file formats. Consequently,
import algorithms can be implemented to either create graphs (following pub-
lished models for instance), import web graphs, social networks, a file system,
or even graphs saved using another visualization software. Obviously, export
algorithms can also be implemented to respond to every need.

Nevertheless, the standard distribution is able to import graphs and their
attributes from many format such as CSV (Comma Separated Value), GML
(Graph Modeling Language), DOT (Graphviz), GEXG (Gephi Format) and
NET/PAJ (Pajek). Tulip also has several plugins for creating random graphs
including many well-known social network models [46]. Tulip is also able to
export an image of a graph in png (or jpeg) format (or many more when using
the GUI via the Qt library), SVG (Scalable Vector Graphics), GML, and CSV.

To address the complex structure generated by nested subgraphs and meta-
elements, Tulip also has its own text format (tlp) which was developed to sup-
port the Tulip meta-model. The tlp format allows an efficient storage of the
graph on disk. We also have a binary version (tlpb) which was designed to han-



12 Auber, Bourqui, Melançon, Pinaud et al.

dle huge graphs. It allows very fast reading/writing of the graph on disk. Tulip
can produce zipped version of both tlp and tlpb (resp. called tlpz and tlpbz).
Storage files can also be embedded in a tlpx file. It is a zipped archive containing
the graphs and the required information on the opened visualizations and their
configurations to restore them after opening the file in the Tulip GUI.

4.2 Tulip Graphics

Efficient rendering of large amounts of geometric information is a bottleneck in
most information visualization systems. In the Tulip Graphics library, we pro-
vide an OpenGL-based, multilayer rendering engine that includes the necessary
functions for implementing information visualization techniques.

In our multilayer rendering engine, three-dimensional information can be
displayed on different layers. For instance, using layers and transparency enables
the Tulip graphics library to render textured quads behind the scene, display
only nodes or edges. Through the OpenGL stencil buffer, we are able to force
the visibility of elements on layers. This functionality implements a guaranteed
visibility [37] for rendered elements. For example, in our visualization techniques,
we use this capability to guarantee that selected elements are always visible.

To ease the implementations of new techniques, we provide functions to ma-
nipulate the camera, select elements, render aggregated elements, render basic
geometric entities, and facilitate the use of vertex/pixel/geometric shaders. Spe-
cial attention has been paid to make these operations applicable on huge data
sets. For instance, computing and rendering curves, such as Bezier, splines, and
B-splines, are done on the GPU, allowing Tulip to render more than 10,000
edges with more than 100 bends in real time without storing any precomputed
geometry. In this example, we save the storage and transfer of 2,000,000 triangles
required to render this set of curves.

To be able to extend existing visual metaphors, we provide once again a plu-
gin mechanism to add new visual objects. These can be used to create Glyphs.
For instance, a programmer can create a plugin for rendering pie charts accord-
ing to specific attribute values. After installing the plugin, all graph visualization
(node-link diagram, scatter-plots, etc.) can render graph entities using the new
visual object.

Using an external rendering engine could have been possible. Two main rea-
sons required that we design our own rendering engine. First, external rendering
engines can generate memory overhead unable to handle graph of over 500,000 el-
ements in less than 256 MB of memory. Secondly, when the Tulip project began
in 2000, 3D rendering engines were not easily available and powerful enough for
information visualization. However, designing an OpenGL rendering engine for
the purpose of abstract data visualization allows us to optimize and fine tune
the rendering engine according to the visualization implemented visualization
techniques.

The philosophy behind the Tulip Graphics since the early days of Tulip
was to have an efficient and direct rendering of the data stored without duplica-
tion. However, as the amount of available memory has increased significantly, we



TULIP 5 13

have integrated optimizations that are more memory intensive. For example, we
use octrees to optimize selecting elements or computing level of detail, and we
use texture-based rendering to accelerate the rendering of aggregated elements
during zoom and pan.

In software engineering terminology, a composite design pattern is used to
model the hierarchy of visual objects to rendered. A naive implementation re-
quires the instantiation of a large number of objects and therefore does not scale
to large data sets because of memory constraints. To solve this problem, the
Tulip Graphics library accesses this composite using a visitor pattern. First,
the visitor pattern adds new functionality to the composite without any modifi-
cation to its data. For instance, the visitor can compute bounding boxes needed
for level of details used during rendering. Secondly, the visitor pattern can sim-
ulate a hierarchy of objects without building it. For example, when using the
GraphComposite class from the Tulip API, the visitor traverses a dynamically
created hierarchy of objects instead of creating this hierarchy beforehand. Ob-
jects are generated and reused on the fly in a way that is similar to the flyweight
design pattern during rendering. This pattern avoids data duplication in the
data model and graphics library, allowing the system to scale to larger data sets
and synchronize rendering with the model.

4.3 Tulip GUI

According to Munzner [38], deciding on the proper visual encoding to use should
be determined after problems from real-world users have been characterized. Of
course, each problem does not need its own unique and completely new visual-
ization techniques each time. The problem often turns into selecting the proper
techniques to assemble and implement together with the proper operations. Some
techniques now have been used and studied long enough so that their usability
perimeter has more or less been established. Because Tulip aims to be used for
implementing end-user visualization systems, it has to implement a wide palette
of existing techniques. Thus, a choice has been made to implement pairs of visual
encoding and operations based on their usefulness and scope as assessed by the
InfoVis community.

Tulip allows users to easily go back and forth between a node-link diagram,
where metrics were mapped as color or size, and histograms, that helped un-
derstand how a metric was able to capture a key property in the data. These
data analysis features include a set of well-established data visualization tech-
niques (see Section 4.3.1). Tulip has evolved from essentially offering a unique
visual encoding (node-link diagram) to a variety of data analysis techniques that
can moreover be astutely combined and synchronized. All these features were
carefully and coherently integrated into the framework using Agile development
methodology (see Section 5.1).

The overall architecture is based on the Model-View-Controller (MVC)
architectural pattern. The model-view-controller approach is a well- known ap-
proach for designing interactive systems. The pattern splits the software ar-
chitecture in three independent components. The model component has the



14 Auber, Bourqui, Melançon, Pinaud et al.

responsibility to store the information, the view component gives a representa-
tion for the information, and the controller manages communication between
one or more views and the model. This architecture dissociates the data structure
(Model) from the representation (View) and the system behavior (Controller).
In the following, we describe three main components of the Tulip GUI library.

4.3.1 Views Views can be defined as visual representations of data. Node link-
diagrams, parallel coordinates, and scatter-plots are just a few examples of views
that can be used to gain insight into a data set. Tulip uses the above-described
meta-model to create multiple views of the same data set. The idea is to use the
same data independently of the current view. For example, nodes in the node-
link diagram of a graph may have several attributes, and these attributes could
be placed in a 2D scatter-plot. Having all views sharing the same data model
helps maintain system coherence and enables users to work with several views
simultaneously. Structuring data manipulation in this way allows the information
in one view to be easily analyzed in all other views, hopefully providing more
insight. Figure 5 shows three different views, and in each view, one can see that
each element visual attributes (such as shapes, colors, and relative sizes) are
preserved. This makes a fundamental, although simple, user interaction quite
powerful. As an example, when selecting nodes in a histogram, to focus on high-
value nodes, the user instantly sees where these nodes spread in the node-link
diagram. Views are plugins, so adding new data views is possible.

Fig. 5. A centralized meta-model maintains coherence between views of a same graph.
(Left) Histogram view. (Middle) Node-link diagram. (Right) Scatter-plot views. All
three views share the same visual attributes (color, shape, size. . . ) enabling the user
to switch between views easily and keep track of selected elements from view to view.

For optimization purposes and to implement specific types of views, the pro-
grammer occasionally needs a custom data structure. For these cases, views can
observe any change done in the meta-model (see Section “Meta-Model” for de-
tails) for synchronizing all views to it. As an example, consider the scatter-plot
matrix view (see Fig. 6) of Tulip. This view generates a buffer of textures for
efficient navigation through the matrix. The data model, in this case, is used



TULIP 5 15

to generate the scatter-plot representation for each pair of dimensions, and the
view stores these results as images. During interactive navigation, the rendering
engine displays only the textured quads. If the data set is modified by another
view or interactor, the set of textures needs to be rendered again. The observer
mechanism of Tulip notifies the appropriate views and modifies the data only
when necessary.

Fig. 6. (Left) The node-link diagram view renders glyphs for nodes and curves for
edges. The view provides navigation such as zoom and pan, bring and go [36], fish-eye
views, and a magnifying glass. Direct editing of the graph elements and data, such as
adding or removing nodes and edges or translating, rotating or scaling elements, is also
supported. Other operations on this view include graph splatting, meta-node/graph hi-
erarchy exploration, and texture-based animation. (Right) The scatter-plot 2D view
renders attribute values to depict possible correlations between properties, and the
matrix allows efficient navigation between dimensions. The view provides similar inter-
action to the node-link diagram and implements an interactor to search for correlation
in an interactively defined subsets of elements. Splatting is also available in this view.

Views are implemented as Tulip plugins. Currently, all views are imple-
mented using the Tulip rendering engine, but programmers are not limited to
this engine. Integrating rendering engines such as VTK or even multiple engines
simultaneously inside a single view can be supported. However, the programmer
would need to synchronize all views manually. An example of a foreign rendering
engine used in conjunction with the Tulip rendering engine inside a single view
is the geographic view mash-up, where the Google Map API renders a map in
one layer while the Tulip rendering engine renders the remaining layers on top
of this map. Figures 6–9 present overviews of the major views implemented in
the current Tulip release.



16 Auber, Bourqui, Melançon, Pinaud et al.

Fig. 7. (Left) The parallel coordinates view depicts multivariate data, using the tra-
ditional parallel coordinates representation as well as a circular representation. In both
views, lines can be rendered with smooth Bézier curves. Interaction with the view
is supported through zoom and pan, axis edition/permutation/shifting, and multi-
criteria/statistical selection. (Right) The histogram view provides a view of element
frequency. A matrix of histograms allows for the visual comparison of several statisti-
cal properties of a set of dimensions. This view has a standard set of navigation and
statistical interactors. Additionally, an interactor enables the user to build nonlinear
mapping functions to any of the graph attributes such as size, colors, glyphs, etc.

4.3.2 Interactors Interaction is essential for most information visualization
techniques. However, generalizing interaction in an extendable way raises a sig-
nificant challenge as a wide range of methods require support. A selection re-
quires a transparent rectangle to be drawn on top of selected elements. Opening
a meta-node requires a single click, a small amount of zooming and panning, and
modification of the graph structure locally at the meta-node. The bring-and-go
technique (Moscovich et al. 2009) changes the layout of the graph and requires
both zoom and pan of the camera along a well-defined trajectory. Furthermore,
programmers should be able to combine all these interactive techniques in the
final visualization. As an example configuration, the mouse wheel could handle
both zoom and pan, a left click could modify element selection, and a right click
could display a context menu.

To support a wide range of interaction methods, we implemented the chain of
responsibility design pattern. This pattern models the transmission of a message
through a chain of linked objects. During the transmission, the message can stop
or continue along its path according to the object it passes through. In Tulip,
we call an Interactor an entire chain and an InteractorComponent an object
in the chain.

An InteractorComponent implements an interaction method and can han-
dle all GUI events on a view, modify Tulip data structure, modify the view,



TULIP 5 17

Fig. 8. (Left) The geographic view implements a mash-up of the Google Map API.
to specify geospatial positions of the nodes of a graph. When working with data in
geography, graphs can be displayed on top of the map. This view supports standard
zoom and pan as well as the selection of elements. (Right) The pixel-oriented view
uses space-filling curves to display large number of entities and relations on a screen.
This view supports Peano curves, Z-order curves, spiral curves, and square curves. The
pixel-oriented view is based on our previous data cube [15] visualization and supports
zoom and pan/selection interaction as well as focus+context techniques.

Fig. 9. (Left) The self-organizing view implements Kohonen self-organizing maps [33].
Several kinds of topology/connectivity for the generated maps are supported as well as
navigation and selection interactors. (Right) The matrix view implements a matrix
view of the graph. This view has been built to support graphs with a large number of
nodes and edges. Zooming and selection interactors are available for this view.

and render objects on top of the view. In the MVC paradigm, this component
can be seen as a microcontroller. To encourage reuse, an InteractorComponent is
programmed to be as small as possible. For instance, the zoom and pan, fish-eye



18 Auber, Bourqui, Melançon, Pinaud et al.

lens, magnifying glass, zoom box, and box selection interactors are often reused
in different views and are implemented in five individual interactors.

An Interactor is an ordered set of InteractorComponent. The interactor
receives all events from the view and implements the chain of responsibility
which asks each InteractorComponent whether or not it handles an event. The
Qt library is used as much as possible to achieve these operations. The interactor
is also responsible for providing configuration widgets, documentation, and an
icon for display in toolbars. Furthermore, interactors report the views with which
they are compatible. In order to reuse the interactor without modification of
source code, the set of views that an interactor supports can be dynamically
extended.

Interactors are also Tulip plugins. Thus, programmers can create their own
interactors by combining interactor components or developing new ones. As a
result, interactors can be reused across views, and the programmer can extend
the different types of interactions supported by Tulip. For example, GPU-based
graph splatting can be implemented as an interactor.

4.4 Perspectives

As each application requires considerable programming effort which we all hope
to reuse, Tulip supports domain-specific or user-centered perspectives. Follow-
ing [38], real-world problems should be first characterized and abstracted into
good operations and data types. There are good reasons to believe that Tulip
contains several of the basic ingredients needed to properly combine and/or de-
velop these operations and data types using Tulip’s plugin-based architecture.

After applying the Tulip framework in a variety of domains, including biol-
ogy, social network analysis, and geography, we realized that many aspects of a
visualization system cannot be generalized and must be left to the application
developer. However, in order to reduce re-implementation, we tried to embed all
domain-specific elements inside perspective plugins, allowing general system
components and interaction to be reused across applications.

A Tulip perspective specifies the visualization techniques (algorithms, views,
and interactors) to assemble, how to load them and the graphical user interface
(GUI) These plugins can use domain-specific widgets, menus, and libraries. Per-
spectives are very different from the generic perspective that comes with the
open source release. They are designed through user interviews and problem
characterizations and are customized using Tulip libraries and plugins. The
Porgy perspective (Sect. 5.2) is a good example of such implementation.

As our meta-model is generic, we hypothesized that one could keep the same
data representation and switch between user interfaces depending on task. The
development of the Tulip perspective was inspired by this requirement. In the
MVC model, controllers are responsible for managing connections between mod-
els and views. Thus, by changing the controller, also known as a mediator pattern
in the design pattern terminology, one can change the system behavior.



TULIP 5 19

4.5 Tulip Run-Time Environment

As described above, the philosophy of the Tulip framework is to facilitate the
reuse of plugins over many contexts. The advantage of this approach is that it
allows easier framework extension. However, a disadvantage of this approach is
programming an application that exploits a collection of plugins may be diffi-
cult to implement. This added complexity is, more generally, a disadvantage of
plugin-based systems. Tulip tries to overcome those difficulties by implement-
ing a simple plugin interface, and simple mechanism for plugin’s parameters and
plugin’s inter-dependencies. Section 4.4, “Perspectives”, shows that Tulip does
not create a visualization system, it is a perspective plugin launched by the
Tulip software.

In our experience, we list the functions we consider either necessary or general
enough to be used by a visualization system:

Model management: All perspectives store data inside a shared Tulip data
model.The framework provides import, export, open/close and checks the
data structure for modifications.

Plugin management: Since perspectives are plugins, they cannot be used un-
til they are loaded. Thus, the framework initializes all libraries and plugins.
It also checks for plugin dependencies and can update or download plugins
using the Tulip plugin web service. When creating a desktop application,
as opposed to a web application, this functionality is necessary to involve
the end user in the development. Frequent installation of new releases is one
of the most important problems for end users.

Cross-platform support: Supporting multiple platforms is very time consum-
ing when designing new applications. In Tulip, we aim to provide a platform-
independent execution environment so programmers can focus on the imple-
mentation of their visualization work-flow. Tulip is available for Linux (and
*BSD systems), Windows, and Mac OS.

4.6 Python Integration

First introduced in Tulip 3.5, the Tulip framework now provides Python bind-
ing of all Tulip main features. It empowers users with easy scripting capabil-
ities, facilitated by the property-based nature of Tulip. We used a common
approach to bind C/C++ definitions with the SIP tool from Riverbank Com-
puting Limited (see http://www.riverbankcomputing.co.uk/software/sip/
for more details).

The bindings are also publicly available from PyPI and can be independently
installed from the Tulip framework as a standard Python package. It is available
at https://pypi.python.org/pypi/tulip-python and can be installed using
the command pip install tulip-python. Users can then manipulate their graphs,
create visualization and export images completely independently from the Tulip
perspectives and GUI previously mentioned. The main features provided by the
bindings are the following ones:



20 Auber, Bourqui, Melançon, Pinaud et al.

Creation and manipulation of graphs: the Tulip data structure used for
storing large and complex networks, defines and navigate graph hierarchies
or cluster trees (nested sub-graphs) can be manipulated through Python
independently of their visualization.

Storage of data on graph elements: Tulip allows the association of differ-
ent kind of serializable data (Boolean, integer, float, string, ...) and visual
attributes (layout, color, size, ...) with graph elements. All these data can
be easily accessed from the Tulip graph data structure facilitating the de-
velopment of algorithms. The accessors and iterators are implemented in a
“pythonic” way to ease their manipulation.

Creation of interactive visualizations: Tulip OpenGL visualizations (typ-
ically node-link diagrams) can be created from Python. Visualizations are
synchronized, meaning every modification on the visualized data (graph
structure, visual attributes, . . . ) triggers automatic redraw. This is a conve-
nient way to generate animations for example. It also makes Tulip a very
didactic tool to support learning and teaching: now all graph theory algo-
rithms can be visually rendered on-the-fly, in front of your students.

The ability to write plugins in Python: Python developers can contribute
to Tulip and write plugins (algorithms, graph import/export) in their fa-
vorite language. These plugins can be called and integrated in the Tulip
software in the same manner as the C++ ones, thus C++ plugins can call
Python plugins and the other way round. Additionally, Tulip-python pro-
vides a start-up script environment so users can set up their own environment
and automatically load plugins whenever they import the Tulip library or
start the Tulip GUI.

Integration within the Python nebula: This renders possible any exten-
sion of Tulip thanks to the immense resource of Python packages. External
packages can be imported also within the Tulip GUI, as well as combined
outside the GUI. For example, Detangler, discussed in Section 5.4, integrates
Tulip with many other packages such as Numpy, for matrix manipulations.
This enables also very flexible imports as prototyping specific parsers is made
easier by Python and binding with the well known Neo4j graph database,
SNAP [34], NetworkX [30] or any other graph library is made extremely
easy.

The Python integration is of course one important feature of the main Tulip
GUI, and we provide a complete Python environment with Tulip-specific auto-
completions. This auto-completion mechanism is aware of all graph properties
and types, of all available plugins, parameters and data types, and, of course, of
all the API provided by Tulip.

The Python integration into the GUI is twofold (see Fig. 10). First, an in-
teractive console (Python REPL) allows users to modify their graphs on the fly.
All visualization settings are bounded with their representations, so any modi-
fication of the visualization parameters will be shown directly. Rapid edition of
graph parameters can thus be rendered easily.



TULIP 5 21

Fig. 10. Python integration. The interactive console is shown at the bottom of the
application and the Python IDE is displayed on the right in another window. All the
transformations performed using Python are applied in real time on the graph and can
be visualized using a view (e.g., the node-link diagram in the picture).

Secondly, a Python IDE which allows to write Python scripts or to develop
new Tulip plugins is provided. In a nutshell, the Python script feature is a
Python development environment, with its own standard output. An ecosystem
of scripts can be created and executed on the current graph. These scripts can be
played, paused and stopped at will. This feature is particularly useful for rapid
prototyping, debugging of visualizations and algorithms analysis. Additionally,
the Python IDE embeds a plugin development feature offering a comfortable
development environment for plugins and modules. Modules edited within the
environment benefit from all auto-completion capabilities and will be reloaded
upon edition. Creation of Tulip plugins are facilitated thanks to a wizard, which
automatically templates the scripts upon users’ choices. It also helps in editing
and registering scripts on-the-fly. Plugins can be designed from the Python IDE,
and, once saved, automatically reused in any other Tulip application.

5 Key Applications

The Tulip framework is composed of several core libraries and plugins based
on these libaries. The core Libraries provide the necessary functions and data
structures to efficiently manipulate relational data as a graph. Plugins provide
many algorithms for visualizing data, compute metrics and many properties on
graphs (element’s sizes, colors, . . . ). In a way, Tulip is not able to visualize data



22 Auber, Bourqui, Melançon, Pinaud et al.

without plugins. In this section, we describe some visualization systems we have
built. Some parts of these systems are themselves Tulip plugins and they are
all using existing Tulip plugins.

5.1 Generic Tulip Perspective

The Tulip Graph Visualization Perspective (see Fig. 1 for an overview) pro-
vides a generic software interface for the purpose of information visualization
and visual analytics. This perspective allows to interactively combine existing
algorithms, techniques, and interaction methods to construct domain-specific vi-
sualizations in a sort of pipeline exploration. This feature is helpful for research
project, especially during interviews with end users, as a combination of existing
features can often be used as a foundation. User’s feedback can be immediately
used for designing the final visualization methods.

The user interface is automatically generated from all available plugins. It
also provides tools for manual configuration of both views and interactors. More-
over, the perspective supports graph element properties edition, exploration of
many subgraph hierarchies, and direct access to built-in functions of the Tulip
core library, through the Python console or mouse context menus.

Section 6 below presents a sample working session with this perspective to
explore a data set.

5.2 Porgy: a Tulip Perspective

Porgy is an interactive visual environment fully supporting graph rewriting
systems (GRS) related tasks [42]. A GRS operates on graphs by substituting
local patterns according to a set of rewriting rules. A GRS appears as a powerful
formalism to capture and study phenomena occurring in complex systems, such
as the evolution of bio-molecular networks [3] or the study and comparison of
propagation models in social networks [52].

Porgy enables rule-based modeling and simulation steering through graphi-
cal representations and direct manipulation of all GRSs components. As a Tulip
perspective, Porgy aims at designing relevant graphical representations and
appropriate interactions on dynamic graphs. When using Porgy however, the
dynamic graphs emerge from graph rewriting systems. The ability to act on the
simulation of the rewriting calculus offers the expert a unique mean of interact-
ing with the systems they design and study, turning interactive visualization of
GRSs into a high-level visual programming environment.

Porgy can be used to trigger a series of transformations on the graph using
graph rewriting rules (each describing some transformations), display a sequence
of graphs obtained by application of transformation steps, as well as the sequence
of rules underlying these transformations, and design analysis and verification
tools to check static and dynamic properties of graphs.



TULIP 5 23

Fig. 11. The Porgy perspective. The tool is here used to model, visualize and simulate
biological systems with the tree on the left displaying different states of the system and
their possible transitions, and the two graphs on the right showing examples of rules
used to perform rewriting transformations.

5.3 rNAV: a standalone Tulip application

rNAV (for RNA navigator, see Fig. 12) is a tool for the visual exploration and
analysis of bacterial sRNA-mediated regulatory networks. rNAV has been de-
signed to help bioinformaticians and biologists to identify, from lists of thousands
of predictions, pertinent and reasonable sRNA target candidates for carrying out
experimental validations. The application proposes automatic mRNAs extrac-
tion from a simple genbank or embl genome file. rNAV also features an automatic
annotation enrichment plugin powered by the DAVID (Database for Annotation,
Visualization and Integrated Discovery) statistical enrichment tool [32] and two
interaction prediction tools: SSearch (part of the FASTA family [41]) and In-
taRNA [22].

rNAV algorithms can be gathered into pipelines which can then be saved
and reused over several sessions. To support exploration awareness, rNAV also
provides an exploration tree view that allows users to navigate through the steps
of the analysis, select the sub-networks to visualize and compare results. These
comparisons are facilitated by the integration of multiple and fully linked views.

This framework had been used to analyze various real biological data in-
cluding several mycoplasma strains, perform genome-wide detection of sRNA
targets [25] and analyze sRNA-mediated regulatory bacterial networks [50].



24 Auber, Bourqui, Melançon, Pinaud et al.

Fig. 12. The rNAV software. The different views are linked and represent the same
genomic data set, enriched (annotated) using DAVID, at different state of the analysis.
The redundant annotations can be filtered and regrouped to ease the visual analysis
and labels can be used to display several input information like p-value, similarity or
interaction energy. Finally, the exploration tree view (bottom right) shows the steps
taken to perform the analysis.

5.4 Detangler: using Tulip as a server

Detangler (https://github.com/renoust/Detangler/tree/demo) [44] is a web-
based tool designed for the analysis of multiplex networks (see Fig. 13. The tool
provides a web-based interface which associates two networks through brushing
and linking. Although the visual interface is implemented using D3 [19], the
graph computing engine is implemented using Tulip.

D3 offers great interactivity with all sorts of vector graphics. The analysis of
multiplex networks as proposed by Detangler heavily relies on this interactivity.
However, D3 is limited in performance and does not offer the richness of Tulip’s
graph visualization and analysis algorithms. Detangler brings the best of the two
API by providing an appealing SVG front-end, with a Tulip-based back-end
graph analysis engine. The tool then offers all Tulip visualization algorithms
and graph measures directly within the web interface.

The engine relies on a combination of multiple C++ and Python Tulip plu-
gins (such as Noack’s edge linlog [40]) delivered from a web server. The web
server relies on the Tornado (http://www.tornadoweb.org/) library in combi-
nation with the stand-alone Tulip-python library. In a REST-based manner, all
user interactions, modifications and editions are transmitted to the server, which



TULIP 5 25

Fig. 13. An example of Detangler. The multiplex graph, layouts, and graph measures
are all computed on the fly from the server side using Tulip. D3 is used for the final
rendering on the client side and maintains a communication with the server to manage
user interactions.

updates the graph accordingly, compute the requested information and delivers
the results asynchronously.

In this example application, all the heavy-lifting is operated by the Tulip
server using the Python bindings while all other lightweight interactions are
performed directly in the client using D3’s flexibility.

6 Tutorial/Use case: using Tulip to analyze the Enron
Email Data Set

The Enron Email data set (see http://www.cs.cmu.edu/~enron/) contains
about half a million email exchanges (messages) collected from 150 individual
email accounts. The exchanged messages involve more than 30, 000 persons and
was released by the US Federal Energy Regulatory Commission during its inves-
tigation of the company. There are numerous questions one can ask about this
data, with most probably the intention to identify the most prominent actors
–those by whom the troubles may have emerged. Because of the high number of
edges, a powerful computer with a decent GPU is required.

We use the data found on the Stanford Network Analysis Project website
(SNAP, https://snap.stanford.edu/data/email-Enron.html). The data file
is organized as a network (a graph) where nodes correspond to email addresses
appearing in the data and edges link two addresses i, j if address i sent at least
one email to address j. Non-Enron email addresses act as sinks (no outgoing
edges) and sources (no incoming edges) in the network as the data only covers
communications between Enron email addresses. Even if the information found
on SNAP is limited (only the graph topology is given), and thus limiting the
questions we can hope to answer, there is still information left to be found.

As a first step, we need to import into Tulip the downloaded file by using
the CSV import functionality to create a graph which contains a single edge



26 Auber, Bourqui, Melançon, Pinaud et al.

(relation) for each i, j entry (one per line). The imported data is instantiated as
a graph, laid out randomly.

Altough nodes can be differentiated from one another, using some layout
algorithms provide a better drawing. For instance, a simple “Circular” layout
reveals some “holes”, or lense dense area, in the center of the view. This implies
that some nodes have but a few connections; however not much more insight
as to how/why this happens can be obtained using this graph drawing. The
FM3 layout (spring embedder, [29]) is a much more efficient algorithm giving
visually appealing results when facing graphs of small or intermediate size. The
new drawing reveals more information on how exchanges took place as one can
now see a main component and a few satellite components of minor importance
(Fig. 14).

A subgraph containing only the largest component can be created by selecting
all of the largest component’s elements (nodes and edges) and using the “Create
subgraph from selection” item in the menu. We rename this subgraph “largest
component” and to solely use this graph for the rest of this section.

Fig. 14. The largest component plus some satellites of the Enron email data sets drawn
with the FM3 plugin.

The (network) analytics. We may expect major actors as having exchanged
more messages than others. A way to spot them is to compute the degree of
nodes (“Degree” plugin). As a measure algorithm, the resulting value is stored
in a Tulip property called “viewMetric” by default. Open the panel “Histogram



TULIP 5 27

View” to visualize the degree distribution: most actors have but a few connec-
tions. By using “Search”, or the selection interactor directly on the histogram, it
is easy to select nodes with a high degree and find that only 1320 nodes have a
degree of at least 100. Doing so, you can see that the newly selected nodes are
also immediately selected in all the panels where they exist. Generally speaking,
with Tulip, any view can be used to select graph elements. This allows analysts
to jump back and forth between Tulip panels to visualize the selected data using
another point of view and refining their selection by visually exploring the data
set. A more visual feedback can be obtained with the “Color Mapping” plugin.
For instance, it can be used after the “Degree” plugin to map the computed node
degrees to a specific color according to a color scale.

More analytics (Actor Centrality) For this second part, we decide to compute
the “PageRank” index [21] of each actor (email address). This algorithm is well
known for being the base of the index Google uses to rank web pages. Considering
how “PageRank” uses the number of references, or hypertext links, to compute
the index values, one may expect the actors with high index to be referred to
more often in the network, and thus to have received more messages. Open the
“spreadsheet view” panel and select the single actor with maximum page rank
(a click on a column header sort the column), then:

– Make its size (viewSize property) 10 times as big as other nodes (map it to
(10,10,10)),

– Make its shape (viewShape property) a “2D Hexagon”,
– Change its bordercolor (viewBorderColor property) to green and the width

(viewBorderWidth property) of the border to 2.

With the actor now clearly visible, one can see that the node is not in the
middle of the graph but is rather a part of a group of users strongly connected
and slightly off-center. This location suggests that something interesting may be
taking place between the core part of the network (the “center”) and this denser
component to which the high index actor belongs.

Make it simple and readable (Aggregation and quotient graph) We propose now
to build a simplified view of the network connectivity structure. To this end, we
apply the “Louvain” algorithm [18]. Generally speaking, this clustering algorithm
identifies subgroups of strongly connected users in the network. The algorithm
just assigns each node an integer to indicate the subgroup number to which it
belongs. Another plugin named “Equal value” can be used subsequently to form
subgroups by putting all nodes having the same value for a given property in
the same subgroup (using the viewMetric property by default). All subgroups
become subgraphs of the graph on which the plugin is run.

To conclude this analysis, make sure the “largest component” graph is se-
lected. We finally use the plugin “Quotient Clustering” (with the “Layout quotient
graph(s)” option set) to create an extra graph in the hierarchy called “quotient
of . . . ”. Dragging and dropping it into the node-link view will load the newly
computed quotient graph. This peculiar graph provides an additional insight in



28 Auber, Bourqui, Melançon, Pinaud et al.

Fig. 15. The quotient graph of the largest graph component. This view provides a
legible visualization when considering the subgroups. It is easy too see how some of
the large and denser subgroups aggregate many subgroups with fewer nodes.

comparison to the plain node-link view as each group of strongly connected users
(also known as communities) is isolated in a subgraph, showing a clearer picture
of their inner structure. The quotient graph also reveals how these subgroups
interact with each other, some being peripheral while others are more “central”
and somehow “larger” (Fig. 15).

7 Future Directions

We have presented Tulip 5, an information visualization framework, and have
explained the architectural choices made to create a robust, maintainable and
evolutive platform. Although Tulip has been primarily developed as a scientific
research tool to ease the creation of prototypes and perform experimentation
in visualization, several years of software maintenance, evolution and reinforce-
ment have made Tulip fit as a base for the production of industrial projects.
Information visualization has always been at the center of Tulip, but while
the limitation in the number of elements one may visualize can be reached quite
quickly depending of the hardware, the core of the Tulip framework can scale to
huge data sets, counting hundreds of millions of elements, thus still allowing fast
computation without too much trouble. With more than a hundred of shipped-in
plugins, dozens more available through the Plugin Center and the possibility to
create your own plugins, Tulip provides a rich library with state-of-the-art algo-



TULIP 5 29

rithms adapted for both visualization and network analysis. Furthermore, Tulip
is completely free and open-source, and is provided under the LGPL license to
the community.

We have started to work on the next major release. The main goal is to make
Tulip usable both as a thin client, using a Web browser, and as a classical desk-
top application. To this end, a brand new rendering engine based on OpenGLES
is being developed as well as a new interaction library for the future Web version
of Tulip.

Acknowledgments

The authors gratefully thank Ludwig Fiolka and Charles Huet for their efforts
to make Tulip such a good software.

References

1. J. Abello, F. van Ham, and N. Krishnan. ASK-graphview: A large scale graph
visualization system. IEEE Trans. on Visualization and Computer Graphics,
12(5):669–676, 2006.

2. E. Adar. GUESS: A language and interface for graph exploration. In In CHI’06:
Proceedings of the SIGCHI conference on Human Factors in Computing Systems,
pages 791–800, 2006. http://graphexploration.cond.org/.

3. Oana Andrei, Maribel Fernandez, Hélène Kirchner, Guy Melançon, Olivier Namet,
and Bruno Pinaud. PORGY: Strategy-Driven Interactive Transformation of
Graphs. In Rachid Echahed, editor, 6th International Workshop on Computing
with Terms and Graphs (TERMGRAPH 2011), volume 48 of Electronic Proceed-
ings in Theoretical Computer Science (EPTCS), pages 54–68, Saarbrücken, Ger-
many, April 2011.

4. D. Archambault, T. Munzner, and D. Auber. Grouse: Feature-based, steerable
graph hierarchy exploration. In Proc. of Eurographics/IEEE VGTC Symp. on
Visualization (EuroVis ’07), pages 67–74, 2007.

5. D. Archambault, T. Munzner, and D. Auber. TopoLayout: Multilevel graph layout
by topological features. IEEE Trans. on Visualization and Computer Graphics,
13(2):305–317, March/April 2007.

6. D. Archambault, T. Munzner, and D. Auber. GrouseFlocks: Steerable exploration
of graph hierarchy space. IEEE Trans. on Visualization and Computer Graphics,
14(4):900–913, 2008.

7. D. Archambault, T. Munzner, and D. Auber. TugGraph: Path-preserving hierar-
chies for browsing proximity and paths in graphs. In Proc. of the 2nd IEEE Pacific
Visualization Symposium, pages 113–121, 2009.

8. D. Auber. Outils de visualisation de larges structures de donnes. Phd, University
Bordeaux I, 2002.

9. D. Auber. Tulip : A huge graph visualization framework. In P. Mutzel and
M. Jünger, editors,Graph Drawing Software, Mathematics and Visualization, pages
105–126. Springer-Verlag, 2003.

10. D. Auber, Y. Chiricota, F. Jourdan, and G. Melanon. Multiscale navigation of
small world networks. In IEEE Symposium on Information Visualisation, pages
75–81, Seattle, GA, USA, 2003. IEEE Computer Science Press.



30 Auber, Bourqui, Melançon, Pinaud et al.

11. David Auber. Tulip. In Petra Mutzel, Mickael Jnger, and Sebastian Leipert, ed-
itors, 9th International Symposium on Graph Drawing, GD 2001, volume 2265
of Lecture Notes in Computer Science, pages 335–337, Vienna, Austria, 2001.
Springer-Verlag.

12. David Auber, Maylis Delest, Jean-Philippe Domenger, and Serge Dulucq. Efficient
drawing of rna secondary structure. Journal of Graph Algorithms and Applications,
10(2):329–351, 2006.

13. David Auber and Fabien Jourdan. Interactive refinement of multi-scale network
clusterings. In IV ’05: Proceedings of the Ninth International Conference on In-
formation Visualisation, pages 703–709, Washington, DC, USA, 2005. IEEE Com-
puter Society.

14. David Auber and Patrick Mary. Mise en place dun mécanisme de plugins en c++.
Programmation sous Linux, 1(5):74–79, 2006.

15. David Auber, Noel Novelli, and Guy Melançon. Visually mining the datacube
using a pixel-oriented technique. In IV, pages 3–10, 2007.

16. Mathieu Bastian, Sebastien Heymann, Mathieu Jacomy, et al. Gephi: an open
source software for exploring and manipulating networks. ICWSM, 8:361–362,
2009.

17. Vladimir Batagelj and Andrej Mrvar. Pajek - analysis and visualization of large
networks. In Graph Drawing Software, volume 2265, pages 77–103, 2003.

18. Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. Fast unfolding of communities in large networks. Journal of Statistical Me-
chanics: Theory and Experiment, 2008(10):P10008, 2008.

19. Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-driven documents.
Visualization and Computer Graphics, IEEE Transactions on, 17(12):2301–2309,
2011.

20. Romain Bourqui and David Auber. Large quasi-tree drawing: A neighborhood
based approach. In IV ’09: Proceedings of the 13 International Conference on
Information Visualisation (IV’09), pages –, Washington, DC, USA, 2009. IEEE
Computer Society.

21. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
In Seventh International World-Wide Web Conference (WWW 1998), 1998.

22. Anke Busch, Andreas S. Richter, and Rolf Backofen. Intarna: efficient prediction
of bacterial srna targets incorporating target site accessibility and seed regions.
Bioinformatics, 24(24):2849–2856, 2008.

23. M. Chimani, C. Gutwenger, M. Jünger, K. Klein, P. Mutzel, and M. Schulz.
The open graph drawing framework. In Posters of the 15th International
Symp. on Graph Drawing (GD’07), 2007. http://www.ogdf.net/ogdf.php/ogdf:
publications (visited 18/06/2016).

24. Y. Chiricota, F. Jourdan, and G. Melanon. Software components capture using
graph clustering. In 11th IEEE International Workshop on Program Comprehen-
sion, pages 217–226, Portland, Oregon, 2003. IEEE / ACM.

25. Jonathan Dubois, Amine Ghozlane, Patricia Thebault, Isabelle Dutour, and Ro-
main Bourqui. Genome-wide detection of sRNA targets with rNAV. In Symposium
on Biological Data Visualization, pages 81 – 88, United States, October 2013.

26. J. Ellson, E. R. Gansner, E. Koutsofios, S. North, and G. Woodhull. Graphviz
- open source graph drawing tools. In The 9th International Symp. on Graph
Drawing (GD’01), volume 2265 of LNCS, pages 483–484, 2002.

27. Niklas Elmqvist and Jean-Daniel Fekete. Hierarchical aggregation for information
visualization: Overview, techniques, and design guidelines. IEEE Transactions on
Visualization and Computer Graphics, 16:439–454, 2010.



TULIP 5 31

28. J.-D. Fekete. The infovis toolkit. In The 10th IEEE Symp. on Information Visu-
alization (InfoVis ’04.), pages 167–174, 2004. http://ivtk.sourceforge.net/.

29. Stefan Hachul and Michael Jünger. Drawing large graphs with a potential-field-
based multilevel algorithm. In János Pach, editor, Graph Drawing, volume 3383
of Lecture Notes in Computer Science, pages 285–295. Springer Berlin Heidelberg,
2005.

30. Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network struc-
ture, dynamics, and function using NetworkX. In Proceedings of the 7th Python in
Science Conference (SciPy2008), pages 11–15, Pasadena, CA USA, August 2008.

31. J. Heer, S. K. Card, and J. A. Landay. Prefuse: a toolkit for interactive information
visualization. In In CHI’05: Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, pages 421–430, 2005. http://prefuse.org/.

32. Da Wei Huang, Brad T Sherman, and Richard A Lempicki. Systematic and in-
tegrative analysis of large gene lists using david bioinformatics resources. Nature
Protocols, 4:44–57, Dec 2008.

33. T. Kohonen. Self-organized formation of topologically correct feature maps. Bio-
logical Cybernetics, 43:59–69, 1982.

34. Jure Leskovec and Rok Sosič. SNAP: A general purpose network analysis and
graph mining library in C++. http://snap.stanford.edu/snap, June 2014.

35. K. Mehlhorn and S. Näher. LEDA: a platform for combinatorial and geometric
computing. Comm. of the ACM, 38(1):96–102, 1995.

36. T. Moscovich, F. Chevalier, N. Henry, E. Pietriga, and J. D. Fekete. Topology-
aware navigation in large networks. In SIGCHI Conference on Human Factors in
Computing Systems (2009), pages 2319–2328, 2009.

37. T. Munzner, F. Guimbretiére, S. Tasiran, L. Zhang, and Y. Zhou. TreeJuxtaposer:
Scalable tree comparison using focus+context with guaranteed visibility. Proc.
SIGGRAPH 2003, ACM Transactions on Graphics, 22(3):453–462, 2003.

38. Tamara Munzner. A nested process model for visualization design and validation.
IEEE Transactions on Visualization and Computer Graphics, 15(6):921–928, 2009.

39. Petra Mutzel, Carsten Gutwenger, Ralf Brockenauer, Sergej Fialko, Gunnar Klau,
Michael Krüger, Thomas Ziegler, Stefan Näher, David Alberts, Dirk Ambras,
Gunter Koch, Michael Jünger, Christoph Buchheim, and Sebastian Leipert. A
library of algorithms for graph drawing. In The 6th International Symp. on Graph
Drawing (GD’98), volume 1547 of LNCS, pages 456–457, 1998.

40. Andreas Noack. An energy model for visual graph clustering. In Graph Drawing,
pages 425–436. Springer, 2003.

41. W R Pearson and D J Lipman. Improved tools for biological sequence comparison.
Proceedings of the National Academy of Sciences of the United States of America,
85(8):2444–2448, Apr 1988.

42. Bruno Pinaud, Guy Melançon, and Jonathan Dubois. PORGY: A Visual
Graph Rewriting Environment for Complex Systems. Computer Graphics Forum,
31(3):1265–1274, 2012.

43. Marcus Raitner. Hgv: A library for hierarchies, graphs, and views. In 10th Inter-
national Symposium on Graph Drawing, GD 2002, pages 236–243, 2002.

44. Benjamin Renoust, Guy Melancon, and Tamara Munzner. Detangler: Visual ana-
lytics for multiplex networks. Computer Graphics Forum, 34(3):321–330, 2015.

45. Cline Rozenblat, Guy Melanon, Magali Amiel, David Auber, Carine Discazeaux,
Alain LHostis, Patrice Langlois, and Sbastien Larribe. Worldwide multi-level net-
works of cities emerging from air traffic (2000). In International Geographical
Union IGU 2006 Cities of Tomorrow, Santiago de Compostela, Spain, 2006.



32 Auber, Bourqui, Melançon, Pinaud et al.

46. Arnaud Sallaberry, Faraz Zaidi, and Guy Melançon. Model for Generating Artificial
Social Networks having Community Structures with Small World and Scale Free
Properties. Social Network Analysis and Mining, 3(597-609), January 2013.

47. W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit An Object-
Oriented Approach To 3D Graphics. Kitware, Inc., 4 edition, 2006.

48. P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, Nada
Amin, Benno Schwikowski, and Trey Ideker. Cytoscape: a software environment
for integrated models of biomolecular interaction networks. Genome research,
13(11):2498–504, 2003.

49. B. Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In VL’96: Proc. of the 1996 IEEE Symp. on Visual Languages,
pages 336–344, 1996.

50. Patricia Thebault, Romain Bourqui, Benchimol William, Christine Gaspin, Pascal
Sirand-Pugnet, Raluca Uricaru, and Isabelle Dutour. Advantages of mixing bioin-
formatics and visualization approaches for analyzing sRNA-mediated regulatory
bacterial networks. Briefings in Bioinformatics, pages 1–11, December 2014.

51. C. Tominskia, J. Abello, and H. Schumann. CGV – an interactive graph visual-
ization system. Computers & Graphics, 33(6):660–678, 2009.

52. Jason Vallet, Hélène Kirchner, Bruno Pinaud, and Guy Melançon. A Visual An-
alytics Approach to Compare Propagation Models in Social Networks. In Arend
Rensink and Eduardo Zambon, editors, Graphs as Models, volume 181, London,
United Kingdom, April 2015. arXiv:1504.02448.

53. Matthew O. Ward, Georges Grinstein, and Daniel Keim. Interactive Data Vi-
sualization: Foundations, Techniques and Applications. A.K. Peters/CRC Press,
2015.

54. B. Wylie and J. Baumes. A unified toolkit for information and scientific visualiza-
tion. Visualization and Data Analysis 2009, 7243(1):72430H, 2009.


