
HAL Id: hal-01654514
https://hal.science/hal-01654514v1

Submitted on 4 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Computation of Bilinear Approximations and
Volterra Models of Nonlinear Systems

Phillip Mark Seymour Burt, José Henrique de Morais Goulart

To cite this version:
Phillip Mark Seymour Burt, José Henrique de Morais Goulart. Efficient Computation of Bilinear
Approximations and Volterra Models of Nonlinear Systems. IEEE Transactions on Signal Processing,
2018, 66 (3), pp.804-816. �10.1109/TSP.2017.2777391�. �hal-01654514�

https://hal.science/hal-01654514v1
https://hal.archives-ouvertes.fr

AUTHOR PREPRINT 1

Efficient Computation of Bilinear Approximations

and Volterra Models of Nonlinear Systems
Phillip Mark Seymour Burt, Member, IEEE, and José Henrique de Morais Goulart

Abstract—Bilinear and Volterra models are important when
dealing with nonlinear systems which arise in several signal
processing applications. The former can approximate a large
class of systems affine in the input with relatively low parametric
complexity. Such an approximate bilinear model can be derived
by means of Carleman bilinearization (CB). Then, a Volterra
model can be computed from it, having the advantage of being
linear in the parameters, but often involving a large number of
them. In this paper we develop efficient routines for CB and
for computing the Volterra kernels of a bilinear system. We
argue that they are useful for studying a class of systems for
which a reference physical model is known. In particular, the so-
derived kernels allow assessing the suitability of a Volterra filter
and of other alternatives for modeling the system of interest.
Techniques exploiting sparsity and low rank of involved matrices
are proposed for alleviating computing cost. Several examples are
given along the paper to illustrate their use, based on existing
physical models of loudspeakers.

Index Terms—Nonlinear processing, Volterra filter, Carleman
Bilinearization, Loudspeaker modeling

I. INTRODUCTION

THE modeling and identification of nonlinear systems has

historically been a well-studied subject [1]–[11], to which

many contributions have also been given recently [12]–[17].

In signal processing, the interest in using nonlinear instead of

linear models comes frequently from their capability of better

representing certain physical systems that underlie problems

such as acoustic echo cancellation [18], spectral regrowth

analysis [19], equalization [20], active noise control [14],

[21] and linearization [22]–[24]. This is also true in other

areas, such as estimation [25], industrial plant control [15],

power systems [26] and sensoring [27]. Nonlinear models are

often decisive to attain performance levels not met with linear

models—as, for instance, in acoustic echo cancellation for a

miniaturized loudspeaker with high power input [18].

P. M. S. Burt is with Escola Politécnica, University of São Paulo, CEP
05508-010 São Paulo, SP, Brazil (email: phillip@lcs.poli.usp.br).

J. H. de M. Goulart is with Univ. Grenoble Alpes, CNRS, GIPSA-lab,
F-38000 Grenoble, France (email: jose-henrique.de-morais-goulart@gipsa-
lab.fr). During his Ph.D., he was supported by CNPq-Brazil, under the
program Ciência sem Fronteiras. He is now supported by the European
Research Council under the European Programme FP7/2007-2013, Grant
AdG-2013-320594 “DECODA.”

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. The material consists of
report [65]. Contact phillip@lcs.poli.usp.br for further questions.

c© 2017 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

In many cases, a nonlinear continuous-time state-space

description of a component that is central to the problem in

question can be obtained from physical considerations. We

refer to it then as a physical model (PM). For instance, PMs

of loudspeakers [23], high-frequency transistors [28], [29],

ADC sampling gates [30], optical devices [31], power systems

[26], MEMS sensors [27], robotic structures [32] and chemical

reactors [33] can be mentioned. Only typical values of the PM

parameters may be known initially, so, most likely, they have

to be refined using an estimation procedure.

More generally, a nonlinear system can be represented by a

Volterra model, which is based on the Volterra series functional

expansion [2], [4]–[7], [11]. Since the seminal work of Wiener

[1] the Volterra model has been applied to many different

problems [18]–[22], [34], [35] more conveniently than a state-

space model. In particular, it is quite simple to pass from

time domain to frequency domain (see Section II-A) and from

continuous-time to discrete-time (see Section V-B). Following

time discretization and truncation of order and memory length,

simulations can be carried out efficiently, especially when

varying only the scale of a given input signal (see Section

VI-D). Also, the output is linear in the parameters, which

makes their estimation easier, and the model is always stable.

On the negative side, the parameter count grows rapidly with

the chosen order and memory length.

For a nonlinear system belonging to a large class (of the so

called linear-analytic systems), expressions can be obtained

for the Volterra model in terms of the Taylor expansions of

its state-space functions [4], [9]. Taking a linear-analytic PM

with typical parameters, we term as a reference Volterra model

the Volterra model given by those expressions.

As discussed in more detail later, such a reference model can

be used, for instance, 1) to realistically assess the structural re-

quirements of a Volterra or related approach to signal process-

ing problems such as echo cancellation and linearization, 2)

as an initial point for parameter estimation and as a tool in the

validation and evaluation of estimation algorithms themselves,

and 3) to efficiently perform simulations, nonlinear distortion

calculations, and fault diagnosis of systems.

Regarding the first point in particular, even when the number

of parameters is too large for the real-time use of the model, it

can aid in the choice of appropriate structural characteristics

(as, e.g., memory length and order) for other (possibly less

general) classes of models which are not necessarily linear

in their parameters) and may also supply suitable initial con-

ditions for their adaptation. This strategy can be applied, for

instance, to conventional block-oriented structures (BOS) [16],

BOS based on multilinear algebra concepts [13], [15], [36],

AUTHOR PREPRINT 2

sparse-interpolated VFs1 [37], VFs with kernels containing

only coefficients within some defined distance to their main

diagonals [17] and even NARMAX models [7, Sec. 3.4].

In general, any nonlinear model whose relationship with the

Volterra model is well understood can be assessed.

Another way of modeling a nonlinear system is by means

of a state-space bilinear approximation. Bilinear systems, in

particular their stability, are better understood than general

nonlinear systems [4], [6], [38]–[43]. Also, their discretization

in time is similar to that of linear systems [41] and their identi-

fication is well-studied [44]–[47]. After time discretization, the

possible advantages over the Volterra approach are the smaller

number of parameters and realizable infinite memory.

Carleman bilinearization (CB) [4], [9], [40], [41], [48] is

a widely applied method for approximating a linear-analytic

system by a bilinear system having exactly the same associated

Volterra model up to a prescribed order [25], [26], [49], [50].

In fact, because of this property, CB is also used as the first

step in obtaining the Volterra model of a linear-analytic system

[4], [9], [48]. Applying CB to a physical model with typical

parameters provides a reference bilinear model, most of its

uses being analogous to those of a reference Volterra model.

An otherwise specific use, which is discussed later, would be

as an intermediate step to lower-order bilinear approximations

of a nonlinear system.

Although CB and the formula for the Volterra kernels of

a bilinear system are well known, the actual computation of

such bilinearization and kernels can be very computationally

intensive and has received little attention in the literature. In

this paper, we carry out an analysis of such computations and

develop a set of efficient routines that greatly reduce their

load. For concreteness, implementation aspects are discussed

considering the use of Matlab and C routines.

We emphasize that this approach relies on the key assump-

tion that a PM of the system of interest is available, which,

however, does not imply that its direct use for signal process-

ing purposes is convenient (see Section II-C). The approach

also relies on the assumption that a truncated Volterra series

representation of the model is desired for practical purposes.

As discussed above, these include simulation and nonlinear

distortion analysis, as well as the development of Volterra-

related models having lower computational complexity.

To the best of our knowledge, [12] and this work are

the first ones to explicitly describe efficient routines for CB

implementation and for kernel computation of the derived

bilinear model. In [12] we addressed mainly the CB step

and computed the kernels via the frequency domain. The

Taylor expansion prior to CB was not addressed in that work.

Here, we show that all three steps are important regarding

computational complexity and develop more efficient compu-

tational procedures for each one. More specifically, the Taylor

expansion uses literal parameters and exploits sparsity, the CB

exploits sparsity and kernel computation exploits recursiveness

in the time domain and a low-rank decomposition. As part

of the extensive numerical results we present, it follows that,

1In the context of signal processing, the term Volterra filter (VF) is often
used in connection with the discrete-time version of the truncated Volterra
series.

in relation to [12], computing a bilinear model can be more

than 30 times faster (see Section III-H) and computing kernels

can be more than 300 times faster (see Section IV-E). The

numerical computation of kernels from state-space equations

was also addressed in [51], [52] but relying on a more complex

and less flexible method, as discussed in Section IV-E.

This work is organized as follows. In Section II, Volterra

and state-space models are reviewed, together with Carleman

bilinearization (CB). From Sections III-B to III-G, techniques

for the efficient computation of CB are presented and in

Section III-H overall results are compared. In Sections IV

and V, an efficient computation of the Volterra kernels of

a bilinear system is presented and their related discrete-time

kernels are obtained. Section VI discusses application in signal

processing. Finally, Section VII presents our conclusions.

Notational conventions: We denote scalars by italic letters

(p, P), vectors by boldface lowercase letters (x,w), matrices

by boldface uppercase letters (F,G), tuples by boldface italic

letters, as k , (k1, . . . , kp), with kT = (k1T, . . . , kpT), and

p−dimensional volume differentials as dτ , dτ1 . . . dτp. 0

stands either for the null vector or for the null matrix (which is

always clear from the context) and In denotes the n×n identity

matrix. The operator vec(·) joins the transposed columns of

its matrix argument, yielding a row vector. The Kronecker and

the Hadamard products are denoted by ⊗ and ⊙, respectively.

For f differentiable with respect to x1, . . . , xm, we define

[x1 . . . xm]∂f , [∂f
∂x1

. . . ∂f
∂xm

]. Though not usual, this allows

a considerable gain of space with little loss of intelligibility.

II. CARLEMAN BILINEARIZATION FOR VOLTERRA

MODELING

A. The Volterra model

The Volterra representation of a causal continuous-time

system consists of an input/output relation of the form [2]

y(t) =

∞
∑

p=1

yp(t), yp(t) =

∫

R
p

+

hp(τ)

p
∏

i=1

u(t− τi)dτ , (1)

in which yp(t) results from the multidimensional convolution

of the input u(t) with the pth-order Volterra kernel hp(τ).
For uniqueness and without loss of generality, hp(τ) can be

assumed triangular, i.e. hp(τ) = 0 if not τ1 ≤ . . . ≤ τp, or

symmetric, i.e. invariant under permutation of τ1, . . . , τp [2],

[4], [6]. The Volterra kernels may be seen as generalizations

of the impulse response of a linear time-invariant system

and constitute a fundamental description of the nonlinear

dynamics of a system. Their frequency-domain counterparts,

known as generalized frequency response functions (GFRFs),

are obtained via the multidimensional Fourier transform

Hp(jΩ) =

∫

R
p

+

h(s)
p (τ)e−j(Ω1τ1+...+Ωpτp)dτ , (2)

where h
(s)
p are the symmetrical kernels. GFRFs are convenient,

for instance, to assess typical nonlinear phenomena such as

harmonic and intermodulation distortion [53].

AUTHOR PREPRINT 3

In digital signal processing, the Volterra filter (VF) is a

discrete-time truncated (to order P and memory lengths Np)

version of (1):

y(n) =

P
∑

p=1

Np−1
∑

k1=0

. . .

Np−1
∑

kp=kp−1

vp(k)

p
∏

i=1

u(n− ki), (3)

where the discrete-time kernels vp are in the triangular form,

thereby requiring the minimal number of parameters [6]. The

GFRFs are analogous to (2) and are obtained efficiently with

a multidimensional fast Fourier transform.

The VF is a finite sum and thus always stable and is

also linear in the model parameters vp(k), favoring their

adaptation by standard least-squares or least mean squares

(LMS) algorithms. In addition, the generality of VFs can be

shown either by applying the Stone-Weierstrass theorem to the

approximation of input/output mappings with finite memory

[14], or by relating them to discrete-time systems with fading

memory [11]. On the other hand, a serious drawback is that

the number of parameters
∑P

p=1

(

Np+p−1
p

)

grows very rapidly

with P or Np when P > 1 and Np > 1.

B. Linear-analytic and bilinear systems

The large class of linear-analytic (nonlinear) systems [4],

[9], [40], [42], [54] has analytic state-space functions in which

the input enters linearly (or more precisely, in an affine

manner). For single input and output and x(t) ∈ R
m, this

has the form

x′(t) = f(x(t)) + g(x(t))u(t), (4)

y(t) = λ(x(t)), (5)

where f = [f1 . . . fm]T , with fi(x) : R
m → R, is analytic in

some open region X ⊂ R
m, and likewise for g and λ.

A more tractable subset of such class is that of bilinear sys-

tems [4], [6], [38]–[43], for which f(x) = Fx, g(x) = Gx+b

and λ(x) = cTx. In particular, under mild assumptions their

triangular Volterra kernels are given by (e.g., [4, Sec. 3.1])

hp(τ) = cT eFτ1GeF(τ2−τ1) . . .GeF(τp−τp−1)b. (6)

C. Problems with nonlinear state-space models in practice

Physical models in a nonlinear state-space form such as (4)-

(5) are often simple and have small dimension m. However,

as discussed below, the direct use of such models does not

necessarily imply a low computation complexity in signal

processing procedures. This motivates computing Volterra (and

Volterra-related) models and bilinear approximations from

those physical models and possibly using them instead in

signal processing procedures.

1) Discrete-time implementation or simulation: To the best

of our knowledge, differently from the linear case, there is no

general solution to the problem of obtaining a discrete-time

state-space equivalent of (4)-(5) that gives yd(n) = y(nT)
for a prescribed T . [7], [55] aim at obtaining a discrete-time

state-space model whose kernels up to a prescribed order P
are sampled versions of the continuous-time kernels. However,

stability of the obtained discrete-time model is not assured and

the development is limited to P = 2 and to the second-degree

polynomial case in which fi(x) =
∑m

j=1

∑m
k=1 ai,j,kxjxk +

∑m
j=1 bi,jxj . Even in this simple case, the development (based

on partial fraction expansions of generalized transfer func-

tions) is quite laborious. Furthermore, it is unclear if an

extension to higher-degree polynomial functions or to higher

values of P is feasible. Otherwise, an approximate discrete-

time implementation or simulation of (4)-(5) can be obtained

by numerical integration in a relatively straightforward manner

[56], [57] . However, even for simple continuous-time models,

computational complexity can be much higher than what might

be expected. So-called explicit integration methods are not

assuredly stable and may require a very small integration step

for stability and accuracy, the output being then decimated to

the desired sampling rate. On the other hand, implicit methods

of first and second orders are stable but require solving a

nonlinear system of equations at each step and may still require

a small step for accuracy.

2) Frequency domain analysis: In applications, one is of-

ten concerned with the spectral analysis of some nonlinear

system. For many systems of practical relevance, this task

can be performed by inspecting GFRFs, since they provide a

complete picture of their spectral behaviour. This is the case,

in particular, for linear-analytic systems. However, differently

from the linear case, the GFRFs do not follow directly from

the state-space model. Instead, their computation must resort to

some more involved method such as the growing exponential

approach [4] or the generalized harmonic balance method [7].

3) Identification: The complexity of identifying nonlinear

state-space models can be assessed in [58] and the references

therein. The authors employ the Expectation Maximization

(EM) algorithm with a particle smoother instead of a standard

linear smoother and exemplify its performance for a nonlinear

stochastic model with dimension m = 1 and 6 parameters.

D. Carleman bilinearization

Carleman bilinearization (CB) [4], [9], [40], [41], [48]

provides a bilinear approximation of a linear-analytic system.

Though other techniques exist for this purpose, CB is effec-

tively a constructive method, differently from [59]2.

In the following we drop the time argument in (4)–(5) for

notational simplicity and define xp = x ⊗ xp−1 for p > 0
and x0 = 1, which gives x1 = x = [x1 x2 . . . xm]T , x2 =
[x2

1 x1x2 . . . x1xm x2x1 . . . x2xm . . . x2
m]T and so forth. From

(4) we can then write

x′ P
=

P
∑

p=1

F1,pxp +

P−1
∑

p=0

G1,pxpu, (7)

where
P
= denotes equality up to the P th-order terms of Taylor

expansions (with respect to x1, . . . , xm and u) around the

origin and F1,p and G1,p ∈ R
m×mp

contain the coefficients of

the Taylor expansions with respect to x1, . . . , xm of f(x) and

g(x), respectively. With no loss of generality [4], we assume

2Computing the bilinear approximation of [59] requires the family of
solutions to x′ = f(x) and x′ = g(x).

AUTHOR PREPRINT 4

that the system is initially at rest (i.e, x(0) = 0) and that the

solution for u(t) ≡ 0 is x(t) ≡ 0. Thus, F1,0 ≡ 0.

Now, from (7) and the recursion (x⊗ xp−1)
′
= x′⊗xp−1+

x⊗x′
p−1 we can write for q ≥ 2 the differential equations [4]

x′
q

P
=

P−q+1
∑

p=1

Fq,p+q−1xp+q−1 +

P−q
∑

p=0

Gq,p+q−1xp+q−1u (8)

where, using Iml = Im⊗ Iml−1 = Iml−1 ⊗ Iml (with I0 = 1),

Fq,p can be expressed as

Fq,p =

q−1
∑

l=0

Iml ⊗ F1,p−q+1 ⊗ Imq−l−1 (9)

and Gq,p is given by an identical formula.

From (7), (8) and (5) and with the extended state vector

x⊗ = [xT xT
2 xT

3 . . . xT
P]

T ∈ R
MP , (10)

where MP =
∑P

p=1 m
p, we can write

x′
⊗

P
= Fx⊗ +Gx⊗u+ bu, (11)

where b = [GT
1,0 0 . . . 0]T and

F =

F1,1 F1,2 . . . F1,P

0 F2,2 . . . F2,P

..

.
..
.

. . .
..
.

0 0 . . . FP,P

,G =

G1,1 G1,2 . . . G1,P−1 0

G2,1 G2,2 . . . G2,P−1 0

0 G3,2 . . . G3,P−1 0

...
...

. . .
...

...
0 0 . . . GP,P−1 0

.

(12)

With c containing the coeffcients of the P th order Taylor

expansion of (5), we define now the bilinear system

v′(t) = Fv(t) +Gv(t)u(t) + bu(t),

y(t) = cTv(t),

which is an approximation of the original system (4)–(5).

Importantly, its associated Volterra kernels of orders up to P
are identical to those associated with (4)–(5) [4], [60].

III. EFFICIENT CARLEMAN BILINEARIZATION

In this section, we develop computational techniques for the

efficient implementation of Carleman bilinearization, taking

practical aspects into account3. Of particular interest is the

possibility of performing the computation for multiple sets of

PM parameter values (termed mPM in the following) without

having to repeat all steps. This can be used, for instance, for

measuring sensitivities in relation to PM parameters.

The performance of the proposed techniques will be ex-

emplified in the course of the presentation with the setups

described in Section III-A. The reported execution times are

for a 2.67 GHz Intel Core I5 desktop computer with 16 GB

of RAM.

3URL of the developed package: [61].

✲D(z) ✲

u(n)

D/A

u(t)
✲Hr(s) ✲ Vo[·]

u(t)

V [·]

✲

y(t)
Ha(s) ✲

y(t)

A/D ✲

y(n)

Fig. 1. Overall discrete-time setup.

A. Setup examples

Two setups are considered throughout the paper as ex-

amples: (A), the cascade of a zero-order hold (ZOH) D/A

converter, a nonlinear loudspeaker modeled by the PM given

in [62] and an A/D converter; and (B), the cascade of an ideal

impulsive D/A converter, a 4th-order low-pass Butterworth

reconstruction filter, same loudspeaker, an anti-aliasing filter

identical to the reconstruction filter and an A/D converter.

Both setups are special cases of the general structure shown

in Fig. 1, composed of the discrete-time filter D(z), the ideal

impulsive D/A converter, the overall system V and the A/D

converter. In its turn, V is the cascade of the reconstruction

filter Hr, the nonlinear system Vo and the anti-aliasing filter

Ha. As discussed in Section V-B, it is samples of the Volterra

kernels of V that need to be computed.

In setup (A), D(z) = 1−z−1, Hr(s) = 1/s and Ha(s) ≡ 1.

As follows from the discussion in Section V-C, the combi-

nation of such D(z) and Hr with the ideal D/A converter

is equivalent to a ZOH D/A converter and is convenient for

calculating the discrete-time kernels of the setup. Vo is the

aforementioned loudspeaker model, which has a state-space

vector of dimension 3. With Hr and Ha then, the dimension

of the state-space vector x(t) of V is m = 4. In setup (B), Vo

is the same, D(z) ≡ 1, and Hr(s) and Ha(s) are 4th-order

filters. Therefore, the dimension of x(t) is m = 11.

We note that the PM adopted in our examples is capable of

closely reproducing the output (cone excursion) of real-world

loudspeakers [23], [62].

B. Efficient Taylor expansion with literal PM parameters

We start with the computation of F1,p and G1,p in (7).

Let the Jacobian matrix of a function φ(x) : Rm → R
n be

denoted by Jφ. In particular, for fi(x) : R
m → R in (4), Jfi =

[x1 . . . xm]∂fi . Defining ∇1 = Jfi , the ith row of F1,1 is

fi,1 = ∇1(0) and, thus, the ith row of F1,2 is fi,2 = ∇2(0)/2,

with ∇2 = vec(J∇1
). For instance, with m = 3,

∇2 = vec

x2
1 x1x2 x1x3

x1x2 x2
2 x2x3

x1x3 x2x3 x2
3

∂fi

=
[

x2
1 x1x2 x1x3 x1x2 x2

2 x2x3 . . . x2
3

]

∂fi
.

It is easy to verify that this can be generalized as follows:

Algorithm 1: The ith rows fi,p of the Taylor expansion

coefficient blocks F1,p are recursively computed by

∇p = vec(J∇p−1
), p = 1, 2, . . . , P, ∇0 = fi(x)

fi,p =
1

p!
∇p(0),

and likewise for G1,p. �

AUTHOR PREPRINT 5

TABLE I
EXECUTION TIMES (SEC) OF TAYLOR EXPANSION.

Setup P = 2 P = 3 P = 4 P = 5

literal expansion / numerical evaluation

(A) 0.15 / 0.0041 0.31 / 0.012 0.68 / 0.036 1.5 / 0.11

(B) 0.35 / 0.015 1.1 / 0.11 4.5 / 1.1 31 / 13

numerical expansion

(A) 0.083 0.18 0.46 1.2

(B) 0.20 0.65 3.8 33

TABLE II
FRACTION OF NONZERO COMPONENTS OF {F1,p}.

Setup P = 2 P = 3 P = 4 P = 5

(A) 0.23 0.12 0.055 0.023

(B) 0.044 5.9× 10−3 8.0× 10−4 1.0× 10−4

The algorithm above can be automated quite directly with

any symbolic computation toolbox that provides a function

to compute the Jacobian. We implemented the algorithm in

Matlab, using the jacobian routine. The input functions fi
are of symbolic type, with literal (as opposed to numerical)

PM parameters. It turns out that a large speed increase follows

from converting ∇p from symbolic to string type and com-

puting ∇p(0) in string type with the aid of a MEX function

written in C, which replaces the literal variables xi by zero.

For instance, for setup (B) described above and P = 3 speed

was increased by a factor of 13. The evaluation of ∇p(0)/p!
with numerical PM parameters provides then the outputs fi,p.

Execution times for setups (A) and (B) are in the upper part

of Table I4. In most cases, the final numerical evaluation step

is more than 10 times faster than the previous literal Taylor

expansion step. This is very convenient in the mPM context

(see the beginning of this section), as only the final step needs

to be repeated. Otherwise, it can be somewhat faster to start

off with numerical values of the parameters instead of literal

values, as can be seen in the lower part of Table I.

C. Using sparsity in Taylor expansion

When fi(x) and gi(x) depend only on a small fraction

of the state vector elements xi, many of the expansion co-

efficients are zero so F1,p and G1,p become quite sparse as

p grows, which is exemplified in Table II. Sparsity can be

used to speed up the numerical evaluation step, avoiding the

unnecessary evaluation of null elements. For this, ∇p(0) is

converted to a sparse representation by a MEX function. The

resulting execution times are in Table III, which compared to

Table I show a 168 times faster numerical evaluation step for

setup (B) and P = 5, while the literal expansion step was not

excessively delayed by the additional sparse conversion.

D. Taylor expansion with non-redundant form

There is redundancy in (7) since all elements xj1xj2 . . . xjp

of xp associated with permutations of a given {j1, j2, . . . , jp}

4In the interest of reproducibility, scripts for all results are in [61].

TABLE III
EXECUTION TIMES (SEC) OF LITERAL TAYLOR EXPANSION/NUMERICAL

EVALUATION, USING SPARSITY.

Setup P = 2 P = 3 P = 4 P = 5

(A) 0.11 / 0.0027 0.28 / 0.0073 0.66 / 0.022 1.5 / 0.058

(B) 0.32 / 0.0044 1.0 / 0.011 4.5 / 0.031 44 / 0.077

could be added together. Carrying this out leads to a non-

redundant alternative to (7), in which each x̄p has the minimal

number of elements m̄p =
(

m+p−1
p

)

. For instance, for m = 3
and p = 2,

x2 = [x2
1 x1x2 x1x3 x2x1 x2

2 x2x3 x3x1 x3x2 x2
3]

T

x̄2 = [x2
1 x1x2 x1x3 x2

2 x2x3 x2
3]

T .

We note that m̄p grows much more slowly with m and p
than mp, which is desirable for implementation. However, the

recursiveness of Algorithm 1 would seemingly be lost. It is

surprising then that roughly the same algorithm can be applied

here to the non-redundant form of the expansion

x′ P
=

P
∑

p=1

F̄1,px̄p +

P−1
∑

p=0

Ḡ1,px̄pu. (13)

Indeed, the ith row of F̄1,2 is f̄i,2 = σ2⊙∇2(0)/2, for a certain

σ2 and with ∇2 = vec(J∇1
) retaining from the ith column

of J∇1
only the elements without derivatives with respect to

x1, ..., xi−1. For instance, with m = 3,

∇2 = vec

x2
1 x1x2 x1x3

x1x2 x2
2 x2x3

x1x3 x2x3 x2
3

∂f

=
[

x2
1 x1x2 x1x3 x2

2 x2x3 x2
3

]

∂f
,

and σ2 = [1 2 2 1 2 1] compensates for the discarded elements.

The number of them to retain in the ith column of J∇p−1
is

Np,i =
m
∑

l=i

Np−1,l, N1,i = 1, i = 1, 2, . . .m,

Generalizing, we have:

Algorithm 2: The ith rows f̄i,p of F̄1,p in the non-redundant

Taylor expansion are recursively computed by

∇p = vec(J∇p−1
), p = 1, 2, . . . , P, ∇0 = fi(x)

f̄i,p =
1

p!
σp ⊙∇p(0),

and likewise for Ḡ1,p. �

Implementation is similar to that discussed in Section III-B

but now with a MEX vec(.) function operating on a string type

input. Its string type output is evaluated as∇p(0) (as discussed

in Section III-B), and then converted back to symbolic type

for the recursion in p. The results are in Table IV and, against

those in Table I, show that cutting redundancy pays off: for

instance, for setup (B) (m = 11) and P = 5, the execution

time is reduced by a factor of 39, closely following that of

AUTHOR PREPRINT 6

TABLE IV
EXECUTION TIMES (SEC) OF NON-REDUNDANT TAYLOR EXPANSION.

Setup P = 2 P = 3 P = 4 P = 5

literal expansion / numerical evaluation

(A) 0.15 / 0.0036 0.29 / 0.0063 0.53 / 0.011 0.85/ 0.019

(B) 0.35 / 0.010 0.86 / 0.033 2.6 / 0.11 6.8 / 0.33

numerical expansion

(A) 0.10 0.21 0.45 1.0

(B) 0.24 0.51 1.3 3.1

TABLE V
EXECUTION TIMES (SEC) OF LITERAL NON-REDUNDANT TAYLOR

EXPANSION/NUMERICAL EVALUATION, USING SPARSITY.

Setup P = 2 P = 3 P = 4 P = 5

(A) 0.14 / 0.0023 0.30 / 0.0038 0.53 / 0.0066 0.84 / 0.012

(B) 0.33 / 0.0040 0.75 / 0.0061 2.5 / 0.010 6.6/ 0.017

the terms of the expansion, which is
∑P

p=1 m
p/

∑P
p=1 m̄p =

177155/4367 = 41 for m = 11 and P = 5.

As in Section III-C, sparse representations of F̄1,p and Ḡ1,p

make their numerical evaluation faster. Results are in Table V,

showing, for instance, a 19 times gain for setup (B) and P = 5
against that of Table IV.

E. Direct Carleman bilinearization

The Taylor expansion (in redundant form) of Section III-B

provides blocks F1,p and G1,p in (12). The remaining Fq,p

and Gq,p are then obtained from (9). No actual multiplications

are required, since for any A ∈ R
q×r, Iml⊗A yields a block-

diagonal matrix where A appears ml times, while A ⊗ Iml

is made of qr blocks of size ml × ml, each one given by

the product of an element of A by Il. As to additions, Fq,p

requires q−1 summations of mp+q−element matrices, totaling

(to obtain F and G)

A(m,P) =
P
∑

q=2

(q − 1)

P
∑

j=q

mp+j +
P−1
∑

j=q−1

mp+j

 (14)

additions. This is exemplified in Table VI, along with the

execution times of our Matlab implementation of the proce-

dure. The blockwise computation of F and G allows quite

vectorized and efficient code5. This can be assessed by noting,

for instance, that the 61 ms required for setup (A) and P = 5,

which involves 6.7 × 106 additions, is of the same order

than the 22 ms required in our environment to add two

6.7× 106−element vectors.

Comparing Tables VI and I, we see that direct CB dominates

the total execution time as m and P grow, and especially so

in the mPM case, where only the numerical evaluation step

of the literal Taylor expansion would be carried out for each

parameter set. Another problem is the memory requirement of

5We note that this direct CB was not implemented in [12].

TABLE VI
NUMBER OF ADDITIONSA (TOP) AND EXECUTION TIME IN SECONDS

(BOTTOM) OF DIRECT CARLEMAN BILINEARIZATION.

Setup P = 2 P = 3 P = 4 P = 5

(A) 3.2× 102 1.2× 104 3.0× 105 6.7× 106

2.4× 10−4 6.6× 10−4 4.5× 10−3 6.1× 10−2

(B) 1.6× 104 4.1× 106 7.5× 108 1.2× 1011

5.2× 10−4 5.8× 10−2 7.9 1.3× 103†

†: estimate

F and G, which have M2
P = (

∑P
p=1 m

p)2 elements6. Both

problems are addressed in the following.

F. Non-redundant Carleman bilinearization

In order to reduce computational and memory requirements,

we now apply to the CB task the same non-redundancy and

sparsity ideas we applied to the Taylor expansion7.

A more efficient CB should obtain F̄ and Ḡ from the non-

redundant expansion (13) such that, analogously to (11),

x̄′
⊗

P
= F̄x̄⊗ + Ḡx̄⊗u+ bu, (15)

where

x̄⊗ = [xT x̄T
2 x̄T

3 . . . x̄T
P]

T ∈ R
M̄P . (16)

An initial obstacle to this is that, differently from the direct

bilinearization, x̄p 6= x⊗x̄p−1 and, therefore, F̄ and Ḡ cannot

be calculated in blockwise fashion as in (9) and (12).

Nonetheless, a recursive row-wise calculation of these ma-

trices, starting from (13), can be carried out as follows. The

jth row of x̄⊗ in (15) has the form

(xj1 . . . xji)
′ P
= f̄j x̄⊗ + ḡj x̄⊗u+ bju, (17)

where i ≤ P , 1 ≤ j1 ≤ . . . ≤ ji ≤ m and f̄j and ḡj are,

respectively, the jth rows of F̄ and Ḡ. Using the product rule

of derivation, the left hand-side of (17) satisfies

(xj1 . . . xji)
′ = xjr+1

. . . xji × (xj1 . . . xjr)
′

+ xj1 . . . xjr × (xjr+1
. . . xji)

′, (18)

i > 1 and r < i, and where (xj1 . . . xjr)
′ and (xjr+1

. . . xji)
′

correspond to previous rows of x̄′
⊗, say the kth and the lth

row, respectively. For the kth row, for instance, we would have

already determined f̄k and ḡk such that

(xj1 . . . xjr)
′ P
= f̄kx̄⊗ + ḡkx̄⊗u+ bku. (19)

In particular, if k ≤ m (or l ≤ m), then the kth (lth) row of

x̄′
⊗ is given by the Taylor expansion (13), which provides the

starting point of the recursion.

Now, using (19), the term (xj1 . . . xjr)
′xjr+1

. . . xji in (18)

can be written as (f̄kx̄⊗ + ḡkx̄⊗u + bku)xjr+1
. . . xji . This

corresponds to applying to each element of row vectors f̄k

6In particular, for m = 11 and P = 5 the memory requirement largely
exceeded the 16 GB of our system and thus the corresponding execution time
in Table VI was estimated by the time measured for setup (A) and P = 5
multiplied by A(11, 5)/A(4, 5).

7The redundancy of the direct CB is already pointed out in [4].

AUTHOR PREPRINT 7

TABLE VII
NON-REDUNDANT CARLEMAN BILINEARIZATION OF ORDER P .

1: F(1 : m, :)← [0m×1 F1,1 . . . F1,P]
2: G(1 : m, :)← [G1,0 G1,1 . . . G1,P−1 0m×m̄P

]
3: for p = 2 to P do
4: r ← floor(p/2)
5: for j = M̄p − m̄p + 1 to M̄p do
6: (j1, j2, . . . , jp)← I−1(j)
7: k ← I(j1, . . . , jr)
8: l← I(jr+1, . . . , jp)
9: fj ← l × fk + k × fl

10: gj ← l × gk + k × gl

11: end for
12: end for
13: G← [G(:, 2 : M̄P−1 + 1) 0M̄P ×m̄P

]

14: F← F(:, 2 : M̄P)

TABLE VIII
NUMBER OF ADDITIONS Ā (TOP) AND EXECUTION TIME IN SECONDS

(BOTTOM) OF NON-REDUNDANT CARLEMAN BILINEARIZATION.

Setup P = 2 P = 3 P = 4 P = 5

(A) 1.8× 102 1.4× 103 6.7× 103 2.3× 104

1.4× 10−3 3.9× 10−3 1.2× 10−2 1.7× 10−2

(B) 5.8× 103 1.5× 105 2.3× 106 2.5× 107

8.3× 10−3 5.9× 10−2 3.6× 10−1 2.4

and ḡk a certain shift that depends on (jr+1, . . . , ji) and

on the ordering of x̄⊗ implied by (16). As multi-index

(jr+1, . . . , ji) is associated here with the lth row of x⊗, we

will indicate this shift operation by l×. Proceeding likewise

for (xjr+1
. . . xji)

′xj1 . . . xjr , it follows that f̄j and ḡj in the

right hand-side of (17) can be calculated in a simple manner

from previously determined f̄k, ḡk, f̄l and ḡl.

This strategy was originally proposed in [12], based on

aspects of CB also mentioned in [9]. It is described in

pseudo-code in Table VII, where the inputs are the non-

redundant Taylor expansion blocks of (13). For notational

simplicity, the bars over F, G, f and g are dropped and b

is aggregated to G by means of G1,0. The shift operation ×
is efficiently performed with an easily pre-computed lookup

table for mapping the multi-index of each product of state

variables to its corresponding position in x̄⊗ [60]. Such map

and its inverse, denoted by I(·) and I−1(·), respectively, are

also used in lines 6, 7 and 8 of Table VII.

The computation of each pth-order row of F̄ in Table VII

requires M̄P +1−M̄p−1−1 = M̄P −M̄p−2−m̄p−1 additions,

with M̄P =
∑P

p=1 m̄p. This follows from the first M̄p−1 + 1
elements of the each term involved in the sum of line 9 being

always null, since the Taylor expansion (whether redundant

or non-redundant) of (xj1 . . . xjp)
′ does not contain terms of

order lower than p.8 Similarly, the computation of each pth-

order row of Ḡ requires M̄P−1 − M̄p−2 additions. Hence, as

there are m̄p rows of order p, the total number of required

additions is

Ā(m,P) =
P
∑

p=2

m̄p(M̄P + M̄P−1 − 2M̄p−2 − m̄p−1), (20)

8This can be more easily seen in (12) and is guaranteed here by the
application of the × operator, which shifts the elements of previous rows

f̄k and f̄l to the right.

TABLE IX
USING SPARSITY, NUMBER OF ADDITIONS (TOP) AND EXECUTION TIME IN

SECONDS (BOTTOM) FOR SETUP (B).

Direct CB Non-redundant CB

P = 4 P = 5 P = 4 P = 5

4.3× 104 6.4× 105 2.6× 103 9.4× 103

5.6× 10−2 1.3 9.4× 10−3 9.0× 10−2

which is exemplified in Table VIII.

The algorithm in Table VII doesn’t lend itself to vector-

ization as much as in the direct case and, thus, a significant

reduction in execution time is attained only for sufficiently

large values of m and P . In particular, for setup (B) gains of

22 and 542 times over the results in Table VI are attained for

P = 4 and P = 5, respectively. Also, returning to the results

in Tables I and IV, we see that the non-redundant CB doesn’t

dominate the total execution time as much as the direct CB

does. Finally, regarding memory requirements, F̄ and Ḡ have

M̄2
P elements, which, for large m and P , is much smaller than

the M2
P elements of F and G.

G. Using sparsity in Carleman Bilinearization

When F̄1,p and Ḡ1,p are sparse, most of the additions in

lines 9 and 10 of Table VII are unnecessary, since at least

one of the added terms is zero. Let f̄Cj contain the nonzero

elements of f̄j and let f̄Ij contain their corresponding indices.

Then, to carry out line 9 (line 10 being totally analogous),

initially the assignment f̄j ← l×f̄k is performed by

f̄Ij ← (l×f̄k)
I and f̄Cj ← f̄Ck ,

where (l×f̄k)
I indicates that each element of f̄Ik is mapped to

its corresponding shifted position, according to l. Next, f̄j ←
f̄j+k×f̄l is performed, where adding any α to the cth column

f̄j,c of f̄j amounts to performing either the sum

f̄C
j,nc
← f̄C

j,nc
+ α, if ∃nc such that f̄I

j,nc
= c, (21)

or, otherwise, the concatenation

f̄Cj ← [̄fCj α] and f̄Ij ← [̄fIj c]. (22)

For the implementation of this procedure, a binary tree [63,

p. 139] with nodes given by the elements of f̄Ij is built for each

f̄j . Due to the native support for binary tree search in C, the

search for an index c in f̄Ij can be carried out very efficiently,

accelerating operations (21)–(22). Table IX shows the number

of additions (i.e. executions of (21)) and the execution times

of this implementation. To save space, we present only the

results for setup (B) with P = 4 and 5. Gains of 38 and 27

times in speed over the results in Table VIII were attained

for P = 4 and 5, respectively. In an extension of our work,

further gains could possibly result in the mPM case from not

evaluating F̄1,p in the Taylor step, keeping f̄Cj in string form

throughout (21)–(22) and evaluating it only at the end.

We now sketch a procedure for using sparsity to construct

the direct CB of (12). From (9), Fq,p depends only on

F1,p−q+1, so we can iterate over each row of the latter, “prop-

agating” each nonzero element to the appropriate positions in

AUTHOR PREPRINT 8

TABLE X
EXECUTION TIMES (SEC) FOR n SETS OF PM PARAMETER VALUES (TOP)

AND FOR n = 100 (BOTTOM), SETUP (B) AND P = 5.

NE† LE-NR‡ LE-NR-S§

33n+ 1300n 6.8 + 0.33n+ 2.4n 6.6 + 0.017n+ 0.09n

1.3× 105 280 17.3

†: Numerical expansion and direct CB, ‡: literal non-redundant expansion/
evaluation and non-redundant CB, §: same, using sparsity

Fq,p, which follow from the structure of the terms in (9) . This

is quickly done using the vectors fIi of the rows of F1,p−q+1.

The rows of Fq,p are also stored in sparse representations,

so that adding an element to Fq,p is carried out similarly to

(21)–(22). As in the non-redundant case, the implementation

of this procedure is based on binary trees, the results being

shown in Table IX. Comparing the results with those of Table

VI, it can be seen that using sparsity had a very large impact,

namely gains of 141 and 1000 times in speed, for P = 4 and

P = 5, respectively. Even so, however, direct CB is still 6 and

14 times slower, respectively, than non-redundant CB.

H. Comparison of overall execution times

We adopt as the baseline overall execution time that of

the numerical Taylor expansion (Section III-B) followed by

the direct CB (Section III-E), in spite of their already ef-

ficient implementation. Next, we consider the literal non-

redundant Taylor expansion (Section III-D) followed by the

non-redundant CB (Section III-F) and, finally, the use of

sparsity in both these procedures (Sections III-D and III-G).

Overall execution times for setup (B), P = 5 and n sets of

PM parameter values are given in Table X as the sum of the

contributions of each step. As discussed in Section III-B, only

the numerical evaluation step of CB must be executed n times.

The results of those sums for n = 100 is also shown. As can

be seen, exploring redundancy and sparsity leads to reducing

execution time by a factor of 7514 in this case.

We note that in our previous work [12] the non-redundant

CB was preceded by the numerical Taylor expansion, which

leads (see Sections III-D and III-F) to an overall execution time

of 3.1n+2.4n seconds in the same conditions as above. Thus,

from Table X, our introduction of the literal Taylor expansion

and the sparsity oriented procedures leads, for n = 100, to

reducing execution time by a factor of 550/17.3 = 31.8 in

relation to our previous work.

IV. KERNEL COMPUTATION

After bilinearization (CB) of the PM, (6) provides the

reference Volterra kernels. We consider in this section the

most usual computation of {hp} over a regular grid, yielding a

Volterra filter. However, our routines can be adapted to other

ends, e.g. when keeping only a small number of diagonals

around the main diagonal of each kernel [17]. We note

that, unlike in [12], we compute the kernels directly in the

time domain and exploit a low-rank decomposition of G

for speeding up this computation. As a result, our proposed

procedure is orders of magnitude faster than that developed in

TABLE XI
ORDER-RECURSIVE KERNEL COMPUTATION.

Inputs: F, G, b, c, N
Outputs: hp, p = 1, . . . , P
1: eF (0)← I, eF (1)← eFTs , eT ← eFTs

2: for k = 2 to N − 1 do
3: eF (k)← eF (k − 1)eT
4: end for
5: for k1 = 0 to N − 1 do
6: v1 ← cT eF (k1)
7: h(k1)← v1b
8: v1 ← v1G

9: for k2 = 0 to N − 1 do
10: v2 ← v1eF (k2 − k1)
11: h(k1, k2)← v2b

12: v2 ← v2G

13: for k3 = 0 to N − 1 do
14: h(k1, k2, k3)← v2eF (k3 − k2)b
15: end for
16: end for
17: end for

[12]. For notation simplicity, we drop the bars over F,G, b

and MP =
∑P

p=1 m̄p, although the non-redundant CB of the

PM will, most likely, have been employed.

A. Recursive calculation in the kernel order

Adopting a regular grid {kTs} on the triangular domain

k1 ≤ · · · ≤ kp ≤ N − 1, with the same sampling period Ts

for all p, allows computations used for obtaining hp−1 to be

reused for hp. Indeed, sampling (6) on this grid, we can write

hp(kTs) = vpb, where v1 = cT eF (k1), eF (k) , ekTsF and

vq = vq−1GeF (kq − kq−1) for 1 < q ≤ p.

Table XI contains the pseudocode of this method for P = 3,

the extension to P > 3 being trivial. In the first stage,

eF (0), . . . , eF (N − 1) are computed, with eF (1) requiring

O(M3
P) multiplications and each eF (k), k > 1, additional

M3
P multiplications, giving thus a total cost

Ce = O(M̄
3
P) + (N − 2)M̄3

P . (23)

In the second stage, the lp−element kernels hp are computed,

lp =
(

N+p−1
p

)

. The operations vp−1G (for p > 1), cT eF or

vp−1eF and vpb require lp−1M
2
P , lpM

2
P and lpMP multipli-

cations, respectively, giving a total cost

Ch = LPMP + (LP + LP−1)M
2
P , (24)

where Lp =
∑p

q=1 lq. Table XII shows some values of P and

LP , the notation xey standing as usual for x× 10y.

The tradeoff related to matrices eF (k) should be noted: not

pre-computing them would save O(NM2
P) memory positions

while making the computational cost of the second stage about

MP times larger. We note also that in Table XI multiple indices

such as (k1, k2) are used only for notational simplicity. In fact,

since the kernels are in triangular form, storing sequentially

each one in a vector hp ∈ R
lp requires less memory.

B. Exploiting rank-retaining decomposition of G

As the last m̄P columns of G are null, rank(G) ≤ MP−1

and thus G admits a rank-retaining decomposition (RRD) of

the form G = ABT , with A,B ∈ R
MP×MP−1 . To reduce

AUTHOR PREPRINT 9

TABLE XII
DIMENSION OF (NON-REDUNDANT) EXTENDED STATE VECTOR AND

NUMBER OF KERNEL COEFFICIENTS.

MP

m \P 2 3 4 5

4 14 34 69 125

11 77 363 1364 4367

LP

N \P 2 3 4 5

25 3.5e2 3.3e3 2.4e4 1.4e5

100 5.2e3 1.8e5 4.6e6 9.7e7

computing cost, from (6) and with dm = km − km−1 we

write for p > 1

hp(kTs) = eA(k1)eAB(d2) . . . eAB(dp−1)eB(dp), (25)

where eA(.) = cT eF (.)A, eAB(.) = BT eF (.)A and eB(.) =
BT eF (.)b. These are pre-computed up to k = N − 1 by

ce(k)← ce(k − 1)eF (1), eA(k)← ce(k)A,

Be(k)← Be(k − 1)eF (1), eAB(k)← Be(k)A,

be(k)← eF (1)be(k − 1), eB(k)← BTbe(k),

with ce(0) = cT , Be(0) = BT and be(0) = b. This requires

Cre =O(M
3
P)+NMP (1+2MP−1+2MP+M2

P−1+MP−1MP)

multiplications, where the first term encompasses the cost of

eF (1) and the RRD G = ABT . This represents a reduction

of roughly O(MP /MP−1) with respect to Ce in (23).

Now, (25) is implemented analogously to Table XI but with

less costly matrix products, since eAB(k) ∈ R
MP−1×MP−1 ,

whereas G, eF (k) ∈ R
MP×MP . It requires thus

Cr
h = (LP − l1)MP−1 + (LP−1 − l1)M

2
P−1

multiplications, meaning a cost reduction of roughly

LPM
2
P /LP−1M

2
P−1 relatively to Ch in (24).

C. Use of developed MEX functions

Faster execution of the nested loops in recursive kernel

computation can be attained using a MEX function. It is

important that it is written using the basic linear algebra

subprograms (BLAS) library for matrix-matrix and matrix-

vector products. In particular, BLAS can take advantage of

the availability of multiple processors or cores to automatically

parallelize these operations when the involved matrices have

sufficiently large dimensions.

D. Numerical comparison

We now compare the execution times of the above presented

methods when applied to setups (A) and (B) described in

Section III-A. The RRD used in the procedure of Sec. IV-B

is the economical singular value decomposition (SVD) G =
UΣVT , by setting A = UΣ1/2 and B = VΣ1/2, which

has cost O(M3
P), where U,V ∈ R

MP×MP−1 and Σ ∈
R

MP−1×MP−1 .

The measured times for P ∈ {2, 3, 4, 5} and N ∈ {25, 100}
are shown in Table XIII. For setup (B), the matrix products

were automatically parallelized across multiple cores when the

operands were sufficiently large. One can see that the cost

reduction delivered by RRD grows with P , as expected. In

TABLE XIII
ROUTINES OF SECTIONS IV-A, IV-B AND IV-C: EXECUTION TIMES (SEC)

Setup (A)

Recursive (IV-A) Recursive+RRD (IV-B) Rec.+RRD+mex (IV-C)

P N = 100 N = 25 N = 100 N = 25 N = 100 N = 25

2 1.9e-2 1.9e-3 1.3e-2 1.8e-3 2.7e-3 1.4e-3

3 0.70 1.8e-2 0.36 1.1e-2 1.2e-2 3.9e-3

4 29 0.17 9.6 7.4e-2 0.28 1.2e-2

5 2922 4.7 212 0.43 15 8.7e-2

Setup (B)

Recursive (IV-A) Recursive+RRD (IV-B) Rec.+RRD+mex (IV-C)

P N = 100 N = 25 N = 100 N = 25 N = 100 N = 25

2 4.8e-2 6.63e-3 2.3e-2 6.0e-3 1.2e-2 5.5e-3

3 18† 0.47† 0.62 0.14 0.26 0.14

4 4978† 36† 50† 7.3† 27† 7.2†

5 ‡ 1874† 5577† 285† 5090† 284†

† : automatic usage of multiple cores. ‡ : computationally impractical.

particular, it attains a factor of 4978/50 ≈ 100 for P = 4 and

N = 100 in setup (B). Furthermore, the use of the developed

MEX functions can significantly bring down execution time.

For instance, a reduction of 212/15 ≈ 14 is achieved for P =
5 and N = 100 in setup (A). We note that the combined used

of the strategies discussed in Sections IV-B and IV-C yields

a remarkable overall computing time reduction. For instance,

of 4978/27 ≈ 184 for P = 4 and N = 100 in setup (B).

E. Comparison with other approaches

Deriving Volterra kernels by means of CB has advantages

over other approaches such as the growing exponential ap-

proach (GEA) and the variational equation approach (VEA)

[4]. Namely, CB is easier to implement and more versatile than

both GEA and VEA, since it can be used to directly compute

kernels or GFRFs. Despite the relative popularity of Volterra

models, the numerical computation of kernels from state-space

equations has received little attention in the literature. In [51],

[52], a procedure based on multi-indexes relying on GEA

is proposed. It should be noted that the considered PM is

more general, involving a differential equation that can be

nonlinear in the input. However, the method is more complex

than ours and requires more symbolic processing. It should

also be noted that a somewhat more general form can be

considered by replacing u(t) by h(u(t)) in (4), where h(.) is a

nonlinearity. This corresponds then to the cascade of a system

S1 defined by v(t) = h(u(t)) with a linear-analytic system S2
like (4) with v(t) as input. In several of the applications of

our method discussed in the Introduction and in Section VI,

it would simply be a matter of cascading S1 with the suitable

approximation of S2 derived using our method.

In comparison with the frequency domain method of our

previous work [12], the time domain methods presented here

are much more efficient, due to the strategies presented in

Sections IV-A to IV-C. With them, for instance, for P = 4,

N = 100 and setup (B) the kernels take only 27 seconds to

compute (cf. Table XIII). If the procedure of [12] is employed

instead, then the filters of the setup can be incorporated during

AUTHOR PREPRINT 10

the GFRFs computation, and thus the starting point is a PM

of order m = 3, instead of m = 11. Even so, the kernels still

take much longer to compute: 10612 seconds (about 393 times

more). Furthermore, although directly sampling the kernels in

the time domain introduces aliasing [12], they are exact when

employed to model a typical structure found in digital signal

processing applications, which is described next.

V. DISCRETE-TIME KERNELS

The efficient computation of bilinear approximations and

Volterra kernels presented in the preceding sections is now

employed to obtain and apply reference discrete-time Volterra

kernels in the context of signal processing.

A. Overall setup

In many problems, such as acoustic echo cancellation [18],

equalization [20], closed-loop linearization [22], [23] and ac-

tive noise control [14], input and output signals of a nonlinear

system originate and end in discrete-time, as in Figure 1,

which was discussed in Section III-A.9 This configuration is

directly found, for instance, in acoustic echo cancellation: the

nonlinear adaptive filter aims to approximate a discrete-time

version of the kernels of V , where Vo comprises the amplifier,

the loudspeaker and the room acoustic response. The same

configuration also appears implicitly in other contexts such as

nonlinear model predictive control [64], where, in particular,

the filter Hr may incorporate the dynamics of some actuator.

B. Reference discrete-time Volterra kernels

By augmenting the state-space physical model (PM) of

the nonlinear system Vo with filters Hr and Ha, a bilinear

approximation of the overall system V in Figure 1 can be

computed with the CB procedures of Section III (this applies

in particular to our setup example (B)). The triangular kernels

hp(kTs) of V sampled on a regular grid can then be computed

as described in Section IV. Now, when D(z) ≡ 1, from (1),

the pth order component of y(n) is given by

yp(n) =

∫

R
p

+

hp(τ)

p
∏

i=1

u(nTs − τi)dτ . (26)

Assuming an ideal D/A converter and replacing its output

u(t) =
∑∞

k=−∞
u(k)δ(t− kTs) in (26) leads to

yp(n) =

∞
∑

k1=0

∞
∑

k2=k1

. . .

∞
∑

kp=kp−1

vp(k)

p
∏

i=1

u(n− ki), (27)

where the discrete-time kernels are

vp(k) ,
1

m1! . . .mq!
hp(kTs), (28)

with q denoting the number of distinct indexes among

k1, . . . , kp and m1, . . . ,mq denoting their corresponding num-

bers of occurrences [65]. In practice, this procedure can be

applied in the case of a zero-order hold (ZOH) D/A converter

followed by a correction filter with response sinc−1(fTs) up

to the stopband edge of the reconstruction filter Hr.

9In particular, we recall that D(z) is used to obtain a ZOH D/A behaviour.

C. Uncorrected ZOH D/A converter

More generally, a ZOH D/A converter can be modeled

by cascading the differentiator D(z) = 1 − z−1 and the

ideal D/A converter and augmenting V with an integra-

tor at its input [66]. Using the formal series Vp(z) =
∑∞

k1=0 . . .
∑∞

kp=kp−1
vp(k)z

−k1

1 . . . z
−kp
p it can be verified

that Vp(z) = D(z1)D(z2) . . . D(zp)V
I
p (z), where V I

p (z)
corresponds to the integrator-augmented system. From this a

computational procedure to determine the kernels vp(k) from

the computed kernels vIp(k) can be obtained. Setup example

(A) falls into this case.

VI. APPLICATIONS IN SIGNAL PROCESSING

With the procedures we have described, Volterra and bi-

linear models can be efficiently computed from a reference

PM. Their application is discussed in the following, extending

the discussion in the Introduction. Sections VI-A to VI-D

are connected whereas the remaining subsections are more

independent. It should be noted that the use of a state-space

structure based on the PM for applications such as nonlinear

acoustic echo cancelling and predistortion, discussed below,

would have the problems discussed in Section II-C.

A. Overview of systems for attenuation of nonlinearities

Nonlinear acoustic echo cancellation (NLAEC) [18] and

linearization [22]–[24] are examples of the goals of such

systems. Usually, their design requires 1) choosing strucutural

parameters such as nonlinear order and memory length, and

either 2) establishing values for the set of parameters defined

by the structural parameters, or 3) choosing an adaptive

algorithm to do so in the course of operation. The conventional

approach is to use measured or simulated input/output signals

of the nonlinear system to guide those design tasks in an

iterative manner. An initial choice of structural parameters

is made and then the non-structural parameters are identified

using the input/output signals. Depending on the resulting

modeling error, another choice of structural parameters is

made. However, it may be not clear whether the modeling

error is due to an inadequate choice of structural parameteres

or to a deficiency of the identification algorithm, which,

besides, may also be under development. Using a reference

model as we propose makes this easier, since it provides a

realistic a priori guide to the choice of structural parameters

and also an initial point for refining parameter values. The

choice of structural parameters in the context of NLAEC is

exemplified in some detail in Section VI-B, and is discussed in

Section VI-C for linearization by predistortion. In particular,

when using simulations instead of measurements, reference

Volterra or bilinear models can, additionally, allow much faster

simulations than the PM itself, as seen in Section VI-D.

B. Selection of structural parameters for NLAEC

With the reference discrete-time kernels, the parameters

of a related non-linear processing structure can be chosen.

Typically this involves computing its output y(n) and (with a

numerical integration routine) the output yPM(n) of the PM,

AUTHOR PREPRINT 11

-90

-70

-50

-30

-10

-20 -15 -10 -5 0 5 10 15

N
M

S
E

 (
dB

)

Input power (dBV2)

P=1
P=2
P=3
P=4

N= 75
N= 90
N=120
N=150

Fig. 2. Loudspeaker modeling: normalized MSE for Volterra Filter of order
P and memory length N .

for different realizations of a random process that models the

input u(n) in the application of interest.

As an example, in the context of non-linear acoustic echo

cancellation (NLAEC), we consider setup (A) from Section

III-A, which corresponds to Hr(z) = Ha(z) ≡ 1 in Fig. 1.

For such task, we initially evaluate the Volterra Filter (VF)

given by the discrete-time kernels vp(k) for some order P
and memory length N . Figure 2 shows the normalized MSE

(NMSE) ||y(n)− yPM(n)||2/||yPM(n)||2 for 100 realizations

of 500 samples of a Gaussian input signal with band π/4 and

sampling frequency 5 kHz. To obtain a range of input powers,

the same 100 realizations were scaled accordingly.

It can be seen that if a NMSE smaller than, for instance,

−60 dB were desired for inputs up to 0 dBV2, one would

then choose P = 4 and some 90 < N < 120. For N =
120, such a VF would have LP = 9.4 × 106 coefficients,

which is too large in practice. We note also that since the VF

is a polynomial system and the loudspeaker is not, for high

input powers the NMSE actually gets worse as P grows. Still

in the NLAEC setting, we now evaluate the Volterra-CPD10

structure [15], which for a given NMSE tends to have much

less coefficients than the VF, provided the (symmetric) kernels

admit low-rank approximations (but is no longer linear in the

parameters). We employed Tensorlab 3.0 [67] to decompose

each symmetric higher-order kernel. For p = 2, the truncated

SVD was used. The resulting NMSE, for N = 100 and in

the same conditions as above, is shown in Fig. 3. A NMSE

smaller than −60 dB for inputs smaller that 0 dBV2 would

now require P = 4 and R = 15. The resulting number of

coefficients, [1+(P−1)R]N = 4600, is 3 orders of magnitude

smaller than that of the VF.

C. Selection of structural parameters for predistortion

One common approach for attenuating nonlinear distortions

of a system is by predistorting its input so that the overall

output is (approximately) linear. In particular, a well-developed

10From Canonical Polyadic Decomposition, also referred to as PARAFAC
decomposition, from Parallel Factors.

-70

-50

-30

-10

-20 -15 -10 -5 0 5 10

N
M

S
E

 (
dB

)

Input power (dBV2)

P=1
P=2
P=3
P=4

R= 3
R= 5
R=10
R=15

Fig. 3. Loudspeaker modeling: normalized MSE for Volterra-CPD of order
P , rank R and memory length N = 100.

theory exists for linearizing a Volterra system up to a certain

order P [2], [6], [24].11 In the design of a predistortion system,

choosing structural parameters could be made easier by using

the reference kernels obtained from a PM of the system to be

linearized.

D. Simulation of nonlinear systems

Structural assessments as in Section VI-B can be also used

to characterize speed vs. accuracy tradeoffs in the simulation of

nonlinear systems. The range of such tradeoff is exemplified

by the fact that, for the results above, Matlab’s integration

routine ode133 (with default precision) took around 6 hours

to compute outputs yPM(n) for the set of 100 realizations and

25 scales of the input. On the other hand, the VF with P = 4,

N = 120 and a diagonal representation of the kernels [6, p.

414] and the Volterra-CPD with N = 100, P = 4 and R = 15
took only 21 minutes and 0.88 seconds, respectively. Both (but

not ode133), moreover, are little affected by the number of

scales, since the output factors spyp(n) for input su(n) are

given directly from the factors yp(n) for input u(n).

E. Reduced-order bilinear modeling

One utility of the CB is providing a bilinear approximation

of the reference PM. Though the order of the resulting bilinear

model grows rapidly with the nonlinearity order P , one can

employ order reduction techniques such as that of [68] to

obtain a more compact model, whose use can be significantly

less costly in comparison with the CB’s output. We can expect

this indirect procedure to be algebraically simpler than trying

to obtain a good reduced-order bilinear approximation directly

from the reference PM.

F. Calculation of nonlinear distortion

For design purposes, it may be of interest to study how

certain components affect the nonlinear distortions introduced

11This approach requires that the inverse of the linear subsystem be stable
and causal [2].

AUTHOR PREPRINT 12

by a given device. Assuming a known reference PM involves

parameters which quantify properties of these components,

one can compute reference kernels for particular parameter

values and then measure the resulting harmonic and inter-

modulation distortions from their associated GFRFs12. From

the discussion in Section II-C and the example in Section

VI-D, this approach can be faster than one based on directly

simulating the reference PM.

G. Kernel-based fault diagnosis

Detecting abnormal operation of a mechanical system is an

important application. One possible approach is to classify its

operation based on features extracted from identified Volterra

kernels [69]. If a reference PM is known, one can derive

reference Volterra kernels corresponding to parameter config-

urations which characterize normal and abnormal operation

regimes. These kernels can then be exploited to classify

subsequently identified kernels of the operating system.

H. Evaluation of tensor modeling algorithms

Another interesting use of the reference kernels is in the

evaluation of algorithms which estimate tensor models [70].

For instance, measuring the performance of CP decomposition

algorithms using data tensors derived from a PM (instead of

artificially generated ones) allows to realistically assess their

potential in a practical application.

VII. CONCLUSION

Approximating a nonlinear system by a bilinear model is

a useful technique for several purposes. Among them, the

computation of associated Volterra kernels provides important

information on the system’s dynamics, allows assessing the

parametric complexity of many candidate nonlinear models

and can also be used for simulating its operation. The package

of computational tools that we have offered in this paper

allows an efficient computation of a bilinear approximation

of a linear-analytic system, via Carleman’s bilinearization

method, and of the Volterra kernels associated with a bilinear

representation. They include techniques which exploit sparsity

and which perform a partially symbolic computation for an

efficient computation for various sets of parameter values. To

illustrate the usefulness of these contributions, reproducible

examples included in this package were presented. Namely,

we have calculated reference bilinear models and kernels of

a loudspeaker model considering a typical DSP configura-

tion possibly involving reconstruction and anti-aliasing filters.

These kernels were then used for evaluating the suitability of

a more compact tensor-based nonlinear model and also for

efficiently simulating the system’s operation under multiple

inputs of same waveform but varying power levels.

12The spectral analysis for non-linear systems by means of GFRFs is
studied in [53].

REFERENCES

[1] N. Wiener, Nonlinear problems in random theory. Massachusetts
Institute of Technology, 1958.

[2] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems.
John Wiley & Sons, 1980.

[3] S. A. Billings, “Identification of nonlinear systems–a survey,” in IEE

Proceedings D-Control Theory and Applications, vol. 127, no. 6. IET,
1980, pp. 272–285.

[4] W. J. Rugh, Nonlinear System Theory: The Volterra/Wiener Approach.
Baltimore, MD: Johns Hopkins University Press, 1981.

[5] A. Isidori, Nonlinear Control Systems, 3rd ed. New York: Springer,
1995.

[6] V. J. Mathews and G. L. Sicuranza, Polynomial signal processing.
Wiley, 2000.

[7] V. Marmarelis, Nonlinear Dynamic Modeling of Physiological Systems.
Hoboken, NJ, USA: John Wiley & Sons, 2004.

[8] T. Ogunfunmi, Adaptive Nonlinear System Identification: The Volterra

and Wiener model approaches. New York: Springer, 2007.
[9] R. W. Brockett, “Volterra series and geometric control theory,” Automat-

ica, vol. 12, no. 2, pp. 167–176, Mar. 1976.
[10] T. Koh and E. J. Powers, “Second-order volterra filtering and its

application to nonlinear system identification,” IEEE Transactions on

acoustics, speech, and signal processing, vol. 33, no. 6, pp. 1445–1455,
1985.

[11] S. Boyd and L. Chua, “Fading memory and the problem of approxi-
mating nonlinear operators with Volterra series,” IEEE Transactions on
Circuits and Systems, vol. CAS-32, no. 11, pp. 1150–1161, Nov. 1985.

[12] J. H. de M. Goulart and P. M. S. Burt, “Efficient kernel computation
for Volterra filter structure evaluation,” IEEE Signal Processing Letters,
vol. 19, no. 3, pp. 135–138, Mar. 2012.

[13] P. M. S. Burt and J. H. de M. Goulart, “Evaluating the potential of
Volterra-PARAFAC IIR models,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2013, pp. 5745–
5749.

[14] A. Carini and G. L. Sicuranza, “A new class of FLANN filters with
application to nonlinear active noise control,” in European Signal

Processing Conference (EUSIPCO), Aug. 2012, pp. 1950–1954.
[15] G. Favier, A. Y. Kibangou, and T. Bouilloc, “Nonlinear system model-

ing and identification using Volterra-PARAFAC models,” International

Journal of Adaptive Control and Signal Processing, vol. 26, no. 1, pp.
30–53, Jan. 2012.

[16] A. Y. Kibangou and G. Favier, “Tensor analysis-based model structure
determination and parameter estimation for block-oriented nonlinear
systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 4,
no. 3, pp. 514–525, June 2010.

[17] M. Zeller and W. Kellermann, “Fast and Robust Adaptation of DFT-
Domain Volterra Filters in Diagonal Coordinates Using Iterated Coeffi-
cient Updates,” IEEE Transactions on Signal Processing, vol. 58, no. 3,
pp. 1589–1604, mar. 2010.

[18] L. A. Azpicueta-Ruiz, M. Zeller, A. R. Figueiras-Vidal, J. Arenas-
Garcı́a, and W. Kellermann, “Adaptive Combination of Volterra Kernels
and its Application to Nonlinear Acoustic Echo Cancellation,” IEEE
Transactions on Audio, Speech and Language Processing, vol. 19, no. 1,
pp. 97–110, Jan. 2011.

[19] C. Crespo-Cadenas, J. Reina-Tosina, M. J. Madero-Ayora, and J. Muñoz
Cruzado, “A new approach to pruning volterra models for power
amplifiers,” IEEE Trans. Signal Process., vol. 58, no. 4, pp. 2113–2120,
Apr. 2010.

[20] B. F. Beidas, “Intermodulation Distortion in Multicarrier Satellite Sys-
tems: Analysis and Turbo Volterra Equalization,” IEEE Transactions on

Communications, vol. 59, no. 6, pp. 1580–1590, June 2011.
[21] L. Tan and J. Jiang, “Adaptive Volterra filters for active control of

nonlinear noise processes,” IEEE Trans. Signal Process., vol. 49, no. 8,
pp. 1667–1676, 2001.

[22] K. Shi and A. Redfern, “Blind Volterra system linearization with ap-
plications to post compensation of ADC nonlinearities,” in Proceedings

of the 2012 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Mar. 2012, pp. 3581–3584.

[23] D. Franken, K. Meerkotter, and J. Waßmuth, “Observer-based feedback
linearization of dynamic loudspeakers with AC amplifiers,” IEEE Trans-
actions on Speech and Audio Processing, vol. 13, no. 2, pp. 233–242,
Mar. 2005.

[24] A. Carini, G. Sicuranza, and V. J. Mathews, “Equalization and lin-
earization of nonlinear systems,” in IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), 1998, pp. 1617–
1620.

AUTHOR PREPRINT 13

[25] A. Germani, C. Manes, and P. Palumbo, “Filtering of stochastic nonlin-
ear differential systems via a Carleman approximation approach,” IEEE
Trans. on Autom. Control, vol. 52, no. 11, pp. 2166–2172, Nov. 2007.

[26] J. Arroyo, E. Barocio, R. Betancourt, and A. R. Messina, “A bilinear
analysis technique for detection and quantification of nonlinear modal
interaction in power systems,” in IEEE Power Engineering Society
General Meeting. IEEE, 2006.

[27] T. Mukherjee, G. K. Fedder, D. Ramaswamy, and J. White, “Emerging
simulation approaches for micromachined devices,” IEEE Transactions
Computer-Aided Design of Integrated Circuits and Systems, vol. 19,
no. 12, pp. 1572–1589, Dec. 2000.

[28] C. Fager, J. C. Pedro, N. B. de Carvalho, and H. Zirath, “Prediction of
IMD in LDMOS transistor amplifiers using a new large-singal model,”
IEEE Transactions on Microwave Theory and Techniques, vol. 50,
no. 12, pp. 2834–2842, Dec. 2002.

[29] S. A. Maas, Nonlinear Microwave and RF circuits. Artech House,
2003.

[30] A. Gothenberg and H. Tenhunen, “Performance analysis of sampling
switches in voltage and frequency domains using volterra series,” in
IEEE International Symposium on Circuits and Systems (ISCAS), 2004.

[31] S. B. Kuntze, A. J. Zilkie, L. Pavel, and J. Aitchison, “Nonlinear
State–Space Model of Semiconductor Optical Amplifiers With Gain
Compression for System Design and Analysis,” Journal of Lightwave

Technology, vol. 26, no. 14, pp. 2274–2281, jul. 2008.
[32] H. Michalska, “Generic nonlinear stabilization of systems with matching

algebraic structure,” Annual Reviews in Control, vol. 35, pp. 215–234,
2011.

[33] M. Ekman, “Suboptimal control for the bilinear quadratic regulator prob-
lem: Application to the activated sludge process,” IEEE Transactions on

Control Systems Technology, vol. 13, no. 1, pp. 162–168, Jan. 2005.
[34] A. Asma and A. Kamel, “Nonlinear system identification based on

Volterra and Laguerre models,” in Proceedings of the 14th International

Conference on Methods and Models in Automation and Robotics, 2009,
pp. 489–494.

[35] P. Chevalier, A. Oukaci, and J.-P. Delmas, “Third order widely nonlinear
Volterra MVDR beamforming,” in Proceedings of the 2011 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), may 2011, pp. 2648–2651.
[36] R. Boyer, R. Badeau, and G. Favier, “Fast orthogonal decomposition of

Volterra cubic kernels using oblique unfolding,” in IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), may
2011, pp. 4080 –4083.

[37] E. L. O. Batista and R. Seara, “A fully LMS/NLMS adaptive scheme
applied to sparse-interpolated volterra filters with removed boundary
effect,” Signal Processing, vol. 92, no. 10, pp. 2381 – 2393, 2012.

[38] R. R. Mohler, Bilinear Control Process. New York and London:
Academic Press, 1973.

[39] C. Bruni, G. Dipillo, and G. Koch, “Bilinear systems: An appealing
class of ”nearly linear” systems in theory and applications,” IEEE
Transactions on Automatic Control, vol. 19, no. 4, pp. 334–348, 1974.

[40] R. R. Mohler, “An overview of bilinear system theory and applications,”
IEEE Transanctions on Systems, Man, and Cybernetics, vol. 10, pp.
683–688, Oct. 1980.

[41] D. L. Elliott, Bilinear Control Systems. New York: Springer, 2009.
[42] R. W. Brockett, “The early days on geometric nonlinear control,”

Automatica, vol. 50, pp. 2203–2224, 2014.
[43] V. J. Mathews and J. Lee, “Adaptive algorithms for bilinear filtering,”

SPIE Proceedings, vol. 2296, pp. 317–327, Oct. 1994.
[44] F. Fnaiech and L. Ljung, “Recursive identification of bilinear systems,”

International Journal of Control, vol. 45, no. 2, pp. 453–470, 1987.
[45] W. Favoreel, B. De Moor, and P. Van Overschee, “Subspace identifica-

tion of bilinear systems subject to white inputs,” IEEE Transactions on

Automatic Control, vol. 44, no. 6, pp. 1157–1165, Jun. 1999.
[46] S. Gibson, A. Wills, and B. Ninness, “Maximum-likelihood parameter

estimation of bilinear systems,” IEEE Transactions on Automatic Con-

trol, vol. 50, no. 10, pp. 1581–1595, Oct. 2005.
[47] E. D. Sontag, Y. Wang, and A. Megretski, “Input classes for identifi-

ability of bilinear systems,” IEEE Transactions on Automatic Control,
vol. 54, no. 2, pp. 195–207, Feb. 2009.

[48] A. J. Krener, “Linearization and bilinearization of control systems,” in
Allerton Conference on Circuit and System Theory, 1974.

[49] J. Deutscher, “Asymptotically exact input-output linearization using
Carleman linearization,” in European Control Conference (ECC), 2003.

[50] S. Irving and C. Joaquin, “On stabilization of non linear systems by
using Carleman linearization and periodic systems theory,” in Interna-

tional Conference on Electrical Engineering, Computing Science and

Automatic Control (CCE). IEEE, 2011.

[51] A. Bauer and W. Schwarz, “Circuit analysis and optimization with au-
tomatically derived Volterra kernels,” in IEEE International Symposium
on Circuits and Systems (ISCAS), vol. 1. IEEE, 2000, pp. 491–494.

[52] A. Bauer, “Efficient algorithms for the computation and application
of Volterra kernels in the behavior analysis of nonlinear circuits and
systems,” in IEEE European Conference on Circuit Theory and Design,
vol. 2, 2005.

[53] S. Billings and K. Tsang, “Spectral analysis for non-linear systems, part
II: Interpretation of non-linear frequency response functions,” Mechan-
ical Systems and Signal Processing, vol. 3, no. 4, pp. 341–359, 1989.

[54] A. V. Balakrishnan, “On the controllability of nonlinear systems,” Proc.

Nat. Acad. Sci. USA, vol. 55, pp. 465–568, 1966.
[55] X. Zhao and V. Marmarelis, “On the relation between continuous and

discrete nonlinear parametric models,” Automatica, vol. 33, no. 1, pp.
81–84, 1997.

[56] J. Vlach and K. Singhal, Computer methods of circuit analysis and

design, 2nd ed. New York: Van Nostrand, 1994.
[57] K. Meerktter and R. Scholz, “Digital simulation of nonlinear circuits

by wave digital filter principles,” in IEEE International Symposium on

Circuits and Systems (ISCAS), 1989, pp. 720–723.
[58] e. a. Schn, T. B., “System identification of nonlinear state-space models,”

Automatica, vol. 47, pp. 39–49, 2011.
[59] A. J. Krener, “Bilinear and nonlinear realizations of input-output maps,”

Siam Journal on Control, vol. 13, no. 4, pp. 827–834, Jul. 1975.
[60] J. H. de M. Goulart, “Derivação eficiente e utilização de filtros de

Volterra de referência na avaliação de formalismos não-lineares,” Mas-
ter’s thesis (in portuguese), Escola Politécnica da Universidade de São
Paulo, 2012.

[61] J. H. de M. Goulart and P. M. S. Burt. (2016, Dec.) Carle-
man bilinearization and Volterra kernels Toolbox. [Online] Available:
http://www.lcs.poli.usp.br/∼phillip/sw/cbvk.

[62] D. Franken, K. Meerkotter, and J. Waßmuth, “Passive parametric model-
ing of dynamic loudspeakers,” IEEE Transactions on Speech and Audio

Processing, vol. 9, no. 8, pp. 885–891, November 2001.
[63] B. W. Kernighan and D. M. Ritchie, The C programming language, 2nd

ed. Prentice-Hall, 1988.
[64] A. Soni, “Control-relevant system identification using nonlinear Volterra

and Volterra-Laguerre models,” Ph.D. dissertation, University of Pitts-
burgh, 2006.

[65] P. M. S. Burt and J. H. de M. Goulart, “The Sampling of Triangular
Kernels,” Online Supplementary Material.

[66] H. A. Barker and S. Ambati, “Nonlinear sampled-data system analysis
by multidimensional z transforms,” Proc. IEE, vol. 119, no. 9, pp. 1407–
1413, Sep. 1972.

[67] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer.
(2016, Mar.) Tensorlab 3.0. [Online]. Available: http://www.tensorlab.net

[68] T. Breiten and T. Damm, “Krylov subspace methods for model order
reduction of bilinear control systems,” Systems & Control Letters,
vol. 59, no. 8, pp. 443–450, 2010.

[69] H. Tang, Y. H. Liao, J. Y. Cao, and H. Xie, “Fault diagnosis approach
based on Volterra models,” Mechanical Systems and Signal Processing,
vol. 24, no. 4, pp. 1099–1113, May 2010.

[70] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Tensors
for data mining and data fusion: Models, applications, and scalable
algorithms,” ACM Transactions on Intelligent Systems and Technology

(TIST), vol. 8, no. 2, p. 16, 2016.

Phillip M. S. Burt (M’85) received the bachelor
and doctor degrees in Electrical Engineering from
Escola Politécnica da Universidade de São Paulo,
Brazil, where he is an Associated Professor. From
1984 to 1992 he worked in the telecommunications
industry as a development engineer. In 2003 he spent
a sabbatical year at the INT, Evry, France. His re-
search interests include nonlinear signal processing,
adaptive filtering and digital signal processing for
telecommunications and audio.

AUTHOR PREPRINT 14

José Henrique de M. Goulart received the
B.Sc. degree in Computer Science from Univer-
sidade Federal de Sergipe, Brazil, in 2006, the
M.Sc. degree in Electronic Systems from Escola
Politécnica da Universidade de São Paulo, Brazil,
in 2012, and the Ph.D. degree in signal processing
from Université Nice Sophia Antipolis, France, in
2016. He is currently a post-doctoral researcher at
GIPSA-Lab (Grenoble Laboratory of Image, Speech,
Signal, and Automation), in France. His research
interests include tensor models and decompositions,

tensor methods in signal processing and nonlinear system modeling and
identification.

