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Abstract. The aim of this paper is to provide some mathematical results for the
discrete problem associated to contact with Coulomb friction, in linear elasticity,
when finite elements and Nitsche method are considered. We consider both static
and dynamic situations. We establish existence and uniqueness results under ap-
propriate assumptions on physical (friction coefficient) and numerical parameters.
These results are complemented by a numerical assessment of convergence.

Many problems involve frictional contact, and are approximated numerically
using The Finite Element Method. In this paper we deal with the Nitsche
method originally proposed in [17] and that aims at treating the boundary or
interface conditions in a weak sense, thanks to a consistent penalty term. It
differs in this aspect from standard penalization techniques and from mixed
methods since no Lagrange multiplier is needed and no discrete inf sup condi-
tion must be fullfilled. A Nitsche-based FEM has been proposed and analyzed
for static frictionless unilateral contact in [6,9], and extended to dynamic con-
tact in [7,8]. Very few works deal with the adaptation of Nitsche’s method
to frictional contact (see [5] where recent achievements in applying Nitsche’s
method to some contact and friction problems are summarized): the Tresca’s
friction problem is only considered in [4,11] and numerical results for Coulomb
friction are presented in [18,20].

In this paper we are interested in some existence and uniqueness results
at the discrete level in statics and dynamics. For the continuous static fric-
tion problem, existence of solutions hold when the friction coefficient is small
enough [13]. In [19], a uniqueness result has been obtained with the assump-
tion that a regular solution exists and that the friction coefficient is suffi-
ciently small. At the discrete level, difficulties appear in the numerical anal-
ysis of the method [14]. Results of well-posedness for frictional contact in the
dynamic case are presented in [16] for a normal compliance model, in [1,2]
for discrete systems of particles and in [12,15] for the modified mass method.



2 Chouly and al.

1 Setting and discretization

We consider an elastic body Ω in Rd with d = 2, 3. Small strain assumptions
are made. The boundary ∂Ω of Ω is polygonal (d = 2) or polyhedral (d = 3).
The outward unit normal vector on ∂Ω is denoted n. We suppose that ∂Ω
consists in three nonoverlapping parts ΓD on which the body is clamped, ΓN
and the contact boundary ΓC , with meas(ΓD) > 0 and meas(ΓC) > 0. The
contact boundary is supposed to be a straight line segment when d = 2 or a
polygon when d = 3 to simplify. In the reference configuration, the body is
in frictional contact on ΓC with a rigid foundation and we suppose that the
unknown contact zone during deformation is included into ΓC . It is subjected
to volume forces f in Ω and to surface loads g on ΓN .

Static problem We consider the unilateral contact problem with Coulomb
friction in linear elastostatics. It consists in finding the displacement field
u : Ω → Rd verifying the equations and conditions (1)–(2):

divσ(u) + f = 0 in Ω, σ(u) = A ε(u) in Ω,

u = 0 on ΓD, σ(u)n = g on ΓN , (1)

The conditions defining unilateral contact with Coulomb friction on ΓC are:

un ≤ 0, σn(u) ≤ 0, σn(u)un = 0 (i)

ut = 0 =⇒ |σt(u)| ≤ −Fσn(u) (ii)

ut 6= 0 =⇒ σt(u) = Fσn(u)
ut

|ut|
(iii) (2)

where F ≥ 0 stands for the friction coefficient. The notation σ = (σij), 1 ≤
i, j ≤ d, stands for the stress tensor field, ε(v) = (∇v + ∇v

T

)/2 represents
the linearized strain tensor field and A is the fourth order symmetric elasticity
tensor having the usual uniform ellipticity and boundedness property.

Dynamic problem We consider the unilateral contact problem with Cou-
lomb friction in linear elastodynamics during a time interval [0, T ) where
T > 0 is the final time. We denote by ΩT := (0, T )×Ω the time-space domain,
and similarly ΓDT := (0, T )×ΓD, ΓNT := (0, T )×ΓN and ΓCT := (0, T )×ΓC .
We note u̇ the velocity of the elastic body and ü its acceleration; u0 is the
initial displacement and u̇0 is the initial velocity. The density of the elastic
material is denoted by ρ and is supposed to be a constant. The problem then
consists in finding the displacement field u : [0, T ) × Ω → Rd verifying the
equations and conditions (3)–(4):

ρü− divσ(u) = f in ΩT , σ(u) = A ε(u) in ΩT ,

u = 0 on ΓDT , σ(u)n = g on ΓNT ,

u(0, ·) = u0 in Ω, u̇(0, ·) = u̇0 in Ω, (3)
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The conditions defining unilateral contact with Coulomb friction on ΓCT are:

un ≤ 0, σn(u) ≤ 0, σn(u)un = 0 (i)

u̇t = 0 =⇒ |σt(u)| ≤ −Fσn(u) (ii)

u̇t 6= 0 =⇒ σt(u) = Fσn(u)
u̇t

|u̇t|
(iii) (4)

Additionally the initial displacement u0 should satisfy the compatibility con-
dition u0n ≤ 0 on ΓC .

Proposition 1. Let γ be a positive function defined on ΓC .
Static case: The frictional contact conditions (2) can be reformulated as
follows:

σn(u) = [σn(u)− γ un]
R−
, σt(u) = [σt(u)− γut](−F [σn(u)−γun]

R−
) .

Dynamic case: The frictional contact conditions (4) on ΓCT are equivalent
to:

σn(u) = [σn(u)− γ un]
R−
, σt(u) = [σt(u)− γu̇t](−F [σn(u)−γun]

R−
).

The notation [·]
R−

stands for the projection onto R− ([x]
R−

=
1

2
(x− |x|)

for x ∈ R). Moreover, for any α ∈ R+, we introduce the notation [·]α for the
orthogonal projection onto B(0, α) ⊂ Rd−1, where B(0, α) is the closed ball

centered at the origin 0 and of radius α. ‖ · ‖s,D = (·, ·)
1
2

s,D denotes the norm

of (Hs(D))d.

Let Vh ⊂ V :=
{
v ∈

(
H1(Ω)

)d
: v = 0 on ΓD

}
, be a family of finite

dimensional vector spaces indexed by h coming from a family T h of trian-
gulations of the domain Ω supposed to be regular and quasi-uniform. We
choose a standard Lagrange finite element method of degree k with k = 1 or
k = 2, i.e.:

Vh =
{
vh ∈ (C 0(Ω))d : vh |K∈ (Pk(K))d,∀K ∈ T h,vh = 0 on ΓD

}
.

We consider in what follows that γ = γh is a positive piecewise constant
function on the contact interface ΓC which satisfies γ|K∩ΓC = γ0hK , for every
K that has a non-empty intersection of dimension d− 1 with ΓC , and where
γ0 is a positive given constant.

Let us define the discrete linear operators for a fixed parameter Θ ∈ R

Pn
Θ,γ :

Vh → L2(ΓC)
vh 7→ Θσn(vh)− γvhn,

Pt
Θ,γ :

Vh → (L2(ΓC))d−1

vh 7→ Θσt(v
h)− γvht

,
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Qt
γ :

Vh ×Vh → (L2(ΓC))d−1

(vh, v̇h) 7→ σt(v
h)− γv̇ht

, L(vh) =

∫
Ω

f · vh dΩ +

∫
ΓN

g · vh dΓ,

and the bilinear form:

AΘγ(uh,vh) =

∫
Ω

σ(uh) : ε(vh) dΩ −
∫
ΓC

Θ

γ
σ(uh)n · σ(vh)n dΓ.

Discrete static problem: The Nitsche-based formulation for unilateral
contact with Coulomb friction reads :

Find uh ∈ Vh such that: ∀ vh ∈ Vh

AΘγ(uh,vh) +

∫
ΓC

1

γ
[Pn

1,γ(uh)]
R−

Pn
Θ,γ(vh) dΓ

+

∫
ΓC

1

γ

[
Pt

1,γ(uh)
](
−F [Pn

1,γ(u
h)]

R−

) ·Pt
Θ,γ(vh) dΓ = L(vh).

(5)

Semi discretized dynamic problem: Our space semi-discretized Nitsche-
based method for frictional unilateral contact problems in elastodynamics
then reads:

Find uh : [0, T ]→ Vh such that for t ∈ [0, T ] : ∀ vh ∈ Vh

〈ρüh(t),vh〉+AΘγ(uh(t),vh) +

∫
ΓC

1

γ
[Pn

1,γ(uh(t))]
R−

Pn
Θ,γ(vh) dΓ

+

∫
ΓC

1

γ

[
Qt
γ(uh(t), u̇h(t))

](
−F [Pn

1,γ(u
h(t))]

R−

) ·Pt
Θ,γ(vh) dΓ = L(t)(vh),

uh(0, ·) = uh0 , u̇h(0, ·) = u̇h0 ,
(6)

where uh0 (resp. u̇h0 ) is an approximation in Vh of the initial displacement u0

(resp. the initial velocity u̇0). The notation 〈·, ·〉 stands for the L2(Ω) inner
product.

2 Existence and well-posedness results

The proofs of this section are detailed in [10].

Theorem 2. Existence of discrete solutions for the static problem
Let us suppose that γ0 is small enough. Then for every Θ ∈ R and h > 0,
the static problem (5) admits at least one solution. Moreover this solution
satisfies the bound

‖uh‖1,Ω ≤ C,

where the constant C > 0 depends only of the constants of V-ellipticity of
a(·, ·) and of continuity of L(·), but not on the friction coefficient F and on
the Nitsche’s parameter γ0.
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Sketch of the proof: We introduce the auxillary problem involving (Tresca)
friction P(g) with a fixed threshold g ∈ L2(ΓC), and discretized with Nitsche:

P(g)



Find uh ∈ Vh such that :

AΘγ(uh,vh) +

∫
ΓC

1

γ
[Pn

1,γ(uh)]
R−

Pn
Θ,γ(vh) dΓ

+

∫
ΓC

1

γ
[Pt

1,γ(uh)]g ·Pt
Θ,γ(vh) dΓ = L(vh), ∀ vh ∈ Vh.

The solutions to Coulomb discrete problem (5) are the fixed point of the
application φh : Vh → Vh defined as follows: wh 7→ uh(wh) where uh(wh)

is the solution to P
(
−F

γ
[Pn

1,γ(wh)]
R−

)
.

The application φh is well defined [4]. Using standard bounds and arguments,
we show that φh is bounded and continuous in (Vh, ‖ · ‖1,Ω). Thus we apply
Brouwer’s fixed point theorem to prove the existence of, at least, one solution
to Problem (5). ut

Proposition 3. Well-posedness:
Static case : 1. If 0 ≤ F < 1, assume there exists C such that

F ≤ C h

γ0
,

((1 +Θ)2 + F (1 +Θ2))

γ0
≤ C.

2. or if F ≥ 1, assume there exists C such that

(1 +Θ2)(1 + 4F 2)

γ0
≤ C, F ≤ C

(
h

γ0

) 1
2

,

then Problem (5) admits one unique solution.

Semi discretized dynamic case:
For every value of Θ ∈ R and γ0 > 0, Problem (6) admits one unique
solution uh ∈ C 2([0, T ],Vh).

Sketch of the proof: We introduce the following mesh- and parameter-
dependent scalar product in Vh:

(vh,wh)γ = (vh,wh)1,Ω + (γ−
1
2 vhn, γ

− 1
2whn)0,ΓC + (γ−

1
2vht , γ

− 1
2wh

t )0,ΓC .

– Static case: we define the (non-linear) operator Bh : Vh → Vh:

(Bhvh,wh)γ = AΘγ(vh,wh) +

∫
ΓC

1

γ
[Pn

1,γ(vh)]
R−

Pn
Θ,γ(wh) dΓ

+

∫
ΓC

1

γ

[
Pt

1,γ(vh)
](
−F [Pn

1,γ(u
h)]

R−

) ·Pt
Θ,γ(wh) dΓ
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for all vh,wh ∈ Vh. Then we prove that Bh is a one-to-one operator
using Brezis’ theorem [3].

– Semi discretized dynamic case: Nitsche’s formulation leads to a sys-
tem of (non-linear) second-order differential equations

Find uh : [0, T ]→ Vh such that for t ∈ [0, T ] :

Mhüh(t) + Bh(uh(t), u̇h(t)) =  Lh(t),

uh(0, ·) = uh0 , u̇h(0, ·) = u̇h0 .

with ( Lh(t),wh)γ = L(t)(wh), the mass operator Mh : Vh → Vh defined
by (Mhvh,wh)γ = 〈ρvh,wh〉 and with Bh : (Vh)2 → Vh,

(Bh(vh, v̇h),wh)γ = AΘγ(vh,wh) +

∫
ΓC

1

γ
[Pn

1,γ(vh)]
R−

Pn
Θ,γ(wh) dΓ

+

∫
ΓC

1

γ

[
Qt
γ(vh, v̇h)

](
−F [Pn

1,γ(u
h)]

R−

) ·Pt
Θ,γ(wh) dΓ,

The operator Bh is Lipschitz-continuous and we conclude with the Cauchy-
Lipschitz theorem.

ut

3 Numerical results

In what follows, we study an example where the three different zones charac-
terizing friction (stick, slip and separation) exist. We consider the geometry
Ω̂ =]0, 2[×]0, 1[ and we adopt symmetry conditions (i.e., un = 0, σt(u) =
0) on ΓS = {1}×]0, 1[. We achieve the computations on the square Ω =
]0, 1[×]0, 1[. We set ΓC =]0, 1[×{0} and ΓN = (]0, 1[×{1}) ∪ ({0}×]0, 1[).
We suppose that the body is homogeneous isotropic material and a Poisson
ratio of ν = 0.2, a Young modulus of E = 104 and a friction coefficient
F = 0.5 are chosen. A density of surfaces forces F of magnitude (0.5− y, 0)
is applied on {0}×]0.5, 1[ and one of magnitude (0, x − 0.5) is applied on
]0.5, 1[×{1}. The Nitsche parameter γ0 is fixed to 100E and we consider the
skew-symmetric case Θ = −1. We achieve the numerical implementation with
uniform meshes with the open source finite element library GetFEM++ (see
http://getfem.org/download.html).

The solution for mesh sizes h =

[
1

4
,

1

8
,

1

16
,

1

32
,

1

64

]
are compared with a

reference solution on a very fine mesh (h = 1/128) and P2 Lagrange elements.
Moreover, the reference solution is computed with a different discretization
of the friction problem (Lagrange multipliers and Alart-Curnier augmented
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lagrangian). Figure 1 depicts the Von Mises stress and we can note a transi-
tion point on ΓC between a contact part and a separation part. The Figure
2 shows the rates of convergence for the H1 and L2 relative norms with P1

finite elements. For the H1 norm we obtain the quasi optimality of the con-
vergence rate whereas the suboptimality of the L2 norm may come frim the
lack of adjoint consistency when Θ = −1.

Fig. 1: Von Mises stress with displace-
ment amplified by 2000

10
-1

h

10
-2

10
-1

10
0

er
ro

rs

H1 norm P1(slope=0.95794)

L2 norm P1  (slope=1.1206)

Fig. 2: H1 and L2 norms on the displace-
ment uh for P1 finite elements
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