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Multi-scale analysis for highly anisotropic parabolic problems

Thomas BLANC *, Mihai BOSTAN f
(February 1, 2018)

Abstract

We focus on the asymptotic behavior of strongly anisotropic parabolic problems. We concen-
trate on heat equations, whose diffusion matrix fields have disparate eigen-values. We establish
strong convergence results toward a profile. Under suitable smoothness hypotheses, by introduc-
ing an appropriate corrector term, we estimate the convergence rate. The arguments rely on
two-scale analysis, based on average operators with respect to unitary groups.

Keywords: Average operators, Ergodic means, Unitary groups, Homogenization.

AMS classification: 35Q75, 78A35

1 Introduction

The subject matter of this paper concerns the behavior of the solutions for heat equations whose
diffusion becomes very high along some privilegiated directions. This study is motivated by many
applications like transport in magnetized plasmas [5], image processing [12, 17], thermal properties of
crystals [13]. We consider the parabolic problem

Owu® — divy (D(y)Vyu®) — édivy(b(y) ®@b(y)Vyu) =0, (t,y) € Ry xR™ (1)

u(0,y) =u™(y), yeR™ (2)

where D(y) € M,,,(R) and b(y) € R™ are given matrix and vector fields on R™. For any two vectors
&,n € R™, the notations £ ® 7 stands for the matrix whose entry (i, j) is &;n;, and for any two matrices
A, B € My, (R), the notations A : B stands for trace("AB) = >_i"; 377" | AjiBj;. The matrix field D
is assumed symmetric, such that D 4+ b ® b is positive definite. We analyse the behavior of the family
(u®)e for small ¢, let us say 0 < ¢ < 1, in which case (D + éb@ b)0<€<1 remain positive definite.
Another motivation for performing this asymptotic analysis comes from the numerical simulation of
highly anisotropic parabolic problems. Notice that the explicit methods require very small time steps,
through the CFL stability condition At ~ e|Ay|?. Therefore implicit methods have been proposed
in [2, 15, 16], finite volume methods have been discussed in [9, 1] and asymptotic preserving schemes
have been investigated in [8, 10]. For a detailed theoretical study of (1), (2) we refer to [3] where
it was shown that, for any initial condition u® € L2?(R™), the family (uf). converges weakly *
in L>®(R,; L?(R™)) toward the solution of another parabolic problem, whose diffusion matrix field
appears like an average of the original diffusion matrix field D. The main goal of this work is to go
further into this analysis. We intend to give a complete description of the behavior of (u)., due to
the high diffusion anisotropy. We prove a strong convergence result toward a profile, and analyze the
well posedness of the corresponding limit model.
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We consider variational solutions for (1), (2). For doing that we introduce a weighted Sobolev
space H} see (23) and define the bounded symmetric bilinear form

1
a®(u,v) = | D(y)Vu-Voudy+ g/ (b-Vu)(b- Vo) dy, u,v e Hp.
R’nL

m

The variational formulation for (1), (2) writes

. d .
u%m:““va;@u%uwwwdy+fufm~@=o1nD%RnyweH;

The well posedness of the above problem follows by standard results. Under coercivity assumptions,
for any € €]0, 1], there is a unique solution u® € Cp(R4; L*(R™))NLE (Ry; Hp), e €]0,1]. We consider
the second order operator B = =72, 7 = divy(-b) and the semi-group (e_TB)TeRJr. The idea is to
search for a solution v = v(t) of another variational problem, such that
W () = e~ EBu(t) + O() in LS, (Rys L2(R™)). (3)
The main difficulties are to identify the limit problem satisfied by v(¢) and to construct a corrector
which will allow us to justify the approximation (3). The limit problem appears as a variational
formulation whose bilinear form, denoted by m, is defined in Proposition 5.5. This bilinear form can
be expressed in terms of two C%-groups of unitary transformations operating on functions and matrix
fields. We denote by Y (s;y) the characteristic flow of the vector field b, by ({(s))ser the group of the
translations along Y
C(shu=uoY(s;), ue L*(R™), scR

and by (G(s))ser the group acting on the weighted L? space of matrix fields Hg, given by
G(s)A=0Y (s;-) AoY(s;-) 'OV " !(s;-), A€ Hg, s€R

see Proposition 3.3. With these notations, the bilinear form m writes cf. Proposition 5.5

S—+o0

1 S
m(u,v) = / {(D} (y)Vu+ lim 5/ (G(s)D — (D))V{(2s)u ds} - Vo dy
m 0
for any u,v € H), where (D) is the average of D along the C%-group (G(s))ser cf. Theorem 3.2

1 S
D)= lim — G(s)D ds in Hg.
D)= tim g [ Gl as g
The construction of the corrector requires a second bilinear form, cf. Proposition 7.1. We establish the
following convergence result, see Theorem 8.1 for all the details, under suitable hypotheses : smooth-
ness hypotheses on u™, b and D, existence of a matrix field P which satisfies (18), (19) and structural
assumptions associated to the fields b and D, see Sections 5.2, 7.1 and 7.2.

Theorem

Assume that u™,b, D are smooth enough. Moreover, we assume that the hypotheses (18), (19) are
satisfied, as well as the structural hypotheses given in Sections 5.2, 7.1 and 7.2. For any € €]0,1] let
us denote by u® € Cp(Ry; L>(R™)) N LE (Ry; HY) the unique variational solution of (1), (2)

loc

in

u(0) = u'™, 7 [ @ y)ely) dy+a*(us(t),¢) =0 in D'(Ry), € Hp
R”’L

and by v € Cy(Ry; L2(R™)) N L2

2 (Ry; HL) the unique variational solution

v(0) =, — i v(t,y)e(y) dy + m(v(t), ) =0 in D'(Ry), ¢ € Hp.

For any T € Ry there is a constant C such that

_t
u —e B

v‘ +‘VUE—V6_§BU <Cre, 0<e<l.
Le=([0,T];L2(R™)) L2([0,T]; X p)



When the initial condition is well prepared, that is 7u™ = 0, there is no boundary layer at ¢t = 0
and the limit model is given by the parabolic equation associated to the average matrix field (D), see
Remark 8.1

0(0) = u™, o(t,y)e(y) dy + / (D) (4)Volt) - Vo dy =0 in D'(Ry), p € Hb.

m

dt Jpm

Our paper is organized as follows. The main lines of the asymptotic analysis are presented first
in the finite dimensional case, cf. Section 2. The infinite dimensional case requires several tools and
hypotheses. We define average operators for functions and matrix fields, see Section 3. The spectral
properties of the operator B, as well as its semi-group, are studied in Section 4. The eigen-spaces
of the operator B will play a crucial role; a characterization of these eigen-spaces is shown and a
description of the associated projections is given, in terms of ergodic averages. The bilinear form m
is constructed in Section 5 and we study its main properties. The well posedness of the problems
associated to the bilinear forms a® and m is established in Section 6, and uniform estimates for the
solutions are highlighted. A second bilinear form n is emphasized in Section 7, which will allow us to
construct a corrector term. Finally, in Section 8, we establish the asymptotic behavior of the problem
(1), (2) cf. Theorem 8.1.

2 The finite dimensional case

We intend to investigate the behavior of the family (u®). of solutions for the parabolic problems (1),
(2). It is very instructive to consider first the case of linear operators on finite dimensional spaces.
Let A, B € M,(R) be two real matrices and for any ¢ > 0 consider the problem

1
%ua + Auf(t) + gBue(t) =0, teRy (4)

uf(0) = u™ € R™. (5)
In the case when A and B are commuting, i.e., BA — AB = 0, it is easily seen that e”"PA =

Ae "B 1 € R, and a direct computation shows that ¢ — eéBug(t) satisfies the problem

d
pred +Av(t) =0, te Ry (6)

v(0) = u'™ € R™. (7)

—tA _—TB
s

We obtain the well-known commutation formula between the matrices e e

B . t t i
T = (1) = e Pu(t) = e EPe UM, tE Ry, €3> 0

which allows us to describe the behavior of the family (u®). in terms of the solution of problem (6),
(7), and the semi-group (e~"?) g, . For studying the general case, we need a decomposition formula
for the matrix A. Assume for example that B is symmetric, and let us denote by E4,..., F,. the
eigen-spaces of B, corresponding to the eigen-values A1, ..., A

Ei:ker(B—)\iInL )\iER, 1<i<r, Ei1®...®oFE, =R".

For any i € {1, ...,7}, the notation (B—\;I,,) ~! stands for the reciprocal application of the isomorphism
(B = X\I,)| gt : B — Range (B — \;1,,) = E. We consider the linear applications

m;(u) = Projg Au, n;(u) = (B — NI,) ' (Au — Projg Au), u€ E;, i€ {l,..,r} (8)
and we denote by M, N the matrices of the linear applications
m=m;D..Em,, n=n1D..Dn,

that is
Mu =m(u) =m;(u), Nu=n(u)=n;(u), uveE; ie{l,..r}



We claim that the following decomposition holds true
A=M+BN—-NB, BM — MB = O,,. (9)
Indeed, for any i € {1,...,r} and u € E; we have

(BN — NB)u=BNu~ \Nu= (B — \il,)|pini(u)
= Au — Projp, Au = Au — m;(u) = Au — Mu
and (BM — MB)u = BMu — \{Mu = 0, since Mu = m;(u) = Projp, Au € E;. Based on the

decomposition (9), we obtain the asymptotic behavior for the solution of (4), (5), when & becomes
small.

Proposition 2.1
Let A, B € M, (R) be two real matrices and u'™ € R™. We assume that B is symmetric, positive and
consider the matrices M, N verifying (9). For any T € Ry, there is a constant Cp such that for any
€ > 0 we have

luf (t) — e~ =Be ™Myl < Cre, te[0,T).

Proof. The idea is to introduce a corrector. Let us consider the function u' : Ry x Ry — R™ given
by
ul(t,7) = e TBNe tMyin — NemTBemtMyin (¢t 1) e Ry x Ry (10)

Notice that we have u'(t,0) = 0,¢ € R} and
87—’&1 _ _Bef'rBNeftMuin + NBef'rBeftIWuin
—_B (e—TBNe—tMuin _ Ne—TBe—tMuin) _ (BN _ NB)e—TBe—tMuin
= —Bu'(t,7) — (BN — NB)e "BetMyin,

. . ~ _t — i .
Therefore, using the notation @ = e~ =Pe*My® we obtain

%{aul(t, t/e)} + (BN — NB)a(t) + g{eul(t, t/e)} = edpul(t,t/e). (11)

Taking into account that B and M are commuting, observe that

dua®

dt

+ Mas(t) + gﬁg(t) =0
which combined with (11) yields
d ~e 1 B ~c 1 1 1
g{u (t)+eu (t,t/e)t+ | A+ - {a°(t) + eu (t,t/e)} = el (t, t/c) + eAu (t,t/e).

Finally, the function t — 7¢(t) := u(t) — @°(t) — eu'(t,t/) satisfies the problem

dre
dt

B
+ Arc(t) + ;rs(t) = —c(0put + Aut)(t,t/e), tER,
7€(0) = uf(0) — a°(0) — eu'(0,0) = u'™ — ™ = 0.
Taking the scalar product with r¢(¢) and using the positivity of B imply

T t
(@) < / {100 (.1 /)] + A [ (¢, ¢ /<))t + 14| / (@) dF, te0,T], € > 0.
0 0

Here, for any matrix C, the notation |C| stands for the norm subordonated to the Euclidean norm

IC| = sup@ < (C:0)Y2,
e20 |¢]



By Gronwall’s lemma we deduce that
T
Ire (t)] < e/ {jowt (¢ ' J)| + |A] [ul (', /e)|} dt’ €TVl t e [0,T], €>0
0

and we are done provided that there is a constant C such that
lul(t,7)| + |l (t,7)| < Cp, t€[0,T], T€Ry.
But thanks to the positivity of B, it is easily seen that
lul(t, 7)] < 2|N| [e7™™Mu®| < 2|N| |ul| TMI t € [0,T], 7Ry

and
|0vu (t,7)] < 2IN| M| [u™] "Mt €]0,T], 7€R,.

Remark 2.1
The key point of the above proof is the choice of the corrector u
of ut in (10) by appealing to the usual two scale Ansatz

L. We retrieve formally the expression

uf(t) = u(t, t/e) +eu'(t, t/e) + ...
Indeed, plugging the previous Ansatz in (4), leads to
Oru(t,7) + Bu(t,7) =0 (12)
Opu(t, ) + Au(t, 7) + O;u (t,7) + Bul(t,7) = 0 (13)

The equation (12) says that for any t € Ry there is a function v(t) = u(t,0) such that u(t,7) =
e~TBu(t). The time evolution for v comes from (13), and we take as initial condition v(0) = u(0,0
ul™, which is obtained by letting formally & \, 0 in the equality u™ = u(0) = u(0,0) + u'(0,0) + ....
We appeal to the decomposition (9). Notice that we have

Owu(t, 7) + Mu(t,7) = dye "Bu(t) + Me "Bu(t) = e ™P <((i;t) + Mv(t)>

and
(BN — NB)u(t,7) + 0,u'(t,7) + Bu'(t,7) = e 720, {e"P Ne " Pu(t) + e Pul (t,7)}.

Therefore the equation (13) becomes

e ™8 (i: + Mu(t) + 0, {e"BNe ™ Bu(t) + e Pul(t, 7-)}> =0 (14)
or equivalently
d
d%’ + Mu(t) + 0. {e"BNe ™Bu(t) + e™Bul(t,7)} = 0. (15)

Here we have used that (e~ 7%),cr is a group. Notice that (14) still implies (15) when (e~ 75),cr,
is only a semi-group, satisfying the backward uniqueness (as for the heat equation, for example).
Averaging with respect to the fast time variable suggests to consider

d
d—qtj +Muv(t)=0 and e PNe " Pu(t) + e Bul(t,7) = Nu(t) + u*(t,0).
The solution satisfying the condition u'(t,0) = 0,t € Ry corresponds to the choice in (10). Notice
that the corrector in (10) is defined only in terms of the semi-groups (e_TB)TeR+, (e_tM)t€R+ and not
of the groups (e~78), cr, (e7*™),cr. Therefore it will be possible to use it when analyzing (1), (2), in
which case only semi-groups will be available.



Remark 2.2
1. The decomposition in (9), with B symmetric, is unique. More exactly, if
A=M+BN—-NB, BM—MB=0, NE;CE*, ie{l,..,r}
then M = M and N = N. Indeed, for any i € {1,...,r} and any u € E; we have
Au = Mu + (B — )\iIn)Nu, BMu = MBu = \;Mu
saying that Au — Mu € Range (B —\I,) = E, Mu € E;. Therefore we obtain
Mu = Projp, Au= Mu, i€ {l,..,r}, u€kE;

and
(B = X\il,)Nu= Au— Mu = Au— Mu = (B — \I,)Nu.

As we know that Nu, Nu € E, one gets Nu = Nu for any u € E;, i € {1,...,r}.

[

2. In particular, if A and B are symmetric, the matric M is symmetric and the matrix N is
skew-symmetric.

Before ending this section, let us observe that the convergence of (u®)c~o when e becomes small is
not uniform on [0,7],T € R4, except for well prepared initial conditions u™ € ker B. Indeed, if
u'™ € ker B, then the commutation property between B and M allows us to write
o~ tBo—tM,in _ ,—tM —1B in _ ,~tM in

and therefore (uf). converges uniformly on [0, 7] toward e~ *Mu!® when £ N\, 0. If the initial condition
is not well prepared, that is, if u™ ¢ ker B, the limit function lim.\ o u® is not continuous in ¢ = 0,
and thus the convergence is not uniform on [0,7],7 € R;. In order to check that, we appeal to the
long time behavior of (e™"%), cp,

le"™Pv = Projie, pv| < €77 [v — Projie, pv|, v €R™, TR,

with ¢ := inf},|=1 4 Lker 8 Bv - v > 0. Thanks to Proposition 2.1 we obtain the pointwise convergence

. . _tp ; _ . _tp ul® t=20
lim v () = lim e”*Me =Byt = =M Jim e~ By = M n
N0 N0 N0 e " Projy, g™ ,t>0

which is discontinuous at ¢t = 0 when u!™ ¢ ker B. A time boundary layer [0, 7%], of size O(g) occurs at

. . L e ~ _ _Tep . i
t = 0, during which any curve u connects the initial condition u'® to e~ 7=Me=" Byin ~ Proj, ., gu'™.

3 Average operators

We intend to generalize Proposition 2.1 for the parabolic problems (1), (2). In this section, we specify
the definition and the properties of the average operators along a characteristic flow, for matrix fields
and functions. The construction of the average operator for matrix fields relies on the existence of a
matrix field P satisfying (18), (19). We introduce the transport operator 7 = div, (- b), defined on

domT = {u € L*(R™) : div,(ub) € L*(R™)}.
We make the following standard assumptions on the vector field b

be WE2(R™), divyb=0 (16)

loc

and
3 C > 0 such that |b(y)| < C(1+ |y]), y€R™. (17)

Sometimes we will also write 7 = b(y) - V,,, motivated by the fact that b is divergence free. Under the
above hypotheses, the vector field b possesses a global smooth characteristic flow Y € Wl’OO(R x R™)

loc

v

= b(Y(s;9)), (s,y) eRxR™, Y(0;y) =y, yeR™.
S



Since the field b is divergence free, the transformation y € R™ — Y (s;y) € R™ is measure preserving
for any s € R. We introduce the C°-group of unitary operators ({(s))scr given by

C(s)u=uoY(s;), ue L*(R™), scR.

The transport operator 7 appears as the infinitesimal generator of the C%-group ({(s))ser. Sometimes
we will use the notation fs(z) = f(Y(s;2)), given a function f = f(y).

Any time a C%-group of unitary operators acts on a Hilbert space, the orthogonal projection on the
kernel of its infinitesimal generator coincides with the ergodic mean of the group [14].

Theorem 3.1 (von Neumann’s ergodic mean theorem)
Let (G(8))ser be a C°-group of unitary operators on a Hilbert space (H, (+,+)) and L be its infinitesimal
generator. Then for any x € H, we have the strong convergence in H

1 r+S
lim 5 / G(s)x ds = Projye, ,x,  uniformly with respect tor € R.

S——+oo

As a direct consequence of Theorem 3.1 we obtain the following representation for the orthogonal
projection on ker 7 = {u € L*(R™) : u(Y (s;-)) = u, V s € R}.

Proposition 3.1 (Average of L?(R™) functions)
Assume that (16), (17) hold true. Then for any u € L?*(R™) we have the strong convergence in L?(R™)

1 r+S
lim —/ w(Y(s;+)) ds = Projye, 7u  uniformly with respect to r € R.
S—+o00 S r

We introduce the average operator (u) = limg_, 4o & f,H_S uw(Y (s;+))ds,u € L*(R™). The previous

T
result says that the average operator coincides with the orthogonal projection on ker 7. In order to

handle parabolic operators, we will also need to average matrix fields of a L? weighted space and L™
weighted space. We assume that there is a matrix field P such that

'P=P, P@y)-£>0, eR™\{0}, yeR™, P71, PeLi(R") (18)
b, P] = (b-V,)P — d,bP — P'd,b =0, inD'(R,). (19)
We refer to Proposition 3.8 [3]

Proposition 3.2

Consider b € VVIZ(L);X> (R™) (not necessarily divergence free) with at most linear growth at infinity and

A(y) € L, . (R™). Then [b,A] =0 in D'(Ry) iff
A(Y (s;9)) = Y (s;9)Aly) "0V (s3y), s €R, y €R™
Let us consider some useful spaces.

Definition 3.1 We introduce the linear space
Hg = {A :R™ — M, (R) measurable : QY?2AQY? e Lz},
where Q = P~Y, which is a Hilbert space for the natural scalar product

(A, B, = | QV*AQY?:QY?BQY?dy= | QA:BQdy, VA, B¢ Hg.
Rm R7n

The associated norm is denoted by | Al -
Similarly we introduce the Banach space

HE?O - {A :R™ — M, (R) measurable : Q1/2AQ1/2 c Loo} 7

endowed with the norm
Alnz = |Q2AQY?| 1=



Assume that there is a continuous function v, which is left invariant by the flow of b, and goes to
infinity when |y| goes to infinity

e CR™), YoY(s;:) =1 forany se R, lim 1(y) = +oo. (20)

[y|—+o0

Since the compact sets {¢) < k}, for k € N, are left invariant by the flow of b, we will be able to
perform our analysis in the local spaces

Hgjoc = {A :R™ — My, (R) measurable : 1¢,<;3 A € Hg for any k € N} .

We say that a family (A;); C Hg oc converges in Hq 1o toward some A € Hq 1oc iff for any k£ € N, the
family (1{y<k}Ai)s converges in Hg toward 1gy<xyA. Notice that we have the continuous inclusion
Hg C Hgoc- As suggested by the characterization in Proposition 3.2, we introduce the family of
linear transformations (G(s))ser, acting on Hg (see Proposition 4.1 [4] for more details). Moreover,
under the assumption (20), the group (G(s))ser also acts on Hg 1oc.

Proposition 3.3
Assume that the hypotheses (16), (17), (18), (19) hold true.

1. The family of applications
A= G(s)A:=0Y 1 (s;-) A t@Y_l(s; ) =0Y (=s;Y(s;+) A, 1OY (—s; Y (55 )
is a C%-group of unitary operators on Hg.
2. If A is a field of symmetric matrices, then so is G(s)A, for any s € R.
3. If A is a field of positive semi-definite matrices, then so is G(s)A, for any s € R.

4. Let § C R™ be an invariant set of the flow of b, that is Y(s;S) = S, for any s € R. If
there is d > 0 such that QY?(y)A(y)QY?(y) > dln,y € S, then for any s € R we have
QY2 (y)(G()A)()Q?(y) > dIn,y € S.

5. Moreover, if (20) holds true, then the family of applications (G(s))ser acts on Hg e, that is,
if A€ Hgoc, then G(s)A € Hg 1o for any s € R. We have

1{¢§k}G($)A = G(S)(l{wgk}A), A€ HQ,lom seR, keN.

Proof.
1. Thanks to the characterization in Proposition 3.2 we know that

Py =0Y (s;-)P 'Y (s;+), s €R. (21)

For any s € R we consider the matrix field O(s;-) = QL/29Y (s;-)Q~/2. Observe that O(s; ) is a field
of orthogonal matrices, for any s € R. Indeed we have, thanks to (21)

'0(s:)0(s1) = Q712 10Y (5;)QY?QP0Y (5:)Q 1/
= Q12 (9Y Y(s; )P, 1Y (s; '))—1 Q-2
_Q\2pig/2
-1,
implying that for any matrix field A we have
Q'2G(5)AQ2 = Q'20Y 7 (5;) A, 1OY TN (5:)QV2 = '0(s: )QY?AQY?O(s5). (22
It is easily seen that if A € Hg, then for any s € R

G(s)A[3 = / Q'2G(5)AQY? : QY7C(s)AQV? dy
]Rm
:/ 'O0(s; QY2 AQY?0(s;) « TO(s;) QY AQLY2O(s; ) dy
- [ @Al QiraQi ay
Rm

:/]R Ql/ZAQl/Z . Q1/2AQ1/2 dy — |A‘%[Q



proving that G(s) is a unitary transformation for any s € R. The group property of the family
(G(s))scr follows easily from the group property of the flow (Y (s;+))ser
G(s)G(t)A =Y ' (s;)(G(t)A)s'0Y (s )
=0Y (s )0Y 1t Y (559))(Ap)s TOY Tt Y (s5)) FOY T (s5 )
=0Y Mt + 8 ) Ay POY Mt +5;) =Gt +s)A, A€ Hy.
The continuity of the group, i.e., limy_,o G(s)A = A strongly in Hy, is left to the reader.
2. Notice that G(s) commutes with transposition
HG(s)A) = " (oY ! (s;)As TOY " (s50))
=9Y H(s;-) "A TOY T (s;0)
=G(s) 'A.
In particular, if *A = A, then *(G(s)A) = G(s)A.
3. We use the formula (22). For any £ € R™ we have
G(s)A: Q'@ Q1% = Q'PG(5)AQ? 1 g @€
= '0(5:)Q2A.Q.0(s;) 1 € €
= QPAQY7 05 )€ @ 5) ‘0(s;)
= Q/PAQ)7 : (0(5:-)€) ® (O(s3-)€)
=A4:: (Q20(s)9) © (QWO( )8)-
As A is a field of positive semi-definite matrices, therefore G(s)A is a field of positive semi-definite
matrices as well.

4. Assume that there is & > 0 such that QY/24Q'? > al,, on S. As before we write for any
EeR™ yeS

Q'2G(s)AQ'? 1 £ @ & = (QYPAQ'?), 1 (O(5;)€) ® (O(s;)€) > alO(s; )EI* = al¢?

saying that Q'/2G(s)AQ'/? > al,, on S.

5. Here G(s) stands for the application A — Y (—s;Y (s;))A(Y (s;+)) *0Y (—s; Y (s;)) independently
of A being in Hg or in Hg joc. As 1 is left invariant by the flow of b, so is 1y<yy, for any k£ € N. If
A belongs to Hg joc, we have

l{wgk}G(S)A = G(S)(l{wgk}A) € Hy, keN, seR
saying that G(s)A € Hg loc, s € R. Moreover, the applications (G(s))ser preserve locally the norm of

Hq
|1{¢<k}G A|H ’G(S)(1{¢§k}A)|HQ = |1{¢§k}A|HQ R ke N, seR.

We introduce the infinitesimal generator of the group G
G(s)A— A
L:domL C Hy — Hg, domL={A€ Hg : 3 lin})L in Hp}
S—> S

and LA = lim,_,o W for any A € domL. Notice that C}(R™) C domL and LA = (b-V,)A —
OybA — A t9yb, A € CHR™) (use the hypothesis @ € L _(R™) and the dominated convergence
theorem). The main properties of the operator L are summarized below (see [3] Proposition 3.13 for
details).

Proposition 3.4
Assume that the hypotheses (16), (17), (18), (19) hold true.

1. The domain of L is dense in Hg and L is closed.



2. The matriz field A € Hg belongs to domL iff there is a constant C > 0 such that

|G(s)A — Alu, < Cls|, seR.

1
3. The operator L is skew-adjoint and we have the orthogonal decomposition Hg = ker LdRange L.

Remark 3.1 When working on Hq oc, the generator of (G(s))ser, which is still denoted by L, is
defined by

G(s)(1 A -1 A
A € dom(L) iff 3 lim (8)(Lp<iyA) — Liyiy

s—0 S

EHQ, keN

and

G(8)(LperA) — Liypcpy A
Lip<ry L(4) = lim O)lweind) ~ Ly

s—0 S

keN.
Clearly, the generator in Hg 1oc extends the generator in Hg.

The transformations (G(s))ser also behave nicely in the weighted L> space H¢y. More precisely, for
any s € R, and any A € H, we have G(s)A € Hiy and |G(s)A|ug = |Alug . Indeed, thanks to (22)
and to the orthogonality of O(s;-), observe that

Q'?G(5)AQ? : QPG (s)AQY? = '0(5;)QY P AQ2O(s; ) : 1053 ) QY AQ?O(s; )
_ (Q1/2AQ1/2 : Q1/2AQ1/2)S7 scR

and our claim follows immediately. Applying Theorem 3.1 to the group (G(s))ser, we deduce that

the average of a matrix field (A) :=limg_ 4o & f:JrS G(s)A ds is well defined and coincides with the
orthogonal projection on ker L. Moreover, by Proposition 3.3, (G(s))ser also acts on Hg 10c, and any
matrix field of H, 50 C Hgq 1oc possesses an average in Hg 1oc, still denoted by (-) as for the matrix fields
in HQ.

Theorem 3.2 (Average of Hg 1, matrix fields)
Assume that (16), (17), (18), (19) hold true.

1. For any matriz field A € Hg we have the strong convergence in Hg

r+S
() = Jim g [ OV (s Y (s )ANY (1)) '9Y (=¥ (5:1)) ds = Proje 4

uniformly with respect to r € R.
2. If A€ Hq is a field of symmetric positive semi-definite matrices, then so is (A).

3. Let S C R™ be an invariant set of the flow of b, that is Y (s;8) =S for any s e R. If A€ Hg
and there is d > 0 such that

QW) AW)Q*(y) > dl,n, yeS

therefore we have

Q' (y) (A) Q' (y) 2 dl, ye S
and in particular, (A) (y) is definite positive, y € S.

4. If A€ Ho N HE, then (A) € HoNHE and

(4 lro < 1Alg, |(A) |z < |Alng-

5. Moreover, assume that (20) holds true. For any matriz field A € Hg 1oc, the family

1 r+S
(s/ OY (=i Y (5 ) A(Y (s3)) 0V (=5: Y (5:°)) ds)
r S>0
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converges in Hq 1oc, when S goes to infinity, uniformly with respect to r € R, for any fized
k € N. Its limit, denoted by (A), satisfies

liy<iy (A) = <1{w§k}A> , for any k € N

where the symbol (-) in the right hand side stands for the average operator on Heg. In particular,
any matriz field A € HZ has an average in Hq loc and | (4) |H50 < |A|H5<:. If A € Hgoc 1
such that

QW AWR (y) > aly, yeR™,

for some a > 0, then we have
Q' (y) (4) )Q*(y) = alyn, yeR™.

Proof. We only sketch the arguments. For more details we refer to Theorem 2.1 [4]. The first and

second statements are obvious.
3. For any & € R™ 4 € C%(S),9 > 0 we have ¢(-)P'/?¢ @ PY/2¢ € Hg and we can write, thanks to
(22)

(G()A,v()PPe @ PP6)g = | v(y)Q'G(s)AQ'? : ¢ @€ dy
R7T1,
= | ) *Osy)Qy*A:QyP0(s:w)¢ - € dy
= | PO AQ : Oy ® Osi)e dy
> o [ 0Gssi) dy
=al¢? [ ¥(y) dy.
Rm
Taking the average over [0,.S] and letting S — 400 yield

[ PR (AN QP eedy = (4) wP P @ PP)o 2 /R alglPely) dy

implying that
Q' (y) (4) Q' (y) = alm, y€S.
4. Obviously, for any A € Hg, we have by the properties of the orthogonal projection on ker L that

| (A) |Hy = [PrOjyer LAl < |Alm,. For the last inequality, consider M € M,,(R) a fixed matrix,
¥ € CO(R™), v > 0 and, as before, observe that ¢y P/2MP/? € Hg, which allows us to write
(G(s)ApPY2 M PY?), :/ QY2G(s)AQY? - Yy M dy
Rm,
= / '0(s;4)Q?AsQY2O(s1y) - wM dy

- / QY2A,QY - O(s;y)M 'O(s; 9 dy

< / VO A.QY% - Q12 4,01 /OTs: )M 70 (s:y) - Osiy) M TOs: )i dy
< |Alug (M : M) | 4(y) dy.
Rm,
Taking the average over [0,S] and letting S — 400, lead to

Q' (A)Q'? : My(y) dy = ((A) , PP MPY?)q < |Alpgz (M : M)'? | 4(y) dy.
Rm™ R™

11



We deduce that
Q) (A) Q' (y) : M < |Alyg (M : M)'?, y e R™, M € M,,(R)

saying that

[(A) [y = ess supy e/ QV/2(y) (A) )QY2(y) : QY2(y) (A) (1)Q2(y) < | Al

5. Let A be a matrix field in Hg oc. For any k € N, 1< A belongs to Hg, and by the first
statement we know that

1

r+S
Ghm §/r G(s)gpeiyA) ds = (Lyeiy4) € Hg

uniformly with respect to r € R, for any fixed k € N. It is easily seen that for any k,l € N we have

) 1 S S
SETooE/O G(5)(1gp<iyA) dS_SEIJIrlooS/O G(s)(1yp<ipA) ds

almost everywhere on {¢y < min(k,l)}, and thus, there is a matrix field denoted by (A), whose
restriction on {¢ < k} coincides with <1{¢§k}A> for any k € N. Notice also that for any k£ € N we
have <1{¢§k}A> = 0 almost everywhere on {¢ > k} and thus we obtain

Liy<ry (A) = (Lg<ipA), k€N
Observe that for any k& € N, we have the uniform, with respect to r € R, convergence in Hq

o im 1{w<k}5/ ds = lim S/ ) (Lgy<yA) ds = (L A) = Lip<ry (4)

S—+oo

saying that limg_, 1o § f”s G(s)Ads = (A) in Hg 1oc (uniformly with respect to r € R, for any fixed

k € N). The inclusion Hg C Hq,loc follows by the compactness of {1 < k},k € N. By the fourth
statement we have

| (A4) lngy = ilelgﬂ{wsk} (A) lug = 2161§| (L A) lng < 2lé§|1{¢gk}A|H5° = |Almg.

Let A be a matrix field of Hg o, such that QY/2(y)A(y)Q'/?(y) > al,,,y € R™, for some o > 0. For
any k € N we have 1;y<11 A € Hg and

Q2 (N1 <y AW)QY2(y) > al, y e {v <k}
By the third statement we deduce that for any k € N
Q)1 p<ry (A) W)Q2(y) = Q2 (y) (L A) W)QV?(y) = al, y € {v <k}
saying that Q'/%(y) (4) (y)Q(y) > al, y € R™, O

Remark 3.2

1. We have the following variational characterization of the average operator on Hg oc: for any
matriz field A € Hg 10c, the average matriz field (A) is the unique matriz field in Hg 10 satisfying

(Lgyp<iy(A—(A)),M)u, =0, forany M € Hq.

2. It is easily seen that the average operator on Hq 0. extends the average operator on Hg.

3. Let A be a matriz field in Hg 1oc. For any k € N we have
G(8)Lgpziy (D) ~ Lipeny (4) _ G(s) (pzipA) — (L= 4)
s s

saying that (A) € dom(L) and 1yy<pyL(A) =0, k €N, see Remark 3.1. Therefore L (A) =0,
for any A € Hg 1oc-

=0
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We also introduce the linear spaces

Xg = {c:R™ — R™ measurable : Qy) : c(y) @ c(y) dy < +oo}
R’"L

X§ ={c:R™ — R™ measurable : |Q1/20\ € L>=([R™)}.

The linear space X, endowed with the scalar product

('7 ')XQ : XQ X XQ — R7 (C7 d)XQ = RmQ(y) : C(y) ® d(y) dy’ c, de XQ

becomes a Hilbert space, whose norm is denoted by [c|x,, = (c, c);/z, ce Xg.

The linear space X7’ is a Banach space with respect to the norm

el = ess sup,cgn Q2 (W)ely)], c € X

Notice that for any ¢ € Xo N X7, we have c® ¢ € Hg N Hg and

e @ clrg = ess supyepn Q"2 (W)cy) = lciz

1/2
c® clg = ( Q2 () dy) < lelxglelxs-
R’"L

Replacing the matrix field () by the matrix field P, we obtain the linear spaces Xp, X7.
For solving the parabolic problems (1), (2), we appeal to variational methods. We consider the
following linear subspace of L?(R™)

Hp ={ue L*(R™) : V,u€ Xp}. (23)

It becomes a Hilbert space, when endowed with the scalar product

(o, = [ ur@) dy+ [ PW)s Vs Vyody, woe .
m Rm

The choice of the above weighted H! space is motivated by the fact that the C%-group (¢(s))ser acts

on Hp.

Proposition 3.5 (Average of H} functions)

Assume that the hypotheses (16), (17), (18), (19) hold true. For any s € R and u € H}, we have
us € Hp and |ug| gy, = |ulgy,. The family of applications u € Hp — ('(s)u = uoY(s;:) € Hp is a
CP-group of unitary operators on Hb. In particular, for any u € H} we have (u) € H}

1 r+S
Vy(u) = lim - Vyus ds, strongly in Xp, uniformly with respect to r € R
S—+oco S r

u—(u) Lker TN Hp in Hp, |V, W) |x, <|Vyulx,.

Proof. Let u = u(y) be a function in Hp. As the flow satisfies Y € W2 °(R x R™), we have

Vus = '9Y (s;)(Vu)s. By Proposition 3.2 we know that Ps = dY (s;-)P '9Y (s; ), and therefore we
can write

|US|12LIl = (US(y))Z dy + P(y)Vus - Vu, dy
P m

m

- / (w@)? dy+ [ O (5:9)P(y) '0Y (s19) : (Vu)s ® (V) dy

m R™

Py

= |U|%2(Rm) + | Vuly, = |U|?{Ig~

13



The group property of (¢*(s))ser comes by the group property of (((s))ser. In order to check the
continuity of (¢!(s))ser, observe that for any u € Hp, we can write

CH(s)u —ulFry — [C(s)u — ulZa@my = [Vus = Vulk,
=2|Vul%, — 2(Vus, Vu) x,
— 9V}, — 2 / P12(y) 1Y (5; y)(Vu)s - PY2(y)Vu dy
R7n

tO(s;y) P/?

=2|Vul%, — Q/R LO(s;9)(PY?Vu), - PY?Vu dy

= |(PY?Vu), — PY?Vul}gm) — 2 / (PY2Vu), - (O - I,) PY*Vu dy.

m

Thanks to the continuity of ({(s))ser, we are done provided that the last integral terms converges to
0, as s — 0. The convergence lim,_,0 Y (s;y) = L, y € R™, implies the convergences

lim P(Y (559)) = lim 0 (s ) P(y) ‘0 (s;) = Ply), i PY*(¥ (s:9) = P/2(y)

lim Q(Y (s39)) = lim ‘0¥ ' (s:9)Q(y) Y ~'(s39) = Q(y), lim Q"*(Y(s;)) = Q'2(y)
s—0 s—0 s—=0
lim O(s;y) = lim QY2(Y (s;9))dY (5;9)QY?(y) = I, y € R™.
s—0 5—0
Since O(s;y) is orthogonal, we have |O(s;y)| = 1 for any s € R,y € R™, and by the dominated

convergence theorem we obtain

lim [ PY2Vu-(O(s;y) — I,)PY*Vu dy =0
s—0 Rm
implying that
lim [ (PY2Vu), - (O(s;y) — Iy) PY?*Vu dy

s—0 Rm

s—0

= lim [(P1/2Vu)s - P1/2Vu} (O(s;y) — L) P>V dy = 0.
R‘V‘ﬂ,

For the last limit we have used the convergence lim,_,o(P'/?2Vu), = P2V in L?(R™), and the upper
bound |O(s;y) — In| < 2, s € R,y € R™. Finally, by Theorem 3.1 we deduce the strong convergence
in H},

1 r+S .
Gim < /T ¢ (s)uds = Projye, mpsu

implying that (u) = Projie, 7u = Projie rnm1u € Hp, (Vu—V (u),Vv)x, =0 for any v € ker T N
H}, and the strong convergence in X p, uniformly with respect to r € R

1 T+S
lim —/ Vus ds =V (u) .
S—4o00 r

For the last statement use |Vus|x, = |Vu|x,,s € R and the above convergence. 7

4 Properties of the operator B = —72

We introduce the operator B = —T?2 = —div,(div, (- b)b) defined for any function in the domain
domB = {u € domT : div,(ub) € domT} C L*(R™).

Clearly, this operator will play a crucial role when analyzing the asymptotic behavior for the solutions
of (1), (2) with small € > 0. In this section we study the semi-group generated by the operator
—B, together with the spectral properties of 5. More precisely, we indicate a characterization of the
eigen-spaces of B and give a description, in terms of ergodic averages, of the orthogonal projections
on these eigen-spaces.
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4.1 Semi-group generated by the operator —B
For any 6 > 0, the notation My stands for the one dimension Maxwellian, of temperature 6
1 .2

My(s) = 27Ttge’%, s€R.

—TB)

The semi-group (e rer, is given by

Proposition 4.1 (Semi-group generated by —B5)
Let us consider the family of applications

1
VarT

and pou = u,u € L*(R™). The family (¢r)rcr, is a C° semi-group of contractions on L?(R™), whose
infinitesimal generator is —B, i.e. o =e "B 1 € R,.

Oru = /usMgf(s) ds = /u(Y(s; ~))e*% ds, ue L*R™), 7>0
R R

Proof. Clearly, for any u € L?(R™), 7 > 0, we have

/ (ngu)2 dy S/ /ungT(s) ds dy = /MQT(S)/ u? dy ds :/ uz(y) dy
Rm m, R R Rm m

saying that ¢, is a contraction of L?(R™). The semi-group property follows immediately, thanks to
the formula My, * My, = My, 14,, 01,02 > 0. Indeed, for any 7,h > 0,u € L*(R™) we have

OrPRU = /MQT(S)(gohu)s ds = /MQT(S)/ Moy (8 usys ds’ ds
R R R
= /uS(MgT * Mop)(s) ds = /USMQ(T+h)(8) ds = pripu.
R R
The continuity of the semi-group comes by the density of C.(R™) in L?(R™) and the contraction
property, noticing that ¢,u = [, M (r)u Va7 dr. It remains to check that the infinitesimal generator

of (¢r)rer, is —B. Consider u € domB, that is u, Tu = div, (ub), T?u = div,(divy(ub)b) € L*(R™)
and let us establish that %|T:0g07u = —Bu in L?(R™). Thanks to the equality in L?(R™)

1
up, = u + hdiv, (ub) + h? / (1 —8)(T?u)ps ds
0
we can write for any 7 > 0
— u —u
pru—u _ / My(r) 2 Y g,
T R T

U 5=, — U — V27rdivy (ub)
= / My (r) =2 - " d
R

r

1
= / Ml(r)2r2/ (1 —8)(T*u) sz, dsdr
R 0
— / My (r)yr*T?u dr = T?u = —Bu in L*(R™).
T\O R
Conversely, assume that u € L?(R™) such that the following limit exists in L?(R™)
lim 27" — e L2R™).
7\.0 T
A straightforward computation shows that for any 7 > 0 we have

hllu m
|(pru)n — @rulpe@my < HH\/;i:R), heR

2h2%|u
(o -+ (oot — 2prul oy < DAUE e g
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saying that ¢,u € domB for any 7 > 0 and

|’U,|L2 Rm™ 2|’U,|L2 Rm™
T orulp2@m) < #, IT?0rulp2@m) < %, T > 0.
The semi-group property guarantees that
d
e = |lprwlrz@my < Jwlgz@my, T>0
T LQ(Rm)
implying that
|T§07—U|%2(Rm) = —/ oru T o u dy
Rm,
d
= - L)O‘rudiﬁpTu dy
R™ T
< Iprulzaam |
> [PrU|L2RrRm) |7 -PrU
T dT i LZ(Rm)
< |u|L2(Rm)|w|L2(Rm), T>0.
For any h € R we can write
1/2 1/2
[ (un — 1) Loy = [(0r)n — @rulza@ey < [BlITorulpa@ey < [hlulihlem W] g, ™>0

and thanks to the continuity of the semi-group, we deduce
1/2 1/2
|up, — ulp2@m) < \h|\“|L/2(Rm)|w|L/2(Rm)7 heR

saying that u € dom7. For any smooth function v € C2°(R™) we have (using the symmetry of the
Maxwellians Ma,(—s) = Ma.(s),s € R,7 > 0)

/@Tuvdy:/ uprvdy, TERL
R™ R

and therefore we obtain

d d
/ wv dy :/ —|r=o0pruv dy :/ U —|r=oprv dy
RrR™ de RrR™ dr

= / uT?vdy = — [ TuTwvdy.

RmM
We deduce that Tu € dom7 and 7T2u =w € L*(R™). O
Properties of the semi-group (¢-),cr,

We inquire about the regularity propagation along the semi-group (¢;)rer,. These properties will
be useful when justifying the regularity of the solution for the effective problem, and of the corrector,
see Theorem 8.1.

1. The semi-group (¢;)rer, also acts on H};. Indeed, for any function u € H}g and any s € R we

have
PY2(y)Vu, = PY2(y) LY (s;y)(Vu)s = 'O(s;y) Pr/*(Vu)s.

As the matrices O(s;y) are orthogonal, we obtain
PGV (o) = [ PV (s) ds = [ 1O(si)(P2Tu). Mo () ds
implying that
IV (erw)lxp = [PY2V (pru)|p2@m) < /R\(Pl/zvu)shz(Rm)Mzr(S) ds = [Vulx,.

Therefore (p;)rer , are also contractions on H},

|<Pru|%(}g = |<Pru\i2(uw) + |V(<PTU)|§(}: < |U|2L2(Rm) + \VU@(}: = |“|§11137 ue Hp, T €Ry.
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2. If u € H}, such that div,(PVu) € L*(R™), then div,(PVp,u) € L*(R™) for any 7 € Ry, and
|divy (PVru)|p2@my < |divy (PVu)|p2@my, 7€ Ry.

Indeed, for any ¢ € C}(R™) we have
5 PVy,u-Vi dy = /]R / PVug - Vip dyMa,(s) ds
= /R/ PVu-Vi_, dyMa,(s) ds
= —/}R/ divy (PVu)_s(y) dyMa-(s) ds

< /|divy(Pvu)|L2(Rm)|'¢)—5|L2(Rm)M2'r(s) ds
R
= \divy(PVU”L?(RM)|¢|L2(Rm)

saying that div,(PVe,u) € L*(R™), and |divy(PVe,u)|p2@n) < |divy (PVu)|p2@m) for any
T E R+.

3. More generally, the semi-group (¢;)-cr, preserves all derivations c - V, along vector fields
¢ : R™ — R™ in involution with respect to b, i.e. [b,c] = 0. More exactly, let ¢ be a smooth
field in involution with b, with growth at most linear and bounded divergence

cewr=®m), sup WL oo =0, divyee I=®™)
yerm 1+ |y|

and let us denote by Z(h;y) the characteristic flow of ¢. For any function u € dom(c- V,) we
have

[(pru) 0 Z(h;-) = prulpz@m) = |@r(uo Z(h;-) — u)|L2@m)

<|uoZ(h;-)— u|Lz(Rm) < |h] e%\divych‘” |- VU‘Lz(Rm), TEeR,

saying that ¢,u € dom(c- V) and |c- V(oru)|r2@m) < [c- Vu|p2@my, 7 € Ry Letting h — 0
in the equality
(pru)o Z(hy-) —p;u  woZ(h;) —u
h e h
gives the commutation of ¢, and c¢-V,, that is

c-V(pru) = (c-Vu), 7€ Ry.

Moreover, if ¢1, ¢y are two smooth fields in involution with respect to b and ¢; - V(2 - Vyu) €
L*(R™), then ¢; - Vy(ca - Vypru) € L2(R™) and

‘01 . Vy(CQ . VygoTu)|L2(Rm) < |01 . Vy(CQ . Vyu)‘Lz(Rm), T e R;.
The above arguments allow us to propagate derivations along fields in involution with respect

to b, of any order, uniformly with respect to 7 € R,..

4.2 Spectral properties of the operator B
We concentrate now on the spectral properties of B.

Proposition 4.2
The operator B is self-adjoint and positive. In particular the eigen-spaces are orthogonal, and for any
A we have ker(B — A\Id)*+ = Range (B — \d).

Proof. For any u,v € domB and 7 € R, we have

/%uvdy=/ uprv dy
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implying that [, Buv dy = [,.,uBv dy. Therefore we have domB C domB* and B*v = Bv for any
v € domB. Conversely, assume that v € domB*, that is there is a constant C such that

Buwv dy < Clu|2gm), for any u € domB.
R’VYL

For any u € domB and h € R we have
1 1
up =u—+ hTu+ h2/ (1 —8)(T*u)ps ds, u_p, =u—hTu+ h2/ (1 — 8)(T?u)_ps ds
0 0

and thus we obtain

/m(vh +v_p —20)udy = /mv(uh +u_p —2u) dy
i [ o] (1 ) (T ds 4 / (1 )T as| ay

1
= h2/ (1-— s)/ O(T?uns + Tu—ps) dyds < C|h|*|u| g2 rm).
0 m
As the domain of B is dense in L?(R™), it comes that

/ (vh + v_p — 20)u dy < Ch®|u|2@®m), hER, ue L*(R™) (24)

m

implying that
|vn +v_p, — 20| 2®m) < CR®, hER. (25)

In particular, taking « = —v € L*(R™) in (24), one gets

lvp, — v|%2(Rm) = —/ (vn + v, — 20)v dy < Ch?|v|p2@m). (26)

m

The estimates (26), (25) guarantee that v € domB and thus B* = B. Clearly, for any v € domB we
have fR,,LBuu dy = f]R,,(Tu)2 dy > 0, and therefore all the eigen-values belong to R.. |
Description of the eigen-spaces and of the associated projections

For any A € R, we denote by E) the subspace E) = ker(B — AId). Thanks to the equality
JamBuu dy = [o.(Tu)? dy, u € domB, it is easily seen that

Ey=kerB=kerT = {u € L*(R™) : u, =u,s € R}.

By Proposition 3.1 we know that

1 r+S
Projpu= lim — / ug ds, strongly in L*(R™), uniformly with respect to 7 € R.
T

S——+oo

We will see that the orthogonal projections on the subspaces E) are also given by average operators.
For any A > 0 we introduce the family of transformations of L?(R™) x L?(R™)

Ca(8)(u,0) = ¢ (R(\FAS) t(us,vs)) — (ug, vs)R(—VXs), (u,v) € L2R™) x L2([R™), s € R

where R stands for the rotation of angle 6 € R.

Proposition 4.3
For any A > 0 the family ((\(s))ser i a C°-group of unitary transformations of L*(R™) x L?(R™).
The subspace Ey writes

E, = {u € dom7 : us = cos(VAs)u + sin(ﬁs)}%u, for any s € R}
= {u € domT : (u + l\%u)g = ¢ Vs (u +z\gu> , foranyse€ R}
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and for any u € L*(R™) we have

9 r+S
Projp u= lim —/ cos(VAs)u, ds,

S—+o00

7— ) r+S
\/XPI‘O_]E)\U = SEI-EOO g /T sin(V/As)us ds

in L2(R™), uniformly with respect tor € R. If u € domT, the orthogonal projection on Ey also writes

) r+S
Projp, u=— lim —/ Sm(\fs) us ds

S—+00 S VA

in L2(R™), uniformly with respect to r € R.

Proof. Clearly we have for any (u,v) € L*(R™) x L?(R™), s,h € R
O (8)6n () (1, v) = (G (B) (1, 0))s R(=V/As)

= (un, vn) s R(=VAR)R(=VAs)

=G (8 + h)(u, v)

and
() (u, 0)[Z2y 2 = A {(us)® + (v5)*} dy = A {u? + 0%} dy.
The continuity of the group ((s))scr guarantees the continuity of the group ({(s))ser. We denote by
Ty, the infinitesimal generator of ((x(s))ser. Its domain is given by the pairs (u,v) € L*(R™)x L?(R™)
such that it exists d
Th(u,v) = g\s:OQ\(S)(u,v) € L3 (R™) x L*(R™).

It coincides with the set of the pairs (u,v) € L2(R™) x L?(R™) such that it exists
d d 2(mm 2 m
I ls=ola(s)(uw, )R R(VAs)} = g ls=0(us, vs) € L7(R™) x L(R™).
Therefore domTy = dom7 x dom7, and for any (u,v) € domT) we have
d
Ty (,0) = o le=0Ca(5)(u,v) = VA, 0)R(=7/2) 4+ (Tu, Tv) = (Tu — Vv, To 4+ Vu).

The kernel of T is F\ = {(u, %u), u € Ey}. Notice that u € Ey iff (u, -=u) € F), or equivalently iff

w Jxu

T T
we domT, |us, ——=us | R(—VAs) = (u, u) , for any s € R.
(1 e ROVR) = (w5 v
We deduce that u € Ey iff u € dom7 and

us = cos(VAs)u + sin(\ﬁs)lu7 for any s € R (27)
VA
T . T
\f/\ué = —sin(VAs)u + cos(\[\s)\ﬁu, for any s € R. (28)

Observe that (28) comes from (27), by taking the derivative with respect to s and therefore we obtain
the following characterization for the subspace Fy

Ey = {u € domT : u, = cos(Vs)u + sin(xf)\s)}%u for any s € R}

= {u € dom7 : (u + 2\2\u>s = iV (u+ l\%u) for any s € R} .

By Theorem 3.1, we know that for any (u,v) € L2(R™) x L?(R™) we have

Projp, (u,v) lim S/ ) ds

S—+4o00
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in L2(R™) x L*(R™), uniformly with respect to 7 € R. In particular, we deduce that

S~>+oo S—+o0

r+S 1 r+S
Projp, (u,0) lim S/ )ds = lim §/ (cos(VAs)ug, sin(VAs)us) ds

in L2(R™) x L?(R™), uniformly with respect to r € R. But Projp, (u,0) = (U.
satisfying

,%U) for some U € Ej

/{( U)V\;U\gv} dy=0, VeE,

/(quU)de:O, V € E.

m

which also writes

This exactly means that

) ) ) r+S
Projp,u=2U = SEI—{}DO 5 /r cos(xf)\s)us ds

in L2(R™), uniformly with respect to r € R. Notice that we also have

\/X \/X S——+oo S

in L2(R™), uniformly with respect to r € R. If u € dom7 we have

2 r+S
lProjEAu = 21U = lim —/ sin(vV/\s)u, ds

- {sm(\fs) } = cos(VAs)u, + sm(\fs) ug in L*(R™)

ds T X

and thus we deduce

ProjEAu:Sli)rfooS/MS{ [Sm Vs) f] —sin(ﬁs)\zus} ds
=— lim S/THSsm(\fs)

us ds
S—+oo

7

in L2(R™), uniformly with respect to r € R. O

Remark 4.1

1. It is easily seen that Fg = kerT = kerB is left invariant by the group (((s))ser and that
Projg, = (-) is commuting with ({(s))ser and T

Projp,us = Projg,u = (Projg,u)s, u€ L*(R™), s€R
Projp, Tu =0 = TProjg u, v € domT, secR.

2. The subspaces Ey = ker(B — Ad), A > 0 are left invariant by the group ({(s))ser. Indeed, for
any u € dom7T such that

(u—l—i\gu)s = ¢~iVs (u—&—z\;dxu) , seR

T —iv\s T
uyp € dom7T, (uh—&—z\f)\uh)S:e VA (uh—l—z\/xuh), seR

saying that up, € Ex,h € R, X > 0. In particular the subspaces Ex N H}, X > 0 are left invariant
by the group (C1(s))ser-

we have
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3. The application uw € Ex N H} — %u is a isometry with respect to the H} norm. Indeed, for

any u € Ex N H} we have

T
us = cos(VAs)u + sin(vVAs)—=u, s € R.
(VAs)u + sin(vAs) —~
As we already know that u,us € ExNHp, we deduce that %u € ExNH} and thus we can write
/ PVu-Vudy = PVug - Vug dy
m Rm

2
cos(VAs)PY?Vu + sin(\&s)Pl/Qvlu dy
VA
T

T
PVu - Vu dy + sin fAs?/ PV——u-V——ud
Yy (VAs) IV Nt

:/m

= cos(\r)\s)Q/

m

+ sin(2V/As) /MPVU : V\gu dy.

Taking the derivatives with respect to s at s =0, we deduce that

T
PVu-V—udy=20
R VA

which implies that

T T /
PV—u-V—udy = PVu-Vu dy.
/m N Y, G A . Y

2 2
/(%u) dy = —/uTTu dy = /u2 dy

and thus we have |%U‘H%’ = |ulg, for any w € ExN H} and also (\%u, %'U)H}l) = (u,v)my,

Notice also that

for any u,v € Ex N Hp. The reciprocal application of %|E>\ﬂH}D 18 f%|Eka}).
4. The orthogonal projection on Ex, A > 0 are commuting with the group ({(s))secr
Projp, us = (Projg, u)s, s € R.

In particular Projg, , A > 0 are commuting with T, that is, for any u € domT, A > 0 we have
the equalities in L*(R™)
Ug — U . Projp, us — Projg, u

Projz. 7u = Projn. lim = lim
JE* ']E)‘ s—0 S s—0 S

Projz. u)s — Projn. u
= lim( Ig, s 22 = TProjg, u.

s—0 S

5. Many other commutations hold true, for example between (¢x(s))ser, (Cu(s))ser, thanks to the
equalities

R(VAS)R(VEh) = R(VER)R(VAs), A\ p>0, s,heR.
We study now the action of ((x(s))ser on Hp x Hp, for any A > 0. As in Proposition 3.5 we prove

Proposition 4.4

Assume that the hypotheses (16), (17), (18), (19) hold true. For any (u,v) € Hp x Hb, we have
(3) 1 v) € Hpx Hb and |G(5)(0.0) |y cary, = 10,0y ey The family of applications (C()ser =
(A(S)rL, < my )ser 15 @ C-group of unitary operators on HL x Hb. In particular for any u € Hp we
have Proj, u € Hp

9 r+S 7- 2 r+S
VProjp, u = SEIJ,I}OO 3 /T cos(VAs)Vug ds, V\?/\ProjEku = Sgrfoo 5 /T sin(VAs)Vu, ds  (29)
strongly in Xp, uniformly with respect to r € R and

u—Projg u L ExNH} in Hp, |VProjg ul%, <2[Vul%,.
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Proof. Let (u,v) be an element of H}, x H},. By Proposition 3.5 we know that
(USJJS) S Hllg X H1137 |US|L2(RW) = "U,|L2(]Rm), |’US|L2(]Rm) = |U|L2(]Rm)
Vus|xp = [Vulx,, [Vus|x, = [Volx,
and therefore we deduce
G (8) (1, 0) g1 prr, = 100 (8) (1, 0) G2 gmy s L2 ey + | €OS(VAS) Vit — sin(vVA8) V%,
+ | sin(VAs) Vg + cos(VAs) Vs [%,
= |(uav)|2L2(]Rm)><L2(]Rm) + [ Vus %, + Vs[5,
= |(u,v)|§1}ij}j.
The group property of ((i(s))ser comes by the group property of (C\(s))ser, cf. Proposition 4.3.
Notice that
CA05) (00 0) = (1,0) By eary = G0 (5) (0 0) = (11, 0) By
+ | cos(VAs) Vau, — sin(VAs) Vo, — Vaul%k,
+ | sin(v/As) Vg + cos(VAs) Vo, — Volk,
and therefore, the continuity of ((3(s))ser on Hp x Hp follows by the continuity of ({x(s))ser on
L*(R™) x L*(R™) and by the continuity of (¢!(s))ser on Hp, thanks to the inequalities
| cos(VAs)Vu, — sin(VAs) Vo, — Vulx, < (1 — cos(VAS))|Vus|xp + |Vus — Vaulx,
+|sin(VAs)| |Vus|xp

and
| sin(vV/As) Vs + cos(VAS) Vo, — Volx, < |sin(vVAs)| [Vus|xp + Vs — Volx,
+(1 = cos(VAs)) [Vus|x,
and to the equalities |Vus|x, = |Vulx,,|Vus|x, = |Vv|x,. Notice that the set of elements in

H}, x Hj which are left invariant by the group (3 (s))ser is given by
{(u,v) € Hp x Hp : Ci(s)(u,v) = (u,v), s € R}
— {(nv) € I2(R™) x L(R™) : Gr(s)(w,0) = (u,0), 5 € R} N (b x HP)

F;I](H};xH};){(u,\gu) : ueE,\}ﬂ(H}_,xH}_,)

~{(wT5u) s wemnm ).

For the last point we have used the third point of Remark 4.1.
Applying Theorem 3.1, we deduce for any v € H}, the strong convergence in H}, x Hp, uniformly
with respect to r € R

1 r+S L T
SEIEOO g/r G(8)(u, 0) ds = Projp, nmy, ) (u, 0) = <U7 \[\U>

for some U € ExNH}. This implies the following strong convergences in L?(R™) x L*(R™), uniformly
with respect to r € R

SET{XJ % /TT+S(COS(\AS),SH1(\AS))US ds = (U7 \ZU)

and in Xp x Xp, uniformly with respect to r € R

r+S
SEI-EOO l/r (cos(VAs), sin(V/As)) Vi, ds = (VU, V%U) . (30)
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By Proposition 4.3 we have the strong convergence in L? x L?

r+S r+S
lim l/ (cos(VAs),sin(VAs))u, ds = Slim l/ Cx(s)(u,0) ds

S—~4o0 — 400

1 ]
- = P I 7P 1
5 ( rojp, U, s I'O‘]EA’U,)

implying that Projp, u = 2U € E\ N H} and the statements in (29) follow by (30). As (u,0) —
3 (Projp, u, l}\ProjEA u) is orthogonal on F\ with respect to the scalar product of L?(R™) x L?(R™),

and also on F)\ N (H} x H}) with respect to the scalar product of H5 x Hb, we deduce that for any
VeE\N H}; we have

1 1
<Vu — §VProjEAu, VV) + (0 — §V1PrOjEku, VTV> =0.
Xp

Xp VA VA
By the third statement of Remark 4.1, we deduce that
(Vu— VProjg u,VV)x, =0, V € ExNHp

which together with the orthogonality of u — Projg, u on Ey in L?(R™), gives the orthogonality of
u — Projg, uon ExN H} in H). The last conclusion follows thanks to Proposition 3.5, noticing that

92 r+S
|VProjp, ulx, < <liminf/ | cos(V/\s)] ds) |Vulx,
S——+oo S r

S—+o0 S

= \/§‘VU|XP.

s 1/2
< lim inf 2 (/ (cos(V/As))? ds) |Vu|x,

Remark 4.2
The convergence in Proposition 4.4 being uniform with respect to r € R, it allows us to obtain, by
changing s to —s

L2 s . . T o
SETOO —/T (cos(VAS)Vu_g, —sin(vVAs)Vu_y) ds = (VPI"O‘]EAU, V\/XPI"O‘]EAU>

strongly in Xp X Xp, uniformly with respect to r € R.

5 The effective problem

The goal of this section is to introduce the effective bilinear form m and to justify its well definition,
see Proposition 5.5. In order to achieve this, in Section 5.1 we prove some technical lemmas, which
will provide the existence of the limit

1 f®
Sgrfoog/o G(s)DV{u(Y (2s;-))} ds (31)

strongly in Xg, for any u € ExNHp, A >0and D € HE’. Moreover, the limit in (31) is explicited
through a new family of projections associated to the eigen-spaces of the operator —L?, where L is
the infinitesimal generator of the group (G(s))secr. These projections are studied in Proposition 5.1.
In Section 5.2 we indicate a structural hypothesis which allows us to justify the existence of the limit
(31) for any u € Hp.
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5.1 Technical tools
For further developements, we need the following lemma.

Lemma 5.1

1. For any matriz field D € Ho N Hg' and any vector field ¢ € Xp we have the convergence

1 r+S
SliIJrrl g / G(s)Dcds = (D) ¢, strongly in Xg, uniformly with respect to r € R.
—+00 r

2. The above convergence still holds true for any matriz field D € HY , and any vector field c € Xp,
where the average of D is considered in Hq joc cf. Theorem 3.2.

Proof.
1. We know by Theorem 3.2 that

1 r+S
SliIJIrl 3 / G(s)D ds = (D) strongly in Hg, uniformly with respect to r € R.
—+00 r

We define the sequence cx = Lyqp1/2cj<i}1¢, k € N. Any vector field ¢; belongs to X7 and we have
the convergence limg_, o ¢ = cin Xp. For any k£ € N we have the convergence

1 r+S
Shrf E/ G(s)Dcy ds = (D) ¢y, strongly in X¢, uniformly with respect to r € R
—+00 r

thanks to the inequality

r+S
3 /T G(s)D ds — (D)

AP
Hq

Observe that

1 r+S 1 r+S
E/ G(s)Dcds — (D) c < g/ G(s)D(c — ci) ds
r Xo " Xq
1 r+S
+ g/ G(s)Dex ds — (Dye|  + (D) (ex — 0)lxo
I XQ
1 r+S
< g/ G(s)D ds lc — cilxp
T HE)c
1 r+S
+ g/ G(s)Dcy, ds — (D) ¢, + | (D) ‘H%O|Ck —¢|xp

X

1 r+S
<2[D|ugler — c|xp + g/ G(8)Dcy, ds — (D) ¢,

X

which implies that for any £k € N

lim sup sup < 2|D|gee|ck — ¢|xp-
S—+oo reR e

Xq

r+S
%/ G(s)Dcds — (D) c

Our conclusion follows by letting & — +o0.
2. For any k € N we consider Dy = liy<iyD. Since D € Hgf C Hgoc, we deduce that Dy, €
Hg N HG, and by the previous statement, we have for any k € N

lim sup
S—+00 rcR

=0.
X

1 r+S
E/ G(s)Drcds — (Dy) c
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Notice that

1 r+S 1 r+S 1 r+S
g/ G(s)Dcds — (D)c¢| — g/ G(s)Drcds — (Dy) c < g/ G(s)(D — Dy)c ds
T XQ T XQ T XQ
+ | <Dk —D>C‘XQ
1 r+S
— E G(S)Dl{w>k}c ds + ‘<D> 1{¢>k}C|XQ
T XQ
1 r+S
<5 [ 16@Dlug e, ds + (D) s wsnclxs
<2[(D) lag [Lip>rrclxe
which implies that
r+S
limsupsup | G(s)Dcds — (D) c <21(D) g Lp>iyclxp-
S—+4o0 rER S r Xo ©
Our conclusion follows by letting k& — +o0. )

The purpose of the following proposition is to introduce the orthogonal projections on the eigen-spaces
of —L?, by appealing to the von Neumann ergodic mean theorem, in respect with a new family of
unitary C°-groups. These new projections will allow us to justify the existence of the limit in (31). As
suggested in Proposition 4.3, for any A > 0, we introduce the family of transformations of Hg x Hg

GA(s)(A, B) = (cos(VAs)G(s)A — sin(vVAs)G(s) B, sin(vVAs)G(s) A 4 cos(VAs)G(s)B)
for any (A,B) € Hg x Hg,s € R.

Proposition 5.1
For any X > 0, the family (G(s))ser is a CO-group of unitary transformations of Hg x Hg, whose
infinitesimal generator Ly is given by

domLy = domL x domL, Ly(A,B)=(LA—VAB,LB+VAA), (A,B) e domL x domL

where L is the infinitesimal generator of the group (G(s))ser. For any A € Hg we have, with the
notation £, = ker(—L? — \Id)

R L2 (TS .
(PI‘OJgAA,\/XPI'Ot]gkA> = lim g/r (cos(V/As)G(s)A, sin(vVAs)G(s)A) ds

S——+oo

strongly in Hg x Hg, uniformly with respect to r € R, and

Projg, A

< |AlHg-
Hq

7

Moreover, if A€ Hq N HE, then Proje, A, %ProjEAA € Hy and

|Proje, Alm, =

Proje, Aliss < 2/, HM&A‘ <2/ Als.

oo

7

Proof. It is easily seen that (Gi(s))ser is a C%-group. For any (A, B) € Hg x Hg we obtain by
direct computations

saying that (Ga(s))ser are unitary transformations of Hg x Hg. As before we check that domL) =
domZL x domL and

Lx(A,B) = (LA —VAB,LB + VA), (A,B) € domL x domlL.
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The kernel of Ly is given by

rny = { (4. 524) s aea).

Notice that A € & iff (A, %A) € ker Ly, or equivalently iff A € domL and G (s) (A, %A) -
(A, %A) for any s € R, that is

G(s)A = cos(VAs)A + sin(ﬁs)%fl, seR (32)
L , L
ﬁG(s)A = —sin(VAs)A + cos(ﬁs)\ﬁA, seR. (33)

Observe that (33) comes from (32), by taking the derivative with respect to s and therefore we obtain
the characterization

£ = {A € domL : G(s)A = cos(vAs)A + sin(ﬁs)\%A, 5 e ]R}
= {A € domL : G(s) (A + i\%A) = Vs (A + i\%A) , s€ R} .

Applying Theorem 3.1, we know that for any (A, B) € Hg x Hg we have

ProJkerL; (A B Sll)r—&l-loo S/ )dS

in Hg x Hg, uniformly with respect to » € R. In particular we have the uniform convergence in
Hg x Hg, with respect to r € R

S—4o00

r+S
Projieer, (4,0) = lim % / (cos(VAs)G(s) A, sin(v/As)G(s) A )ds-( \%z) (34)

for some Z € &,. Therefore, for any W € £, we have

(A= Z,W)u, + (0 - \%Z, \%W) =0.

As (G($))ser 1s a unitary group, its infinitesimal generator L is skew-adjoint, and thus
(A — 2Z,W)HQ =0, We Ex

saying that Projg, A = 2Z. Thanks to (34) we obtain the uniform convergence in Hg x Hg, with
respect to r € R

R L2 e .
(PrOJ&A,\fAPrOJ&A) = lim g/r (cos(V/As)G(s)A, sin(vVAs)G(s)A) ds.

S—+o00

Assume now that A € Hg N HZ. The above convergence in Hg x Hgq guarantees the existence of a
sequence (Sy,), such that lim, . S, = 400 and

9 Sn
lim —/ cos(VAs)G(s)A ds = Projg, A, for a.a. y € R™

n——+oo n Jo

A L
lim S—/ sin(VAs)G(s)A ds = —

Projg, A, for a.a. y € R™

n— 00 \/X
But the sequence ( fo cos(vVAs)G(s)A, sin(v/Xs)G(s)A) ds) is bounded in HZ x H
2 Sn 2 Sn
?/ cos(VAS)G(s)A ds| < 2lAlus, 37/ sin(VAs)G(s)A ds| < 2|Als.
n JOo n JO
HS Hy
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We deduce that ProngA Projg, A € HZ and

VX

Proje, Aliss < 2/Alms, pmJ&A‘ <2/ Als.

oo

7
O

Remark 5.1
It is easily seen, thanks to the skew-symmetry of L that & := ker(—L?) = ker L and thus Projg, A =
Projie, 1A = (A), for any matriz field A € Hg.

Remark 5.2

1. Asin the last statement of Theorem 3.2, the operator Projg, extends from Hg to Hq 1oc- Indeed,
let A be a matriz field in Hgoc. For any k € N, Ay = 1yy<py A belongs to Hg, and by
Proposition 5.1 we know that

r+S
lim % / (cos(VA8)G(s) Ag, sin(vVAs) G(s) Ag) ds = (ProngAk,\Lr)\Proj&AQ

S—+o00
strongly in Hg x Hg, uniformly with respect to r € R. We have
92 r+S 9 r+S
lim —/(cos(\ﬁx\s),sin(\f/\s))G(s)Ak ds = lim —/(cos(\[\s),sin(\f/\s))G(s)Al ds
S—+oo S ” S—+oo S r

almost everywhere on {¢ < min(k,l)}, and thus there are two matriz fields B,C € Hq 1oc such
that

2 r+S
lim —/ (cos(VAs)G (s) A, sin(VAs)G(s)Ay) ds = 1iy<iy(B,0)

S—+oco S
. L :
= | Projg, Ag, WPIOJ&A;C

strongly in Hg x Hg, uniformly with respect to r € R, for any fixed k € N. We claim that
B € dom(L?), and L? B+ AB = 0, that is B € ker(—L* — Al d), where L is considered in Hg joc-
Indeed, we have for any k € N

1¢y<ryB = Projg, Ax € dom(L|g,,)
saying that B € dom(L). Moreover
1gy<iyLB = L(1{y<kyB) = L(Projg, Ay) € dom(L|g,)
implying that LB € dom(L) and
1ip<kyL?B = 1{y<3y L(LB) = L(1{y<3 LB) = L(L(Projg, Ay))
— —AProje, A = —1(y<i)AB, ke N.
We deduce that B € dom(L?) and L?B + AB = 0. Notice that for any k € N we have

L ) L
saying that C = 2 B € dom(L). It is easily seen that the matriz field B € Hg . satisfies
f Q,

B € ker(—L* = Md), (1y<py(A—B),M)p, =0 for any M € Ex,k €N

and that B is uniquely determined by the above variational characterization. Moreover, if A €
Hgq, then B coincides with Projg, A C Ex C Hg. Therefore, for any A € HQ 1oc, the family

2 r+S
(S/ (cos(VAs)G(s)A, sin(VAs)G(s)A) ds)

S>0

converges in Hg 10c X HQ 1oc, as S — +o0, toward (B, %B), where the application A € Hg 10c —
B € Hq oc extends the projection Projg, : Hg — Hg. We use the same notation B = Projg, A
independently of A being in Hg or in Hg joc.
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2. For any matriz field A € HF C Hgoc and any k € N, the matriz field Ay, = 1y<py A belongs
to Ho N Hg', and by Theorem 5.1 we have

Proje, Aklugy < 2|Aklugy < 2|Alug

Projg, A

< 2|Ak|H5° < 2|A|Hg;>-
HZ

%
We deduce that

[Proje, Alug = sup |1{p<iProje, Alng = sup |Proje, Axlngy < 2|A|ug

and

PrOng Ak

< 2/ Al
HOQ

L
—sup‘1{¢<k} \fPrOJ&\ ‘ = sup \T/\

PI'O_]gA
oo keN
Q

7

H>
Q

The unitary C%-groups (G (s))ser, A > 0 emphasized in Proposition 5.1 allow us to establish the
following convergences.

Lemma 5.2

1. For any matriz field D € HoNHZ and any function u € E\xNH}E, A > 0, we have the convergence

——=Projg,, DV— T

lim g / $)DVugs ds = 2PI‘O_]54ADV’U, —I- \A

S—4o0

2 /4
strongly in Xq, uniformly with respect to r € R.

2. The above convergence still holds true for any matriz field D € HZ and any function u €
E\N HL, )\ > 0, where the operators Projg,,, L are considered in Hq 1oc cf. Remarks 5.2, 3.1.

Proof.
1. For any s € R we have ugs = cos(vV4As)u + sin(v4 s) ~u. By the third statement of Remark 4.1,

we know that fu € E\xN HL and therefore we have the followmg equality in Xp

Vugs = cos(V4As)Vu + sin(V 4)\3)V\gu. (35)
We claim that
92 r+S
lim —/ cos(V4As)G(s)DVu ds = Projg, DVu (36)
S—+oo S ” A
lim 2 /H_S sin(\/4)\s)G(s)DV1u ds = LPro' Dvlu (37)
5400 S/, N Yy S S

strongly in X¢, uniformly with respect to » € R. We introduce the sequence c;, = Lepr/evu<kyy VU
Any vector field c; belongs to X3 and we have the convergence limy_, o c; = Vu in Xp. By
Proposition 5.1 we have

2 r+S
lim —/ cos(V4As)G(s)D ds = Projg,, D

S—4o00

strongly in Hg, uniformly with respect to » € R. As in the proof of Lemma 5.1 we have

2 r+S )
g/r cos(V4As)G(s)DVu ds fPrOJ&MDVMXQ <4|D|ug|Vu — cklx,

2 r+S
—/ cos(V4As)G(s)D ds — Projg,, D|  [cx|xs

tls
Hq
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which implies that for any k € N

2 r+S
lim sup sup |- / cos(V4As)G(s)DVu ds — Proje,, DVu| < 4|D|ge|Vu — c|xp.
S—+oco rER S r x @
Q
The formula (36) follows by letting & — +o0. For the formula (37) use the field V%u € Xp and the
convergence
2 r+S L
SEIEOO g /r sin(V4As)G(s)D ds = \/TjProj&MD

strongly in Hyg, uniformly with respect to r € R. Combining (36), (37), (35) yields

. T

W
strongly in Xg, umformly with respect to r € R.
2. For any k € N, let us consider Dy = 1yy<yD € Hg N HEQO By the previous statement we have

2\ﬁ

1 r+S 1 ) T
51_13_100 flelg g /T G(s)DpVugs ds — §Pr0‘]54ADkVu ~3 rPro‘]&uDkVﬁ . =0. (38)
Q
Notice also that we have
1 r+S 1 ) 7‘
5/ G(s)DVugs ds — §Pr0J54ADVu ) \/7P OJ&MDV\[\ .
Q
1 r+S 1 ) T
-3 i G(8)DiVugs ds — §Pr0J54AD;€Vu— 5\/7Pro‘]lg4AD;{;V\/X .
Q
1 r+S 1 )
< 5 /T G(8)(D — Dg)Vugs ds + 3 |P1r0J5M (Dy, — D)VU|XQ
Xo
’ Projg, (Dy — D)Vlu
2|V e Al

It is easily seen that

r+S
3 G(s)(D — Dg)Vugs ds

r

r+S

1 | .
- ‘S : G(s)D1ysky <cos(ms)Vu+S1n(m5)vﬁu)

X

Xq
<|D 1 \v 1 \Y% T
< Dl | oty Vulxe + | Lamn ¥ zu|
and
L Proj D D —P D D)V T
§| rOJsu( k— )VU‘XQ \ﬁ rOJsu( k— D) ﬁ“ <
< YProje. Dlus [1juom Vi, + = |—E=Proje. D] |1yuss V-2
_ oo u — T —=U
=9 WOJen HVIHG 1>k} Xp Ty VAN JEan s {v>k} V5N <
< 1Dl | Lwry Vilsy + | Lromr Vo
= [VlHg {¥>k} VU|IXp {¥>k} Vo .
Combining the convergence (38) with the previous estimates yields
li ! /T+S G(s)DVugs ds 1Pr0' DVu — ——=Projg, DV— T
imsupsup |— s sds— =
ot rek | S ), 20 Q87 g TH0)ens ) r AL
< 2|D|gee |1{w>k}Vu\XP + ‘1{¢>k}VTu .
Q \f/\ Xp
Our conclusion follows by letting & — +o0. O

29



5.2 Structural hypotheses associated to B
Notice that any E} is closed and Ey L E, for any A # u, thanks to the symmetry of B. In order to

extend the existence of the limit (31) to any function u € H}, we need to decompose the space H}
through the spaces (Ey)x>o0. We assume that L?(R™) is the Hilbertian sum of a countable family of
subspaces E) i.e., span(U,enFEy, ) is dense in L?(R™)

E,, =ker(B— M\, Id), \, >0, neN. (39)

L*(R™) = & E,,

neN
Without loss of generality, we assume that A\g = 0 (independently with respect to 0 being an eigen-
value of B or not) and A\, > 0, E, = ker(B — A\, Id) # {0},n € N*.

Example 5.1 (Periodic case)
Assume that the characteristic flow Y (s;y) is So-periodic, that is

35S0 >0 such that Y(s+ So;y) =Y (s;y), s€eR, yeR™.

We claim that any eigen-value of B = —T? writes v/A, = nwg,n € N,wg = 27/Sy. Indeed, if \g = 0
is an eigen-value of B, it corresponds to n = 0. Let A > 0 be a positive eigen-value of B. This means
that there is u € dom7,u # 0 such that

T ﬁ< T >
Us +i—us=¢e V¥ (u+i—=u), seR.
VA VA

Taking s = Sy, one gets

(u—&-z\gu) (1 - e—msﬂ) ~0

implying that /ASo = 2mn,n € N*. In this case the hypothesis (39) holds true. Indeed, if u € L*>(R™)
is such that Projp, =0 for any eigen-value A, then we have

1[5
PrOjEUZS—O/O us ds =0

and for any n € N*

So 2 So

: T . :
Projp , ,u cos(nwos)us ds =0, —Projg , ,u= = [ sin(nwgs)us ds = 0.
nTwn nwo nTws SO 0

S0 Jo
Therefore, all the Fourier coefficients of the So-periodic function s — u(Y (s;-)) € L*(R™) vanish,
and thus uw(Y (s;-)) =0 for any s € R, saying that u = 0.

Example 5.2 (Almost periodic case)

We investigate now a very important particular case: that when the C°-group (((s))ser is almost
periodic. We assume that for any u € L*(R™), the function s € R — ((s)u € L*(R™) is almost
periodic, that is, the trajectory s — ((s)u € L*(R™) is the limit in C(R; L>(R™)) of a sequence of
trigonometric polynomials with coefficients in L2(R™) (see [6] for a detalied study of almost periodic
functions with values in Banach spaces).

Proposition 5.2

Assume that the hypotheses (16), (17) hold true and that the C°-group ({(s))ser is almost periodic.
Then the family of non trivial subspaces Ex = ker(B — Md),\ € Ry is countable and L?*(R™) =
DBy, , By, = ker(B — A\,Id) # {0}.

Proof. Let u € L?(R™) be a function orthogonal to Ey = ker(B — A\Id) for any eigen-value \.
Therefore u is orthogonal to E) = ker(B — AId) for any A € Ry

— 400 —+o0

1[5 2 [°
Projg,u = Slirn S /C(s)u ds =0, Projp,u= Slim = /cos(ﬁs)((s)uds =0, A>0.
0 0
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Notice that we also have

9 S
\gProjEku = SETOO g /Osin(\f)\s)C(s)uds =0, A>0.

Therefore all the Fourier coefficients of s — ((s)u vanish, implying that v = 0 in L?(R™) and thus
span(Uxegr, Ex) = L*(R™). As L*(R™) is separable and the subspaces (E))xcr, are orthogonal, we
deduce that Ey # {0} only for a countable set {),}, saying that (39) holds true. O

A direct consequence of (39) is given by

Proposition 5.3
The space Hb is the Hilbertian sum of the spaces (Ex, N Hb)pnen-

Proof. The spaces (Ex, N Hp)nen are closed in Hp, since (E), Jnen are closed in L?2(R™). By
Propositions 3.5, 4.4 we have

u—Projg, w1l Ex, NHp in Hp, u€ Hp, n € N,
Therefore, for any u € Ex, N Hp, k # n we have
u—01 Ey, NHp in Hp

saying that Ex, N Hy 1 Ey, N Hp in Hp, for any k # n. Let u be an element of H5. As L*(R™)
is the Hilbertian sum of (E), )nen, we have u = Y Projg, w in L?*(R™). For any n € N we have
Projg, w="Projg, ~piu and therefore the Bessel inequality

Z |Pr0jEMUﬁq1g = Z |PTOJEMmH}1,U‘?{Ig < \UGJ}D
neN neN

guarantees that >\ Projp, wu converges also in Hp. Its sum in L*(R™) being u, we deduce that

neN

u=73,cnProjp, win Hp, saying that Hp = span(Unen(Ex, N Hp)). O

S
S — 400, uniformly with respect to r € R, toward some limit not depending on r, for any u €
span {Unen(Ex, N Hp)}. Thanks to the inequality

By Lemmas 5.1, 5.2 we deduce that (l fTHS G(s)DVusas ds) converges strongly in X¢g, when
5>0

1 r+S
g/ G(5)DVus, ds| < DIz |Vulx,,

Xa

we deduce that the above convergence holds true strongly in X, uniformly with respect to r, toward
some limit not depending on r, for any u € @,en(Ex, NHbL) = Hp. We are led to the following result.

Proposition 5.4
For any matriz field D € HE and any function u € H}, the quantity

1 r+S
g / G(s)DVusgs ds

converges strongly in Xg, when S — 400, uniformly with respect to r € R, toward some limit not
depending on .

5.3 Definition and properties of the bilinear form m

We intend to apply variational methods for solving (1), (2). We need to construct the bilinear form
corresponding to the limit problem. We perform this construction for any field D of symmetric positive
matrices, satisfying

Q2(y)(D(y) +bly) @ b(y)Q"*(y) = dI,n, y €R™ (40)
for some constant d > 0. We suppose also that
DeHy, be X3. (41)

The above hypotheses have to be considered together with the previous assumptions in (16), (17),
(18), (19), (20), (39). We introduce the following bilinear applications.
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Proposition 5.5
1. For any e > 0, let us consider the application a® : H: x Hb — R

1
a®(u,v) = [ D(y)Vu-Vudy +E/ (b-Vu)(b- Vo) dy, u,ve Hp.
]Rm

m

a(u,v)

The bilinear form a° is well defined, continuous, symmetric, positive. For any e €]0,1] it is
coercive on HY with respect to L*(R™).

2. For any r € R, let us consider the application m: Hy x H, — R

S—+o00

r+S
m(u, v) = / m{(D) ()Vu+ lim % / (G(5)D — (D)) Vg ds}.w dy

The bilinear form m s well defined, not depending on r € R, continuous, symmetric, positive
and also writes

5/2
m(u,v) = /(D) (y)Vu-Vody+ lim l/ /(D — (D))Vu, - Vu_, dyds,u,v € Hp. (42)
m S—+o00 S —-5/2 JrR™

The following equality is satisfied

m(u,v) = [ DVu-VProjg, vdy, u€ E\, NHp, n€N, v e Hp. (43)
Rm n

3. The bilinear form m satifies the following commutation property with the operator 1B
m(u, Bv) = m(Bu,v) for any u,v € Hp such that Tu, Tv, Bu,Bv € Hp.

Moreover, the bilinear form (u,v) — m(u,v) + [o.(b- Vu)(b- Vo) dy is coercive on Hp, with
respect to L2(R™).

Proof.
1. For any u,v € H} we have

|DVu - Vo| = [Q2DQY? : (PY?Vv) @ (PY?Vu)| < |D|ug |PY/?Vo| [P/ Vul.
and

|(b-Vu)(b- V)| = QY2 @ bQY? : (PY2V0) ® (PY?Vu)|
< |b@blug [PVl |PV2Vu| = |b|§(éo|P1/2Vv| | P2V ).

We deduce that

saying that a® is well defined, and continuous on Hp. It is also symmetric and positive, thanks to
the symmetry and positivity of D(y),y € R™. The coercivity comes by (40), observing that for any
u€ HL,0 <e <1 we have

b®b

a® (u, u) + dlulF2gmy = /RQU? (D + 6) Q' : (PV?Vu) ® (PY?Vu) dy + dlulFgm)

> d|u|§1}3.

2. We justify that m is well defined and not depending on r € R. By Proposition 5.4, see also Lemmas
5.1, 5.2, we know that for any u € H}p, the family

r+S r+S
(; / (G(S)D<D>)Vu2sd8> —(; / <G<s><D<D>>>wgsds>

S>0 S>0
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converges strongly in Xqg, when S — +o0, uniformly with respect to r € R, toward some limit not
depending on r € R. Therefore m(u,v) is well defined for any u,v € Hp. Obviously m is bilinear. In
order to establish the symmetry observe that

G(s)(D = (D))Vug, - Vv

G(s)(D — (D)) "0Y (559)(Vus) (Y (559)) - "0Y (5;9)(Vo—s)(Y (5;9))
(D = (D))Vus - Vu_y),

implying that

5/2
m(u,v) = / (D)Vu-Vudy+ lim / / NVus - Vu_, dyds.
m S—4o00 S S/2 m

Obviously m is continuous on Hp x Hp
m(ut, 0)| < 31D]sms [Vulx, Vol < 31Dl [uly [oly, .0 € Hp.

The symmetry of m comes by the symmetry of D(y),y € R™, after performing the change of variable
s — —s. Another useful formula for m comes by observing that for any u € Ey, N Hj,n € N, we have

Ugs +u = 2cos(v/ Aps)us, s€R. (44)

Indeed, the above formula is trivial when n = 0. When n € N*, notice that

Lu = g "VAns (u +iu> u—+1 T u = ¢tVAns (u —l—iTu)

implying that uss + u = R{2 cos(v/ ) (us + zrug)} = 2cos(v/Ans)us, s € R. Thanks to (44), the
average term of m writes, for any u € Ex, N Hp,n € N*,v € H},

Uos + 7

r+S
/m,% / (G(s)D — (D))Vugs ds - Vv dy (45)

/ / cos(v/ An8)G(8)DVug ds - Vo dy
/ / s)DVu ds - Vo dy — / / Vugs ds - (D) Vo dy.

By Lemma 5.1 we have

1 r+S
SEI}}OO 3 /T G(s)DVu = (D) Vu

strongly in X, uniformly with respect to » € R and thus

lim / / s)DVu ds-Vudy = / (D) Vu - Vv dy. (46)

S—+o0 m

By Proposition 3.5, we deduce thanks to the orthogonality E, L Ep,n € N*

1 r+S
SETOO 3 /T Vugs ds = VProjg u =0

strongly in Xp, uniformly with respect to » € R and thus

1 r+S
lim / 5 / Vugs ds - (D) Vo dy = 0. (47)

S—+oco
For the remaining term in the right hand side of equation (45), notice that

G(5)DVu, - Vo = 9Y (5;9)G(s)D Y (s;y)(Vu)s - (Vv_s)s = (DVu - Vo_),
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and therefore we obtain

r+S r+S
/ % / cos(v/Ans)G(s)DVuys ds-Vody = | DVu- % / cos(v/ Aps)Vu_s ds dy.
m r Rm r

By Remark 4.2 we know that

L2 [T .
Sgrfoo g /T cos(VAns)Vu_s ds = VProjg, v
strongly in Xp, uniformly with respect to r € R, implying that
2 r+S
511111 / 3 / cos(\/ An8)G(s)DVug ds-Vudy = [ DVu-VProjg vdy (48)
=T m r R™ "

uniformly with respect to r € R. Combining (45), (46), (47), (48) leads to the following expression
for the average term of m

1 r+S
lim / —/ (G(s)D — (D))Vugs ds- Vo dy = | DVu-VProjg vdy
S—+4o00 mS r R™ An

—/ (DYVu-Vudy, ue Ex, NHp,neN" ve Hp
and therefore

m(u,v) = [ DVu-VProjg vdy, u€Ey\, NHp,ne€N" veHp. (49)
B =
We claim that the above formula also holds true for u € EgNH}L,v € H). Indeed, taking into account
that u = ugs = us(Y(s;5-)), v =v_s(Y (s;-)) we obtain
G(8)DVugs - Vv = G(s)D 'Y (s;-)(Vus)s - “OY (55-)(Vo_g)s
= (DVus - Vo_g)s = (DVu - Vu_g)s.

By Proposition 3.5 we deduce

1 r+S
m(u,v) = SETOO A DVu - E/ Vu_sdsdy = 5 DVu - VProjg, v dy.

By (49) and the hypothesis D > 0 we have
m(u,v) =0, u€ Ex, NHp,v € Ex, NHp,n#k

and

m(u,u) = [ D(y)Vu-Vudy >0, u€ E\, NHp, n€N.
R’HL

As m is bounded on H} x Hp, it is easily seen that for any u € H. we have

m(u,u) =m (Z Projg, u, Z Projg, u) = Z m(Projg, u,Projg, u) >0

neN keN neN

saying that the quadratic form u — m(u,u) is positive on Hp. Notice also that for any u,v € Hp we
have

m(u,v) = Zm(ProjEA u, Projp, v) = Z DVProjp, u-VProjg, vdy
neN nen’R™

<> ID|ug |VProjg, ulx,|VProjg, vlx,
neN

< |Dlug [Vulx, Vvl x, < [Dlag [ul vl -
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3. We focus on the equality m(u, Bv) = m(Bu,v), with u,v € Hp, such that Tu, Tv, Bu,Bv € H}.
Observe that

1
/ (D)Vu-VTvdy=lim — [ (D)Vu-V(v, —v)dy
m h—0 h R™

— lim + {/mG(h) (D) Vu - Vo, dy — /m<D> Vu - Vv dy}

h—0

1
lim —
hlir%) h

:—/ (D)VTu-Voudy

[ (0 vus 0y vu) oy

and thus
/ (D) Vu-VBvdy = / (DYVTu-VTudy = / (D) VBu - Vu dy. (50)

m

For the second term in the right hand side of (42) we notice that

S L@ - opwu T as [ (0= O)VTu 0

m m

= / (D —(D))Vus - VBv_gs dy — / (D — (D))VBus - Vu_g dy

m m

and therefore
1 [5/2
lim —/ { (D —(D))Vus - VBv_s dy — / (D —(D))VBus - Vu_; dy} ds
S—+4o00 S —5/2 Rm m

S/2
= lim 1 {/ (D — (D))Vus - VTu_s dy —|—/ (D —(D))VTus - Vu_g dy}
S—+o00 S m m —5/2

=0. (51)
Combining (50), (51), we deduce that m(u, Bv) = m(Bu,v).

It remains to justify the coercivity. For any u € Ex, N Hp,v € Ey, N Hp, we have

(u7 ’U)H}, = §nk(u7 U)H},7 m(uu ’U) = 6nk D(y)vu -Vu dy
]Rm

/ (b-Vu)(b-Vo)dy=— | T*uvdy = )\n/ u(y)v(y) dy
m Rm m

m

— Ao / u(y)o(y) dy = due / (b- Vu)(b- Vo) dy.

It is easily seen, thanks to (40), that for any u € span U,en (Ex, N Hp) we have

m(u, u) +/ (b-Vu)? dy + d/ u?(y) dy > d\uﬁl}j.
Rm,

Since the bilinear forms (u,v) — m(u,v), (u,v) = [p.(b- Vu)(b- Vv) dy are bounded on H}, x Hp,
(use the hypotheses b € X@ for the second form), the above inequality still holds true for any
u € Spen(Ex, N Hp) = Hp, saying that (u,v) — m(u,v) + [o.(b- Vu)(b- Vv) dy is coercive on Hp,

with respect to L?(R™). O
Remark 5.3
When u € Ex, N H} such that div,(D(y)Vu) € L*(R™), we deduce by (43)
m(u,v) = — [ divy(DVu)Projp, vdy= —/ Projp, divy(DVu)v(y) dy, ve Hp
R"YL " m "

saying that the restriction on Ex, N HY of the linear operator associated to the bilinear form m is
Projp, (—=divy(D(y)Vu)), for any u € Ex, N H} such that divy (D (y)Vu) € L2(R™), see also (8).
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6 Uniform estimates

In this section, we justify the well posedness of the problem (1), (2) and of the effective problem
associated to the bilinear form m. We indicate uniform estimates for the solutions of these problems.
We consider the continuous embedding Hp < L*(R™), with dense image (since C}(R™) C Hp). In
the following propositions, we are looking for variationnal solutions of the above problems.

Proposition 6.1
Let u'™ be a function in L2(R™). For any € €]0,1] there is a unique variational solution of (1), (2).
Moreover we have

in |Uin|L2 Rm
IualLoo(R+;L2(R7n)) < |’LL |L2(]Rm)7 IVUE|L2(R+;XP) < #7 0<e<l.

Proof. This is a direct consequence of Theorems 1, 2 [7] p.513, see also [11]. By Proposition 5.5
we know that, for any € €]0,1], the bilinear form af is coercive on H} with respect to L*(R™). We
deduce that, for any u'™ € L?(R™), there is a unique variational solution u® for (1), (2), that is
u® € Cp(Ry; L2 (R™)) N LE (Ry; HY) and

loc

u®(0) = u™, u*(t,y)e(y) dy + o (u¥(t), ) =0 in D'(Ry) for any ¢ € Hp.

dt Jgn
By the energy balance we obtain for any t € Ry, e €]0, 1]

1 ¢ 1 ¢ 1 i
IO s+ [ 19060 s < GO+ [ 60 (6),0%(5) ds = G e
implying that i
€ in e € 2 |UIH|%2(Rm)
[u® ()] L2@m) < [u™|L2@m), [Vus(s)[x, ds < g
0
]
We intend to proceed similarly for solving the variational problem associated to the bilinear form m.
As shown in Proposition 5.5, we only know that (u,v) — m(u,v) + [5.(b- Vu)(b- Vv) dy is coercive
on Hj with respect to L?(R™). Nevertheless m is coercive on Ey, N Hp with respect to Ey, , for any
n € N. Indeed, for any n € N,u € Ey, N H}, we have, thanks to (40)

n?

m(u, u) + (An + d)|u|i2(Rm) = / DVu-Vudy + / (b-Vu)dy+d [ v(y)dy
Rm

m R’Vn
= / QYD +b@b)QY?: (PV?Vu) @ (PY?Vu)dy +d | «?(y)dy > dlul?;. .
m Rf?l P

Proposition 6.2
For any n € N, let ul® be an element of Ex,. There is a unique function v, € Cy(Ry;Ey, )N
L (Ry; E\, N H}E) such that

; d
v, (0) = u,), g v (t, y)p(y) dy +m(v,(t), ) =0 in D'(Ry), for any € Ex, N Hp.
]Rm

Moreover we have

[0n|Loe & 2 mmy) < lup|L2@mys [ Tonlpe @y sn2@m)) < [T L2 @m)
o

|Ui L2
[VonlL2(o,05xp) < —

m t .
ﬁ + \/; ‘Tu};]|L2(]R'm)7 t 6 R+7 n E N.

Iful® € E\ NH}p and there is a function f, € Ey, (the function f,, will be denoted by Projp, (—div, (DVu™))
such that /
D(y)Vuy' - Vo dy= | fu(y)e(y) dy, for any ¢ € Ex, N Hp
R’nl ]RWL
then _
|PI‘OjE>\n (—divy (van (t)))|L2(1Rm) < |PrOjExn (—divy (DVU?)”LNRm), te R+
and
Ovn + Projg, (—divy(DVu,(1))) =0, t € Ry.
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Proof. We use the inclusion E\, NHp < Ey,,n € N. The existence and uniqueness of the variational
solutions (v, ), come by Theorems 1,2 [7]. The energy balance gives

1 K Lo
Slon OB + [ [ D@)Ton - Tui dyds = Sfult e
0o JRm

implying
on ()] L2@my < |u|z2@my, [Ton(t)|z2@m) < |Tup|2@m), t€Ry,n €N,

For the last estimate we have used the equality [;.(Tv)* dy = A [0 (y) dy, v € Ey,. Observe also
that for any t € Ry, n € N we have

t ¢
d/ﬁv%@mgdsg/’ (DVon(s) - Von(s) + (b- Von(s))?} dyds
0 0o Jrm
1 in in
< §|Un |%2(]Rm) +t|Tuy ‘%Q(Rm)‘
Assume now that ul" € E) N H} such that Projg, (—divy(DVull)) exists. For any h € R% we have

d .
& " (vn(t + h,y) - 'Un(tvy))(p(y) dy +m(vn(t + h) - ’Un(t)’(p> =0 inD /<R+>7 pe E)\" N Hllj

implying that

2dt Jgm
We deduce that

1d/X%a+mm—wﬁwnﬂwz—m%@+m—wﬂy%u+m—wﬁ»ga

|vn(t + h) — Un(t)|L2(Rm) < |vn(h) — Un(O)‘Lz(Rm), t,h e Ry. (52)
Notice also that
3371000 = 0 Oy + [ D)V(0n0) = 0 (0)) - V(0 () = 0 (0)) dy
=~ [ Dw)Ven(0)- T(on ()~ 0a(0)) dy

and therefore

1
5 [vn () — Un(o)&?(JRm)

IN

—/0 /mProjEAn (=div, (D(y)Vul™)) (vn(s,y) — v,(0,y)) dyds

IN

[Prof,, (—div, (D) Vi)l xen) | " Jen(5) = 0 0) ey .
Thanks to Bellman’s lemma, one gets
[0n(B) = 00 (0) |2y < BIPTOjp, (—divy (D(y) V)| sun). (53)
Combining (52), (53) we deduce
[oa(t + 1) = 0 (8) 2y < [0 (h) = 00 (0)] 2am) < hIProjp,  (~divy (D(y) Vel )] agemy

saying that ‘
|0gvn|L2@®m) < [Projg, (—divy(D(y)Vuy))|r2@m), t € Ry

By the variational formulation we know that

divnp dy + | D(y)Vou(t) - Ve dy =0, ¢ € Ex, N Hp
R’I‘ﬂr R‘m
implying that

Projg, (—=divy(D(y)Vun(t))) = —0wn € Ex,, t€Ry

n?

and thus
[Projg, (—divy(D(y)Von(t)))|r2@m) = [0rvn(t)|L2@m) < |Pr0jEAn(—divy(D(y)Vuirf‘)ﬂLz.
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Corollary 6.1

Assume that (A,)y is increasing and lim, 4o A, = +00. Under the hypotheses of Proposition 6.2,
for any u™ € domT, there is a unique v € Cp(Ry; L2(R™)) N LE (R HE), Tv € L®(Ry; L2(R™))
such that

v(0) = u'®, v(t,y)p(y) dy + m(v(t), ) =0 in D' (R,), for any ¢ € Hp. (54)

& R’V?’L
Moreover we have
[olpe @ sp2@m) < [ pe@e), [Tole@ysn2@m) < [TU" 2@

|’U,in|L2(R7n)
Vo Xp) S ——
Velezqoaixe) = — 7
If u™ € Hp and 32, |Projp,  (~divy(DVProjg, u™)[7a ) < +oo, then

2 in
E|77u |L%Rng.

Z [Projg, . (—divy(DVProjEMv(t)))|%z(Rm) < 400
neN

and
0w+ Y Projg, (—div,(DVProjg, v(t) =0, t€Ry.
neN

Proof. For any n € N, we denote by v, the solution given by Proposition 6.2, corresponding to
u, = Projg, u™. By Remark 4.1 we know that TProjz, u™ = Projg, Tu™,n € N, implying that

D lon®)F2@my < Y IProjp, wfFa@my = [u™[F2gm), t € Ry

neN neN
Z |TUn(t)|%2(Rm) < Z |PrOjEkn T'U/in|%2(]Rm) = |Tuin|%2(Rm), t e R+.
neN neN

Therefore Y, Un(t), >, en Ton(t) converge in L?(R™), for any ¢ € Ry. Let us introduce v(t) =
Y onenVn(t), w(t) = >, .y Tua(t),t € Ry. For any ¢ € dom7 and any N € N we can write

N N
[ > wattn)Tods+ [ 3 Toaltroly) dy=0
=0 R™,—o

which implies, by letting N — +oo

/ o(t,y)Te dy +/ w(t, y)e(y) dy = 0.
Therefore v(t) € dom7 and w(t) = Tv(t). In particular

ToOZ2@m) = D |TvnlZa@m) < Y Projm, Tu|Zagm) = [Tu™7sgm)-
neN neN

Actually the convergence v =Y _y vy is uniform with respect to ¢t € R, thanks to

neN

N
1 1 1 .
v(t) =) vp ()22 immy < — Mo ()22 mmy = — T ()22 mmy < — | Tu™ |22 mm
[v(t) n§:0 ®72@m) )\Nn§>N [vn ()| 2@y )\Nn§>N| O] 72@m) )\N| |72(Rm)

and therefore v € Cy (R4 ; L2(R™)). By Proposition 5.3, we know that the spaces (Ex, N Hb)nen are
orthogonal in H} and thus

/t(vn(s)aﬂk(s))H; ds=0, teRy, n#k.
0
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Moreover we have for any ¢t € Ry

> lvnlteogimyy = D_{valtzo sz + IV0nltqo.:x0) )
neN neN

i : in
< tz [Projg, w™F2@m) + 55 2% Z [Projp, u™|72@m) + p Z [Projp, Tu™|Z:@m)
neN neN

(t + 2d> ‘Uin‘%z(Rm) + ElT’Uzin&Q(]Rm) < 400
implying that there is z € L{ (Ry; Hp) such that > v, = z in L*([0,¢]; Hp) for any t € Ry.
In particular ) v, = 2z in L*((0,1]; LQ(R’”)) for any t € Ry and therefore > vn(t) = 2(t) in

L*(R™) for a.a. t € Ry. We deduce that v = z € LY (Ry;Hp), v = Y., cyvn in L*([0,t]; Hp) for
any t € Ry and

|uin|L2 Rm t o
‘VU|L2([O7t];Xp) < # + E |T’LL |L2(R7n)7 te R+.

For any n € C}(R,),p € HL and N € N we have

/ZPromk W (y) dy — /*“ /i i
" /0 i "(t)m(; v (t), ) dt = 0.

Letting N — o0, it is easily seen, thanks to the boundedness of the bilinear form m on Hp, that

+00 Foo
=1(0) [ w et ay— [0 [ e i+ [ awmen.) =0

saying that

: d
v(0) = u™, T v(t,y)e(y) dy +m(v(t),) =0 in D'(R,) for any ¢ € Hp.
]Rm

The uniqueness follows by the energy balance and the positivity of the quadratic form v € HL —
m(u,u).

Assume now that v™ € Hp, Y, |Projg, (—divy (DVul))|3. T2gm) < T00 with uld = Projg, ul™ €
E\, N Hp,n € N. By Proposition 6.2 we know that

Ovn + Projg, (—divy(D(y)Vun(1))) =0, t € Ry

|Projg, (—divy(D(y)Von(t)))|z2@n) < [Projg, (=divy (D(y)Vul))| 2 mmy, t € Ry

Therefore we obtain for any ¢ € R4

> IProjp, (=divy(D(y)Voa(t))[7e@m) < Y [Projp, (=divy(D(y)Vuil))[F2gm) < +0c.
neN neN

We claim that ¢ — v(¢) is differentiable in L?(R™) and that ;v = > . Oivn. Indeed we have

|'U(t + h) |L2(R7n Z ‘U’I’L + h’ (t)‘%2(R7n)
neN
< Z "Un - )‘LZ Rm < h2 Z |PrOJE)\ ( ( )vu )|L2 RT")
neN neN
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saying that 9;v € L®(Ry; L*(R™)). For any n € C}(Ry), ¢ € L*(R™) we have
+o0 ) +o0
|00 [ owety) ayat = -n00) / e dy - [0 [ vltwet)
0 m m 0 m
“+oo
=—=> 10 / y) dy — Z/ / v (t,y)p(y) dydt

neN neN
—+oo
=X [0 [ oot ayar.
neN Rm™

But for any ¢ € R4 we have

D lown(t)[72 = > [Projg, (=divy(DVu,(1)[72 < Y [Projp, (—div, (DVull))[7
neN neN neN

saying that > Owvn(t) converges in L?(R™), for any ¢ € Ry. We deduce, thanks to the dominated
convergence theorem

+00 +oo
[0 [ awetvyaae= [ o) [ 3 ouwnseto) dga
0 Rm 0 RmnGN
implying that

0w = 0wy =— Y _ Projg, (—divy(D(y)Vua(t)))

neN neN
=~ Projy, (—divy(D(y)VProjEAnv(t))) , teR,.
neN

Remark 6.1 The following conditions are equivalent

2

1. ue Hp and Y < +oo

L2(Rm)

nen |Projg, (—divy (D(y)VProj Ex, u))

2. uw € H} and there is a constant C' € R such that
m(u, ) < Clo|2mmy, @ € Hll;..

For any u satisfying 1. or 2. we have
w(u ) = = [ ol) 3 Proje, div,(D(y)VProjp, u) dy. o€ Hp.
" neN

Indeed, if 1. holds true, then for any u € H} we have u = Y neN ProjEMu in H:, and by the
continuity of m we deduce, thanks to (43)

m(u, ) = Zm(ProjEknu,gp Z (y)VProjg, w-VProjg, ¢dy
neN neN R'"
= Z/ Projg, divy(D(y)VProjEAnu)) o(y) dy
neN
< ZProjEM <fdivy(D(y)VPr0jEmu)) o] L2 (mm)
neN L2(R™)
) 1/2
= (Z Projg, (—divy(D(y)VProjEAnu)) L2(R7")> lol2®m), ¢ € Hp.
neN
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Conwersely if 2. holds true, there is a function f € L?(R™) such that

m(u,p) = Rmf(y)w(y) dy, ¢ € Hp.

In particular, for any ¢ € Ey, N Hp we obtain

/R Prol,, folu) dy = | [()es) dy = mlu.p) =mg.w) = [ D TProjp, udy

and therefore
2
Z Projg, (—divy(D(y)VProjExn u)) Loy Z |Pr0jEAnf|2L2(Rm) = \f|2L2(Rm) < +o0.

neN neN

The linear transformation

Mu = 3" Projp,  (~div,(D(y)VProiz, u)

neN

defined on

2
d —lueH), ’P ' (—d' D(y)VProj ) <
omM {u P % 0], . ivy (D(y)VProjg, u) L) +o0
is the operator associated to the bilinear form m: Hy x Hp ie.,
m(u,p) = | Mup(y) dy, u € domM, ¢ € Hp.
Rm

Therefore the last statement in Corrolary 6.1 says that if u'™ € domM, then
v(t) € domM and v+ Muo(t) =0, t € R;.
Remark 6.2
1. The Corollary 6.1 defines a C° semi-group of contractions with respect to the L? norm
Y™ =o(t), t€ Ry, u™ € domT

where v is the unique solution of (54). This semi-group extends by continuity to a C° semi-
group of contractions on whole L*(R™), still denoted by (v¢)icr, (use the density of domT in
L?(R™)).

2. We claim that the C° semi-groups (e="P),cr, and (¢1)icr, are commuting. Indeed, for any

u € Ex, N Hh,n € N, there is, cf. Proposition 6.2 a unique function v € Cyp(Ri;Ey,) N
L (Ry; E\, N H}) such that

d
o0) =u. 5 [ olt)ely) dy+m(u(o)9) =0 DR, p< By NHp  (59)
Rm
Notice that for any ¢ € Ex, N Hpb, k # n we have

[ eltneo) dy=0. mio(t).9) =0, 1€ R

and thus (55) holds true for any ¢ € span{Uken(Ex, N Hb)} = Hp. Therefore we have yu =
v(t) € Ex, N H}, for anyt € Ry ,n € N. We obtain

e By = e A pyu = hy (e u) = e Pu, t,reR,u€ Ex, NHb,n €N

which extends by density to any u € L?>(R™).
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3. For any e €]0,1], we know by the second statement of Proposition 5.5 that (u,v) — m(u,v) +
L [onb-Vu)(b-Vv) dy is coercive on Hp with respect to L*>(R™). Therefore, for any u € L?(R™)
there is a unique function @° € Cyp(Ry; L2(R™)) N LE (Ry; Hp) such that @°(0) = u™ and for
any ¢ € Hp

G o) dum@@ @)+ 2 [ 6oV @)6- Vo) dy =0 in DR,

We claim that u°(t) = e~ By = e Byt € Ry. We are done if we prove it for
u™ € Ey, N Hp,n €N, that is

ﬂs(t) = eii)‘"lﬁtuin, te R+.

Indeed, for any ¢ € H} we have

d t B t . ]_ t .
3 [T hae(y) dy + me g o) + - / b- V(e A pu™)b- Vo dy
R’V"L m
_t d in in .
=e M {dt s Yeuo(y) dy + m(Yiu 790)} =0 inD'(Ry).

Therefore u°, e’ﬁ/\"wtuin satisfy the same variational formulation, with the same initial condi-
tion u™. By the uniqueness of the solution, we deduce that ¢ = e*?‘"wtu”ﬂt e R,.

7 The operator N and the associated bilinear form n
As suggested by Proposition 2.1, we intend to establish u®(t) = e~ £Bu(t)+ O(e) in L2 (Ry; LA(R™)),
as € \, 0, where v(t) = u'™,t € Ry. The key point is to emphasize a corrector like in (10), which
requires the construction of a second operator A, which enters a decomposition of A = —div, (D(y)V,)
with respect to B = —7T72 similar to (9). More exactly we are interested in solving for (B — A\, Id)u =
Au — Mu = Au — Projp, Au,n € N, see (8). Obviously, this is not always possible, since Au — Mu
belongs to Ey = Range (B — A,Id) which is larger than Range (B — \,Id), when the range of
B — X\, Id is not closed. In order to define the bilinear form associated to the operator A" we introduce
new structural hypotheses for the matrix field D.

7.1 Structural hypotheses for the matrix field D

Recall that the infinitesimal generator L of the group (G(s))ser is skew-adjoint on Hg and thus
Range L = (ker L)*, implying that D — (D) € Range L. We assume that D is a matrix field in Hg
such that D — (D) € Range L, that is

3C e€domLNHE such that D = (D) + LC, (56)

where the operators (-), L are considered in Hq joc, see Proposition 3.2 and Remark 3.1. Replacing
C by C — (C) we can suppose that C' € ker (-) N HZ’. Thanks to the symmetry of D, (D), we have

L(C - 'C)=LC—- Y“(LC)=D—(D)— “(D—{(D))=0

implying that C' — *C € ker LNker (-) = {0} and thus C is also symmetric. Moreover, we will require
that
3 Cy € ker () N H' such that Cy = tCy, LCy = —C. (57)

Notice that (56), (57) say that there is Cyp € ker () N HZ’ such that Cy = *Cy, LCy € domL N HgY
and D — (D) = —L2Cjy. We also make the following hypotheses for any n € N*

C = Projg,, C=(-L>=4\Id)C,, C, € kerProje, NHEF, LC, € HY, C,='C,  (58)

where the operators Proj Ear, TV E N* are considered in Hg joc cf. Remark 5.2. In the sequel we work
under the hypotheses (16), (17), (18), (19), (40), (41), (39), supplemented by (56), (57), (58).
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7.2 Definition and properties of the bilinear form n

We introduce a second bounded bilinear form on HL x H} and a corrector is constructed in terms of
the operator associated to this form.

Proposition 7.1
Assume that the following conditions hold true

2
L
Z/\—<+oo e <|C |z +‘manm> < fo0. (59)

n>1 n>1

We consider the applicationn: Hy x Hy — R

.
n(u,v)z/Rmsgrfoog/o(S—s)

for any u,v € H}. The bilinear form n is well defined, bounded on H: x H}, skew-symmetric and
verifies

1 (9
G(s)CVugs — 5 lim 5 /OG(S/)CVUQS/dS/‘| ds- Vo dy

—+o0 S

a(u,v) = m(u,v) + n(u, Bv) — n(Bu, v), (60)

for any u,v € H} such that Tu, Tv,Bu, Bv € Hp. Here, by Tu € H} we understand that u belongs
to the domain of the infinitesimal generator of the C°-group (C'(s ))SGR and a(u,v) me
Vo dy,u,v € Hp. Moreover we have n(u,v) =0 for any u,v € Ex, N Hs,n € N.

The proof of Proposition 7.1 is very technical and it is postponed to Appendix A.

Remark 7.1
We denote by N the operator associated to the bilinear form n, that is

1 S
lim — S —
foustin, 5 [ 5=

=n(u,v) = [ Nuvdy, ue&domN, ve Hp.
R’"L

G(S)C’Vugs— hm S/ G(s CVuzsrds] ds - Vv dy

We deduce that
1 S
Nu = —div,{ lim —/ (S —s)
S Jo

S—+400

1Y
G(s)CVugs — o lim T /0 G(s")CVuzy ds’] ds}

—+o0 S

= —divy { CoVProjp u+ Z { ———=Proj¢, C+ LC } VProjg, u

8\ﬁ\/ﬁ

Projg, u

1 T
Proj C— 4N, Cp| V—
+n§>:1 [wxn e } Vi

provided that b, D,u are smooth enough.

8 Asymptotic behavior

We are ready to establish the asymptotic behavior of the variational solutions (u®).>o for (1), (2). We
follow the arguments in the proof of Proposition 2.1.

Theorem 8.1

Let u!™ be an element in the domain of T. We assume that the vector field b and the matriz
field D satisfy the following hypotheses (16), (17), (18), (19), (20), (40), (41) and that the struc-
tural hypotheses (39), (56), (57), (58), (59) hold true. For any e €]0,1] let us denote by u® €
Co(Ry; LAR™)) N LE (Ry; Hp) the unique variational solution of (1), (2)

4 1
u®(0) = u™, A us(t,y)e(y) dy + A D(y)Vu® -V dy+g/ (b-Vus)(b-Vep)dy =0

a(us,p)
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in D'(Ry), for any ¢ € Hp cf. Proposition 6.1, and by v € Cp(Ry; L2A(R™)) N L (Ry; Hp) the

unique variational solution (see Proposition 5.5 for the definition of the bilinear form m)

v(0) =", = | v(t.y)e(y) dy +m(v(t), ) =0 in D'(Ry), ¢ € Hp
R'ﬂl

c¢f. Corollary 6.1. Then, provided that u'™ v,b, D, P are smooth enough, for any T € R, there is a
constant Cr such that

u® —e Pv

B ‘ —&—‘VuE—Ve_éBv <Cre, 0<e<l1.
L2([0,T];Xp)

Le=([0,T];L2(R™))
Proof. By Proposition 6.1 and Corollary 6.1 we know that

. |uin|L2 R™
|UE‘L90(R+;L2(RM)) < |um|L2(Rm), |VUE|L2(R+;XP) < #, 0<e<l1

and
(V]2 ®ysL2@m)) < [u™z2@m), [Tolp=@yiz2@m) < [Tu™|L2@m)

|um|L2 Rm t in
|VU|L2([O,2S];XP) < T((l) + 8 |T’LL |L2(]R7n).

We consider the function
ul(t,1,) = e TBNu(t,-) — Ne Bu(t,-), (t,7) € Ry x R,.

We assume that v is regular enough, such that Nv(t,-) is well defined, see Remark 7.1. Moreover, as
the semi-group (e_TB)TeR+ preserves the regularity, see Section 4.1. We deduce that Ne~"Bu(t,-) is
also well defined, uniformly with respect to 7 € R, implying that

lul(t, 7, )| p2@my < Cr, t€[0,T), 7€Ry

for some constant C~'T. We also ask for the estimates

T T
/ sup |Oput(t, T, 2 @my dt —|—/ sup |div,(DVu'(t, T, Nlr2@my dt
0 0

TERY TERY
T 1/2 _
+ / sup |Vul(t, T, )|§(P dt <Cr
0 TERy

which can be achieved provided that u'™, v, b, D, P are smooth enough. We also assume the existence
of smooth fields in involution with respect to b, in order to guarantee the propagation of the regularity
along the semi-group (e~"%),cr .- The derivative of u! with respect to the variable 7 writes (assuming
that v is regular enough)

drut = —Be B Nw(t) + NBe "Bu(t)
=B (e TPNu(t) — Ne ™Bu(t)) + NBe "Bu(t) — BNe Pu(t)
= —Bu' — (BN — NB)e Bu(t)

and therefore
% {eu'(t,t/e)} + (BN — NB)e =Bu(t) + g{sul(t,t/s)} = 0yt (t,t/e). (61)

By the third statement of Remark 6.2 we know that @ (t) = e~ =Pu(t) € Cy(Ry; L2(R™))NLY (Ry; H})
satisfies

w0) =" G [ @ e dm@ @)+ [ G-vE)e- Vo di=0 (6
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in D'(R;), for any ¢ € Hj. Combining (61), (62) we obtain @°(0) + eu!(0,0) = v(0) = u™™ and

5 | {6 y) 4 2w (/2,9 bly) dy + (@ (0) ) + (@ (0) Bp) = n(Ba(1) ¢)
+ % /m(b V[ (t) +eul(t,t/e)])(b- Vo) dy = € Rmatul(t,t/s, ve)dy  (63)

in D/(R,), for any ¢ € H}, such that T, By € H},. By Proposition 7.1 we know that

m(a® (1), @) +n(a(t), Bp) —n(Bu"(t),¢) = a(u”(t),¢)

and therefore (63) becomes

G [ € + et t/m e dy+a@ 0,00+ [ (- VaE© + el /)6 Vo) dy
Rm m

=c [ Owut(t,t/e,y)p(y) dy
Rm

in D’(R4), for any ¢ € Hp. Finally the functions r¢(¢,y) = u®(t,y) — a°(t,y) — eul(t,t/e,y) satisfy
the variational problem

m

G Lrtwedyrati@.0+ 2 [ @-Vi@)e- o)y

= —5/ (O (t,t/e,y) — divy(DVu1 (t,t/e,y) )] dy

m

in D'(R,), for any » € H} and the initial condition 7¢(0) = 0. Thanks to the coercivity condition
(40) we deduce

**|’"E(t)\%2(Rm) +d|Vre(t)%, <elr ()2 @m

X lsup |0u' (t,7)| 2@y + sup |divy (DVu'(t,7))|r2@m)|, 0<e<1.
TERY TERY

We obtain the estimates

T
|TE|L00([O’T];L2(RWL)) < E/ sup |8tu1 (t, T)lLZ(Rm) dt
0 TERY

T ~
+ z—:/ sup |divy, (DVu'(t,7))|p2@m dt <eCr, 0 <e <1
0 T€ERy

and

C
|VT‘E|L2([O,T];XP) < Ej,ld;, O<e < 1

which implies immediately that

uf(t) — e‘ﬁBv(t) <e sup lu' (', 7) L2 @m) + EC:'T <e(Cr+ C:'T), t €[0,7T)
L2(R™) (', 7)€[0,T] xRy
‘Vus(t) — Ve By(t) <eCr (1 + 1>
L2([0.7):X ) Vd
for any 0 < e < 1. O

Remark 8.1
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1. For any ¢ € H}p we have by Proposition 5.5 and Lemma 5.1

m(v(t), (¢)) = m((v(t), (¢)) = m({v(t)) , @)

s
= /m<D> V (v(t)) - Vo dy +/ lim l/0 G(s)(D — (D)) (v(t)) ds- Ve dy

RmSHJroo S
— [ D)V Ve dy

and therefore we have the equalities in D'(Ry)

el el

I R”L<v(t)> Wely) dy = 4 / _v(t,y) () (y) dy = —m(u(t), ()

_ / (D) W)V {u(0)) - Vi dy.

The function (v) € Cp(Ry; L2A(R™)) N L2 (Ry; H}) satisfies the variational problem

m

) = (). 5 [ 00 0o di+ [ (D)) (00) - To dy =0 in D ()

for any ¢ € H}.

2. If the initial condition is well prepared, i.e., Tu™ = 0, we deduce thanks to the inequality
[TV Loy s2mmy) < [Tu™|p2@my = 0, that Tv = 0 and in this case v = (v) satisfies the
parabolic problem associated to the average matriz field (D)

v(0) = u™ € ker T, d (t Ye(y) dy —l—/ (D) (y)Vo(t) - Vo dy =0 in D'(Ry)

m

for any o € H}.

A Proofs of Proposition 7.1

Proof. (of Proposition 7.1)

Boundedness of n

We show that limg_, 4 o0 %L)S(S —5) [G(S)CVUQS —limg/ 400 37 fOS G(s")CVuss ds'| ds converges,
as S — +oo, strongly in Xg, for any u € Hp, which will imply that n(u,v) is well defined for any
(u,v) € Hp x Hf. We appeal to the Hilbertian sum H} = ®pen(Ex, N Hp). If u € Ey N Hp, we
know by Lemma 5.1 that

/ G(s')CVuzy ds’ = lim / G(s")CVuds' = (C)Vu=0

S’—H—oo S §'—+o0 S’

strongly in X¢ and therefore, by (57), we obtain

N NS B Ly :
SEIEOO g/o (S —s) |G(s)CVugs — S’liriloo §/0 G(s")CVusgy ds] ds (64)
S S(S —5) iG’(S)C Vu ds
TS ds 0

S
— _Lis = s)as)covals - l/ Gls)CoVuds —s CoVu— (Co) Vi = CoVu
S S 0 S—4oc0

strongly in X¢g. Assume now that u € Ey, N Hp,n € N*. We know by Lemma 5.2 that

1
S/l_l)riloo S’/ G(s')CVugy ds’ = fProt]&u CVu+ =
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strongly in Xg and therefore

T
fu(s) := G(s)CVugs — S,lirﬁoo S’/ G(s')CVusy ds' = (s)Vu—l—V(s)Vmu

with
1. , 1 .
U(s) = cos(v/4A,s)G(s)C — 5Proje,, C. V(s) = sin(v4X,5)G(s)C — 3 mPrOJsMn C.

Notice that the hypothesis (58) writes

L C — Proj C
_L4)\n Cn; Cn = 07 J&Mn )
4>\n 4)\n

where the operators L, L4y, are considered on Hg joc, HQ,loc X HQ, 1oc respectively, see Remark 3.1.
We have

d L C — Projg,, C
L (00 ) =) (0.8 P2

D)
G(s)C — G(s)Projg,, C

= (sin(v/4\n5), — cos(/4X, 5)) 4N

We obtain
sin(v/4A,$)G(s)C = sin(v/ 4\, ) {cos(\/él/\ns)Projg“nC + sin(\/4)\ns)\/%Proj5“n C’]

G(s)Proj£4)\n C

d i L
Dy {cOs(\/Ms)G(s)On - SIH(M‘S)G(S)MHC”]

and

cos(v/ 4, 8)G(s)C = cos(v/4Ans) [cos(\/ll)\ns)ProngnC + sin(\/4/\ns)4i)\Proj5Mn C}

G(s)ProjgunC

_ 4)\n% Lm(@s)G(s)Cn + cos(v/4\,5)G(s) zf)\n Cn]

and the matrix fields U(s), V(s) write

U(s 1cos 4/ Ans)Proje,, C—|— sm (A Ans) Pro‘]gu C
d L
4)\n£ {sin(\/élx\”s)G(s)C’n + cos(v/4M,8)G(s) 4/\ Cn} (65)
V(s) = %sin(4\//\ns)P1r0j&u fcos (4 Ans) PI‘O‘]&L/\ C
d L
4)\n$ {cos(\/él)\ns)G(s)Cn —sin(v/ 4\, 5)G(s) o C’n} . (66)

Recall that we intend to establish the convergence, as S — +o0, of

1 /e 19 T
E/o (S — 8)fu(s) ds=§/0 (5 = U Vu+ VSV =

in Xqg. Observe that

1 1 F . 1
lim E/o (S — s) cos(4y/Aps) ds =0, lim g/o (S — s)sin(4y/Aps) ds = o (67)

S——+oo S——+oo
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After integration by parts one gets

1 [° d[. L
5/, (S —s) 4)\n$ [Sln(\/4)\ns)G(s)Cn+cos(\/4)\ns)G(s)\/an] dsVu
+1/S(S—s) 4\ 4 [cos(\/ll)\ s)G(s)C,, — sin(y/4A s)G(s)iC ] dsV T u
S o nds n n n 4)\n n T\n
T \/4)\ L T
= LOWVu— VANCV =ut G4A (Cn,%0n> ds <v oG w). (68)

As Projg,, C, =0, we know, cf. Remark 5.2, that

) r+S
lim g/ (cos(v/4MAn8)G(s)Cy, sin(v/4A,s)G(s)C,,) ds = (0,0)

S——+oo

in Hg loc X HQ 10c, implying that

. L . L
Pro.]kerLM" <Cn7 4)\ncn> = SEIJIrloo S/ G4)\ < m0n> ds
1 r+S I
= lim §/ (cos(v/4Mr,8)G(8)Cp, — sin(v/4A,8)G(8) ———=C,

S—+4o00 4N,
sin(v/4A,5)G(s)C,, + cos(\/m.s)G(s)%Cn) ds
=(0,0) :
in Hg joc X HQ 10c- As Cp, C belong to HQ and Vu,V \/%u belong to X p, we prove, by adapting
the arguments in Lemma 5. 1 the strong convergence in Xq
Sl—i>r—‘y1-100 % /OS Gan, (5) (Cn, f)\nCn) ds (V \/%u, —Vu) =0. (69)

Finally (65), (66), (67), (68), (69) lead to the convergence in X¢

SBTOOS/ )ds = |:8\/7\/KPI‘OJS4)\ C’+LC}
T
|:8\/7PI'O‘]54>\ C - \ 4>\n0n:| Vﬁu (70)
Up to now, we know that ( fo )ds) . converges in Xq, as S — 400, for any u €
s>

span Upen (Ex, N Hp). In order to Justlfy the existence of the previous limit for any u € Hp, it
is enough to bound ( fo )ds) in X¢g uniformly with respect to S > 0 and u €
5>0

span Upen (Ex, N Hp), |u|H}13 <1 By (64) we have

S
S ACERTACES

and by the previous computations, Remark 5.2 and the fourth statement of Remark 4.1 we obtain for
any u € B, N HL,n € N*

< 2‘CO|H220|V’U;‘XP, u € EyN H}D
Xq

1S .
5/0 (S —s)fu(s)ds| < Q\ﬁ U\/KPI‘OJ&M CH&0+|PrO‘]£“nCHg?O] |Vu|x,
3Va\, || —=C, Chlme | |V
+3v lm HOOH lmg | [Vulx,
< 2Ol [Vulxs + 6V | [Culis + | —E—c IVl
> \/E HQ Xp n nHQ \/m n ngo Xp-
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Pick u € spanUpen (B, NH}), that is u = ZnN:() Un, un, € Ex, NHp for any n € {0,..., N} and let us

introduce the notation ¢,, = |Cn\H50 + ‘\/%Cn ,n € N*. Using the orthogonality of (Vuy,)o<n<n

HS

in Xp, we deduce

S
/ (S — ) fuls) s
0 Xo

N 1/2 N 1/2
1
< 2|Colug | Vulx, +2|Clug (Z A) |Vulx, + 6 (Z Awi) Vulx,
n=1"" n=1

1/2 1/2

< |2[Colug +2[Clag Z)\ +6 > Aach |ul

n>1 n>1

1

S

N
2
< 2|Colug [Vuolxp + Y [W|C|ng +6v/ Ancn] [Vun|xp
n=1 n

saying that n is well defined and bounded on H} x H}.

Skew-symmetry of n

Let us focus now on the skew-symmetry of n. We are done if we show that for any u € Hp we have
the convergence in Xg

13 1[5
lim 5/ (S—s) {G(S)C'Vugs ~ . lim T / G(s")CVuay ds’} ds
0 0

—+00 S

0 0

=— lim 1 (S+s) {G(S)CVUQS - 1115_1 % G(SI)CVUQS/ ds’} ds. (71)

Indeed, let us assume for the moment that (71) holds true. As the field C' of symmetric matrices
belongs to ker (-) N Hg’, we know by Proposition 5.5 that

1

0
o . L / L de
me(u,v) == /Rms'glﬁoo < /75, G(s")CVugy ds’' - Vo dy

defines a symmetric bounded bilinear form on H}, x Hp. We obtain, thanks to the symmetries of C
and m¢

n(u,v) :AmSETmS/ —5) { $)CVugs — hmoO S’/G )CVuge ds’ }ds Vv dy

1 10
= —/ lim —/ (S+s) {G( )CVugs — lim —/ G(s')CVusy ds’} ds- Vo dy
R -s

mS—+oo S S’ —+o00 S’

1 O
=— lim —/ (S+s) {/ CVu, - Vo_g dy — mc(u,v)} ds
_s m

?\

CVu_g - Vus dy — me(u, v)] ds

/ CVus - Vu_g dy — me(v, u)] ds
Rm

= /Rmsgrfoo S/ —s {G 5)CVvgs — » hrﬁoo o /G )OVuvag ds’ }ds Vu dy

= —n(v,u).

The key point when justifying (71) is that (G(s))ser, (Gax, (5))ser,n € N* are groups, and thus the
previous arguments work also with s € R_. It is enough to check (71) for u € span U,en (Ex, N HL).
If u € Ey N Hp, we know by Lemma 5.1 that

0 0

]. ’ / 1 / ! _
5'1—1200 v/ G(s )CVugs ds’ = 5'1—1200 v/ G(s )CVuds' = (C)Vu=0
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strongly in X¢, and by (57) we obtain

1 /° 1 /[0 d
5 | (5+9G(E)CTus ds = /_S(s +5) - Gls)CoVu ds
1 0 1 /0
=< [(8+5)G(s)CoVu|_g — % G(s)CoVu ds
S S ) s
— C()Vu — <Co> Vu= CoVu
S—+o0

1 f®
:SETOOE/O (S—s){G(s)CVuzs— 1_1)111oo S’/ G(s")CVugy ds }d

cf. (64). Assume now that u € Ey, N H,n € N*. By Lemma 5.2 we know that

0
S,gnﬁméls, G(s")CVugy ds’ = %Prong CVu+ 5\/mPrOJ&“ cv 7/;”
strongly in X¢ and therefore
I 1 , ,
-3 75(5 + s) {G(s)CVugs ~ g lirﬁoo /). G(s")CVuay ds } ds

= —% /OS(S+ 5) {U(S)Vu + V(S)V\/%u} ds

where the matrix fields U(s), V (s) were defined in (65), (66). Following the same arguments as before
we deduce

0 1 9 1
lim %/ (S + s)cos(4y/ Aps) ds =0, lim E/ (S + s)sin(4y/ Ay s) ds = —
_S —S

S=5Foo S—+oo 4/ A

0
lim l/ (S—l—s)% {sin(\/ll)\ns)G(s)C’n+cos(\/4)\ns)G(s) L Cn] dsVu

L
=—C,Vu in X
\/m nVU 111 AQ

and

u

N Y d . L T
SBIEOOE/_S(S—FS)& [cos(\/4)\ns)G(s)Cn —sin(y/4X\,8)G(s) mcn] dsvm

= Cnvlu in Xq.

Van
Finally we obtain cf. (70)
lim — = /O (S+s) {G(S)CVUQS ~ lim = ’ G(s")CVugy ds’} ds
S—to0 S J_g S 400 S [ g
[ ! ——=Proj¢ C+LCn] Vu + [1Projg C — V4, Cp ] T
SF\/K o 8VAL T VA

:SEIEoog/O (S—s) {G(S)CVUQS - hm T / G(s")CVuzy ds} ds.

Decomposition formula
Let us check (60). Assume that u,v, Tu, Tv, Bu, Bv € Hy. Therefore we have

n(u, Bv) — n(Bu,v)

s
= lim %/ (S —s) { G(s)CVugs - VBv — G(s)CVBuss - Vo dy
0 R™

— lim & / G(s")CVusy - VBv — G(s')CVBusy - Vu dy ds’} ds.
R‘NL

20



It is easily seen that for any h € R we have
/ G(5)CVugs - Vo, dy = / G(h)G(s — h)CV (uzs—p)n - Vop, dy
R’"L R‘NL
= / G(s — h)CVugs_p - Vo dy
R’NL

implying, thanks to the hypotheses u, Tu,v,Tv € Hs,C € HZ that

G(s)CVuz, - VTvdy = lim | G(s)CVua, - v Y gy
Rm —0 Jrm h
= lim 1 [G(s — h)CVugs_p, — G(8)CVusgs] - Vu dy
h—0 h Jrm

= —/ [G(s)(D — (D))Vugs + G(s)CVTusgs] - Vo dy.
Applying twice the above formula, by taking into account that w, Tu, Bu,v, Tv, Bv € H}, we obtain

G(s")CVusy - VBv — G(s')CVBugy - Vo dy = — | G(s')CVBusy - Vu dy
R™ R™

[G( "Y(D — (D))Vugy + G(s")CVTugy] - VTv dy

/ G(s (D))Vugs -VTvdy — [ G(s")(D — (D))VTugs - Vo dy

Rm

— [ (D= D)Vuu - VTv_srdy— [ (D (D)VT s Tou dy
R‘"L R’HL

d

- _@/m(D - <D>)Vus/ -Vou_y dy

and therefore

S,gnng/ /m "NCVuss - VBv — G(s")CVBugy - Vv dyds’

= lim (D—(D)):[Vv® Vu— Vo_gr ® Vug/] dy = 0.
S’—)+oo S Rm

Similarly we have

1 S
5/ (S — s)/ G(8)CVuzs - VBv — G(s)CVBusgs - Vo dyds
0 m
1 S

d
=-3 ; (S - s)g/ (D — (D))Vus - Vu_g dyds

/( — (D))Vu- deyﬁ/ / V)WVus - Vo, dyds

o a(u,v) — m(u,v).

Orthogonality condition
Let us check that n(u,v) = 0 for any u,v € Ex, N Hh,n € N. Notice that for any u,v € H5 we have

G(s)[P(Vv ® Vu)P] = Y " (s; ) Ps[(V)s ® (V)] Ps 'OY 71 (s;-)
=Y "1(s; )P, FOY " (s; ) LAY (55 )[(V)s ® (Vu)s]OY (s5-) Y ~(s;-) Py LY (55 )
G(s)P=P tG(s)P=tP=P
= P(Vus ® Vug)P. (72)

ol



In particular, when u,v € Eg N Hp, the matrix field P(Vv ® Vu)P is left invariant by (G(s))ser and
thus, by Lemma 5.1, we obtain cf. (64)

n(u,v) = / CoVu - Vo dy = QCy : P(Vv® Vu)PQ dy
m Rm,

= QG(s)Co: P(Vv® Vu)PQ dy = / G(s)CoVu - Vu dy
]Rm

m

1 S
= /mg /0 G(s)CoVu ds - Vv dy o 0.

Consider now u,v € Ey, N Hh,n € N*. We claim that the matrix field

P( }uV&v@Vu)P

is left invariant by (G(s))ser. Indeed, by formula (72) we have

G(s)P(Vv@V;%—V% > P(VUS®V\/% s \/%%@w)za
=p [cos(\/ﬂs)w + sin(v/Ans)V } {cos \/Es)vﬁ —sin(v/Ans)V ]

P[cos (VAns)V

] [ (VAns) Vit + sin(+/Aons) V-2 }

f Vi

(??)P

We deduce, thanks to Lemma 5.1, that

T T
RmC’(y) : ( mu - va ® Vu> dy

. 1 [° T T
_SETOO/ME/O G(s)C ds : (Vv@Vmu—szH@Vu) dy = 0.

Now we are ready to check that n(u,v) = 0,u,v € Ej, ﬂH}), n € N*. For any s € R we obtain, thanks
to the equalities ugsy = us (Y (5'5+)), v = v_s (Y (s'5+))

RmG(s’)CVuzs/ Vo dy = RmC(y)Vusf Vu_g dy

c[ (Vns')Vu + sin(y/Ans)V r} [ (VAns') Vo — sin(v/Ans')¥ ﬁ}
= cos?(\/Ans') . Vo @ Vu dy —sin?(V/ ') | Cly) : v\;ﬁ V\Tﬁ
+sm<ms'>cos<ms'> / W) (TowvTE- } )
= cos?(\/Ans') . Vo @ Vu dy — sin?(y/ A, ') Cy): ;ﬁ V\Tﬁ

Averaging over [0, 5] and lettmg S" — 400 yield

Lo 1 Tv _ Tu
lim — [ G(s')CVugy ds'-Vody == [ C: - d
/RmS/—lg-loc 5 /0 (8")CVugy ds’ - Vo dy 2 /m <Vv ® Vu Vm ® m)

and finally, thanks to (67), we obtain

n(u,v) = lim ;/Os(ss){[cos?(\/xs)ﬂ /m’C:Vv@)Vudy

S—+oo

~sin?(Von _1} v L T } _
|:Sln( An$) 5 RmC’.va@Vmudy ds = 0.
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