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Multi-scale analysis for highly anisotropic parabolic problems

Thomas BLANC ∗, Mihäı BOSTAN †

(February 1, 2018)

Abstract

We focus on the asymptotic behavior of strongly anisotropic parabolic problems. We concen-
trate on heat equations, whose diffusion matrix fields have disparate eigen-values. We establish
strong convergence results toward a profile. Under suitable smoothness hypotheses, by introduc-
ing an appropriate corrector term, we estimate the convergence rate. The arguments rely on
two-scale analysis, based on average operators with respect to unitary groups.
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AMS classification: 35Q75, 78A35

1 Introduction

The subject matter of this paper concerns the behavior of the solutions for heat equations whose
diffusion becomes very high along some privilegiated directions. This study is motivated by many
applications like transport in magnetized plasmas [5], image processing [12, 17], thermal properties of
crystals [13]. We consider the parabolic problem

∂tu
ε − divy(D(y)∇yuε)−

1

ε
divy(b(y)⊗ b(y)∇yuε) = 0, (t, y) ∈ R+ × Rm (1)

uε(0, y) = uin(y), y ∈ Rm (2)

where D(y) ∈ Mm(R) and b(y) ∈ Rm are given matrix and vector fields on Rm. For any two vectors
ξ, η ∈ Rm, the notations ξ⊗η stands for the matrix whose entry (i, j) is ξiηj , and for any two matrices
A,B ∈Mm(R), the notations A : B stands for trace(tAB) =

∑m
i=1

∑m
j=1AjiBji. The matrix field D

is assumed symmetric, such that D+ b⊗ b is positive definite. We analyse the behavior of the family
(uε)ε for small ε, let us say 0 < ε ≤ 1, in which case

(
D + 1

ε b⊗ b
)
0<ε≤1 remain positive definite.

Another motivation for performing this asymptotic analysis comes from the numerical simulation of
highly anisotropic parabolic problems. Notice that the explicit methods require very small time steps,
through the CFL stability condition ∆t ∼ ε|∆y|2. Therefore implicit methods have been proposed
in [2, 15, 16], finite volume methods have been discussed in [9, 1] and asymptotic preserving schemes
have been investigated in [8, 10]. For a detailed theoretical study of (1), (2) we refer to [3] where
it was shown that, for any initial condition uin ∈ L2(Rm), the family (uε)ε converges weakly ?
in L∞(R+;L2(Rm)) toward the solution of another parabolic problem, whose diffusion matrix field
appears like an average of the original diffusion matrix field D. The main goal of this work is to go
further into this analysis. We intend to give a complete description of the behavior of (uε)ε, due to
the high diffusion anisotropy. We prove a strong convergence result toward a profile, and analyze the
well posedness of the corresponding limit model.
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We consider variational solutions for (1), (2). For doing that we introduce a weighted Sobolev
space H1

P see (23) and define the bounded symmetric bilinear form

aε(u, v) =

∫
Rm
D(y)∇u · ∇v dy +

1

ε

∫
Rm

(b · ∇u)(b · ∇v) dy, u, v ∈ H1
P .

The variational formulation for (1), (2) writes

uε(0) = uin,
d

dt

∫
Rm
uε(t, y)ϕ(y) dy + aε(uε(t), ϕ) = 0 in D ′(R+), ϕ ∈ H1

P .

The well posedness of the above problem follows by standard results. Under coercivity assumptions,
for any ε ∈]0, 1], there is a unique solution uε ∈ Cb(R+;L2(Rm))∩L2

loc(R+;H1
P ), ε ∈]0, 1]. We consider

the second order operator B = −T 2, T = divy(· b) and the semi-group (e−τB)τ∈R+
. The idea is to

search for a solution v = v(t) of another variational problem, such that

uε(t) = e−
t
εBv(t) +O(ε) in L∞loc(R+;L2(Rm)). (3)

The main difficulties are to identify the limit problem satisfied by v(t) and to construct a corrector
which will allow us to justify the approximation (3). The limit problem appears as a variational
formulation whose bilinear form, denoted by m, is defined in Proposition 5.5. This bilinear form can
be expressed in terms of two C0-groups of unitary transformations operating on functions and matrix
fields. We denote by Y (s; y) the characteristic flow of the vector field b, by (ζ(s))s∈R the group of the
translations along Y

ζ(s)u = u ◦ Y (s; ·), u ∈ L2(Rm), s ∈ R

and by (G(s))s∈R the group acting on the weighted L2 space of matrix fields HQ, given by

G(s)A = ∂Y −1(s; ·) A ◦ Y (s; ·) t∂Y −1(s; ·), A ∈ HQ, s ∈ R

see Proposition 3.3. With these notations, the bilinear form m writes cf. Proposition 5.5

m(u, v) =

∫
Rm

{
〈D〉 (y)∇u+ lim

S→+∞

1

S

∫ S

0

(G(s)D − 〈D〉)∇ζ(2s)u ds

}
· ∇v dy

for any u, v ∈ H1
P , where 〈D〉 is the average of D along the C0-group (G(s))s∈R cf. Theorem 3.2

〈D〉 = lim
S→+∞

1

S

∫ S

0

G(s)D ds in HQ.

The construction of the corrector requires a second bilinear form, cf. Proposition 7.1. We establish the
following convergence result, see Theorem 8.1 for all the details, under suitable hypotheses : smooth-
ness hypotheses on uin, b and D, existence of a matrix field P which satisfies (18), (19) and structural
assumptions associated to the fields b and D, see Sections 5.2, 7.1 and 7.2.

Theorem
Assume that uin, b,D are smooth enough. Moreover, we assume that the hypotheses (18), (19) are
satisfied, as well as the structural hypotheses given in Sections 5.2, 7.1 and 7.2. For any ε ∈]0, 1] let
us denote by uε ∈ Cb(R+;L2(Rm)) ∩ L2

loc(R+;H1
P ) the unique variational solution of (1), (2)

uε(0) = uin,
d

dt

∫
Rm
uε(t, y)ϕ(y) dy + aε(uε(t), ϕ) = 0 in D ′(R+), ϕ ∈ H1

P

and by v ∈ Cb(R+;L2(Rm)) ∩ L2
loc(R+;H1

P ) the unique variational solution

v(0) = uin,
d

dt

∫
Rm
v(t, y)ϕ(y) dy + m(v(t), ϕ) = 0 in D ′(R+), ϕ ∈ H1

P .

For any T ∈ R+ there is a constant CT such that∣∣∣uε − e− tεBv∣∣∣
L∞([0,T ];L2(Rm))

+
∣∣∣∇uε −∇e− tεBv∣∣∣

L2([0,T ];XP )
≤ CT ε, 0 < ε ≤ 1.
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When the initial condition is well prepared, that is T uin = 0, there is no boundary layer at t = 0
and the limit model is given by the parabolic equation associated to the average matrix field 〈D〉, see
Remark 8.1

v(0) = uin,
d

dt

∫
Rm
v(t, y)ϕ(y) dy +

∫
Rm
〈D〉 (y)∇v(t) · ∇ϕ dy = 0 in D ′(R+), ϕ ∈ H1

P .

Our paper is organized as follows. The main lines of the asymptotic analysis are presented first
in the finite dimensional case, cf. Section 2. The infinite dimensional case requires several tools and
hypotheses. We define average operators for functions and matrix fields, see Section 3. The spectral
properties of the operator B, as well as its semi-group, are studied in Section 4. The eigen-spaces
of the operator B will play a crucial role ; a characterization of these eigen-spaces is shown and a
description of the associated projections is given, in terms of ergodic averages. The bilinear form m
is constructed in Section 5 and we study its main properties. The well posedness of the problems
associated to the bilinear forms aε and m is established in Section 6, and uniform estimates for the
solutions are highlighted. A second bilinear form n is emphasized in Section 7, which will allow us to
construct a corrector term. Finally, in Section 8, we establish the asymptotic behavior of the problem
(1), (2) cf. Theorem 8.1.

2 The finite dimensional case

We intend to investigate the behavior of the family (uε)ε of solutions for the parabolic problems (1),
(2). It is very instructive to consider first the case of linear operators on finite dimensional spaces.
Let A,B ∈Mn(R) be two real matrices and for any ε > 0 consider the problem

d

dt
uε +Auε(t) +

1

ε
Buε(t) = 0, t ∈ R+ (4)

uε(0) = uin ∈ Rn. (5)

In the case when A and B are commuting, i.e., BA − AB = 0, it is easily seen that e−τBA =
Ae−τB , τ ∈ R, and a direct computation shows that t→ e

t
εBuε(t) satisfies the problem

d

dt
v +Av(t) = 0, t ∈ R+ (6)

v(0) = uin ∈ Rn. (7)

We obtain the well-known commutation formula between the matrices e−tA, e−τB

e−t(A+B
ε )uin = uε(t) = e−

t
εBv(t) = e−

t
εBe−tAuin, t ∈ R+, ε > 0

which allows us to describe the behavior of the family (uε)ε in terms of the solution of problem (6),
(7), and the semi-group (e−τB)τ∈R+ . For studying the general case, we need a decomposition formula
for the matrix A. Assume for example that B is symmetric, and let us denote by E1, ..., Er the
eigen-spaces of B, corresponding to the eigen-values λ1, ..., λr

Ei = ker(B − λiIn), λi ∈ R, 1 ≤ i ≤ r, E1 ⊕ ...⊕ Er = Rn.

For any i ∈ {1, ..., r}, the notation (B−λiIn)−1 stands for the reciprocal application of the isomorphism
(B − λiIn)|E⊥

i
: E⊥i → Range (B − λiIn) = E⊥i . We consider the linear applications

mi(u) = ProjEiAu, ni(u) = (B − λiIn)−1(Au− ProjEiAu), u ∈ Ei, i ∈ {1, ..., r} (8)

and we denote by M,N the matrices of the linear applications

m = m1 ⊕ ...⊕mr, n = n1 ⊕ ...⊕ nr

that is
Mu = m(u) = mi(u), Nu = n(u) = ni(u), u ∈ Ei, i ∈ {1, ..., r}.
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We claim that the following decomposition holds true

A = M +BN −NB, BM −MB = On. (9)

Indeed, for any i ∈ {1, ..., r} and u ∈ Ei we have

(BN −NB)u = BNu− λiNu = (B − λiIn)|E⊥
i
ni(u)

= Au− ProjEiAu = Au−mi(u) = Au−Mu

and (BM − MB)u = BMu − λiMu = 0, since Mu = mi(u) = ProjEiAu ∈ Ei. Based on the
decomposition (9), we obtain the asymptotic behavior for the solution of (4), (5), when ε becomes
small.

Proposition 2.1
Let A,B ∈Mn(R) be two real matrices and uin ∈ Rn. We assume that B is symmetric, positive and

consider the matrices M,N verifying (9). For any T ∈ R+, there is a constant CT such that for any
ε > 0 we have

|uε(t)− e− tεBe−tMuin| ≤ CT ε, t ∈ [0, T ].

Proof. The idea is to introduce a corrector. Let us consider the function u1 : R+ × R+ → Rn given
by

u1(t, τ) = e−τBNe−tMuin −Ne−τBe−tMuin, (t, τ) ∈ R+ × R+. (10)

Notice that we have u1(t, 0) = 0, t ∈ R+ and

∂τu
1 = −Be−τBNe−tMuin +NBe−τBe−tMuin

= −B
(
e−τBNe−tMuin −Ne−τBe−tMuin

)
− (BN −NB)e−τBe−tMuin

= −Bu1(t, τ)− (BN −NB)e−τBe−tMuin.

Therefore, using the notation ũε = e−
t
εBe−tMuin, we obtain

d

dt
{εu1(t, t/ε)}+ (BN −NB)ũε(t) +

B

ε
{εu1(t, t/ε)} = ε∂tu

1(t, t/ε). (11)

Taking into account that B and M are commuting, observe that

dũε

dt
+Mũε(t) +

B

ε
ũε(t) = 0

which combined with (11) yields

d

dt
{ũε(t) + εu1(t, t/ε)}+

(
A+

B

ε

)
{ũε(t) + εu1(t, t/ε)} = ε∂tu

1(t, t/ε) + εAu1(t, t/ε).

Finally, the function t→ rε(t) := uε(t)− ũε(t)− εu1(t, t/ε) satisfies the problem

drε

dt
+Arε(t) +

B

ε
rε(t) = −ε(∂tu1 +Au1)(t, t/ε), t ∈ R+

rε(0) = uε(0)− ũε(0)− εu1(0, 0) = uin − uin = 0.

Taking the scalar product with rε(t) and using the positivity of B imply

|rε(t)| ≤ ε
∫ T

0

{|∂tu1(t′, t′/ε)|+ |A| |u1(t′, t′/ε)|} dt′ + |A|
∫ t

0

|rε(t′)| dt′, t ∈ [0, T ], ε > 0.

Here, for any matrix C, the notation |C| stands for the norm subordonated to the Euclidean norm

|C| = sup
ξ 6=0

|Cξ|
|ξ|
≤ (C : C)1/2.
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By Gronwall’s lemma we deduce that

|rε(t)| ≤ ε
∫ T

0

{|∂tu1(t′, t′/ε)|+ |A| |u1(t′, t′/ε)|} dt′ eT |A|, t ∈ [0, T ], ε > 0

and we are done provided that there is a constant C̃T such that

|u1(t, τ)|+ |∂tu1(t, τ)| ≤ C̃T , t ∈ [0, T ], τ ∈ R+.

But thanks to the positivity of B, it is easily seen that

|u1(t, τ)| ≤ 2|N | |e−tMuin| ≤ 2|N | |uin| eT |M |, t ∈ [0, T ], τ ∈ R+

and
|∂tu1(t, τ)| ≤ 2|N | |M | |uin| eT |M |, t ∈ [0, T ], τ ∈ R+.

Remark 2.1
The key point of the above proof is the choice of the corrector u1. We retrieve formally the expression

of u1 in (10) by appealing to the usual two scale Ansatz

uε(t) = u(t, t/ε) + εu1(t, t/ε) + ... .

Indeed, plugging the previous Ansatz in (4), leads to

∂τu(t, τ) +Bu(t, τ) = 0 (12)

∂tu(t, τ) +Au(t, τ) + ∂τu
1(t, τ) +Bu1(t, τ) = 0 (13)

...

The equation (12) says that for any t ∈ R+ there is a function v(t) = u(t, 0) such that u(t, τ) =
e−τBv(t). The time evolution for v comes from (13), and we take as initial condition v(0) = u(0, 0) =
uin, which is obtained by letting formally ε↘ 0 in the equality uin = uε(0) = u(0, 0) + εu1(0, 0) + ....
We appeal to the decomposition (9). Notice that we have

∂tu(t, τ) +Mu(t, τ) = ∂te
−τBv(t) +Me−τBv(t) = e−τB

(
dv

dt
+Mv(t)

)
and

(BN −NB)u(t, τ) + ∂τu
1(t, τ) +Bu1(t, τ) = e−τB∂τ{eτBNe−τBv(t) + eτBu1(t, τ)}.

Therefore the equation (13) becomes

e−τB
(

dv

dt
+Mv(t) + ∂τ{eτBNe−τBv(t) + eτBu1(t, τ)}

)
= 0 (14)

or equivalently
dv

dt
+Mv(t) + ∂τ{eτBNe−τBv(t) + eτBu1(t, τ)} = 0. (15)

Here we have used that (e−τB)τ∈R is a group. Notice that (14) still implies (15) when (e−τB)τ∈R+

is only a semi-group, satisfying the backward uniqueness (as for the heat equation, for example).
Averaging with respect to the fast time variable suggests to consider

dv

dt
+Mv(t) = 0 and eτBNe−τBv(t) + eτBu1(t, τ) = Nv(t) + u1(t, 0).

The solution satisfying the condition u1(t, 0) = 0, t ∈ R+ corresponds to the choice in (10). Notice
that the corrector in (10) is defined only in terms of the semi-groups (e−τB)τ∈R+

, (e−tM )t∈R+
and not

of the groups (e−τB)τ∈R, (e
−tM )t∈R. Therefore it will be possible to use it when analyzing (1), (2), in

which case only semi-groups will be available.
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Remark 2.2

1. The decomposition in (9), with B symmetric, is unique. More exactly, if

A = M̃ +BÑ − ÑB, BM̃ − M̃B = 0, ÑEi ⊂ E⊥i , i ∈ {1, ..., r}

then M̃ = M and Ñ = N . Indeed, for any i ∈ {1, ..., r} and any u ∈ Ei we have

Au = M̃u+ (B − λiIn)Ñu, BM̃u = M̃Bu = λiM̃u

saying that Au− M̃u ∈ Range (B − λiIn) = E⊥i , M̃u ∈ Ei. Therefore we obtain

M̃u = ProjEiAu = Mu, i ∈ {1, ..., r}, u ∈ Ei

and
(B − λiIn)Ñu = Au− M̃u = Au−Mu = (B − λiIn)Nu.

As we know that Ñu,Nu ∈ E⊥i , one gets Ñu = Nu for any u ∈ Ei, i ∈ {1, ..., r}.

2. In particular, if A and B are symmetric, the matrix M is symmetric and the matrix N is
skew-symmetric.

Before ending this section, let us observe that the convergence of (uε)ε>0 when ε becomes small is
not uniform on [0, T ], T ∈ R+, except for well prepared initial conditions uin ∈ kerB. Indeed, if
uin ∈ kerB, then the commutation property between B and M allows us to write

e−
t
εBe−tMuin = e−tMe−

t
εBuin = e−tMuin

and therefore (uε)ε converges uniformly on [0, T ] toward e−tMuin, when ε↘ 0. If the initial condition
is not well prepared, that is, if uin /∈ kerB, the limit function limε↘0 u

ε is not continuous in t = 0,
and thus the convergence is not uniform on [0, T ], T ∈ R+. In order to check that, we appeal to the
long time behavior of (e−τB)τ∈R+∣∣e−τBv − ProjkerBv

∣∣ ≤ e−τc |v − ProjkerBv| , v ∈ Rn, τ ∈ R+

with c := inf |v|=1,v⊥kerB Bv · v > 0. Thanks to Proposition 2.1 we obtain the pointwise convergence

lim
ε↘0

uε(t) = lim
ε↘0

e−tMe−
t
εBuin = e−tM lim

ε↘0
e−

t
εBuin =

{
uin , t = 0

e−tMProjkerBu
in , t > 0

which is discontinuous at t = 0 when uin /∈ kerB. A time boundary layer [0, Tε], of size O(ε) occurs at

t = 0, during which any curve uε connects the initial condition uin to e−TεMe−
Tε
ε Buin ≈ ProjkerBu

in.

3 Average operators

We intend to generalize Proposition 2.1 for the parabolic problems (1), (2). In this section, we specify
the definition and the properties of the average operators along a characteristic flow, for matrix fields
and functions. The construction of the average operator for matrix fields relies on the existence of a
matrix field P satisfying (18), (19). We introduce the transport operator T = divy(· b), defined on

domT = {u ∈ L2(Rm) : divy(ub) ∈ L2(Rm)}.

We make the following standard assumptions on the vector field b

b ∈W 1,∞
loc (Rm), divyb = 0 (16)

and
∃ C > 0 such that |b(y)| ≤ C(1 + |y|), y ∈ Rm. (17)

Sometimes we will also write T = b(y) ·∇y, motivated by the fact that b is divergence free. Under the

above hypotheses, the vector field b possesses a global smooth characteristic flow Y ∈W 1,∞
loc (R×Rm)

dY

ds
= b(Y (s; y)), (s, y) ∈ R× Rm, Y (0; y) = y, y ∈ Rm.
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Since the field b is divergence free, the transformation y ∈ Rm → Y (s; y) ∈ Rm is measure preserving
for any s ∈ R. We introduce the C0-group of unitary operators (ζ(s))s∈R given by

ζ(s)u = u ◦ Y (s; ·), u ∈ L2(Rm), s ∈ R.

The transport operator T appears as the infinitesimal generator of the C0-group (ζ(s))s∈R. Sometimes
we will use the notation fs(z) = f(Y (s; z)), given a function f = f(y).
Any time a C0-group of unitary operators acts on a Hilbert space, the orthogonal projection on the
kernel of its infinitesimal generator coincides with the ergodic mean of the group [14].

Theorem 3.1 (von Neumann’s ergodic mean theorem)
Let (G(s))s∈R be a C0-group of unitary operators on a Hilbert space (H, (·, ·)) and L be its infinitesimal

generator. Then for any x ∈ H, we have the strong convergence in H

lim
S→+∞

1

S

∫ r+S

r

G(s)x ds = ProjkerLx, uniformly with respect to r ∈ R.

As a direct consequence of Theorem 3.1 we obtain the following representation for the orthogonal
projection on ker T = {u ∈ L2(Rm) : u(Y (s; ·)) = u, ∀ s ∈ R}.

Proposition 3.1 (Average of L2(Rm) functions)
Assume that (16), (17) hold true. Then for any u ∈ L2(Rm) we have the strong convergence in L2(Rm)

lim
S→+∞

1

S

∫ r+S

r

u(Y (s; ·)) ds = Projker T u uniformly with respect to r ∈ R.

We introduce the average operator 〈u〉 = limS→+∞
1
S

∫ r+S
r

u(Y (s; ·))ds, u ∈ L2(Rm). The previous
result says that the average operator coincides with the orthogonal projection on ker T . In order to
handle parabolic operators, we will also need to average matrix fields of a L2 weighted space and L∞

weighted space. We assume that there is a matrix field P such that

tP = P, P (y)ξ · ξ > 0, ξ ∈ Rm \ {0}, y ∈ Rm, P−1, P ∈ L2
loc(Rm) (18)

[b, P ] := (b · ∇y)P − ∂ybP − P t∂yb = 0, in D ′(R+). (19)

We refer to Proposition 3.8 [3]

Proposition 3.2
Consider b ∈ W 1,∞

loc (Rm) (not necessarily divergence free) with at most linear growth at infinity and
A(y) ∈ L1

loc(Rm). Then [b, A] = 0 in D ′(R+) iff

A(Y (s; y)) = ∂Y (s; y)A(y) t∂Y (s; y), s ∈ R, y ∈ Rm.

Let us consider some useful spaces.

Definition 3.1 We introduce the linear space

HQ =
{
A : Rm →Mm(R) measurable : Q1/2AQ1/2 ∈ L2

}
,

where Q = P−1, which is a Hilbert space for the natural scalar product

(A, B)HQ =

∫
Rm
Q1/2AQ1/2 : Q1/2BQ1/2 dy =

∫
Rm
QA : BQ dy, ∀A, B ∈ HQ.

The associated norm is denoted by |A|HQ .
Similarly we introduce the Banach space

H∞Q =
{
A : Rm →Mm(R) measurable : Q1/2AQ1/2 ∈ L∞

}
,

endowed with the norm
|A|H∞

Q
:= |Q1/2AQ1/2|L∞ .
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Assume that there is a continuous function ψ, which is left invariant by the flow of b, and goes to
infinity when |y| goes to infinity

ψ ∈ C(Rm), ψ ◦ Y (s; ·) = ψ for any s ∈ R, lim
|y|→+∞

ψ(y) = +∞. (20)

Since the compact sets {ψ ≤ k}, for k ∈ N, are left invariant by the flow of b, we will be able to
perform our analysis in the local spaces

HQ,loc =
{
A : Rm →Mm(R) measurable : 1{ψ≤k}A ∈ HQ for any k ∈ N

}
.

We say that a family (Ai)i ⊂ HQ,loc converges in HQ,loc toward some A ∈ HQ,loc iff for any k ∈ N, the
family (1{ψ≤k}Ai)i converges in HQ toward 1{ψ≤k}A. Notice that we have the continuous inclusion
HQ ⊂ HQ,loc. As suggested by the characterization in Proposition 3.2, we introduce the family of
linear transformations (G(s))s∈R, acting on HQ (see Proposition 4.1 [4] for more details). Moreover,
under the assumption (20), the group (G(s))s∈R also acts on HQ,loc.

Proposition 3.3
Assume that the hypotheses (16), (17), (18), (19) hold true.

1. The family of applications

A→ G(s)A := ∂Y −1(s; ·)As t∂Y
−1

(s; ·) = ∂Y (−s;Y (s; ·))As t∂Y (−s;Y (s; ·))

is a C0-group of unitary operators on HQ.

2. If A is a field of symmetric matrices, then so is G(s)A, for any s ∈ R.

3. If A is a field of positive semi-definite matrices, then so is G(s)A, for any s ∈ R.

4. Let S ⊂ Rm be an invariant set of the flow of b, that is Y (s;S) = S, for any s ∈ R. If
there is d > 0 such that Q1/2(y)A(y)Q1/2(y) ≥ dIm, y ∈ S, then for any s ∈ R we have
Q1/2(y)(G(s)A)(y)Q1/2(y) ≥ dIm, y ∈ S.

5. Moreover, if (20) holds true, then the family of applications (G(s))s∈R acts on HQ,loc, that is,
if A ∈ HQ,loc, then G(s)A ∈ HQ,loc for any s ∈ R. We have

1{ψ≤k}G(s)A = G(s)(1{ψ≤k}A), A ∈ HQ,loc, s ∈ R, k ∈ N.

Proof.
1. Thanks to the characterization in Proposition 3.2 we know that

Ps = ∂Y (s; ·)P t∂Y (s; ·), s ∈ R. (21)

For any s ∈ R we consider the matrix field O(s; ·) = Q
1/2
s ∂Y (s; ·)Q−1/2. Observe that O(s; ·) is a field

of orthogonal matrices, for any s ∈ R. Indeed we have, thanks to (21)

tO(s; ·)O(s; ·) = Q−1/2 t∂Y (s; ·)Q1/2
s Q1/2

s ∂Y (s; ·)Q−1/2

= Q−1/2
(
∂Y −1(s; ·)Ps t∂Y −1(s; ·)

)−1
Q−1/2

= Q−1/2P−1Q−1/2

= Im

implying that for any matrix field A we have

Q1/2G(s)AQ1/2 = Q1/2∂Y −1(s; ·)As t∂Y −1(s; ·)Q1/2 = tO(s; ·)Q1/2
s AsQ

1/2
s O(s; ·). (22)

It is easily seen that if A ∈ HQ, then for any s ∈ R

|G(s)A|2Q =

∫
Rm
Q1/2G(s)AQ1/2 : Q1/2G(s)AQ1/2 dy

=

∫
Rm

tO(s; ·)Q1/2
s AsQ

1/2
s O(s; ·) : tO(s; ·)Q1/2

s AsQ
1/2
s O(s; ·) dy

=

∫
Rm
Q1/2
s AsQ

1/2
s : Q1/2

s AsQ
1/2
s dy

=

∫
Rm
Q1/2AQ1/2 : Q1/2AQ1/2 dy = |A|2HQ

8



proving that G(s) is a unitary transformation for any s ∈ R. The group property of the family
(G(s))s∈R follows easily from the group property of the flow (Y (s; ·))s∈R

G(s)G(t)A = ∂Y −1(s; ·)(G(t)A)s
t∂Y −1(s; ·)

= ∂Y −1(s; ·)∂Y −1(t;Y (s; ·))(At)s t∂Y −1(t;Y (s; ·)) t∂Y −1(s; ·)
= ∂Y −1(t+ s; ·)At+s t∂Y −1(t+ s; ·) = G(t+ s)A, A ∈ HQ.

The continuity of the group, i.e., lims→0G(s)A = A strongly in HQ, is left to the reader.
2. Notice that G(s) commutes with transposition

t(G(s)A) = t
(
∂Y −1(s; ·)As t∂Y −1(s; ·)

)
= ∂Y −1(s; ·) tAs t∂Y −1(s; ·)
= G(s) tA.

In particular, if tA = A, then t(G(s)A) = G(s)A.
3. We use the formula (22). For any ξ ∈ Rm we have

G(s)A : Q1/2ξ ⊗Q1/2ξ = Q1/2G(s)AQ1/2 : ξ ⊗ ξ
= tO(s; ·)Q1/2

s AsQ
1/2
s O(s; ·) : ξ ⊗ ξ

= Q1/2
s AsQ

1/2
s : O(s; ·)(ξ ⊗ ξ) tO(s; ·)

= Q1/2
s AsQ

1/2
s : (O(s; ·)ξ)⊗ (O(s; ·)ξ)

= As : (Q1/2
s O(s; ·)ξ)⊗ (Q1/2

s O(s; ·)ξ).

As A is a field of positive semi-definite matrices, therefore G(s)A is a field of positive semi-definite
matrices as well.
4. Assume that there is α > 0 such that Q1/2AQ1/2 ≥ αIm on S. As before we write for any
ξ ∈ Rm, y ∈ S

Q1/2G(s)AQ1/2 : ξ ⊗ ξ = (Q1/2AQ1/2)s : (O(s; ·)ξ)⊗ (O(s; ·)ξ) ≥ α|O(s; ·)ξ|2 = α|ξ|2

saying that Q1/2G(s)AQ1/2 ≥ αIm on S.
5. Here G(s) stands for the application A→ ∂Y (−s;Y (s; ·))A(Y (s; ·)) t∂Y (−s;Y (s; ·)) independently
of A being in HQ or in HQ,loc. As ψ is left invariant by the flow of b, so is 1{ψ≤k}, for any k ∈ N. If
A belongs to HQ,loc, we have

1{ψ≤k}G(s)A = G(s)(1{ψ≤k}A) ∈ HQ, k ∈ N, s ∈ R

saying that G(s)A ∈ HQ,loc, s ∈ R. Moreover, the applications (G(s))s∈R preserve locally the norm of
HQ ∣∣1{ψ≤k}G(s)A

∣∣
HQ

=
∣∣G(s)(1{ψ≤k}A)

∣∣
HQ

=
∣∣1{ψ≤k}A∣∣HQ , k ∈ N, s ∈ R.

We introduce the infinitesimal generator of the group G

L : domL ⊂ HQ → HQ, domL = {A ∈ HQ : ∃ lim
s→0

G(s)A−A
s

in HQ}

and LA = lims→0
G(s)A−A

s for any A ∈ domL. Notice that C1
c (Rm) ⊂ domL and LA = (b · ∇y)A −

∂ybA − A t∂yb, A ∈ C1
c (Rm) (use the hypothesis Q ∈ L2

loc(Rm) and the dominated convergence
theorem). The main properties of the operator L are summarized below (see [3] Proposition 3.13 for
details).

Proposition 3.4
Assume that the hypotheses (16), (17), (18), (19) hold true.

1. The domain of L is dense in HQ and L is closed.
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2. The matrix field A ∈ HQ belongs to domL iff there is a constant C > 0 such that

|G(s)A−A|HQ ≤ C|s|, s ∈ R.

3. The operator L is skew-adjoint and we have the orthogonal decomposition HQ = kerL
⊥
⊕Range L.

Remark 3.1 When working on HQ,loc, the generator of (G(s))s∈R, which is still denoted by L, is
defined by

A ∈ dom(L) iff ∃ lim
s→0

G(s)(1{ψ≤k}A)− 1{ψ≤k}A

s
∈ HQ, k ∈ N

and

1{ψ≤k}L(A) = lim
s→0

G(s)(1{ψ≤k}A)− 1{ψ≤k}A

s
, k ∈ N.

Clearly, the generator in HQ,loc extends the generator in HQ.

The transformations (G(s))s∈R also behave nicely in the weighted L∞ space H∞Q . More precisely, for
any s ∈ R, and any A ∈ H∞Q , we have G(s)A ∈ H∞Q and |G(s)A|H∞

Q
= |A|H∞

Q
. Indeed, thanks to (22)

and to the orthogonality of O(s; ·), observe that

Q1/2G(s)AQ1/2 : Q1/2G(s)AQ1/2 = tO(s; ·)Q1/2
s AsQ

1/2
s O(s; ·) : tO(s; ·)Q1/2

s AsQ
1/2
s O(s; ·)

= (Q1/2AQ1/2 : Q1/2AQ1/2)s, s ∈ R

and our claim follows immediately. Applying Theorem 3.1 to the group (G(s))s∈R, we deduce that

the average of a matrix field 〈A〉 := limS→+∞
1
S

∫ r+S
r

G(s)A ds is well defined and coincides with the
orthogonal projection on kerL. Moreover, by Proposition 3.3, (G(s))s∈R also acts on HQ,loc, and any
matrix field of H∞Q ⊂ HQ,loc possesses an average in HQ,loc, still denoted by 〈·〉 as for the matrix fields
in HQ.

Theorem 3.2 (Average of HQ,loc matrix fields)
Assume that (16), (17), (18), (19) hold true.

1. For any matrix field A ∈ HQ we have the strong convergence in HQ

〈A〉 := lim
S→+∞

1

S

∫ r+S

r

∂Y (−s;Y (s; ·))A(Y (s; ·)) t∂Y (−s;Y (s; ·)) ds = ProjkerLA

uniformly with respect to r ∈ R.

2. If A ∈ HQ is a field of symmetric positive semi-definite matrices, then so is 〈A〉.

3. Let S ⊂ Rm be an invariant set of the flow of b, that is Y (s;S) = S for any s ∈ R. If A ∈ HQ

and there is d > 0 such that

Q1/2(y)A(y)Q1/2(y) ≥ dIm, y ∈ S

therefore we have
Q1/2(y) 〈A〉 (y)Q1/2(y) ≥ dIm, y ∈ S

and in particular, 〈A〉 (y) is definite positive, y ∈ S.

4. If A ∈ HQ ∩H∞Q , then 〈A〉 ∈ HQ ∩H∞Q and

| 〈A〉 |HQ ≤ |A|HQ , | 〈A〉 |H∞
Q
≤ |A|H∞

Q
.

5. Moreover, assume that (20) holds true. For any matrix field A ∈ HQ,loc, the family(
1

S

∫ r+S

r

∂Y (−s;Y (s; ·))A(Y (s; ·)) t∂Y (−s;Y (s; ·)) ds

)
S>0
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converges in HQ,loc, when S goes to infinity, uniformly with respect to r ∈ R, for any fixed
k ∈ N. Its limit, denoted by 〈A〉, satisfies

1{ψ≤k} 〈A〉 =
〈
1{ψ≤k}A

〉
, for any k ∈ N

where the symbol 〈·〉 in the right hand side stands for the average operator on HQ. In particular,
any matrix field A ∈ H∞Q has an average in HQ,loc and | 〈A〉 |H∞

Q
≤ |A|H∞

Q
. If A ∈ HQ,loc is

such that
Q1/2(y)A(y)Q1/2(y) ≥ αIm, y ∈ Rm,

for some α > 0, then we have

Q1/2(y) 〈A〉 (y)Q1/2(y) ≥ αIm, y ∈ Rm.

Proof. We only sketch the arguments. For more details we refer to Theorem 2.1 [4]. The first and
second statements are obvious.
3. For any ξ ∈ Rm, ψ ∈ C0

c (S), ψ ≥ 0 we have ψ(·)P 1/2ξ ⊗ P 1/2ξ ∈ HQ and we can write, thanks to
(22)

(G(s)A,ψ(·)P 1/2ξ ⊗ P 1/2ξ)Q =

∫
Rm
ψ(y)Q1/2G(s)AQ1/2 : ξ ⊗ ξ dy

=

∫
Rm
ψ(y) tO(s; y)Q1/2

s AsQ
1/2
s O(s; y)ξ · ξ dy

=

∫
Rm
ψ(y)Q1/2

s AsQ
1/2
s : O(s; y)ξ ⊗O(s; y)ξ dy

≥ α
∫
Rm
|O(s; y)ξ|2ψ(y) dy

= α|ξ|2
∫
Rm
ψ(y) dy.

Taking the average over [0, S] and letting S → +∞ yield∫
Rm
ψ(y)Q1/2 〈A〉Q1/2 : ξ ⊗ ξ dy = (〈A〉 , ψP 1/2ξ ⊗ P 1/2ξ)Q ≥

∫
Rm
α|ξ|2ψ(y) dy

implying that
Q1/2(y) 〈A〉 (y)Q1/2(y) ≥ αIm, y ∈ S.

4. Obviously, for any A ∈ HQ, we have by the properties of the orthogonal projection on kerL that
| 〈A〉 |HQ = |ProjkerLA|HQ ≤ |A|HQ . For the last inequality, consider M ∈ Mm(R) a fixed matrix,

ψ ∈ C0
c (Rm), ψ ≥ 0 and, as before, observe that ψP 1/2MP 1/2 ∈ HQ, which allows us to write

(G(s)A,ψP 1/2MP 1/2)Q =

∫
Rm
Q1/2G(s)AQ1/2 : ψM dy

=

∫
Rm

tO(s; y)Q1/2
s AsQ

1/2
s O(s; y) : ψM dy

=

∫
Rm
Q1/2
s AsQ

1/2
s : O(s; y)M tO(s; y)ψ dy

≤
∫
Rm

√
Q

1/2
s AsQ

1/2
s : Q

1/2
s AsQ

1/2
s

√
O(s; y)M tO(s; y) : O(s; y)M tO(s; y)ψ dy

≤ |A|H∞
Q

(M : M)1/2
∫
Rm
ψ(y) dy.

Taking the average over [0, S] and letting S → +∞, lead to∫
Rm
Q1/2 〈A〉Q1/2 : Mψ(y) dy = (〈A〉 , ψP 1/2MP 1/2)Q ≤ |A|H∞

Q
(M : M)1/2

∫
Rm
ψ(y) dy.
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We deduce that

Q1/2(y) 〈A〉 (y)Q1/2(y) : M ≤ |A|H∞
Q

(M : M)1/2, y ∈ Rm, M ∈Mm(R)

saying that

| 〈A〉 |H∞
Q

= ess supy∈Rm

√
Q1/2(y) 〈A〉 (y)Q1/2(y) : Q1/2(y) 〈A〉 (y)Q1/2(y) ≤ |A|H∞

Q
.

5. Let A be a matrix field in HQ,loc. For any k ∈ N, 1{ψ≤k}A belongs to HQ, and by the first
statement we know that

lim
S→+∞

1

S

∫ r+S

r

G(s)(1{ψ≤k}A) ds =
〈
1{ψ≤k}A

〉
∈ HQ

uniformly with respect to r ∈ R, for any fixed k ∈ N. It is easily seen that for any k, l ∈ N we have

lim
S→+∞

1

S

∫ S

0

G(s)(1{ψ≤k}A) ds = lim
S→+∞

1

S

∫ S

0

G(s)(1{ψ≤l}A) ds

almost everywhere on {ψ ≤ min(k, l)}, and thus, there is a matrix field denoted by 〈A〉, whose
restriction on {ψ ≤ k} coincides with

〈
1{ψ≤k}A

〉
for any k ∈ N. Notice also that for any k ∈ N we

have
〈
1{ψ≤k}A

〉
= 0 almost everywhere on {ψ > k} and thus we obtain

1{ψ≤k} 〈A〉 =
〈
1{ψ≤k}A

〉
, k ∈ N.

Observe that for any k ∈ N, we have the uniform, with respect to r ∈ R, convergence in HQ

lim
S→+∞

1{ψ≤k}
1

S

∫ r+S

r

G(s)(A) ds = lim
S→+∞

1

S

∫ r+S

r

G(s)(1{ψ≤k}A) ds =
〈
1{ψ≤k}A

〉
= 1{ψ≤k} 〈A〉

saying that limS→+∞
1
S

∫ r+S
r

G(s)Ads = 〈A〉 in HQ,loc (uniformly with respect to r ∈ R, for any fixed
k ∈ N). The inclusion H∞Q ⊂ HQ,loc follows by the compactness of {ψ ≤ k}, k ∈ N. By the fourth
statement we have

| 〈A〉 |H∞
Q

= sup
k∈N
|1{ψ≤k} 〈A〉 |H∞

Q
= sup

k∈N
|
〈
1{ψ≤k}A

〉
|H∞

Q
≤ sup

k∈N
|1{ψ≤k}A|H∞

Q
= |A|H∞

Q
.

Let A be a matrix field of HQ,loc, such that Q1/2(y)A(y)Q1/2(y) ≥ αIm, y ∈ Rm, for some α > 0. For
any k ∈ N we have 1{ψ≤k}A ∈ HQ and

Q1/2(y)1{ψ≤k}A(y)Q1/2(y) ≥ αIm, y ∈ {ψ ≤ k}.

By the third statement we deduce that for any k ∈ N

Q1/2(y)1{ψ≤k} 〈A〉 (y)Q1/2(y) = Q1/2(y)
〈
1{ψ≤k}A

〉
(y)Q1/2(y) ≥ αIm, y ∈ {ψ ≤ k}

saying that Q1/2(y) 〈A〉 (y)Q1/2(y) ≥ αIm, y ∈ Rm.

Remark 3.2

1. We have the following variational characterization of the average operator on HQ,loc: for any
matrix field A ∈ HQ,loc, the average matrix field 〈A〉 is the unique matrix field in HQ,loc satisfying

(1{ψ≤k}(A− 〈A〉),M)HQ = 0, for any M ∈ HQ.

2. It is easily seen that the average operator on HQ,loc extends the average operator on HQ.

3. Let A be a matrix field in HQ,loc. For any k ∈ N we have

G(s)(1{ψ≤k} 〈A〉)− 1{ψ≤k} 〈A〉
s

=
G(s)

〈
1{ψ≤k}A

〉
−
〈
1{ψ≤k}A

〉
s

= 0

saying that 〈A〉 ∈ dom(L) and 1{ψ≤k}L 〈A〉 = 0, k ∈ N, see Remark 3.1. Therefore L 〈A〉 = 0,
for any A ∈ HQ,loc.
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We also introduce the linear spaces

XQ = {c : Rm → Rm measurable :

∫
Rm
Q(y) : c(y)⊗ c(y) dy < +∞}

X∞Q = {c : Rm → Rm measurable : |Q1/2c| ∈ L∞(Rm)}.

The linear space XQ, endowed with the scalar product

(·, ·)XQ : XQ ×XQ → R, (c, d)XQ =

∫
Rm
Q(y) : c(y)⊗ d(y) dy, c, d ∈ XQ

becomes a Hilbert space, whose norm is denoted by |c|XQ = (c, c)
1/2
XQ
, c ∈ XQ.

The linear space X∞Q is a Banach space with respect to the norm

|c|X∞
Q

= ess supy∈Rm |Q1/2(y)c(y)|, c ∈ X∞Q .

Notice that for any c ∈ XQ ∩X∞Q , we have c⊗ c ∈ HQ ∩H∞Q and

|c⊗ c|H∞
Q

= ess supy∈Rm |Q1/2(y)c(y)|2 = |c|2X∞
Q

|c⊗ c|HQ =

(∫
Rm
|Q1/2(y)c(y)|4 dy

)1/2

≤ |c|XQ |c|X∞
Q
.

Replacing the matrix field Q by the matrix field P , we obtain the linear spaces XP , X
∞
P .

For solving the parabolic problems (1), (2), we appeal to variational methods. We consider the
following linear subspace of L2(Rm)

H1
P = {u ∈ L2(Rm) : ∇yu ∈ XP }. (23)

It becomes a Hilbert space, when endowed with the scalar product

(u, v)H1
P

=

∫
Rm
u(y)v(y) dy +

∫
Rm
P (y) : ∇yu⊗∇yv dy, u, v ∈ H1

P .

The choice of the above weighted H1 space is motivated by the fact that the C0-group (ζ(s))s∈R acts
on H1

P .

Proposition 3.5 (Average of H1
P functions)

Assume that the hypotheses (16), (17), (18), (19) hold true. For any s ∈ R and u ∈ H1
P we have

us ∈ H1
P and |us|H1

P
= |u|H1

P
. The family of applications u ∈ H1

P → ζ1(s)u = u ◦ Y (s; ·) ∈ H1
P is a

C0-group of unitary operators on H1
P . In particular, for any u ∈ H1

P we have 〈u〉 ∈ H1
P

∇y 〈u〉 = lim
S→+∞

1

S

∫ r+S

r

∇yus ds, strongly in XP , uniformly with respect to r ∈ R

u− 〈u〉 ⊥ ker T ∩H1
P in H1

P , |∇y 〈u〉 |XP ≤ |∇yu|XP .

Proof. Let u = u(y) be a function in H1
P . As the flow satisfies Y ∈ W 1,∞

loc (R × Rm), we have
∇us = t∂Y (s; ·)(∇u)s. By Proposition 3.2 we know that Ps = ∂Y (s; ·)P t∂Y (s; ·), and therefore we
can write

|us|2H1
P

=

∫
Rm

(us(y))2 dy +

∫
Rm
P (y)∇us · ∇us dy

=

∫
Rm

(u(y))2 dy +

∫
Rm
∂Y (s; y)P (y) t∂Y (s; y)︸ ︷︷ ︸

Ps

: (∇u)s ⊗ (∇u)s dy

= |u|2L2(Rm) + |∇u|2XP = |u|2H1
P
.
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The group property of (ζ1(s))s∈R comes by the group property of (ζ(s))s∈R. In order to check the
continuity of (ζ1(s))s∈R, observe that for any u ∈ H1

P , we can write

|ζ1(s)u− u|2H1
P
− |ζ(s)u− u|2L2(Rm) = |∇us −∇u|2XP
= 2|∇u|2XP − 2(∇us,∇u)XP

= 2|∇u|2XP − 2

∫
Rm
P 1/2(y) t∂Y (s; y)︸ ︷︷ ︸

tO(s;y)P
1/2
s

(∇u)s · P 1/2(y)∇u dy

= 2|∇u|2XP − 2

∫
Rm
tO(s; y)(P 1/2∇u)s · P 1/2∇u dy

= |(P 1/2∇u)s − P 1/2∇u|2L2(Rm) − 2

∫
Rm

(P 1/2∇u)s · (O − Im)P 1/2∇u dy.

Thanks to the continuity of (ζ(s))s∈R, we are done provided that the last integral terms converges to
0, as s→ 0. The convergence lims→0 ∂Y (s; y) = Im, y ∈ Rm, implies the convergences

lim
s→0

P (Y (s; y)) = lim
s→0

∂Y (s; y)P (y) t∂Y (s; y) = P (y), lim
s→0

P 1/2(Y (s; y)) = P 1/2(y)

lim
s→0

Q(Y (s; y)) = lim
s→0

t∂Y −1(s; y)Q(y) ∂Y −1(s; y) = Q(y), lim
s→0

Q1/2(Y (s; y)) = Q1/2(y)

lim
s→0
O(s; y) = lim

s→0
Q1/2(Y (s; y))∂Y (s; y)Q−1/2(y) = Im, y ∈ Rm.

Since O(s; y) is orthogonal, we have |O(s; y)| = 1 for any s ∈ R, y ∈ Rm, and by the dominated
convergence theorem we obtain

lim
s→0

∫
Rm
P 1/2∇u · (O(s; y)− Im)P 1/2∇u dy = 0

implying that

lim
s→0

∫
Rm

(P 1/2∇u)s · (O(s; y)− Im)P 1/2∇u dy

= lim
s→0

∫
Rm

[
(P 1/2∇u)s − P 1/2∇u

]
· (O(s; y)− Im)P 1/2∇u dy = 0.

For the last limit we have used the convergence lims→0(P 1/2∇u)s = P 1/2∇u in L2(Rm), and the upper
bound |O(s; y)− Im| ≤ 2, s ∈ R, y ∈ Rm. Finally, by Theorem 3.1 we deduce the strong convergence
in H1

P

lim
S→+∞

1

S

∫ r+S

r

ζ1(s)u ds = Projker T ∩H1
P
u

implying that 〈u〉 = Projker T u = Projker T ∩H1
P
u ∈ H1

P , (∇u−∇〈u〉 ,∇v)XP = 0 for any v ∈ ker T ∩
H1
P , and the strong convergence in XP , uniformly with respect to r ∈ R

lim
S→+∞

1

S

∫ r+S

r

∇us ds = ∇〈u〉 .

For the last statement use |∇us|XP = |∇u|XP , s ∈ R and the above convergence.

4 Properties of the operator B = −T 2

We introduce the operator B = −T 2 = −divy(divy(· b)b) defined for any function in the domain

domB = {u ∈ domT : divy(ub) ∈ domT } ⊂ L2(Rm).

Clearly, this operator will play a crucial role when analyzing the asymptotic behavior for the solutions
of (1), (2) with small ε > 0. In this section we study the semi-group generated by the operator
−B, together with the spectral properties of B. More precisely, we indicate a characterization of the
eigen-spaces of B and give a description, in terms of ergodic averages, of the orthogonal projections
on these eigen-spaces.
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4.1 Semi-group generated by the operator −B
For any θ > 0, the notation Mθ stands for the one dimension Maxwellian, of temperature θ

Mθ(s) =
1√
2πθ

e−
s2

2θ , s ∈ R.

The semi-group (e−τB)τ∈R+
is given by

Proposition 4.1 (Semi-group generated by −B)
Let us consider the family of applications

ϕτu =

∫
R
usM2τ (s) ds =

1√
4πτ

∫
R
u(Y (s; ·))e− s

2

4τ ds, u ∈ L2(Rm), τ > 0

and ϕ0u = u, u ∈ L2(Rm). The family (ϕτ )τ∈R+
is a C0 semi-group of contractions on L2(Rm), whose

infinitesimal generator is −B, i.e. ϕτ = e−τB, τ ∈ R+.

Proof. Clearly, for any u ∈ L2(Rm), τ > 0, we have∫
Rm

(ϕτu)2 dy ≤
∫
Rm

∫
R
u2sM2τ (s) ds dy =

∫
R
M2τ (s)

∫
Rm
u2s dy ds =

∫
Rm
u2(y) dy

saying that ϕτ is a contraction of L2(Rm). The semi-group property follows immediately, thanks to
the formula Mθ1 ∗Mθ2 = Mθ1+θ2 , θ1, θ2 > 0. Indeed, for any τ, h > 0, u ∈ L2(Rm) we have

ϕτϕhu =

∫
R
M2τ (s)(ϕhu)s ds =

∫
R
M2τ (s)

∫
R
M2h(s′)us+s′ ds′ ds

=

∫
R
us(M2τ ∗M2h)(s) ds =

∫
R
usM2(τ+h)(s) ds = ϕτ+hu.

The continuity of the semi-group comes by the density of Cc(Rm) in L2(Rm) and the contraction
property, noticing that ϕτu =

∫
RM1(r)u√2τ r dr. It remains to check that the infinitesimal generator

of (ϕτ )τ∈R+
is −B. Consider u ∈ domB, that is u, T u = divy(ub), T 2u = divy(divy(ub)b) ∈ L2(Rm)

and let us establish that d
dτ |τ=0ϕτu = −Bu in L2(Rm). Thanks to the equality in L2(Rm)

uh = u+ hdivy(ub) + h2
∫ 1

0

(1− s)(T 2u)hs ds

we can write for any τ > 0

ϕτu− u
τ

=

∫
R
M1(r)

u√2τr − u
τ

dr

=

∫
R
M1(r)

u√2τr − u−
√

2τrdivy(ub)

τ
dr

=

∫
R
M1(r)2r2

∫ 1

0

(1− s)(T 2u)√2τrs dsdr

→
τ↘0

∫
R
M1(r)r2T 2u dr = T 2u = −Bu in L2(Rm).

Conversely, assume that u ∈ L2(Rm) such that the following limit exists in L2(Rm)

lim
τ↘0

ϕτu− u
τ

= w ∈ L2(Rm).

A straightforward computation shows that for any τ > 0 we have

|(ϕτu)h − ϕτu|L2(Rm) ≤
|h||u|L2(Rm)√

πτ
, h ∈ R

|(ϕτu)h + (ϕτu)−h − 2ϕτu|L2(Rm) ≤
2h2|u|L2(Rm)

τ
, h ∈ R

15



saying that ϕτu ∈ domB for any τ > 0 and

|T ϕτu|L2(Rm) ≤
|u|L2(Rm)√

πτ
, |T 2ϕτu|L2(Rm) ≤

2|u|L2(Rm)

τ
, τ > 0.

The semi-group property guarantees that∣∣∣∣ d

dτ
ϕτu

∣∣∣∣
L2(Rm)

= |ϕτw|L2(Rm) ≤ |w|L2(Rm), τ > 0

implying that

|T ϕτu|2L2(Rm) = −
∫
Rm
ϕτu T 2ϕτu dy

= −
∫
Rm
ϕτu

d

dτ
ϕτu dy

≤ |ϕτu|L2(Rm)

∣∣∣∣ d

dτ
ϕτu

∣∣∣∣
L2(Rm)

≤ |u|L2(Rm)|w|L2(Rm), τ > 0.

For any h ∈ R we can write

|ϕτ (uh − u)|L2(Rm) = |(ϕτu)h − ϕτu|L2(Rm) ≤ |h||T ϕτu|L2(Rm) ≤ |h||u|
1/2
L2(Rm)|w|

1/2
L2(Rm), τ > 0

and thanks to the continuity of the semi-group, we deduce

|uh − u|L2(Rm) ≤ |h||u|
1/2
L2(Rm)|w|

1/2
L2(Rm), h ∈ R

saying that u ∈ domT . For any smooth function v ∈ C∞c (Rm) we have (using the symmetry of the
Maxwellians M2τ (−s) = M2τ (s), s ∈ R, τ > 0)∫

Rm
ϕτu v dy =

∫
Rm
uϕτv dy, τ ∈ R+

and therefore we obtain∫
Rm
wv dy =

∫
Rm

d

dτ
|τ=0ϕτu v dy =

∫
Rm
u

d

dτ
|τ=0ϕτv dy

=

∫
Rm
uT 2v dy = −

∫
Rm
T uT v dy.

We deduce that T u ∈ domT and T 2u = w ∈ L2(Rm).

Properties of the semi-group (ϕτ )τ∈R+

We inquire about the regularity propagation along the semi-group (ϕτ )τ∈R+
. These properties will

be useful when justifying the regularity of the solution for the effective problem, and of the corrector,
see Theorem 8.1.

1. The semi-group (ϕτ )τ∈R+ also acts on H1
P . Indeed, for any function u ∈ H1

P and any s ∈ R we
have

P 1/2(y)∇us = P 1/2(y) t∂Y (s; y)(∇u)s = tO(s; y)P 1/2
s (∇u)s.

As the matrices O(s; y) are orthogonal, we obtain

P 1/2(y)∇(ϕτu) =

∫
R
P 1/2(y)∇usM2τ (s) ds =

∫
R

tO(s; y)(P 1/2∇u)sM2τ (s) ds

implying that

|∇(ϕτu)|XP = |P 1/2∇(ϕτu)|L2(Rm) ≤
∫
R
|(P 1/2∇u)s|L2(Rm)M2τ (s) ds = |∇u|XP .

Therefore (ϕτ )τ∈R+ are also contractions on H1
P

|ϕτu|2H1
P

= |ϕτu|2L2(Rm) + |∇(ϕτu)|2XP ≤ |u|
2
L2(Rm) + |∇u|2XP = |u|2H1

P
, u ∈ H1

P , τ ∈ R+.
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2. If u ∈ H1
P such that divy(P∇u) ∈ L2(Rm), then divy(P∇ϕτu) ∈ L2(Rm) for any τ ∈ R+, and

|divy(P∇ϕτu)|L2(Rm) ≤ |divy(P∇u)|L2(Rm), τ ∈ R+.

Indeed, for any ψ ∈ C1
c (Rm) we have∫

Rm
P∇ϕτu · ∇ψ dy =

∫
R

∫
Rm
P∇us · ∇ψ dyM2τ (s) ds

=

∫
R

∫
Rm
P∇u · ∇ψ−s dyM2τ (s) ds

= −
∫
R

∫
Rm

divy(P∇u)ψ−s(y) dyM2τ (s) ds

≤
∫
R
|divy(P∇u)|L2(Rm)|ψ−s|L2(Rm)M2τ(s) ds

= |divy(P∇u)|L2(Rm)|ψ|L2(Rm)

saying that divy(P∇ϕτu) ∈ L2(Rm), and |divy(P∇ϕτu)|L2(Rm) ≤ |divy(P∇u)|L2(Rm) for any
τ ∈ R+.

3. More generally, the semi-group (ϕτ )τ∈R+
preserves all derivations c · ∇y along vector fields

c : Rm → Rm in involution with respect to b, i.e. [b, c] = 0. More exactly, let c be a smooth
field in involution with b, with growth at most linear and bounded divergence

c ∈W 1,∞
loc (Rm), sup

y∈Rm

|c(y)|
1 + |y|

< +∞, [b, c] = 0, divyc ∈ L∞(Rm)

and let us denote by Z(h; y) the characteristic flow of c. For any function u ∈ dom(c · ∇y) we
have

|(ϕτu) ◦ Z(h; ·)− ϕτu|L2(Rm) = |ϕτ (u ◦ Z(h; ·)− u)|L2(Rm)

≤ |u ◦ Z(h; ·)− u|L2(Rm) ≤ |h| e
|h|
2 |divyc|L∞ |c · ∇u|L2(Rm), τ ∈ R+

saying that ϕτu ∈ dom(c · ∇y) and |c · ∇(ϕτu)|L2(Rm) ≤ |c · ∇u|L2(Rm), τ ∈ R+. Letting h → 0
in the equality

(ϕτu) ◦ Z(h; ·)− ϕτu
h

= ϕτ
u ◦ Z(h; ·)− u

h

gives the commutation of ϕτ and c · ∇y, that is

c · ∇(ϕτu) = ϕτ (c · ∇u), τ ∈ R+.

Moreover, if c1, c2 are two smooth fields in involution with respect to b and c1 · ∇y(c2 · ∇yu) ∈
L2(Rm), then c1 · ∇y(c2 · ∇yϕτu) ∈ L2(Rm) and

|c1 · ∇y(c2 · ∇yϕτu)|L2(Rm) ≤ |c1 · ∇y(c2 · ∇yu)|L2(Rm), τ ∈ R+.

The above arguments allow us to propagate derivations along fields in involution with respect
to b, of any order, uniformly with respect to τ ∈ R+.

4.2 Spectral properties of the operator B
We concentrate now on the spectral properties of B.

Proposition 4.2
The operator B is self-adjoint and positive. In particular the eigen-spaces are orthogonal, and for any
λ we have ker(B − λId)⊥ = Range (B − λId).

Proof. For any u, v ∈ domB and τ ∈ R+ we have∫
Rm
ϕτu v dy =

∫
Rm
uϕτv dy

17



implying that
∫
RmBu v dy =

∫
RmuBv dy. Therefore we have domB ⊂ domB? and B?v = Bv for any

v ∈ domB. Conversely, assume that v ∈ domB?, that is there is a constant C such that∫
Rm
Bu v dy ≤ C|u|L2(Rm), for any u ∈ domB.

For any u ∈ domB and h ∈ R we have

uh = u+ hT u+ h2
∫ 1

0

(1− s)(T 2u)hs ds, u−h = u− hT u+ h2
∫ 1

0

(1− s)(T 2u)−hs ds

and thus we obtain∫
Rm

(vh + v−h − 2v)u dy =

∫
Rm
v(uh + u−h − 2u) dy

= h2
∫
Rm
v

[∫ 1

0

(1− s)(T 2u)hs ds+

∫ 1

0

(1− s)(T 2u)−hs ds

]
dy

= h2
∫ 1

0

(1− s)
∫
Rm
v(T 2uhs + T 2u−hs) dyds ≤ C|h|2|u|L2(Rm).

As the domain of B is dense in L2(Rm), it comes that∫
Rm

(vh + v−h − 2v)u dy ≤ Ch2|u|L2(Rm), h ∈ R, u ∈ L2(Rm) (24)

implying that
|vh + v−h − 2v|L2(Rm) ≤ Ch2, h ∈ R. (25)

In particular, taking u = −v ∈ L2(Rm) in (24), one gets

|vh − v|2L2(Rm) = −
∫
Rm

(vh + v−h − 2v)v dy ≤ Ch2|v|L2(Rm). (26)

The estimates (26), (25) guarantee that v ∈ domB and thus B? = B. Clearly, for any u ∈ domB we
have

∫
RmBuu dy =

∫
Rm(T u)2 dy ≥ 0, and therefore all the eigen-values belong to R+.

Description of the eigen-spaces and of the associated projections

For any λ ∈ R+ we denote by Eλ the subspace Eλ = ker(B − λId). Thanks to the equality∫
RmBuu dy =

∫
Rm(T u)2 dy, u ∈ domB, it is easily seen that

E0 = kerB = ker T = {u ∈ L2(Rm) : us = u, s ∈ R}.

By Proposition 3.1 we know that

ProjE0
u = lim

S→+∞

1

S

∫ r+S

r

us ds, strongly in L2(Rm), uniformly with respect to r ∈ R.

We will see that the orthogonal projections on the subspaces Eλ are also given by average operators.
For any λ > 0 we introduce the family of transformations of L2(Rm)× L2(Rm)

ζλ(s)(u, v) = t
(
R(
√
λs) t(us, vs)

)
= (us, vs)R(−

√
λs), (u, v) ∈ L2(Rm)× L2(Rm), s ∈ R

where R stands for the rotation of angle θ ∈ R.

Proposition 4.3
For any λ > 0 the family (ζλ(s))s∈R is a C0-group of unitary transformations of L2(Rm) × L2(Rm).
The subspace Eλ writes

Eλ =

{
u ∈ domT : us = cos(

√
λs)u+ sin(

√
λs)
T√
λ
u, for any s ∈ R

}
=

{
u ∈ domT :

(
u+ i

T√
λ
u

)
s

= e−i
√
λs

(
u+ i

T√
λ
u

)
, for any s ∈ R

}
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and for any u ∈ L2(Rm) we have

ProjEλu = lim
S→+∞

2

S

∫ r+S

r

cos(
√
λs)us ds,

T√
λ

ProjEλu = lim
S→+∞

2

S

∫ r+S

r

sin(
√
λs)us ds

in L2(Rm), uniformly with respect to r ∈ R. If u ∈ domT , the orthogonal projection on Eλ also writes

ProjEλu = − lim
S→+∞

2

S

∫ r+S

r

sin(
√
λs)
T√
λ
us ds

in L2(Rm), uniformly with respect to r ∈ R.

Proof. Clearly we have for any (u, v) ∈ L2(Rm)× L2(Rm), s, h ∈ R

ζλ(s)ζλ(h)(u, v) = (ζλ(h)(u, v))sR(−
√
λs)

= (uh, vh)sR(−
√
λh)R(−

√
λs)

= ζλ(s+ h)(u, v)

and

|ζλ(s)(u, v)|2L2×L2 =

∫
Rm
{(us)2 + (vs)

2} dy =

∫
Rm
{u2 + v2} dy.

The continuity of the group (ζ(s))s∈R guarantees the continuity of the group (ζλ(s))s∈R. We denote by
Tλ the infinitesimal generator of (ζλ(s))s∈R. Its domain is given by the pairs (u, v) ∈ L2(Rm)×L2(Rm)
such that it exists

Tλ(u, v) =
d

ds
|s=0ζλ(s)(u, v) ∈ L2(Rm)× L2(Rm).

It coincides with the set of the pairs (u, v) ∈ L2(Rm)× L2(Rm) such that it exists

d

ds
|s=0{ζλ(s)(u, v)R(

√
λs)} =

d

ds
|s=0(us, vs) ∈ L2(Rm)× L2(Rm).

Therefore domTλ = domT × domT , and for any (u, v) ∈ domTλ we have

Tλ(u, v) =
d

ds
|s=0ζλ(s)(u, v) =

√
λ(u, v)R(−π/2) + (T u, T v) = (T u−

√
λv, T v +

√
λu).

The kernel of Tλ is Fλ = {(u, T√
λ
u), u ∈ Eλ}. Notice that u ∈ Eλ iff (u, T√

λ
u) ∈ Fλ, or equivalently iff

u ∈ domT ,
(
us,
T√
λ
us

)
R(−

√
λs) =

(
u,
T√
λ
u

)
, for any s ∈ R.

We deduce that u ∈ Eλ iff u ∈ domT and

us = cos(
√
λs)u+ sin(

√
λs)
T√
λ
u, for any s ∈ R (27)

T√
λ
us = − sin(

√
λs)u+ cos(

√
λs)
T√
λ
u, for any s ∈ R. (28)

Observe that (28) comes from (27), by taking the derivative with respect to s and therefore we obtain
the following characterization for the subspace Eλ

Eλ =

{
u ∈ domT : us = cos(

√
λs)u+ sin(

√
λs)
T√
λ
u for any s ∈ R

}
=

{
u ∈ domT :

(
u+ i

T√
λ
u

)
s

= e−i
√
λs

(
u+ i

T√
λ
u

)
for any s ∈ R

}
.

By Theorem 3.1, we know that for any (u, v) ∈ L2(Rm)× L2(Rm) we have

ProjFλ(u, v) = lim
S→+∞

1

S

∫ r+S

r

ζλ(s)(u, v) ds
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in L2(Rm)× L2(Rm), uniformly with respect to r ∈ R. In particular, we deduce that

ProjFλ(u, 0) = lim
S→+∞

1

S

∫ r+S

r

ζλ(s)(u, 0) ds = lim
S→+∞

1

S

∫ r+S

r

(cos(
√
λs)us, sin(

√
λs)us) ds

in L2(Rm)×L2(Rm), uniformly with respect to r ∈ R. But ProjFλ(u, 0) = (U, T√
λ
U) for some U ∈ Eλ

satisfying ∫
Rm

{
(u− U)V − T√

λ
U
T√
λ
V

}
dy = 0, V ∈ Eλ

which also writes ∫
Rm

(u− 2U)V dy = 0, V ∈ Eλ.

This exactly means that

ProjEλu = 2U = lim
S→+∞

2

S

∫ r+S

r

cos(
√
λs)us ds

in L2(Rm), uniformly with respect to r ∈ R. Notice that we also have

T√
λ

ProjEλu = 2
T√
λ
U = lim

S→+∞

2

S

∫ r+S

r

sin(
√
λs)us ds

in L2(Rm), uniformly with respect to r ∈ R. If u ∈ domT we have

d

ds

{
sin(
√
λs)

us√
λ

}
= cos(

√
λs)us + sin(

√
λs)
T√
λ
us in L2(Rm)

and thus we deduce

ProjEλu = lim
S→+∞

2

S

∫ r+S

r

{
d

ds

[
sin(
√
λs)

us√
λ

]
− sin(

√
λs)
T√
λ
us

}
ds

= − lim
S→+∞

2

S

∫ r+S

r

sin(
√
λs)
T√
λ
us ds

in L2(Rm), uniformly with respect to r ∈ R.

Remark 4.1

1. It is easily seen that E0 = ker T = kerB is left invariant by the group (ζ(s))s∈R and that
ProjE0

= 〈·〉 is commuting with (ζ(s))s∈R and T

ProjE0
us = ProjE0

u = (ProjE0
u)s, u ∈ L2(Rm), s ∈ R

ProjE0
T u = 0 = T ProjE0

u, u ∈ domT , s ∈ R.

2. The subspaces Eλ = ker(B − λId), λ > 0 are left invariant by the group (ζ(s))s∈R. Indeed, for
any u ∈ domT such that(

u+ i
T√
λ
u

)
s

= e−i
√
λs

(
u+ i

T√
λ
u

)
, s ∈ R

we have

uh ∈ domT ,
(
uh + i

T√
λ
uh

)
s

= e−i
√
λs

(
uh + i

T√
λ
uh

)
, s ∈ R

saying that uh ∈ Eλ, h ∈ R, λ > 0. In particular the subspaces Eλ ∩H1
P , λ > 0 are left invariant

by the group (ζ1(s))s∈R.
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3. The application u ∈ Eλ ∩ H1
P → T√

λ
u is a isometry with respect to the H1

P norm. Indeed, for

any u ∈ Eλ ∩H1
P we have

us = cos(
√
λs)u+ sin(

√
λs)
T√
λ
u, s ∈ R.

As we already know that u, us ∈ Eλ∩H1
P , we deduce that T√

λ
u ∈ Eλ∩H1

P and thus we can write∫
Rm
P∇u · ∇u dy =

∫
Rm
P∇us · ∇us dy

=

∫
Rm

∣∣∣∣cos(
√
λs)P 1/2∇u+ sin(

√
λs)P 1/2∇ T√

λ
u

∣∣∣∣2 dy

= cos(
√
λs)2

∫
Rm
P∇u · ∇u dy + sin(

√
λs)2

∫
Rm
P∇ T√

λ
u · ∇ T√

λ
u dy

+ sin(2
√
λs)

∫
Rm
P∇u · ∇ T√

λ
u dy.

Taking the derivatives with respect to s at s = 0, we deduce that∫
Rm
P∇u · ∇ T√

λ
u dy = 0

which implies that ∫
Rm
P∇ T√

λ
u · ∇ T√

λ
u dy =

∫
Rm
P∇u · ∇u dy.

Notice also that ∫
Rm

(
T√
λ
u

)2

dy = −
∫
Rm
u
T 2

λ
u dy =

∫
Rm
u2 dy

and thus we have | T√
λ
u|H1

P
= |u|H1

P
for any u ∈ Eλ ∩ H1

P and also ( T√
λ
u, T√

λ
v)H1

P
= (u, v)H1

P

for any u, v ∈ Eλ ∩H1
P . The reciprocal application of T√

λ
|Eλ∩H1

P
is − T√

λ
|Eλ∩H1

P
.

4. The orthogonal projection on Eλ, λ > 0 are commuting with the group (ζ(s))s∈R

ProjEλus = (ProjEλu)s, s ∈ R.

In particular ProjEλ , λ > 0 are commuting with T , that is, for any u ∈ domT , λ > 0 we have
the equalities in L2(Rm)

ProjEλT u = ProjEλ lim
s→0

us − u
s

= lim
s→0

ProjEλus − ProjEλu

s

= lim
s→0

(ProjEλu)s − ProjEλu

s
= T ProjEλu.

5. Many other commutations hold true, for example between (ζλ(s))s∈R, (ζµ(s))s∈R, thanks to the
equalities

R(
√
λs)R(

√
µh) = R(

√
µh)R(

√
λs), λ, µ > 0, s, h ∈ R.

We study now the action of (ζλ(s))s∈R on H1
P ×H1

P , for any λ > 0. As in Proposition 3.5 we prove

Proposition 4.4
Assume that the hypotheses (16), (17), (18), (19) hold true. For any (u, v) ∈ H1

P × H1
P , we have

ζλ(s)(u, v) ∈ H1
P×H1

P and |ζλ(s)(u, v)|H1
P×H1

P
= |(u, v)|H1

P×H1
P

. The family of applications (ζ1λ(s))s∈R =

(ζλ(s)|H1
P×H1

P
)s∈R is a C0-group of unitary operators on H1

P ×H1
P . In particular for any u ∈ H1

P we

have ProjEλu ∈ H
1
P

∇ProjEλu = lim
S→+∞

2

S

∫ r+S

r

cos(
√
λs)∇us ds, ∇ T√

λ
ProjEλu = lim

S→+∞

2

S

∫ r+S

r

sin(
√
λs)∇us ds (29)

strongly in XP , uniformly with respect to r ∈ R and

u− ProjEλu ⊥ Eλ ∩H
1
P in H1

P , |∇ProjEλu|
2
XP ≤ 2|∇u|2XP .
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Proof. Let (u, v) be an element of H1
P ×H1

P . By Proposition 3.5 we know that

(us, vs) ∈ H1
P ×H1

P , |us|L2(Rm) = |u|L2(Rm), |vs|L2(Rm) = |v|L2(Rm)

|∇us|XP = |∇u|XP , |∇vs|XP = |∇v|XP
and therefore we deduce

|ζ1λ(s)(u, v)|2H1
P×H1

P
= |ζλ(s)(u, v)|2L2(Rm)×L2(Rm) + | cos(

√
λs)∇us − sin(

√
λs)∇vs|2XP

+ | sin(
√
λs)∇us + cos(

√
λs)∇vs|2XP

= |(u, v)|2L2(Rm)×L2(Rm) + |∇us|2XP + |∇vs|2XP
= |(u, v)|2H1

P×H1
P
.

The group property of (ζ1λ(s))s∈R comes by the group property of (ζλ(s))s∈R, cf. Proposition 4.3.
Notice that

|ζ1λ(s)(u, v)− (u, v)|2H1
P×H1

P
= |ζλ(s)(u, v)− (u, v)|2L2(Rm)×L2(Rm)

+ | cos(
√
λs)∇us − sin(

√
λs)∇vs −∇u|2XP

+ | sin(
√
λs)∇us + cos(

√
λs)∇vs −∇v|2XP

and therefore, the continuity of (ζ1λ(s))s∈R on H1
P × H1

P follows by the continuity of (ζλ(s))s∈R on
L2(Rm)× L2(Rm) and by the continuity of (ζ1(s))s∈R on H1

P , thanks to the inequalities

| cos(
√
λs)∇us − sin(

√
λs)∇vs −∇u|XP ≤ (1− cos(

√
λs))|∇us|XP + |∇us −∇u|XP

+| sin(
√
λs)| |∇vs|XP

and

| sin(
√
λs)∇us + cos(

√
λs)∇vs −∇v|XP ≤ | sin(

√
λs)| |∇us|XP + |∇vs −∇v|XP

+(1− cos(
√
λs)) |∇vs|XP

and to the equalities |∇us|XP = |∇u|XP , |∇vs|XP = |∇v|XP . Notice that the set of elements in
H1
P ×H1

P which are left invariant by the group (ζ1λ(s))s∈R is given by

{(u, v) ∈ H1
P ×H1

P : ζ1λ(s)(u, v) = (u, v), s ∈ R}
= {(u, v) ∈ L2(Rm)× L2(Rm) : ζλ(s)(u, v) = (u, v), s ∈ R} ∩ (H1

P ×H1
P )

= Fλ ∩ (H1
P ×H1

P ) =

{(
u,
T√
λ
u

)
: u ∈ Eλ

}
∩ (H1

P ×H1
P )

=

{(
u,
T√
λ
u

)
: u ∈ Eλ ∩H1

P

}
.

For the last point we have used the third point of Remark 4.1.
Applying Theorem 3.1, we deduce for any u ∈ H1

P , the strong convergence in H1
P × H1

P , uniformly
with respect to r ∈ R

lim
S→+∞

1

S

∫ r+S

r

ζ1λ(s)(u, 0) ds = ProjFλ∩(H1
P×H1

P )(u, 0) =

(
U,
T√
λ
U

)
for some U ∈ Eλ∩H1

P . This implies the following strong convergences in L2(Rm)×L2(Rm), uniformly
with respect to r ∈ R

lim
S→+∞

1

S

∫ r+S

r

(cos(
√
λs), sin(

√
λs))us ds =

(
U,
T√
λ
U

)
and in XP ×XP , uniformly with respect to r ∈ R

lim
S→+∞

1

S

∫ r+S

r

(cos(
√
λs), sin(

√
λs))∇us ds =

(
∇U,∇ T√

λ
U

)
. (30)
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By Proposition 4.3 we have the strong convergence in L2 × L2

lim
S→+∞

1

S

∫ r+S

r

(cos(
√
λs), sin(

√
λs))us ds = lim

S→+∞

1

S

∫ r+S

r

ζλ(s)(u, 0) ds

=
1

2

(
ProjEλu,

T√
λ

ProjEλu

)
implying that ProjEλu = 2U ∈ Eλ ∩ H1

P and the statements in (29) follow by (30). As (u, 0) −
1
2 (ProjEλu,

T√
λ

ProjEλu) is orthogonal on Fλ with respect to the scalar product of L2(Rm)×L2(Rm),

and also on Fλ ∩ (H1
P ×H1

P ) with respect to the scalar product of H1
P ×H1

P , we deduce that for any
V ∈ Eλ ∩H1

P we have(
∇u− 1

2
∇ProjEλu,∇V

)
XP

+

(
0− 1

2
∇ T√

λ
ProjEλu,∇

T√
λ
V

)
XP

= 0.

By the third statement of Remark 4.1, we deduce that

(∇u−∇ProjEλu,∇V )XP = 0, V ∈ Eλ ∩H1
P

which together with the orthogonality of u − ProjEλu on Eλ in L2(Rm), gives the orthogonality of
u− ProjEλu on Eλ ∩H1

P in H1
P . The last conclusion follows thanks to Proposition 3.5, noticing that

|∇ProjEλu|XP ≤

(
lim inf
S→+∞

2

S

∫ r+S

r

| cos(
√
λs)| ds

)
|∇u|XP

≤ lim inf
S→+∞

2

(
1

S

∫ r+S

r

(cos(
√
λs))2 ds

)1/2

|∇u|XP

=
√

2|∇u|XP .

Remark 4.2
The convergence in Proposition 4.4 being uniform with respect to r ∈ R, it allows us to obtain, by
changing s to −s

lim
S→+∞

2

S

∫ r+S

r

(cos(
√
λs)∇u−s,− sin(

√
λs)∇u−s) ds =

(
∇ProjEλu,∇

T√
λ

ProjEλu

)
strongly in XP ×XP , uniformly with respect to r ∈ R.

5 The effective problem

The goal of this section is to introduce the effective bilinear form m and to justify its well definition,
see Proposition 5.5. In order to achieve this, in Section 5.1 we prove some technical lemmas, which
will provide the existence of the limit

lim
S→+∞

1

S

∫ S

0

G(s)D∇{u(Y (2s; ·))} ds (31)

strongly in XQ, for any u ∈ Eλ ∩H1
P , λ > 0 and D ∈ H∞Q . Moreover, the limit in (31) is explicited

through a new family of projections associated to the eigen-spaces of the operator −L2, where L is
the infinitesimal generator of the group (G(s))s∈R. These projections are studied in Proposition 5.1.
In Section 5.2 we indicate a structural hypothesis which allows us to justify the existence of the limit
(31) for any u ∈ H1

P .
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5.1 Technical tools

For further developements, we need the following lemma.

Lemma 5.1

1. For any matrix field D ∈ HQ ∩H∞Q and any vector field c ∈ XP we have the convergence

lim
S→+∞

1

S

∫ r+S

r

G(s)Dc ds = 〈D〉 c, strongly in XQ, uniformly with respect to r ∈ R.

2. The above convergence still holds true for any matrix field D ∈ H∞Q , and any vector field c ∈ XP ,
where the average of D is considered in HQ,loc cf. Theorem 3.2.

Proof.
1. We know by Theorem 3.2 that

lim
S→+∞

1

S

∫ r+S

r

G(s)D ds = 〈D〉 strongly in HQ, uniformly with respect to r ∈ R.

We define the sequence ck = 1{{|P 1/2c|≤k}}c, k ∈ N. Any vector field ck belongs to X∞P and we have
the convergence limk→+∞ ck = c in XP . For any k ∈ N we have the convergence

lim
S→+∞

1

S

∫ r+S

r

G(s)Dck ds = 〈D〉 ck, strongly in XQ, uniformly with respect to r ∈ R

thanks to the inequality∣∣∣∣∣ 1S
∫ r+S

r

G(s)Dck ds− 〈D〉 ck

∣∣∣∣∣
XQ

≤

∣∣∣∣∣ 1S
∫ r+S

r

G(s)D ds− 〈D〉

∣∣∣∣∣
HQ

|ck|X∞
P

Observe that∣∣∣∣∣ 1S
∫ r+S

r

G(s)Dc ds− 〈D〉 c

∣∣∣∣∣
XQ

≤

∣∣∣∣∣ 1S
∫ r+S

r

G(s)D(c− ck) ds

∣∣∣∣∣
XQ

+

∣∣∣∣∣ 1S
∫ r+S

r

G(s)Dck ds− 〈D〉 ck

∣∣∣∣∣
XQ

+ | 〈D〉 (ck − c)|XQ

≤

∣∣∣∣∣ 1S
∫ r+S

r

G(s)D ds

∣∣∣∣∣
H∞
Q

|c− ck|XP

+

∣∣∣∣∣ 1S
∫ r+S

r

G(s)Dck ds− 〈D〉 ck

∣∣∣∣∣
XQ

+ | 〈D〉 |H∞
Q
|ck − c|XP

≤ 2|D|H∞
Q
|ck − c|XP +

∣∣∣∣∣ 1S
∫ r+S

r

G(s)Dck ds− 〈D〉 ck

∣∣∣∣∣
XQ

which implies that for any k ∈ N

lim sup
S→+∞

sup
r∈R

∣∣∣∣∣ 1S
∫ r+S

r

G(s)Dc ds− 〈D〉 c

∣∣∣∣∣
XQ

≤ 2|D|H∞
Q
|ck − c|XP .

Our conclusion follows by letting k → +∞.
2. For any k ∈ N we consider Dk = 1{ψ≤k}D. Since D ∈ H∞Q ⊂ HQ,loc, we deduce that Dk ∈
HQ ∩H∞Q , and by the previous statement, we have for any k ∈ N

lim
S→+∞

sup
r∈R

∣∣∣∣∣ 1S
∫ r+S

r

G(s)Dkc ds− 〈Dk〉 c

∣∣∣∣∣
XQ

= 0.
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Notice that∣∣∣∣∣ 1S
∫ r+S

r

G(s)Dc ds− 〈D〉 c

∣∣∣∣∣
XQ

−

∣∣∣∣∣ 1S
∫ r+S

r

G(s)Dkc ds− 〈Dk〉 c

∣∣∣∣∣
XQ

≤

∣∣∣∣∣ 1S
∫ r+S

r

G(s)(D −Dk)c ds

∣∣∣∣∣
XQ

+ | 〈Dk −D〉 c|XQ

=

∣∣∣∣∣ 1S
∫ r+S

r

G(s)D1{ψ>k}c ds

∣∣∣∣∣
XQ

+
∣∣〈D〉1{ψ>k}c∣∣XQ

≤ 1

S

∫ r+S

r

|G(s)D|H∞
Q
|1{ψ>k}c|XP ds+ | 〈D〉 |H∞

Q
|1{ψ>k}c|XP

≤ 2| 〈D〉 |H∞
Q
|1{ψ>k}c|XP

which implies that

lim sup
S→+∞

sup
r∈R

∣∣∣∣∣ 1S
∫ r+S

r

G(s)Dc ds− 〈D〉 c

∣∣∣∣∣
XQ

≤ 2| 〈D〉 |H∞
Q
|1{ψ>k}c|XP .

Our conclusion follows by letting k → +∞.

The purpose of the following proposition is to introduce the orthogonal projections on the eigen-spaces
of −L2, by appealing to the von Neumann ergodic mean theorem, in respect with a new family of
unitary C0-groups. These new projections will allow us to justify the existence of the limit in (31). As
suggested in Proposition 4.3, for any λ > 0, we introduce the family of transformations of HQ ×HQ

Gλ(s)(A,B) = (cos(
√
λs)G(s)A− sin(

√
λs)G(s)B, sin(

√
λs)G(s)A+ cos(

√
λs)G(s)B)

for any (A,B) ∈ HQ ×HQ, s ∈ R.

Proposition 5.1
For any λ > 0, the family (Gλ(s))s∈R is a C0-group of unitary transformations of HQ ×HQ, whose
infinitesimal generator Lλ is given by

domLλ = domL× domL, Lλ(A,B) = (LA−
√
λB,LB +

√
λA), (A,B) ∈ domL× domL

where L is the infinitesimal generator of the group (G(s))s∈R. For any A ∈ HQ we have, with the
notation Eλ = ker(−L2 − λId)(

ProjEλA,
L√
λ

ProjEλA

)
= lim
S→+∞

2

S

∫ r+S

r

(cos(
√
λs)G(s)A, sin(

√
λs)G(s)A) ds

strongly in HQ ×HQ, uniformly with respect to r ∈ R, and

|ProjEλA|HQ =

∣∣∣∣ L√λProjEλA

∣∣∣∣
HQ

≤ |A|HQ .

Moreover, if A ∈ HQ ∩H∞Q , then ProjEλA,
L√
λ

ProjEλA ∈ H
∞
Q and

|ProjEλA|H∞
Q
≤ 2|A|H∞

Q
,

∣∣∣∣ L√λProjEλA

∣∣∣∣
H∞
Q

≤ 2|A|H∞
Q
.

Proof. It is easily seen that (Gλ(s))s∈R is a C0-group. For any (A,B) ∈ HQ × HQ we obtain by
direct computations

|Gλ(s)(A,B)|2HQ×HQ = |(A,B)|2HQ×HQ
saying that (Gλ(s))s∈R are unitary transformations of HQ ×HQ. As before we check that domLλ =
domL× domL and

Lλ(A,B) = (LA−
√
λB,LB +

√
λA), (A,B) ∈ domL× domL.
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The kernel of Lλ is given by

kerLλ =

{(
A,

L√
λ
A

)
: A ∈ Eλ

}
.

Notice that A ∈ Eλ iff
(
A, L√

λ
A
)
∈ kerLλ, or equivalently iff A ∈ domL and Gλ(s)

(
A, L√

λ
A
)

=(
A, L√

λ
A
)

for any s ∈ R, that is

G(s)A = cos(
√
λs)A+ sin(

√
λs)

L√
λ
A, s ∈ R (32)

L√
λ
G(s)A = − sin(

√
λs)A+ cos(

√
λs)

L√
λ
A, s ∈ R. (33)

Observe that (33) comes from (32), by taking the derivative with respect to s and therefore we obtain
the characterization

Eλ =

{
A ∈ domL : G(s)A = cos(

√
λs)A+ sin(

√
λs)

L√
λ
A, s ∈ R

}
=

{
A ∈ domL : G(s)

(
A+ i

L√
λ
A

)
= e−i

√
λs

(
A+ i

L√
λ
A

)
, s ∈ R

}
.

Applying Theorem 3.1, we know that for any (A,B) ∈ HQ ×HQ we have

ProjkerLλ(A,B) = lim
S→+∞

1

S

∫ r+S

r

Gλ(s)(A,B) ds

in HQ × HQ, uniformly with respect to r ∈ R. In particular we have the uniform convergence in
HQ ×HQ, with respect to r ∈ R

ProjkerLλ(A, 0) = lim
S→+∞

1

S

∫ r+S

r

(cos(
√
λs)G(s)A, sin(

√
λs)G(s)A) ds =

(
Z,

L√
λ
Z

)
(34)

for some Z ∈ Eλ. Therefore, for any W ∈ Eλ we have

(A− Z,W )HQ +

(
0− L√

λ
Z,

L√
λ
W

)
HQ

= 0.

As (G(s))s∈R is a unitary group, its infinitesimal generator L is skew-adjoint, and thus

(A− 2Z,W )HQ = 0, W ∈ Eλ

saying that ProjEλA = 2Z. Thanks to (34) we obtain the uniform convergence in HQ × HQ, with
respect to r ∈ R(

ProjEλA,
L√
λ

ProjEλA

)
= lim
S→+∞

2

S

∫ r+S

r

(cos(
√
λs)G(s)A, sin(

√
λs)G(s)A) ds.

Assume now that A ∈ HQ ∩H∞Q . The above convergence in HQ ×HQ guarantees the existence of a
sequence (Sn)n such that limn→+∞ Sn = +∞ and

lim
n→+∞

2

Sn

∫ Sn

0

cos(
√
λs)G(s)A ds = ProjEλA, for a.a. y ∈ Rm

lim
n→+∞

2

Sn

∫ Sn

0

sin(
√
λs)G(s)A ds =

L√
λ

ProjEλA, for a.a. y ∈ Rm

But the sequence
(

2
Sn

∫ Sn
0

(cos(
√
λs)G(s)A, sin(

√
λs)G(s)A) ds

)
n

is bounded in H∞Q ×H∞Q∣∣∣∣∣ 2

Sn

∫ Sn

0

cos(
√
λs)G(s)A ds

∣∣∣∣∣
H∞
Q

≤ 2|A|H∞
Q
,

∣∣∣∣∣ 2

Sn

∫ Sn

0

sin(
√
λs)G(s)A ds

∣∣∣∣∣
H∞
Q

≤ 2|A|H∞
Q
.
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We deduce that ProjEλA,
L√
λ

ProjEλA ∈ H
∞
Q and

|ProjEλA|H∞
Q
≤ 2|A|H∞

Q
,

∣∣∣∣ L√λProjEλA

∣∣∣∣
H∞
Q

≤ 2|A|H∞
Q
.

Remark 5.1
It is easily seen, thanks to the skew-symmetry of L that E0 := ker(−L2) = kerL and thus ProjE0A =
ProjkerLA = 〈A〉, for any matrix field A ∈ HQ.

Remark 5.2

1. As in the last statement of Theorem 3.2, the operator ProjEλ extends from HQ to HQ,loc. Indeed,
let A be a matrix field in HQ,loc. For any k ∈ N, Ak := 1{ψ≤k}A belongs to HQ, and by
Proposition 5.1 we know that

lim
S→+∞

2

S

∫ r+S

r

(cos(
√
λs)G(s)Ak, sin(

√
λs)G(s)Ak) ds =

(
ProjEλAk,

L√
λ

ProjEλAk

)
strongly in HQ ×HQ, uniformly with respect to r ∈ R. We have

lim
S→+∞

2

S

∫ r+S

r

(cos(
√
λs), sin(

√
λs))G(s)Ak ds = lim

S→+∞

2

S

∫ r+S

r

(cos(
√
λs), sin(

√
λs))G(s)Al ds

almost everywhere on {ψ ≤ min(k, l)}, and thus there are two matrix fields B,C ∈ HQ,loc such
that

lim
S→+∞

2

S

∫ r+S

r

(cos(
√
λs)G(s)Ak, sin(

√
λs)G(s)Ak) ds = 1{ψ≤k}(B,C)

=

(
ProjEλAk,

L√
λ

ProjEλAk

)
strongly in HQ × HQ, uniformly with respect to r ∈ R, for any fixed k ∈ N. We claim that
B ∈ dom(L2), and L2B+λB = 0, that is B ∈ ker(−L2−λId), where L is considered in HQ,loc.
Indeed, we have for any k ∈ N

1{ψ≤k}B = ProjEλAk ∈ dom(L|HQ)

saying that B ∈ dom(L). Moreover

1{ψ≤k}LB = L(1{ψ≤k}B) = L(ProjEλAk) ∈ dom(L|HQ)

implying that LB ∈ dom(L) and

1{ψ≤k}L
2B = 1{ψ≤k}L(LB) = L(1{ψ≤k}LB) = L(L(ProjEλAk))

= −λProjEλAk = −1{ψ≤k}λB, k ∈ N.

We deduce that B ∈ dom(L2) and L2B + λB = 0. Notice that for any k ∈ N we have

1{ψ≤k}C =
L√
λ

ProjEλAk =
L√
λ

(1{ψ≤k}B) = 1{ψ≤k}
L√
λ
B ∈ dom(L|HQ)

saying that C = L√
λ
B ∈ dom(L). It is easily seen that the matrix field B ∈ HQ,loc satisfies

B ∈ ker(−L2 − λId), (1{ψ≤k}(A−B),M)HQ = 0 for any M ∈ Eλ, k ∈ N

and that B is uniquely determined by the above variational characterization. Moreover, if A ∈
HQ, then B coincides with ProjEλA ⊂ Eλ ⊂ HQ. Therefore, for any A ∈ HQ,loc, the family(

2

S

∫ r+S

r

(cos(
√
λs)G(s)A, sin(

√
λs)G(s)A) ds

)
S>0

converges in HQ,loc×HQ,loc, as S → +∞, toward (B, L√
λ
B), where the application A ∈ HQ,loc →

B ∈ HQ,loc extends the projection ProjEλ : HQ → HQ. We use the same notation B = ProjEλA
independently of A being in HQ or in HQ,loc.
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2. For any matrix field A ∈ H∞Q ⊂ HQ,loc and any k ∈ N, the matrix field Ak = 1{ψ≤k}A belongs
to HQ ∩H∞Q , and by Theorem 5.1 we have

|ProjEλAk|H∞
Q
≤ 2|Ak|H∞

Q
≤ 2|A|H∞

Q∣∣∣∣ L√λProjEλAk

∣∣∣∣
H∞
Q

≤ 2|Ak|H∞
Q
≤ 2|A|H∞

Q
.

We deduce that

|ProjEλA|H∞
Q

= sup
k∈N
|1{ψ≤k}ProjEλA|H∞

Q
= sup

k∈N
|ProjEλAk|H∞

Q
≤ 2|A|H∞

Q

and ∣∣∣∣ L√λProjEλA

∣∣∣∣
H∞
Q

= sup
k∈N

∣∣∣∣1{ψ≤k} L√λProjEλA

∣∣∣∣
H∞
Q

= sup
k∈N

∣∣∣∣ L√λProjEλAk

∣∣∣∣
H∞
Q

≤ 2|A|H∞
Q
.

The unitary C0-groups (Gλ(s))s∈R, λ > 0 emphasized in Proposition 5.1 allow us to establish the
following convergences.

Lemma 5.2

1. For any matrix field D ∈ HQ∩H∞Q and any function u ∈ Eλ∩H1
P , λ > 0, we have the convergence

lim
S→+∞

1

S

∫ r+S

r

G(s)D∇u2s ds =
1

2
ProjE4λD∇u+

1

2

L√
4λ

ProjE4λD∇
T√
λ
u

strongly in XQ, uniformly with respect to r ∈ R.

2. The above convergence still holds true for any matrix field D ∈ H∞Q and any function u ∈
Eλ ∩H1

P , λ > 0, where the operators ProjE4λ , L are considered in HQ,loc cf. Remarks 5.2, 3.1.

Proof.
1. For any s ∈ R we have u2s = cos(

√
4λs)u+ sin(

√
4λs) T√

λ
u. By the third statement of Remark 4.1,

we know that T√
λ
u ∈ Eλ ∩H1

P and therefore we have the following equality in XP

∇u2s = cos(
√

4λs)∇u+ sin(
√

4λs)∇ T√
λ
u. (35)

We claim that

lim
S→+∞

2

S

∫ r+S

r

cos(
√

4λs)G(s)D∇u ds = ProjE4λD∇u (36)

lim
S→+∞

2

S

∫ r+S

r

sin(
√

4λs)G(s)D∇ T√
λ
u ds =

L√
4λ

ProjE4λD∇
T√
λ
u (37)

strongly in XQ, uniformly with respect to r ∈ R. We introduce the sequence ck = 1{{|P 1/2∇u|≤k}}∇u.
Any vector field ck belongs to X∞P and we have the convergence limk→+∞ ck = ∇u in XP . By
Proposition 5.1 we have

lim
S→+∞

2

S

∫ r+S

r

cos(
√

4λs)G(s)D ds = ProjE4λD

strongly in HQ, uniformly with respect to r ∈ R. As in the proof of Lemma 5.1 we have∣∣∣∣∣ 2S
∫ r+S

r

cos(
√

4λs)G(s)D∇u ds −ProjE4λD∇u
∣∣
XQ
≤ 4|D|H∞

Q
|∇u− ck|XP

+

∣∣∣∣∣ 2S
∫ r+S

r

cos(
√

4λs)G(s)D ds− ProjE4λD

∣∣∣∣∣
HQ

|ck|X∞
P
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which implies that for any k ∈ N

lim sup
S→+∞

sup
r∈R

∣∣∣∣∣ 2S
∫ r+S

r

cos(
√

4λs)G(s)D∇u ds− ProjE4λD∇u

∣∣∣∣∣
XQ

≤ 4|D|H∞
Q
|∇u− ck|XP .

The formula (36) follows by letting k → +∞. For the formula (37) use the field ∇ T√
λ
u ∈ XP and the

convergence

lim
S→+∞

2

S

∫ r+S

r

sin(
√

4λs)G(s)D ds =
L√
4λ

ProjE4λD

strongly in HQ, uniformly with respect to r ∈ R. Combining (36), (37), (35) yields

lim
S→+∞

1

S

∫ r+S

r

G(s)D∇u2s ds =
1

2
ProjE4λD∇u+

1

2

L√
4λ

ProjE4λD∇
T√
λ
u

strongly in XQ, uniformly with respect to r ∈ R.
2. For any k ∈ N, let us consider Dk = 1{ψ≤k}D ∈ HQ ∩H∞Q . By the previous statement we have

lim
S→+∞

sup
r∈R

∣∣∣∣∣ 1S
∫ r+S

r

G(s)Dk∇u2s ds− 1

2
ProjE4λDk∇u−

1

2

L√
4λ

ProjE4λDk∇
T√
λ
u

∣∣∣∣∣
XQ

= 0. (38)

Notice also that we have∣∣∣∣∣ 1S
∫ r+S

r

G(s)D∇u2s ds− 1

2
ProjE4λD∇u−

1

2

L√
4λ

ProjE4λD∇
T√
λ
u

∣∣∣∣∣
XQ

−

∣∣∣∣∣ 1S
∫ r+S

r

G(s)Dk∇u2s ds− 1

2
ProjE4λDk∇u−

1

2

L√
4λ

ProjE4λDk∇
T√
λ
u

∣∣∣∣∣
XQ

≤

∣∣∣∣∣ 1S
∫ r+S

r

G(s)(D −Dk)∇u2s ds

∣∣∣∣∣
XQ

+
1

2

∣∣ProjE4λ(Dk −D)∇u
∣∣
XQ

+
1

2

∣∣∣∣ L√
4λ

ProjE4λ(Dk −D)∇ T√
λ
u

∣∣∣∣
XQ

.

It is easily seen that∣∣∣∣∣ 1S
∫ r+S

r

G(s)(D −Dk)∇u2s ds

∣∣∣∣∣
XQ

=

∣∣∣∣∣ 1S
∫ r+S

r

G(s)D1{ψ>k}

(
cos(
√

4λs)∇u+ sin(
√

4λs)∇ T√
λ
u

)∣∣∣∣∣
XQ

≤ |D|H∞
Q

(
|1{ψ>k}∇u|XP +

∣∣∣∣1{ψ>k}∇ T√λu
∣∣∣∣
XP

)
and

1

2

∣∣ProjE4λ(Dk −D)∇u
∣∣
XQ

+
1

2

∣∣∣∣ L√
4λ

ProjE4λ(Dk −D)∇ T√
λ
u

∣∣∣∣
XQ

≤ 1

2
|ProjE4λD|H∞

Q
|1{ψ>k}∇u|XP +

1

2

∣∣∣∣ L√
4λ

ProjE4λD

∣∣∣∣
H∞
Q

∣∣∣∣1{ψ>k}∇ T√λu
∣∣∣∣
XP

≤ |D|H∞
Q

(
|1{ψ>k}∇u|XP +

∣∣∣∣1{ψ>k}∇ T√λu
∣∣∣∣
XP

)
.

Combining the convergence (38) with the previous estimates yields

lim sup
S→+∞

sup
r∈R

∣∣∣∣∣ 1S
∫ r+S

r

G(s)D∇u2s ds− 1

2
ProjE4λD∇u−

1

2

L√
4λ

ProjE4λD∇
T√
λ
u

∣∣∣∣∣
XQ

≤ 2|D|H∞
Q

(
|1{ψ>k}∇u|XP +

∣∣∣∣1{ψ>k}∇ T√λu
∣∣∣∣
XP

)
.

Our conclusion follows by letting k → +∞.

29



5.2 Structural hypotheses associated to B
Notice that any Eλ is closed and Eλ ⊥ Eµ for any λ 6= µ, thanks to the symmetry of B. In order to
extend the existence of the limit (31) to any function u ∈ H1

P , we need to decompose the space H1
P

through the spaces (Eλ)λ≥0. We assume that L2(Rm) is the Hilbertian sum of a countable family of
subspaces Eλ i.e., span(∪n∈NEλn) is dense in L2(Rm)

L2(Rm) = ⊕
n∈N

Eλn , Eλn = ker(B − λnId), λn ≥ 0, n ∈ N. (39)

Without loss of generality, we assume that λ0 = 0 (independently with respect to 0 being an eigen-
value of B or not) and λn > 0, Eλn = ker(B − λnId) 6= {0}, n ∈ N?.

Example 5.1 (Periodic case)
Assume that the characteristic flow Y (s; y) is S0-periodic, that is

∃ S0 > 0 such that Y (s+ S0; y) = Y (s; y), s ∈ R, y ∈ Rm.

We claim that any eigen-value of B = −T 2 writes
√
λn = nω0, n ∈ N, ω0 = 2π/S0. Indeed, if λ0 = 0

is an eigen-value of B, it corresponds to n = 0. Let λ > 0 be a positive eigen-value of B. This means
that there is u ∈ domT , u 6= 0 such that

us + i
T√
λ
us = e−i

√
λs

(
u+ i

T√
λ
u

)
, s ∈ R.

Taking s = S0, one gets (
u+ i

T√
λ
u

)(
1− e−i

√
λS0

)
= 0

implying that
√
λS0 = 2πn, n ∈ N?. In this case the hypothesis (39) holds true. Indeed, if u ∈ L2(Rm)

is such that ProjEλn = 0 for any eigen-value λn, then we have

ProjE0
=

1

S0

∫ S0

0

us ds = 0

and for any n ∈ N?

ProjE
n2ω2

0

u =
2

S0

∫ S0

0

cos(nω0s)us ds = 0,
T
nω0

ProjE
n2ω2

0

u =
2

S0

∫ S0

0

sin(nω0s)us ds = 0.

Therefore, all the Fourier coefficients of the S0-periodic function s → u(Y (s; ·)) ∈ L2(Rm) vanish,
and thus u(Y (s; ·)) = 0 for any s ∈ R, saying that u = 0.

Example 5.2 (Almost periodic case)
We investigate now a very important particular case: that when the C0-group (ζ(s))s∈R is almost
periodic. We assume that for any u ∈ L2(Rm), the function s ∈ R → ζ(s)u ∈ L2(Rm) is almost
periodic, that is, the trajectory s → ζ(s)u ∈ L2(Rm) is the limit in C(R;L2(Rm)) of a sequence of
trigonometric polynomials with coefficients in L2(Rm) (see [6] for a detalied study of almost periodic
functions with values in Banach spaces).

Proposition 5.2
Assume that the hypotheses (16), (17) hold true and that the C0-group (ζ(s))s∈R is almost periodic.

Then the family of non trivial subspaces Eλ = ker(B − λId), λ ∈ R+ is countable and L2(Rm) =
⊕
n
Eλn , Eλn = ker(B − λnId) 6= {0}.

Proof. Let u ∈ L2(Rm) be a function orthogonal to Eλ = ker(B − λId) for any eigen-value λ.
Therefore u is orthogonal to Eλ = ker(B − λId) for any λ ∈ R+

ProjE0
u = lim

S→+∞

1

S

∫ S

0

ζ(s)uds = 0, ProjEλu = lim
S→+∞

2

S

∫ S

0

cos(
√
λs)ζ(s)uds = 0, λ > 0.
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Notice that we also have

T√
λ

ProjEλu = lim
S→+∞

2

S

∫ S

0

sin(
√
λs)ζ(s)uds = 0, λ > 0.

Therefore all the Fourier coefficients of s → ζ(s)u vanish, implying that u = 0 in L2(Rm) and thus
span(∪λ∈R+Eλ) = L2(Rm). As L2(Rm) is separable and the subspaces (Eλ)λ∈R+ are orthogonal, we
deduce that Eλ 6= {0} only for a countable set {λn}, saying that (39) holds true.

A direct consequence of (39) is given by

Proposition 5.3
The space H1

P is the Hilbertian sum of the spaces (Eλn ∩H1
P )n∈N.

Proof. The spaces (Eλn ∩ H1
P )n∈N are closed in H1

P , since (Eλn)n∈N are closed in L2(Rm). By
Propositions 3.5, 4.4 we have

u− ProjEλnu ⊥ Eλn ∩H
1
P in H1

P , u ∈ H1
P , n ∈ N.

Therefore, for any u ∈ Eλk ∩H1
P , k 6= n we have

u− 0 ⊥ Eλn ∩H1
P in H1

P

saying that Eλk ∩ H1
P ⊥ Eλn ∩ H1

P in H1
P , for any k 6= n. Let u be an element of H1

P . As L2(Rm)
is the Hilbertian sum of (Eλn)n∈N, we have u =

∑
n∈N ProjEλnu in L2(Rm). For any n ∈ N we have

ProjEλnu = ProjEλn∩H1
P
u and therefore the Bessel inequality∑
n∈N
|ProjEλnu|

2
H1
P

=
∑
n∈N
|ProjEλn∩H1

P
u|2H1

P
≤ |u|2H1

P

guarantees that
∑
n∈N ProjEλnu converges also in H1

P . Its sum in L2(Rm) being u, we deduce that

u =
∑
n∈N ProjEλnu in H1

P , saying that H1
P = span(∪n∈N(Eλn ∩H1

P )).

By Lemmas 5.1, 5.2 we deduce that
(

1
S

∫ r+S
r

G(s)D∇u2s ds
)
S>0

converges strongly in XQ, when

S → +∞, uniformly with respect to r ∈ R, toward some limit not depending on r, for any u ∈
span

{
∪n∈N(Eλn ∩H1

P )
}

. Thanks to the inequality∣∣∣∣∣ 1S
∫ r+S

r

G(s)D∇u2s ds

∣∣∣∣∣
XQ

≤ |D|H∞
Q
|∇u|XP ,

we deduce that the above convergence holds true strongly in XQ, uniformly with respect to r, toward
some limit not depending on r, for any u ∈ ⊕n∈N(Eλn ∩H1

P ) = H1
P . We are led to the following result.

Proposition 5.4
For any matrix field D ∈ H∞Q and any function u ∈ H1

P , the quantity

1

S

∫ r+S

r

G(s)D∇u2s ds

converges strongly in XQ, when S → +∞, uniformly with respect to r ∈ R, toward some limit not
depending on r.

5.3 Definition and properties of the bilinear form m

We intend to apply variational methods for solving (1), (2). We need to construct the bilinear form
corresponding to the limit problem. We perform this construction for any field D of symmetric positive
matrices, satisfying

Q1/2(y)(D(y) + b(y)⊗ b(y))Q1/2(y) ≥ dIm, y ∈ Rm (40)

for some constant d > 0. We suppose also that

D ∈ H∞Q , b ∈ X∞Q . (41)

The above hypotheses have to be considered together with the previous assumptions in (16), (17),
(18), (19), (20), (39). We introduce the following bilinear applications.
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Proposition 5.5

1. For any ε > 0, let us consider the application aε : H1
P ×H1

P → R

aε(u, v) =

∫
Rm
D(y)∇u · ∇v dy︸ ︷︷ ︸

a(u,v)

+
1

ε

∫
Rm

(b · ∇u)(b · ∇v) dy, u, v ∈ H1
P .

The bilinear form aε is well defined, continuous, symmetric, positive. For any ε ∈]0, 1] it is
coercive on H1

P with respect to L2(Rm).

2. For any r ∈ R, let us consider the application m : H1
P ×H1

P → R

m(u, v) =

∫
Rm

{
〈D〉 (y)∇u+ lim

S→+∞

1

S

∫ r+S

r

(G(s)D − 〈D〉)∇u2s ds

}
· ∇v dy

The bilinear form m is well defined, not depending on r ∈ R, continuous, symmetric, positive
and also writes

m(u, v) =

∫
Rm
〈D〉 (y)∇u · ∇v dy + lim

S→+∞

1

S

∫ S/2

−S/2

∫
Rm
(D − 〈D〉)∇us · ∇v−s dyds, u, v ∈ H1

P . (42)

The following equality is satisfied

m(u, v) =

∫
Rm
D∇u · ∇ProjEλn v dy, u ∈ Eλn ∩H1

P , n ∈ N, v ∈ H1
P . (43)

3. The bilinear form m satifies the following commutation property with the operator B

m(u,Bv) = m(Bu, v) for any u, v ∈ H1
P such that T u, T v,Bu,Bv ∈ H1

P .

Moreover, the bilinear form (u, v) → m(u, v) +
∫
Rm(b · ∇u)(b · ∇v) dy is coercive on H1

P with
respect to L2(Rm).

Proof.
1. For any u, v ∈ H1

P we have

|D∇u · ∇v| = |Q1/2DQ1/2 : (P 1/2∇v)⊗ (P 1/2∇u)| ≤ |D|H∞
Q
|P 1/2∇v| |P 1/2∇u|.

and

|(b · ∇u)(b · ∇v)| = |Q1/2b⊗ bQ1/2 : (P 1/2∇v)⊗ (P 1/2∇u)|
≤ |b⊗ b|H∞

Q
|P 1/2∇v| |P 1/2∇u| = |b|2X∞

Q
|P 1/2∇v| |P 1/2∇u|.

We deduce that

|aε(u, v)| ≤

(
|D|H∞

Q
+
|b|2X∞

Q

ε

)
|u|H1

P
|v|H1

P

saying that aε is well defined, and continuous on H1
P . It is also symmetric and positive, thanks to

the symmetry and positivity of D(y), y ∈ Rm. The coercivity comes by (40), observing that for any
u ∈ H1

P , 0 < ε ≤ 1 we have

aε(u, u) + d|u|2L2(Rm) =

∫
Rm
Q1/2

(
D +

b⊗ b
ε

)
Q1/2 : (P 1/2∇u)⊗ (P 1/2∇u) dy + d|u|2L2(Rm)

≥ d|u|2H1
P
.

2. We justify that m is well defined and not depending on r ∈ R. By Proposition 5.4, see also Lemmas
5.1, 5.2, we know that for any u ∈ H1

P , the family(
1

S

∫ r+S

r

(G(s)D − 〈D〉)∇u2s ds

)
S>0

=

(
1

S

∫ r+S

r

(G(s)(D − 〈D〉))∇u2s ds

)
S>0
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converges strongly in XQ, when S → +∞, uniformly with respect to r ∈ R, toward some limit not
depending on r ∈ R. Therefore m(u, v) is well defined for any u, v ∈ H1

P . Obviously m is bilinear. In
order to establish the symmetry observe that

G(s)(D − 〈D〉)∇u2s · ∇v
= G(s)(D − 〈D〉) t∂Y (s; y)(∇us)(Y (s; y)) · t∂Y (s; y)(∇v−s)(Y (s; y))

= ((D − 〈D〉)∇us · ∇v−s)s

implying that

m(u, v) =

∫
Rm
〈D〉∇u · ∇v dy + lim

S→+∞

1

S

∫ S/2

−S/2

∫
Rm

(D − 〈D〉)∇us · ∇v−s dyds.

Obviously m is continuous on H1
P ×H1

P

|m(u, v)| ≤ 3|D|H∞
Q
|∇u|XP |∇v|XP ≤ 3|D|H∞

Q
|u|H1

P
|v|H1

P
, u, v ∈ H1

P .

The symmetry of m comes by the symmetry of D(y), y ∈ Rm, after performing the change of variable
s→ −s. Another useful formula for m comes by observing that for any u ∈ Eλn ∩H1

P , n ∈ N, we have

u2s + u = 2 cos(
√
λns)us, s ∈ R. (44)

Indeed, the above formula is trivial when n = 0. When n ∈ N?, notice that

u2s + i
T√
λn
u2s = e−i

√
λns

(
us + i

T√
λn
us

)
, u+ i

T√
λn
u = ei

√
λns

(
us + i

T√
λn
us

)
implying that u2s + u = <{2 cos(

√
λns)(us + i T√

λn
us)} = 2 cos(

√
λns)us, s ∈ R. Thanks to (44), the

average term of m writes, for any u ∈ Eλn ∩H1
P , n ∈ N?, v ∈ H1

P∫
Rm

1

S

∫ r+S

r

(G(s)D − 〈D〉)∇u2s ds · ∇v dy (45)

=

∫
Rm

2

S

∫ r+S

r

cos(
√
λns)G(s)D∇us ds · ∇v dy

−
∫
Rm

1

S

∫ r+S

r

G(s)D∇u ds · ∇v dy −
∫
Rm

1

S

∫ r+S

r

∇u2s ds · 〈D〉∇v dy.

By Lemma 5.1 we have

lim
S→+∞

1

S

∫ r+S

r

G(s)D∇u = 〈D〉∇u

strongly in XQ, uniformly with respect to r ∈ R and thus

lim
S→+∞

∫
Rm

1

S

∫ r+S

r

G(s)D∇u ds · ∇v dy =

∫
Rm
〈D〉∇u · ∇v dy. (46)

By Proposition 3.5, we deduce thanks to the orthogonality Eλn ⊥ E0, n ∈ N?

lim
S→+∞

1

S

∫ r+S

r

∇u2s ds = ∇ProjE0
u = 0

strongly in XP , uniformly with respect to r ∈ R and thus

lim
S→+∞

∫
Rm

1

S

∫ r+S

r

∇u2s ds · 〈D〉∇v dy = 0. (47)

For the remaining term in the right hand side of equation (45), notice that

G(s)D∇us · ∇v = ∂Y (s; y)G(s)D t∂Y (s; y)(∇u)s · (∇v−s)s = (D∇u · ∇v−s)s
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and therefore we obtain∫
Rm

2

S

∫ r+S

r

cos(
√
λns)G(s)D∇us ds · ∇v dy =

∫
Rm
D∇u · 2

S

∫ r+S

r

cos(
√
λns)∇v−s ds dy.

By Remark 4.2 we know that

lim
S→+∞

2

S

∫ r+S

r

cos(
√
λns)∇v−s ds = ∇ProjEλn v

strongly in XP , uniformly with respect to r ∈ R, implying that

lim
S→+∞

∫
Rm

2

S

∫ r+S

r

cos(
√
λns)G(s)D∇us ds · ∇v dy =

∫
Rm
D∇u · ∇ProjEλn v dy (48)

uniformly with respect to r ∈ R. Combining (45), (46), (47), (48) leads to the following expression
for the average term of m

lim
S→+∞

∫
Rm

1

S

∫ r+S

r

(G(s)D − 〈D〉)∇u2s ds · ∇v dy =

∫
Rm
D∇u · ∇ProjEλn v dy

−
∫
Rm
〈D〉∇u · ∇v dy, u ∈ Eλn ∩H1

P , n ∈ N?, v ∈ H1
P

and therefore

m(u, v) =

∫
Rm
D∇u · ∇ProjEλn v dy, u ∈ Eλn ∩H1

P , n ∈ N?, v ∈ H1
P . (49)

We claim that the above formula also holds true for u ∈ E0∩H1
P , v ∈ H1

P . Indeed, taking into account
that u = u2s = us(Y (s; ·)), v = v−s(Y (s; ·)) we obtain

G(s)D∇u2s · ∇v = G(s)D t∂Y (s; ·)(∇us)s · t∂Y (s; ·)(∇v−s)s
= (D∇us · ∇v−s)s = (D∇u · ∇v−s)s.

By Proposition 3.5 we deduce

m(u, v) = lim
S→+∞

∫
Rm
D∇u · 1

S

∫ r+S

r

∇v−s ds dy =

∫
Rm
D∇u · ∇ProjE0

v dy.

By (49) and the hypothesis D ≥ 0 we have

m(u, v) = 0, u ∈ Eλn ∩H1
P , v ∈ Eλk ∩H1

P , n 6= k

and

m(u, u) =

∫
Rm
D(y)∇u · ∇u dy ≥ 0, u ∈ Eλn ∩H1

P , n ∈ N.

As m is bounded on H1
P ×H1

P , it is easily seen that for any u ∈ H1
P we have

m(u, u) = m

(∑
n∈N

ProjEλnu,
∑
k∈N

ProjEλk
u

)
=
∑
n∈N

m(ProjEλnu,ProjEλnu) ≥ 0

saying that the quadratic form u→ m(u, u) is positive on H1
P . Notice also that for any u, v ∈ H1

P we
have

m(u, v) =
∑
n∈N

m(ProjEλnu,ProjEλn v) =
∑
n∈N

∫
Rm
D∇ProjEλnu · ∇ProjEλn v dy

≤
∑
n∈N
|D|H∞

Q
|∇ProjEλnu|XP |∇ProjEλn v|XP

≤ |D|H∞
Q
|∇u|XP |∇v|XP ≤ |D|H∞

Q
|u|H1

P
|v|H1

P
.
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3. We focus on the equality m(u,Bv) = m(Bu, v), with u, v ∈ H1
P , such that T u, T v,Bu,Bv ∈ H1

P .
Observe that∫

Rm
〈D〉∇u · ∇T v dy = lim

h→0

1

h

∫
Rm
〈D〉∇u · ∇(vh − v) dy

= lim
h→0

1

h

{∫
Rm
G(h) 〈D〉∇u · ∇vh dy −

∫
Rm
〈D〉∇u · ∇v dy

}
= lim
h→0

1

h

∫
Rm

(〈D〉∇u−h − 〈D〉∇u) · ∇v dy

= −
∫
Rm
〈D〉∇T u · ∇v dy

and thus ∫
Rm
〈D〉∇u · ∇Bv dy =

∫
Rm
〈D〉∇T u · ∇T v dy =

∫
Rm
〈D〉∇Bu · ∇v dy. (50)

For the second term in the right hand side of (42) we notice that

d

ds

{∫
Rm

(D −〈D〉)∇us · ∇T v−s dy +

∫
Rm

(D − 〈D〉)∇T us · ∇v−s dy

}
=

∫
Rm

(D − 〈D〉)∇us · ∇Bv−s dy −
∫
Rm

(D − 〈D〉)∇Bus · ∇v−s dy

and therefore

lim
S→+∞

1

S

∫ S/2

−S/2

{∫
Rm

(D − 〈D〉)∇us · ∇Bv−s dy −
∫
Rm

(D − 〈D〉)∇Bus · ∇v−s dy

}
ds

= lim
S→+∞

1

S

[∫
Rm

(D − 〈D〉)∇us · ∇T v−s dy +

∫
Rm

(D − 〈D〉)∇T us · ∇v−s dy

]S/2
−S/2

= 0. (51)

Combining (50), (51), we deduce that m(u,Bv) = m(Bu, v).
It remains to justify the coercivity. For any u ∈ Eλn ∩H1

P , v ∈ Eλk ∩H1
P , we have

(u, v)H1
P

= δnk(u, v)H1
P
, m(u, v) = δnk

∫
Rm
D(y)∇u · ∇v dy

∫
Rm

(b · ∇u)(b · ∇v) dy = −
∫
Rm
T 2u v dy = λn

∫
Rm
u(y)v(y) dy

= λnδnk

∫
Rm
u(y)v(y) dy = δnk

∫
Rm

(b · ∇u)(b · ∇v) dy.

It is easily seen, thanks to (40), that for any u ∈ span ∪n∈N (Eλn ∩H1
P ) we have

m(u, u) +

∫
Rm

(b · ∇u)2 dy + d

∫
Rm
u2(y) dy ≥ d|u|2H1

P
.

Since the bilinear forms (u, v) → m(u, v), (u, v) →
∫
Rm(b · ∇u)(b · ∇v) dy are bounded on H1

P × H1
P

(use the hypotheses b ∈ X∞Q for the second form), the above inequality still holds true for any

u ∈ ⊕n∈N(Eλn ∩H1
P ) = H1

P , saying that (u, v) → m(u, v) +
∫
Rm(b · ∇u)(b · ∇v) dy is coercive on H1

P

with respect to L2(Rm).

Remark 5.3
When u ∈ Eλn ∩H1

P such that divy(D(y)∇u) ∈ L2(Rm), we deduce by (43)

m(u, v) = −
∫
Rm

divy(D∇u)ProjEλn v dy = −
∫
Rm

ProjEλndivy(D∇u) v(y) dy, v ∈ H1
P

saying that the restriction on Eλn ∩ H1
P of the linear operator associated to the bilinear form m is

ProjEλn (−divy(D(y)∇u)), for any u ∈ Eλn ∩H1
P such that divy(D(y)∇u) ∈ L2(Rm), see also (8).
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6 Uniform estimates

In this section, we justify the well posedness of the problem (1), (2) and of the effective problem
associated to the bilinear form m. We indicate uniform estimates for the solutions of these problems.
We consider the continuous embedding H1

P ↪→ L2(Rm), with dense image (since C1
c (Rm) ⊂ H1

P ). In
the following propositions, we are looking for variationnal solutions of the above problems.

Proposition 6.1
Let uin be a function in L2(Rm). For any ε ∈]0, 1] there is a unique variational solution of (1), (2).
Moreover we have

|uε|L∞(R+;L2(Rm)) ≤ |uin|L2(Rm), |∇uε|L2(R+;XP ) ≤
|uin|L2(Rm)√

2d
, 0 < ε ≤ 1.

Proof. This is a direct consequence of Theorems 1, 2 [7] p.513, see also [11]. By Proposition 5.5
we know that, for any ε ∈]0, 1], the bilinear form aε is coercive on H1

P with respect to L2(Rm). We
deduce that, for any uin ∈ L2(Rm), there is a unique variational solution uε for (1), (2), that is
uε ∈ Cb(R+;L2(Rm)) ∩ L2

loc(R+;H1
P ) and

uε(0) = uin,
d

dt

∫
Rm
uε(t, y)ϕ(y) dy + aε(uε(t), ϕ) = 0 in D ′(R+) for any ϕ ∈ H1

P .

By the energy balance we obtain for any t ∈ R+, ε ∈]0, 1]

1

2
|uε(t)|2L2(Rm) + d

∫ t

0

|∇uε(s)|2XP ds ≤ 1

2
|uε(t)|2L2(Rm) +

∫ t

0

aε(uε(s), uε(s)) ds =
1

2
|uin|2L2(Rm)

implying that

|uε(t)|L2(Rm) ≤ |uin|L2(Rm),

∫ +∞

0

|∇uε(s)|2XP ds ≤
|uin|2L2(Rm)

2d
.

We intend to proceed similarly for solving the variational problem associated to the bilinear form m.
As shown in Proposition 5.5, we only know that (u, v) → m(u, v) +

∫
Rm(b · ∇u)(b · ∇v) dy is coercive

on H1
P with respect to L2(Rm). Nevertheless m is coercive on Eλn ∩H1

P with respect to Eλn , for any
n ∈ N. Indeed, for any n ∈ N, u ∈ Eλn ∩H1

P , we have, thanks to (40)

m(u, u) + (λn + d)|u|2L2(Rm) =

∫
Rm
D∇u · ∇u dy +

∫
Rm

(b · ∇u)2 dy + d

∫
Rm
u2(y) dy

=

∫
Rm
Q1/2(D + b⊗ b)Q1/2 : (P 1/2∇u)⊗ (P 1/2∇u) dy + d

∫
Rm
u2(y) dy ≥ d|u|2H1

P
.

Proposition 6.2
For any n ∈ N, let uinn be an element of Eλn . There is a unique function vn ∈ Cb(R+;Eλn) ∩
L2
loc(R+;Eλn ∩H1

P ) such that

vn(0) = uinn ,
d

dt

∫
Rm
vn(t, y)ϕ(y) dy + m(vn(t), ϕ) = 0 in D ′(R+), for any ϕ ∈ Eλn ∩H1

P .

Moreover we have

|vn|L∞(R+;L2(Rm)) ≤ |uinn |L2(Rm), |T vn|L∞(R+;L2(Rm)) ≤ |T uinn |L2(Rm)

|∇vn|L2([0,t];XP ) ≤
|uinn |L2(Rm)√

2d
+

√
t

d
|T uinn |L2(Rm), t ∈ R+, n ∈ N.

If uinn ∈ Eλn∩H1
P and there is a function fn ∈ Eλn (the function fn will be denoted by ProjEλn (−divy(D∇uinn )))

such that ∫
Rm
D(y)∇uinn · ∇ϕ dy =

∫
Rm
fn(y)ϕ(y) dy, for any ϕ ∈ Eλn ∩H1

P

then
|ProjEλn (−divy(D∇vn(t)))|L2(Rm) ≤ |ProjEλn (−divy(D∇uinn ))|L2(Rm), t ∈ R+

and
∂tvn + ProjEλn (−divy(D∇vn(t))) = 0, t ∈ R+.
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Proof. We use the inclusion Eλn∩H1
P ↪→ Eλn , n ∈ N. The existence and uniqueness of the variational

solutions (vn)n come by Theorems 1,2 [7]. The energy balance gives

1

2
|vn(t)|2L2(Rm) +

∫ t

0

∫
Rm
D(y)∇vn · ∇vn dyds =

1

2
|uinn |2L2(Rm)

implying

|vn(t)|L2(Rm) ≤ |uinn |L2(Rm), |T vn(t)|L2(Rm) ≤ |T uinn |L2(Rm), t ∈ R+, n ∈ N.

For the last estimate we have used the equality
∫
Rm(T v)2 dy = λn

∫
Rmv

2(y) dy, v ∈ Eλn . Observe also
that for any t ∈ R+, n ∈ N we have

d

∫ t

0

|∇vn(s)|2XP ds ≤
∫ t

0

∫
Rm
{D∇vn(s) · ∇vn(s) + (b · ∇vn(s))2} dyds

≤ 1

2
|uinn |2L2(Rm) + t|T uinn |2L2(Rm).

Assume now that uinn ∈ Eλn ∩H1
P such that ProjEλn (−divy(D∇uinn )) exists. For any h ∈ R?+ we have

d

dt

∫
Rm

(vn(t+ h, y)− vn(t, y))ϕ(y) dy + m(vn(t+ h)− vn(t), ϕ) = 0 in D ′(R+), ϕ ∈ Eλn ∩H1
P

implying that

1

2

d

dt

∫
Rm

(vn(t+ h, y)− vn(t, y))2 dy = −m(vn(t+ h)− vn(t), vn(t+ h)− vn(t)) ≤ 0.

We deduce that

|vn(t+ h)− vn(t)|L2(Rm) ≤ |vn(h)− vn(0)|L2(Rm), t, h ∈ R+. (52)

Notice also that

1

2

d

dh
|vn(h)− vn(0)|2L2(Rm) +

∫
Rm
D(y)∇(vn(h)− vn(0)) · ∇(vn(h)− vn(0)) dy

= −
∫
Rm
D(y)∇vn(0) · ∇(vn(h)− vn(0)) dy

and therefore

1

2
|vn(h)− vn(0)|2L2(Rm) ≤ −

∫ h

0

∫
Rm

ProjEλn (−divy(D(y)∇uinn ))(vn(s, y)− vn(0, y)) dyds

≤ |ProjEλn (−divy(D(y)∇uinn ))|L2(Rm)

∫ h

0

|vn(s)− vn(0)|L2(Rm) ds.

Thanks to Bellman’s lemma, one gets

|vn(h)− vn(0)|L2(Rm) ≤ h|ProjEλn (−divy(D(y)∇uinn ))|L2(Rm). (53)

Combining (52), (53) we deduce

|vn(t+ h)− vn(t)|L2(Rm) ≤ |vn(h)− vn(0)|L2(Rm) ≤ h|ProjEλn (−divy(D(y)∇uinn ))|L2(Rm)

saying that
|∂tvn|L2(Rm) ≤ |ProjEλn (−divy(D(y)∇uinn ))|L2(Rm), t ∈ R+.

By the variational formulation we know that∫
Rm
∂tvnϕ dy +

∫
Rm
D(y)∇vn(t) · ∇ϕ dy = 0, ϕ ∈ Eλn ∩H1

P

implying that
ProjEλn (−divy(D(y)∇vn(t))) = −∂tvn ∈ Eλn , t ∈ R+

and thus

|ProjEλn (−divy(D(y)∇vn(t)))|L2(Rm) = |∂tvn(t)|L2(Rm) ≤ |ProjEλn (−divy(D(y)∇uinn ))|L2 .
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Corollary 6.1
Assume that (λn)n is increasing and limn→+∞ λn = +∞. Under the hypotheses of Proposition 6.2,

for any uin ∈ domT , there is a unique v ∈ Cb(R+;L2(Rm)) ∩ L2
loc(R+;H1

P ), T v ∈ L∞(R+;L2(Rm))
such that

v(0) = uin,
d

dt

∫
Rm
v(t, y)ϕ(y) dy + m(v(t), ϕ) = 0 in D ′(R+), for any ϕ ∈ H1

P . (54)

Moreover we have

|v|L∞(R+;L2(Rm)) ≤ |uin|L2(Rm), |T v|L∞(R+;L2(Rm)) ≤ |T uin|L2(Rm)

|∇v|L2([0,t];XP ) ≤
|uin|L2(Rm)√

2d
+

√
t

d
|T uin|L2(Rm).

If uin ∈ H1
P and

∑
n∈N |ProjEλn (−divy(D∇ProjEλnu

in))|2L2(Rm) < +∞, then∑
n∈N
|ProjEλn (−divy(D∇ProjEλn v(t)))|2L2(Rm) < +∞

and
∂tv +

∑
n∈N

ProjEλn (−divy(D∇ProjEλn v(t))) = 0, t ∈ R+.

Proof. For any n ∈ N, we denote by vn the solution given by Proposition 6.2, corresponding to
uinn = ProjEλnu

in. By Remark 4.1 we know that T ProjEλnu
in = ProjEλnT u

in, n ∈ N, implying that∑
n∈N
|vn(t)|2L2(Rm) ≤

∑
n∈N
|ProjEλnu

in|2L2(Rm) = |uin|2L2(Rm), t ∈ R+

∑
n∈N
|T vn(t)|2L2(Rm) ≤

∑
n∈N
|ProjEλnT u

in|2L2(Rm) = |T uin|2L2(Rm), t ∈ R+.

Therefore
∑
n∈N vn(t),

∑
n∈N T vn(t) converge in L2(Rm), for any t ∈ R+. Let us introduce v(t) =∑

n∈N vn(t), w(t) =
∑
n∈N T vn(t), t ∈ R+. For any ϕ ∈ domT and any N ∈ N we can write

∫
Rm

N∑
n=0

vn(t, y)T ϕ dy +

∫
Rm

N∑
n=0

T vn(t)ϕ(y) dy = 0

which implies, by letting N → +∞∫
Rm
v(t, y)T ϕ dy +

∫
Rm
w(t, y)ϕ(y) dy = 0.

Therefore v(t) ∈ domT and w(t) = T v(t). In particular

|T v(t)|2L2(Rm) =
∑
n∈N
|T vn|2L2(Rm) ≤

∑
n∈N
|ProjEλnT u

in|2L2(Rm) = |T uin|2L2(Rm).

Actually the convergence v =
∑
n∈N vn is uniform with respect to t ∈ R+, thanks to

|v(t)−
N∑
n=0

vn(t)|2L2(Rm) ≤
1

λN

∑
n>N

λn|vn(t)|2L2(Rm) =
1

λN

∑
n>N

|T vn(t)|2L2(Rm) ≤
1

λN
|T uin|2L2(Rm)

and therefore v ∈ Cb(R+;L2(Rm)). By Proposition 5.3, we know that the spaces (Eλn ∩H1
P )n∈N are

orthogonal in H1
P and thus ∫ t

0

(vn(s), vk(s))H1
P

ds = 0, t ∈ R+, n 6= k.
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Moreover we have for any t ∈ R+∑
n∈N
|vn|2L2([0,t];H1

P ) =
∑
n∈N
{|vn|2L2([0,t];L2(Rm)) + |∇vn|2L2([0,t];XP )}

≤ t
∑
n∈N
|ProjEλnu

in|2L2(Rm) +
1

2d

∑
n∈N
|ProjEλnu

in|2L2(Rm) +
t

d

∑
n∈N
|ProjEλnT u

in|2L2(Rm)

=

(
t+

1

2d

)
|uin|2L2(Rm) +

t

d
|T uin|2L2(Rm) < +∞

implying that there is z ∈ L2
loc(R+;H1

P ) such that
∑
n∈N vn = z in L2([0, t];H1

P ) for any t ∈ R+.
In particular

∑
n∈N vn = z in L2([0, t];L2(Rm)) for any t ∈ R+ and therefore

∑
n∈N vn(t) = z(t) in

L2(Rm) for a.a. t ∈ R+. We deduce that v = z ∈ L2
loc(R+;H1

P ), v =
∑
n∈N vn in L2([0, t];H1

P ) for
any t ∈ R+ and

|∇v|L2([0,t];XP ) ≤
|uin|L2(Rm)√

2d
+

√
t

d
|T uin|L2(Rm), t ∈ R+.

For any η ∈ C1
c (R+), ϕ ∈ H1

P and N ∈ N we have

−η(0)

∫
Rm

N∑
n=0

ProjEλnu
inϕ(y) dy −

∫ +∞

0

η′(t)

∫
Rm

N∑
n=0

vn(t, y)ϕ(y) dydt

+

∫ +∞

0

η(t)m(

N∑
n=0

vn(t), ϕ) dt = 0.

Letting N → +∞, it is easily seen, thanks to the boundedness of the bilinear form m on H1
P , that

−η(0)

∫
Rm
uin(y)ϕ(y) dy −

∫ +∞

0

η′(t)

∫
Rm
v(t, y)ϕ(y) dydt+

∫ +∞

0

η(t)m(v(t), ϕ) dt = 0

saying that

v(0) = uin,
d

dt

∫
Rm
v(t, y)ϕ(y) dy + m(v(t), ϕ) = 0 in D ′(R+) for any ϕ ∈ H1

P .

The uniqueness follows by the energy balance and the positivity of the quadratic form u ∈ H1
P →

m(u, u).
Assume now that uin ∈ H1

P ,
∑
n∈N |ProjEλn (−divy(D∇uinn ))|2L2(Rm) < +∞ with uinn = ProjEλnu

in ∈
Eλn ∩H1

P , n ∈ N. By Proposition 6.2 we know that

∂tvn + ProjEλn (−divy(D(y)∇vn(t))) = 0, t ∈ R+

|ProjEλn (−divy(D(y)∇vn(t)))|L2(Rm) ≤ |ProjEλn (−divy(D(y)∇uinn ))|L2(Rm), t ∈ R+.

Therefore we obtain for any t ∈ R+∑
n∈N
|ProjEλn (−divy(D(y)∇vn(t)))|2L2(Rm) ≤

∑
n∈N
|ProjEλn (−divy(D(y)∇uinn ))|2L2(Rm) < +∞.

We claim that t→ v(t) is differentiable in L2(Rm) and that ∂tv =
∑
n∈N ∂tvn. Indeed we have

|v(t+ h)− v(t)|2L2(Rm) =
∑
n∈N
|vn(t+ h)− vn(t)|2L2(Rm)

≤
∑
n∈N
|vn(h)− vn(0)|2L2(Rm) ≤ h

2
∑
n∈N
|ProjEλn (−D(y)∇uinn )|2L2(Rm)
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saying that ∂tv ∈ L∞(R+;L2(Rm)). For any η ∈ C1
c (R+), ϕ ∈ L2(Rm) we have∫ +∞

0

η(t)

∫
Rm
∂tvϕ(y) dydt = −η(0)

∫
Rm
uin(y)ϕ(y) dy −

∫ +∞

0

η′(t)

∫
Rm
v(t, y)ϕ(y) dydt

= −
∑
n∈N

η(0)

∫
Rm
uinn (y)ϕ(y) dy −

∑
n∈N

∫ +∞

0

η′(t)

∫
Rm
vn(t, y)ϕ(y) dydt

=
∑
n∈N

∫ +∞

0

η(t)

∫
Rm
∂tvnϕ(y) dydt.

But for any t ∈ R+ we have∑
n∈N
|∂tvn(t)|2L2 =

∑
n∈N
|ProjEλn (−divy(D∇vn(t)))|2L2 ≤

∑
n∈N
|ProjEλn (−divy(D∇uinn ))|2L2

saying that
∑
n∈N ∂tvn(t) converges in L2(Rm), for any t ∈ R+. We deduce, thanks to the dominated

convergence theorem∫ +∞

0

η(t)

∫
Rm
∂tvϕ(y) dydt =

∫ +∞

0

η(t)

∫
Rm

∑
n∈N

∂tvnϕ(y) dydt

implying that

∂tv =
∑
n∈N

∂tvn = −
∑
n∈N

ProjEλn (−divy(D(y)∇vn(t)))

= −
∑
n∈N

ProjEλn

(
−divy(D(y)∇ProjEλn v(t))

)
, t ∈ R+.

Remark 6.1 The following conditions are equivalent

1. u ∈ H1
P and

∑
n∈N

∣∣∣ProjEλn

(
−divy(D(y)∇ProjEλnu)

)∣∣∣2
L2(Rm)

< +∞.

2. u ∈ H1
P and there is a constant C ∈ R+ such that

m(u, ϕ) ≤ C|ϕ|L2(Rm), ϕ ∈ H1
P .

For any u satisfying 1. or 2. we have

m(u, ϕ) = −
∫
Rm
ϕ(y)

∑
n∈N

ProjEλndivy(D(y)∇ProjEλnu) dy, ϕ ∈ H1
P .

Indeed, if 1. holds true, then for any u ∈ H1
P we have u =

∑
n∈N ProjEλnu in H1

P , and by the

continuity of m we deduce, thanks to (43)

m(u, ϕ) =
∑
n∈N

m(ProjEλnu, ϕ) =
∑
n∈N

∫
Rm
D(y)∇ProjEλnu · ∇ProjEλnϕ dy

=
∑
n∈N

∫
Rm

ProjEλn

(
−divy(D(y)∇ProjEλnu)

)
ϕ(y) dy

≤

∣∣∣∣∣∑
n∈N

ProjEλn

(
−divy(D(y)∇ProjEλnu)

)∣∣∣∣∣
L2(Rm)

|ϕ|L2(Rm)

=

(∑
n∈N

∣∣∣ProjEλn

(
−divy(D(y)∇ProjEλnu)

)∣∣∣2
L2(Rm)

)1/2

|ϕ|L2(Rm), ϕ ∈ H1
P .
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Conversely if 2. holds true, there is a function f ∈ L2(Rm) such that

m(u, ϕ) =

∫
Rm
f(y)ϕ(y) dy, ϕ ∈ H1

P .

In particular, for any ϕ ∈ Eλn ∩H1
P we obtain∫

Rm
ProjEλn fϕ(y) dy =

∫
Rm
f(y)ϕ(y) dy = m(u, ϕ) = m(ϕ, u) =

∫
Rm
D∇ϕ · ∇ProjEλnu dy

and therefore∑
n∈N

∣∣∣ProjEλn

(
−divy(D(y)∇ProjEλnu)

)∣∣∣2
L2(Rm)

=
∑
n∈N
|ProjEλn f |

2
L2(Rm) = |f |2L2(Rm) < +∞.

The linear transformation

Mu =
∑
n∈N

ProjEλn

(
−divy(D(y)∇ProjEλnu)

)
defined on

domM =

{
u ∈ H1

P ,
∑
n∈N

∣∣∣ProjEλn

(
−divy(D(y)∇ProjEλnu)

)∣∣∣2
L2(Rm)

< +∞

}

is the operator associated to the bilinear form m : H1
P ×H1

P i,e.,

m(u, ϕ) =

∫
Rm
Muϕ(y) dy, u ∈ domM, ϕ ∈ H1

P .

Therefore the last statement in Corrolary 6.1 says that if uin ∈ domM, then

v(t) ∈ domM and ∂tv +Mv(t) = 0, t ∈ R+.

Remark 6.2

1. The Corollary 6.1 defines a C0 semi-group of contractions with respect to the L2 norm

ψtu
in = v(t), t ∈ R+, uin ∈ domT

where v is the unique solution of (54). This semi-group extends by continuity to a C0 semi-
group of contractions on whole L2(Rm), still denoted by (ψt)t∈R+

(use the density of domT in
L2(Rm)).

2. We claim that the C0 semi-groups (e−τB)τ∈R+
and (ψt)t∈R+

are commuting. Indeed, for any
u ∈ Eλn ∩ H1

P , n ∈ N, there is, cf. Proposition 6.2 a unique function v ∈ Cb(R+;Eλn) ∩
L2
loc(R+;Eλn ∩H1

P ) such that

v(0) = u,
d

dt

∫
Rm
v(t, y)ϕ(y) dy + m(v(t), ϕ) = 0 in D ′(R+), ϕ ∈ Eλn ∩H1

P . (55)

Notice that for any ϕ ∈ Eλk ∩H1
P , k 6= n we have∫

Rm
v(t, y)ϕ(y) dy = 0, m(v(t), ϕ) = 0, t ∈ R+

and thus (55) holds true for any ϕ ∈ span{∪k∈N(Eλk ∩H1
P )} = H1

P . Therefore we have ψtu =
v(t) ∈ Eλn ∩H1

P , for any t ∈ R+, n ∈ N. We obtain

e−τBψtu = e−τλnψtu = ψt(e
−τλnu) = ψte

−τBu, t, τ ∈ R+, u ∈ Eλn ∩H1
P , n ∈ N

which extends by density to any u ∈ L2(Rm).
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3. For any ε ∈]0, 1], we know by the second statement of Proposition 5.5 that (u, v) → m(u, v) +
1
ε

∫
Rm(b·∇u)(b·∇v) dy is coercive on H1

P with respect to L2(Rm). Therefore, for any u ∈ L2(Rm)
there is a unique function ũε ∈ Cb(R+;L2(Rm)) ∩ L2

loc(R+;H1
P ) such that ũε(0) = uin and for

any ϕ ∈ H1
P

d

dt

∫
Rm
ũε(t, y)ϕ(y) dy + m(ũε(t), ϕ) +

1

ε

∫
Rm

(b · ∇ũε(t))(b · ∇ϕ) dy = 0 in D ′(R+).

We claim that ũε(t) = e−
t
εBψtu

in = ψte
− tεBuin, t ∈ R+. We are done if we prove it for

uin ∈ Eλn ∩H1
P , n ∈ N, that is

ũε(t) = e−
t
ελnψtu

in, t ∈ R+.

Indeed, for any ϕ ∈ H1
P we have

d

dt

∫
Rm
e−

t
ελnψtu

inϕ(y) dy + m(e−
t
ελnψtu

in, ϕ) +
1

ε

∫
Rm
b · ∇(e−

t
ελnψtu

in) b · ∇ϕ dy

= e−
t
ελn

{
d

dt

∫
Rm
ψtu

inϕ(y) dy + m(ψtu
in, ϕ)

}
= 0 in D ′(R+).

Therefore ũε, e−
t
ελnψtu

in satisfy the same variational formulation, with the same initial condi-
tion uin. By the uniqueness of the solution, we deduce that ũε = e−

t
ελnψtu

in, t ∈ R+.

7 The operator N and the associated bilinear form n

As suggested by Proposition 2.1, we intend to establish uε(t) = e−
t
εBv(t)+O(ε) in L∞loc(R+;L2(Rm)),

as ε ↘ 0, where v(t) = ψtu
in, t ∈ R+. The key point is to emphasize a corrector like in (10), which

requires the construction of a second operatorN , which enters a decomposition ofA = −divy(D(y)∇y)
with respect to B = −T 2 similar to (9). More exactly we are interested in solving for (B − λnId)u =
Au−Mu = Au− ProjEλnAu, n ∈ N, see (8). Obviously, this is not always possible, since Au−Mu

belongs to E⊥λn = Range (B − λnId) which is larger than Range (B − λnId), when the range of
B−λnId is not closed. In order to define the bilinear form associated to the operator N we introduce
new structural hypotheses for the matrix field D.

7.1 Structural hypotheses for the matrix field D

Recall that the infinitesimal generator L of the group (G(s))s∈R is skew-adjoint on HQ and thus
Range L = (kerL)⊥, implying that D − 〈D〉 ∈ Range L. We assume that D is a matrix field in H∞Q
such that D − 〈D〉 ∈ Range L, that is

∃ C ∈ domL ∩H∞Q such that D = 〈D〉+ LC, (56)

where the operators 〈·〉 , L are considered in HQ,loc, see Proposition 3.2 and Remark 3.1. Replacing
C by C − 〈C〉 we can suppose that C ∈ ker 〈·〉 ∩H∞Q . Thanks to the symmetry of D, 〈D〉, we have

L(C − tC) = LC − t(LC) = D − 〈D〉 − t(D − 〈D〉) = 0

implying that C − tC ∈ kerL∩ ker 〈·〉 = {0} and thus C is also symmetric. Moreover, we will require
that

∃ C0 ∈ ker 〈·〉 ∩H∞Q such that C0 = tC0, LC0 = −C. (57)

Notice that (56), (57) say that there is C0 ∈ ker 〈·〉 ∩H∞Q such that C0 = tC0, LC0 ∈ domL ∩H∞Q
and D − 〈D〉 = −L2C0. We also make the following hypotheses for any n ∈ N?

C − ProjE4λnC = (−L2 − 4λnId)Cn, Cn ∈ ker ProjE4λn ∩H
∞
Q , LCn ∈ H∞Q , Cn = tCn (58)

where the operators ProjE4λn , n ∈ N? are considered in HQ,loc cf. Remark 5.2. In the sequel we work

under the hypotheses (16), (17), (18), (19), (40), (41), (39), supplemented by (56), (57), (58).
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7.2 Definition and properties of the bilinear form n

We introduce a second bounded bilinear form on H1
P ×H1

P and a corrector is constructed in terms of
the operator associated to this form.

Proposition 7.1
Assume that the following conditions hold true

∑
n≥1

1

λn
< +∞,

∑
n≥1

λn

(
|Cn|H∞

Q
+

∣∣∣∣ L√
4λn

Cn

∣∣∣∣
H∞
Q

)2

< +∞. (59)

We consider the application n : H1
P ×H1

P → R

n(u, v) =

∫
Rm

lim
S→+∞

1

S

∫ S

0

(S − s)

[
G(s)C∇u2s − lim

S′→+∞

1

S′

∫ S′

0

G(s′)C∇u2s′ds′
]

ds · ∇v dy

for any u, v ∈ H1
P . The bilinear form n is well defined, bounded on H1

P × H1
P , skew-symmetric and

verifies
a(u, v) = m(u, v) + n(u,Bv)− n(Bu, v), (60)

for any u, v ∈ H1
P such that T u, T v,Bu,Bv ∈ H1

P . Here, by T u ∈ H1
P we understand that u belongs

to the domain of the infinitesimal generator of the C0-group (ζ1(s))s∈R and a(u, v) =
∫
RmD(y)∇u ·

∇v dy, u, v ∈ H1
P . Moreover we have n(u, v) = 0 for any u, v ∈ Eλn ∩H1

P , n ∈ N.

The proof of Proposition 7.1 is very technical and it is postponed to Appendix A.

Remark 7.1
We denote by N the operator associated to the bilinear form n, that is∫

Rm
lim

S→+∞

1

S

∫ S

0

(S − s)

[
G(s)C∇u2s − lim

S′→+∞

1

S′

∫ S′

0

G(s′)C∇u2s′ ds′

]
ds · ∇v dy

= n(u, v) =

∫
Rm
Nu v dy, u ∈ domN , v ∈ H1

P .

We deduce that

Nu = −divy

{
lim

S→+∞

1

S

∫ S

0

(S − s)

[
G(s)C∇u2s − lim

S′→+∞

1

S′

∫ S′

0

G(s′)C∇u2s′ ds′

]
ds

}

= −divy

C0∇ProjE0
u+

∑
n≥1

[
1

8
√
λn

L√
4λn

ProjE4λnC + LCn

]
∇ProjEλnu

+
∑
n≥1

[
1

8
√
λn

ProjE4λnC −
√

4λnCn

]
∇ T√

λn
ProjEλnu


provided that b,D, u are smooth enough.

8 Asymptotic behavior

We are ready to establish the asymptotic behavior of the variational solutions (uε)ε>0 for (1), (2). We
follow the arguments in the proof of Proposition 2.1.

Theorem 8.1
Let uin be an element in the domain of T . We assume that the vector field b and the matrix
field D satisfy the following hypotheses (16), (17), (18), (19), (20), (40), (41) and that the struc-
tural hypotheses (39), (56), (57), (58), (59) hold true. For any ε ∈]0, 1] let us denote by uε ∈
Cb(R+;L2(Rm)) ∩ L2

loc(R+;H1
P ) the unique variational solution of (1), (2)

uε(0) = uin,
d

dt

∫
Rm
uε(t, y)ϕ(y) dy +

∫
Rm
D(y)∇uε · ∇ϕ dy︸ ︷︷ ︸

a(uε,ϕ)

+
1

ε

∫
Rm

(b · ∇uε)(b · ∇ϕ) dy = 0
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in D ′(R+), for any ϕ ∈ H1
P cf. Proposition 6.1, and by v ∈ Cb(R+;L2(Rm)) ∩ L2

loc(R+;H1
P ) the

unique variational solution (see Proposition 5.5 for the definition of the bilinear form m)

v(0) = uin,
d

dt

∫
Rm
v(t, y)ϕ(y) dy + m(v(t), ϕ) = 0 in D ′(R+), ϕ ∈ H1

P

cf. Corollary 6.1. Then, provided that uin, v, b,D, P are smooth enough, for any T ∈ R+, there is a
constant CT such that∣∣∣uε − e− tεBv∣∣∣

L∞([0,T ];L2(Rm))
+
∣∣∣∇uε −∇e− tεBv∣∣∣

L2([0,T ];XP )
≤ CT ε, 0 < ε ≤ 1.

Proof. By Proposition 6.1 and Corollary 6.1 we know that

|uε|L∞(R+;L2(Rm)) ≤ |uin|L2(Rm), |∇uε|L2(R+;XP ) ≤
|uin|L2(Rm)√

2d
, 0 < ε ≤ 1

and
|v|L∞(R+;L2(Rm)) ≤ |uin|L2(Rm), |T v|L∞(R+;L2(Rm)) ≤ |T uin|L2(Rm)

|∇v|L2([0,t];XP ) ≤
|uin|L2(Rm)√

2d
+

√
t

d
|T uin|L2(Rm).

We consider the function

u1(t, τ, ·) = e−τBN v(t, ·)−N e−τBv(t, ·), (t, τ) ∈ R+ × R+.

We assume that v is regular enough, such that N v(t, ·) is well defined, see Remark 7.1. Moreover, as
the semi-group (e−τB)τ∈R+

preserves the regularity, see Section 4.1. We deduce that N e−τBv(t, ·) is
also well defined, uniformly with respect to τ ∈ R+, implying that

|u1(t, τ, ·)|L2(Rm) ≤ C̃T , t ∈ [0, T ], τ ∈ R+

for some constant C̃T . We also ask for the estimates∫ T

0

sup
τ∈R+

|∂tu1(t, τ, ·)|L2(Rm) dt+

∫ T

0

sup
τ∈R+

|divy(D∇u1(t, τ, ·))|L2(Rm) dt

+

(∫ T

0

sup
τ∈R+

|∇u1(t, τ, ·)|2XP dt

)1/2

≤ ˜̃CT

which can be achieved provided that uin, v, b,D, P are smooth enough. We also assume the existence
of smooth fields in involution with respect to b, in order to guarantee the propagation of the regularity
along the semi-group (e−τB)τ∈R+

. The derivative of u1 with respect to the variable τ writes (assuming
that v is regular enough)

∂τu
1 = −Be−τBN v(t) +NBe−τBv(t)

= −B
(
e−τBN v(t)−N e−τBv(t)

)
+NBe−τBv(t)− BN e−τBv(t)

= −Bu1 − (BN −NB)e−τBv(t)

and therefore

d

dt

{
εu1(t, t/ε)

}
+ (BN −NB)e−

t
εBv(t) +

B
ε
{εu1(t, t/ε)} = ε∂tu

1(t, t/ε). (61)

By the third statement of Remark 6.2 we know that ũε(t) = e−
t
εBv(t) ∈ Cb(R+;L2(Rm))∩L2

loc(R+;H1
P )

satisfies

ũε(0) = uin,
d

dt

∫
Rm
ũε(t, y)ϕ(y) dy + m(ũε(t), ϕ) +

1

ε

∫
Rm

(b · ∇ũε(t))(b · ∇ϕ) dy = 0 (62)
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in D ′(R+), for any ϕ ∈ H1
P . Combining (61), (62) we obtain ũε(0) + εu1(0, 0) = v(0) = uin and

d

dt

∫
Rm
{ũε(t, y) + εu1(t, t/ε, y)}ϕ(y) dy + m(ũε(t), ϕ) + n(ũε(t),Bϕ)− n(Bũε(t), ϕ)

+
1

ε

∫
Rm

(b · ∇[ũε(t) + εu1(t, t/ε)])(b · ∇ϕ) dy = ε

∫
Rm
∂tu

1(t, t/ε, y)ϕ(y) dy (63)

in D ′(R+), for any ϕ ∈ H1
P such that T ϕ,Bϕ ∈ H1

P . By Proposition 7.1 we know that

m(ũε(t), ϕ) + n(ũε(t),Bϕ)− n(Bũε(t), ϕ) = a(ũε(t), ϕ)

and therefore (63) becomes

d

dt

∫
Rm
{ũε(t, y) + εu1(t, t/ε, y)}ϕ dy + a(ũε(t), ϕ)+

1

ε

∫
Rm
(b · ∇[ũε(t) + εu1(t, t/ε)])(b · ∇ϕ) dy

= ε

∫
Rm
∂tu

1(t, t/ε, y)ϕ(y) dy

in D ′(R+), for any ϕ ∈ H1
P . Finally the functions rε(t, y) = uε(t, y) − ũε(t, y) − εu1(t, t/ε, y) satisfy

the variational problem

d

dt

∫
Rm
rε(t, y)ϕ dy + a(rε(t), ϕ) +

1

ε

∫
Rm

(b · ∇rε(t))(b · ∇ϕ) dy

= −ε
∫
Rm

[∂tu
1(t, t/ε, y)− divy(D∇u1(t, t/ε, y) )]ϕ dy

in D ′(R+), for any ϕ ∈ H1
P and the initial condition rε(0) = 0. Thanks to the coercivity condition

(40) we deduce

1

2

d

dt
|rε(t)|2L2(Rm) + d|∇rε(t)|2XP ≤ ε|r

ε(t)|L2(Rm)

×

[
sup
τ∈R+

|∂tu1(t, τ)|L2(Rm) + sup
τ∈R+

|divy(D∇u1(t, τ))|L2(Rm)

]
, 0 < ε ≤ 1.

We obtain the estimates

|rε|L∞([0,T ];L2(Rm)) ≤ ε
∫ T

0

sup
τ∈R+

|∂tu1(t, τ)|L2(Rm) dt

+ ε

∫ T

0

sup
τ∈R+

|divy(D∇u1(t, τ))|L2(Rm) dt ≤ ε ˜̃CT , 0 < ε ≤ 1

and

|∇rε|L2([0,T ];XP ) ≤ ε
˜̃CT√
d
, 0 < ε ≤ 1

which implies immediately that∣∣∣uε(t)− e− tεBv(t)
∣∣∣
L2(Rm)

≤ ε sup
(t′,τ)∈[0,T ]×R+

|u1(t′, τ)|L2(Rm) + ε ˜̃CT ≤ ε(C̃T + ˜̃CT ), t ∈ [0, T ]

∣∣∣∇uε(t)−∇e− tεBv(t)
∣∣∣
L2([0,T ];XP )

≤ ε ˜̃CT

(
1 +

1√
d

)
for any 0 < ε ≤ 1.

Remark 8.1
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1. For any ϕ ∈ H1
P we have by Proposition 5.5 and Lemma 5.1

m(v(t), 〈ϕ〉) = m(〈v(t)〉 , 〈ϕ〉) = m(〈v(t)〉 , ϕ)

=

∫
Rm
〈D〉∇ 〈v(t)〉 · ∇ϕ dy +

∫
Rm

lim
S→+∞

1

S

∫ S

0

G(s)(D − 〈D〉) 〈v(t)〉 ds · ∇ϕ dy

=

∫
Rm
〈D〉∇ 〈v(t)〉 · ∇ϕ dy

and therefore we have the equalities in D ′(R+)

d

dt

∫
Rm
〈v(t)〉 (y)ϕ(y) dy =

d

dt

∫
Rm
v(t, y) 〈ϕ〉 (y) dy = −m(v(t), 〈ϕ〉)

= −
∫
Rm
〈D〉 (y)∇〈v(t)〉 · ∇ϕ dy.

The function 〈v〉 ∈ Cb(R+;L2(Rm)) ∩ L2
loc(R+;H1

P ) satisfies the variational problem

〈v(0)〉 =
〈
uin
〉
,

d

dt

∫
Rm
〈v(t)〉 (y)ϕ(y) dy +

∫
Rm
〈D〉 (y)∇〈v(t)〉 · ∇ϕ dy = 0 in D ′(R+)

for any ϕ ∈ H1
P .

2. If the initial condition is well prepared, i.e., T uin = 0, we deduce thanks to the inequality
|T v|L∞(R+;L2(Rm)) ≤ |T uin|L2(Rm) = 0, that T v = 0 and in this case v = 〈v〉 satisfies the
parabolic problem associated to the average matrix field 〈D〉

v(0) = uin ∈ ker T , d

dt

∫
Rm
v(t, y)ϕ(y) dy +

∫
Rm
〈D〉 (y)∇v(t) · ∇ϕ dy = 0 in D ′(R+)

for any ϕ ∈ H1
P .

A Proofs of Proposition 7.1

Proof. (of Proposition 7.1)
Boundedness of n

We show that limS→+∞
1
S

∫ S
0

(S− s)
[
G(s)C∇u2s − limS′→+∞

1
S′

∫ S′

0
G(s′)C∇u2s′ ds′

]
ds converges,

as S → +∞, strongly in XQ, for any u ∈ H1
P , which will imply that n(u, v) is well defined for any

(u, v) ∈ H1
P × H1

P . We appeal to the Hilbertian sum H1
P = ⊕n∈N(Eλn ∩ H1

P ). If u ∈ E0 ∩ H1
P , we

know by Lemma 5.1 that

lim
S′→+∞

1

S′

∫ S′

0

G(s′)C∇u2s′ ds′ = lim
S′→+∞

1

S′

∫ S′

0

G(s′)C∇u ds′ = 〈C〉∇u = 0

strongly in XQ and therefore, by (57), we obtain

lim
S→+∞

1

S

∫ S

0

(S − s)

[
G(s)C∇u2s − lim

S′→+∞

1

S′

∫ S′

0

G(s′)C∇u2s′ ds′

]
ds (64)

= − 1

S

∫ S

0

(S − s)
{

d

ds
G(s)C0

}
∇u ds

= − 1

S
[(S − s)G(s)C0∇u]S0 −

1

S

∫ S

0

G(s)C0∇u ds −→
S→+∞

C0∇u− 〈C0〉∇u = C0∇u

strongly in XQ. Assume now that u ∈ Eλn ∩H1
P , n ∈ N?. We know by Lemma 5.2 that

lim
S′→+∞

1

S′

∫ S′

0

G(s′)C∇u2s′ ds′ =
1

2
ProjE4λnC∇u+

1

2

L√
4λn

ProjE4λnC∇
T√
λn
u
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strongly in XQ and therefore

fu(s) := G(s)C∇u2s − lim
S′→+∞

1

S′

∫ S′

0

G(s′)C∇u2s′ ds′ = U(s)∇u+ V (s)∇ T√
λn
u

with

U(s) = cos(
√

4λns)G(s)C − 1

2
ProjE4λnC, V (s) = sin(

√
4λns)G(s)C − 1

2

L√
4λn

ProjE4λnC.

Notice that the hypothesis (58) writes

−L4λn

(
Cn,

L√
4λn

Cn

)
=

(
0,
C − ProjE4λnC√

4λn

)
,

where the operators L,L4λn are considered on HQ,loc, HQ,loc ×HQ,loc respectively, see Remark 3.1.
We have

d

ds
G4λn(s)

(
Cn,

L√
4λn

Cn

)
= −G4λn(s)

(
0,
C − ProjE4λnC√

4λn

)
= (sin(

√
4λns),− cos(

√
4λns))

G(s)C −G(s)ProjE4λnC√
4λn

.

We obtain

sin(
√

4λns)G(s)C = sin(
√

4λns)

[
cos(

√
4λns)ProjE4λnC + sin(

√
4λns)

L√
4λn

ProjE4λnC

]
︸ ︷︷ ︸

G(s)ProjE4λn
C

+
√

4λn
d

ds

[
cos(

√
4λns)G(s)Cn − sin(

√
4λns)G(s)

L√
4λn

Cn

]
and

cos(
√

4λns)G(s)C = cos(
√

4λns)

[
cos(

√
4λns)ProjE4λnC + sin(

√
4λns)

L√
4λn

ProjE4λnC

]
︸ ︷︷ ︸

G(s)ProjE4λn
C

−
√

4λn
d

ds

[
sin(

√
4λns)G(s)Cn + cos(

√
4λns)G(s)

L√
4λn

Cn

]
and the matrix fields U(s), V (s) write

U(s) =
1

2
cos(4

√
λns)ProjE4λnC +

1

2
sin(4

√
λns)

L√
4λn

ProjE4λnC

−
√

4λn
d

ds

[
sin(

√
4λns)G(s)Cn + cos(

√
4λns)G(s)

L√
4λn

Cn

]
(65)

V (s) =
1

2
sin(4

√
λns)ProjE4λnC −

1

2
cos(4

√
λns)

L√
4λn

ProjE4λnC

+
√

4λn
d

ds

[
cos(

√
4λns)G(s)Cn − sin(

√
4λns)G(s)

L√
4λn

Cn

]
. (66)

Recall that we intend to establish the convergence, as S → +∞, of

1

S

∫ S

0

(S − s)fu(s) ds =
1

S

∫ S

0

(S − s){U(s)∇u+ V (s)∇ T√
λn
u} ds

in XQ. Observe that

lim
S→+∞

1

S

∫ S

0

(S − s) cos(4
√
λns) ds = 0, lim

S→+∞

1

S

∫ S

0

(S − s) sin(4
√
λns) ds =

1

4
√
λn
. (67)
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After integration by parts one gets

− 1

S

∫ S

0

(S − s)
√

4λn
d

ds

[
sin(

√
4λns)G(s)Cn + cos(

√
4λns)G(s)

L√
4λn

Cn

]
ds∇u

+
1

S

∫ S

0

(S − s)
√

4λn
d

ds

[
cos(

√
4λns)G(s)Cn − sin(

√
4λns)G(s)

L√
4λn

Cn

]
ds∇ T√

λn
u

= LCn∇u−
√

4λnCn∇
T√
λn
u+

√
4λn
S

∫ S

0

G4λn(s)

(
Cn,

L√
4λn

Cn

)
ds

(
∇ T√

λn
u,−∇u

)
. (68)

As ProjE4λnCn = 0, we know, cf. Remark 5.2, that

lim
S→+∞

2

S

∫ r+S

r

(cos(
√

4λns)G(s)Cn, sin(
√

4λns)G(s)Cn) ds = (0, 0)

in HQ,loc ×HQ,loc, implying that

ProjkerL4λn

(
Cn,

L√
4λn

Cn

)
= lim
S→+∞

1

S

∫ r+S

r

G4λn(s)

(
Cn,

L√
4λn

Cn

)
ds

= lim
S→+∞

1

S

∫ r+S

r

( cos(
√

4λns)G(s)Cn − sin(
√

4λns)G(s)
L√
4λn

Cn,

sin(
√

4λns)G(s)Cn + cos(
√

4λns)G(s)
L√
4λn

Cn) ds

= (0, 0)

in HQ,loc×HQ,loc. As Cn,
L√
4λn

Cn belong to H∞Q and∇u,∇ T√
λn
u belong to XP , we prove, by adapting

the arguments in Lemma 5.1, the strong convergence in XQ

lim
S→+∞

1

S

∫ S

0

G4λn(s)

(
Cn,

L√
4λn

Cn

)
ds

(
∇ T√

λn
u,−∇u

)
= 0. (69)

Finally (65), (66), (67), (68), (69) lead to the convergence in XQ

lim
S→+∞

1

S

∫ S

0

(S − s)fu(s) ds =

[
1

8
√
λn

L√
4λn

ProjE4λnC + LCn

]
∇u

+

[
1

8
√
λn

ProjE4λnC −
√

4λnCn

]
∇ T√

λn
u. (70)

Up to now, we know that
(

1
S

∫ S
0

(S − s)fu(s) ds
)
S>0

converges in XQ, as S → +∞, for any u ∈
span ∪n∈N (Eλn ∩ H1

P ). In order to justify the existence of the previous limit for any u ∈ H1
P , it

is enough to bound
(

1
S

∫ S
0

(S − s)fu(s) ds
)
S>0

in XQ uniformly with respect to S > 0 and u ∈
span ∪n∈N (Eλn ∩H1

P ), |u|H1
P
≤ 1. By (64) we have∣∣∣∣∣ 1S

∫ S

0

(S − s)fu(s) ds

∣∣∣∣∣
XQ

≤ 2|C0|H∞
Q
|∇u|XP , u ∈ E0 ∩H1

P

and by the previous computations, Remark 5.2 and the fourth statement of Remark 4.1 we obtain for
any u ∈ Eλn ∩H1

P , n ∈ N?∣∣∣∣∣ 1S
∫ S

0

(S − s)fu(s) ds

∣∣∣∣∣
XQ

≤ 1

2
√
λn

[∣∣∣∣ L√
4λn

ProjE4λnC

∣∣∣∣
H∞
Q

+ |ProjE4λnC|H∞
Q

]
|∇u|XP

+ 3
√

4λn

[∣∣∣∣ L√
4λn

Cn

∣∣∣∣
H∞
Q

+ |Cn|H∞
Q

]
|∇u|XP

≤ 2√
λn
|C|H∞

Q
|∇u|XP + 6

√
λn

[
|Cn|H∞

Q
+

∣∣∣∣ L√
4λn

Cn

∣∣∣∣
H∞
Q

]
|∇u|XP .
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Pick u ∈ span∪n∈N (Eλn ∩H1
P ), that is u =

∑N
n=0 un, un ∈ Eλn ∩H1

P for any n ∈ {0, ..., N} and let us

introduce the notation cn = |Cn|H∞
Q

+
∣∣∣ L√

4λn
Cn

∣∣∣
H∞
Q

, n ∈ N?. Using the orthogonality of (∇un)0≤n≤N

in XP , we deduce

1

S

∣∣∣∣∣
∫ S

0

(S − s)fu(s) ds

∣∣∣∣∣
XQ

≤ 2|C0|H∞
Q
|∇u0|XP +

N∑
n=1

[
2√
λn
|C|H∞

Q
+ 6
√
λncn

]
|∇un|XP

≤ 2|C0|H∞
Q
|∇u|XP + 2|C|H∞

Q

(
N∑
n=1

1

λn

)1/2

|∇u|XP + 6

(
N∑
n=1

λnc
2
n

)1/2

|∇u|XP

≤

2|C0|H∞
Q

+ 2|C|H∞
Q

∑
n≥1

1

λn

1/2

+ 6

∑
n≥1

λnc
2
n

1/2
 |u|H1

P

saying that n is well defined and bounded on H1
P ×H1

P .
Skew-symmetry of n

Let us focus now on the skew-symmetry of n. We are done if we show that for any u ∈ H1
P we have

the convergence in XQ

lim
S→+∞

1

S

∫ S

0

(S − s)

{
G(s)C∇u2s − lim

S′→+∞

1

S′

∫ S′

0

G(s′)C∇u2s′ ds′

}
ds

= − lim
S→+∞

1

S

∫ 0

−S
(S + s)

{
G(s)C∇u2s − lim

S′→+∞

1

S′

∫ 0

−S′
G(s′)C∇u2s′ ds′

}
ds. (71)

Indeed, let us assume for the moment that (71) holds true. As the field C of symmetric matrices
belongs to ker 〈·〉 ∩H∞Q , we know by Proposition 5.5 that

mC(u, v) :=

∫
Rm

lim
S′→+∞

1

S′

∫ 0

−S′
G(s′)C∇u2s′ ds′ · ∇v dy

defines a symmetric bounded bilinear form on H1
P ×H1

P . We obtain, thanks to the symmetries of C
and mC

n(u, v) =

∫
Rm

lim
S→+∞

1

S

∫ S

0

(S − s)

{
G(s)C∇u2s− lim

S′→+∞

1

S′

∫ S′

0

G(s′)C∇u2s′ ds′

}
ds · ∇v dy

= −
∫
Rm

lim
S→+∞

1

S

∫ 0

−S
(S + s)

{
G(s)C∇u2s − lim

S′→+∞

1

S′

∫ 0

−S′
G(s′)C∇u2s′ ds′

}
ds · ∇v dy

= − lim
S→+∞

1

S

∫ 0

−S
(S + s)

[∫
Rm
C∇us · ∇v−s dy −mC(u, v)

]
ds

= − lim
S→+∞

1

S

∫ S

0

(S − s)
[∫

Rm
C∇u−s · ∇vs dy −mC(u, v)

]
ds

= − lim
S→+∞

1

S

∫ S

0

(S − s)
[∫

Rm
C∇vs · ∇u−s dy −mC(v, u)

]
ds

= −
∫
Rm

lim
S→+∞

1

S

∫ S

0

(S − s)

{
G(s)C∇v2s − lim

S′→+∞

1

S′

∫ S′

0

G(s′)C∇v2s′ ds′

}
ds · ∇u dy

= −n(v, u).

The key point when justifying (71) is that (G(s))s∈R, (G4λn(s))s∈R, n ∈ N? are groups, and thus the
previous arguments work also with s ∈ R−. It is enough to check (71) for u ∈ span∪n∈N (Eλn ∩H1

P ).
If u ∈ E0 ∩H1

P , we know by Lemma 5.1 that

lim
S′→+∞

1

S′

∫ 0

−S′
G(s′)C∇u2s′ ds′ = lim

S′→+∞

1

S′

∫ 0

−S′
G(s′)C∇u ds′ = 〈C〉∇u = 0
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strongly in XQ, and by (57) we obtain

− 1

S

∫ 0

−S
(S + s)G(s)C∇u2s ds =

1

S

∫ 0

−S
(S + s)

d

ds
G(s)C0∇u ds

=
1

S
[(S + s)G(s)C0∇u]

0
−S −

1

S

∫ 0

−S
G(s)C0∇u ds

−→
S→+∞

C0∇u− 〈C0〉∇u = C0∇u

= lim
S→+∞

1

S

∫ S

0

(S − s)

{
G(s)C∇u2s − lim

S′→+∞

1

S′

∫ S′

0

G(s′)C∇u2s′ ds′

}
ds

cf. (64). Assume now that u ∈ Eλn ∩H1
P , n ∈ N?. By Lemma 5.2 we know that

lim
S′→+∞

1

S′

∫ 0

−S′
G(s′)C∇u2s′ ds′ =

1

2
ProjE4λnC∇u+

1

2

L√
4λn

ProjE4λnC∇
T√
λn
u

strongly in XQ and therefore

− 1

S

∫ 0

−S
(S + s)

{
G(s)C∇u2s − lim

S′→+∞

1

S′

∫ 0

−S′
G(s′)C∇u2s′ ds′

}
ds

= − 1

S

∫ 0

−S
(S + s)

{
U(s)∇u+ V (s)∇ T√

λn
u

}
ds

where the matrix fields U(s), V (s) were defined in (65), (66). Following the same arguments as before
we deduce

lim
S→+∞

1

S

∫ 0

−S
(S + s) cos(4

√
λns) ds = 0, lim

S→+∞

1

S

∫ 0

−S
(S + s) sin(4

√
λns) ds = − 1

4
√
λn

lim
S→+∞

1

S

∫ 0

−S
(S + s)

d

ds

[
sin(

√
4λns)G(s)Cn + cos(

√
4λns)G(s)

L√
4λn

Cn

]
ds∇u

=
L√
4λn

Cn∇u in XQ

and

lim
S→+∞

1

S

∫ 0

−S
(S + s)

d

ds

[
cos(

√
4λns)G(s)Cn − sin(

√
4λns)G(s)

L√
4λn

Cn

]
ds∇ T√

λn
u

= Cn∇
T√
λn
u in XQ.

Finally we obtain cf. (70)

lim
S→+∞

− 1

S

∫ 0

−S
(S + s)

{
G(s)C∇u2s − lim

S′→+∞

1

S′

∫ 0

−S′
G(s′)C∇u2s′ ds′

}
ds

=

[
1

8
√
λn

L√
4λn

ProjE4λnC + LCn

]
∇u+

[
1

8
√
λn

ProjE4λnC −
√

4λnCn

]
∇ T√

λn
u

= lim
S→+∞

1

S

∫ S

0

(S − s)

{
G(s)C∇u2s − lim

S′→+∞

1

S′

∫ S′

0

G(s′)C∇u2s′ ds′

}
ds.

Decomposition formula

Let us check (60). Assume that u, v, T u, T v,Bu,Bv ∈ H1
P . Therefore we have

n(u,Bv)− n(Bu, v)

= lim
S→+∞

1

S

∫ S

0

(S − s)
{∫

Rm
G(s)C∇u2s · ∇Bv −G(s)C∇Bu2s · ∇v dy

− lim
S′→+∞

1

S′

∫ S′

0

∫
Rm
G(s′)C∇u2s′ · ∇Bv −G(s′)C∇Bu2s′ · ∇v dy ds′

}
ds.
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It is easily seen that for any h ∈ R we have∫
Rm
G(s)C∇u2s · ∇vh dy =

∫
Rm
G(h)G(s− h)C∇(u2s−h)h · ∇vh dy

=

∫
Rm
G(s− h)C∇u2s−h · ∇v dy

implying, thanks to the hypotheses u, T u, v, T v ∈ H1
P , C ∈ H∞Q that∫

Rm
G(s)C∇u2s · ∇T v dy = lim

h→0

∫
Rm
G(s)C∇u2s · ∇

vh − v
h

dy

= lim
h→0

1

h

∫
Rm

[G(s− h)C∇u2s−h −G(s)C∇u2s] · ∇v dy

= −
∫
Rm

[G(s)(D − 〈D〉)∇u2s +G(s)C∇T u2s] · ∇v dy.

Applying twice the above formula, by taking into account that u, T u,Bu, v, T v,Bv ∈ H1
P , we obtain∫

Rm
G(s′)C∇u2s′ · ∇Bv −G(s′)C∇Bu2s′ · ∇v dy = −

∫
Rm
G(s′)C∇Bu2s′ · ∇v dy

+

∫
Rm

[G(s′)(D − 〈D〉)∇u2s′ +G(s′)C∇T u2s′ ] · ∇T v dy

=

∫
Rm
G(s′)(D − 〈D〉)∇u2s′ · ∇T v dy −

∫
Rm
G(s′)(D − 〈D〉)∇T u2s′ · ∇v dy

=

∫
Rm

(D − 〈D〉)∇us′ · ∇T v−s′ dy −
∫
Rm

(D − 〈D〉)∇T us′ · ∇v−s′ dy

= − d

ds′

∫
Rm

(D − 〈D〉)∇us′ · ∇v−s′ dy

and therefore

lim
S′→+∞

1

S′

∫ S′

0

∫
Rm
G(s′)C∇u2s′ · ∇Bv −G(s′)C∇Bu2s′ · ∇v dyds′

= lim
S′→+∞

1

S′

∫
Rm

(D − 〈D〉) : [∇v ⊗∇u−∇v−S′ ⊗∇uS′ ] dy = 0.

Similarly we have

1

S

∫ S

0

(S − s)
∫
Rm
G(s)C∇u2s · ∇Bv −G(s)C∇Bu2s · ∇v dyds

= − 1

S

∫ S

0

(S − s) d

ds

∫
Rm

(D − 〈D〉)∇us · ∇v−s dyds

=

∫
Rm

(D − 〈D〉)∇u · ∇v dy − 1

S

∫ S

0

∫
Rm

(D − 〈D〉)∇us · ∇v−s dyds

−→
S→+∞

a(u, v)−m(u, v).

Orthogonality condition

Let us check that n(u, v) = 0 for any u, v ∈ Eλn ∩H1
P , n ∈ N. Notice that for any u, v ∈ H1

P we have

G(s)[P (∇v ⊗∇u)P ] = ∂Y −1(s; ·)Ps[(∇v)s ⊗ (∇u)s]Ps
t∂Y −1(s; ·)

= ∂Y −1(s; ·)Ps t∂Y −1(s; ·)︸ ︷︷ ︸
G(s)P=P

t∂Y (s; ·)[(∇v)s ⊗ (∇u)s]∂Y (s; ·) ∂Y −1(s; ·)Ps t∂Y −1(s; ·)︸ ︷︷ ︸
tG(s)P= tP=P

= P (∇vs ⊗∇us)P. (72)
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In particular, when u, v ∈ E0 ∩H1
P , the matrix field P (∇v ⊗∇u)P is left invariant by (G(s))s∈R and

thus, by Lemma 5.1, we obtain cf. (64)

n(u, v) =

∫
Rm
C0∇u · ∇v dy =

∫
Rm
QC0 : P (∇v ⊗∇u)PQ dy

=

∫
Rm
QG(s)C0 : P (∇v ⊗∇u)PQ dy =

∫
Rm
G(s)C0∇u · ∇v dy

=

∫
Rm

1

S

∫ S

0

G(s)C0∇u ds · ∇v dy −→
S→+∞

0.

Consider now u, v ∈ Eλn ∩H1
P , n ∈ N?. We claim that the matrix field

P

(
∇v ⊗∇ T√

λn
u−∇ T√

λn
v ⊗∇u

)
P

is left invariant by (G(s))s∈R. Indeed, by formula (72) we have

G(s)P

(
∇v ⊗∇ T u√

λn
−∇ T v√

λn
⊗∇u

)
P = P

(
∇vs ⊗∇

T√
λn
us −∇

T√
λn
vs ⊗∇us

)
P

= P

[
cos(

√
λns)∇v + sin(

√
λns)∇

T v√
λn

]
⊗
[
cos(

√
λns)∇

T u√
λn
− sin(

√
λns)∇u

]
P

− P
[
cos(

√
λns)∇

T v√
λn
− sin(

√
λns)∇v

]
⊗
[
cos(

√
λns)∇u+ sin(

√
λns)∇

T u√
λn

]
P

= P

(
∇v ⊗∇ T u√

λn
−∇ T v√

λn
⊗∇u

)
P.

We deduce, thanks to Lemma 5.1, that∫
Rm
C(y) :

(
∇v ⊗∇ T√

λn
u−∇ T√

λn
v ⊗∇u

)
dy

= lim
S→+∞

∫
Rm

1

S

∫ S

0

G(s)C ds :

(
∇v ⊗∇ T√

λn
u−∇ T√

λn
v ⊗∇u

)
dy = 0.

Now we are ready to check that n(u, v) = 0, u, v ∈ Eλn ∩H1
P , n ∈ N?. For any s ∈ R we obtain, thanks

to the equalities u2s′ = us′(Y (s′; ·)), v = v−s′(Y (s′; ·))∫
Rm
G(s′)C∇u2s′ · ∇v dy =

∫
Rm
C(y)∇us′ · ∇v−s′ dy

=

∫
Rm
C

[
cos(

√
λns

′)∇u+ sin(
√
λns

′)∇ T u√
λn

]
·
[
cos(

√
λns

′)∇v − sin(
√
λns

′)∇ T v√
λn

]
dy

= cos2(
√
λns

′)

∫
Rm
C(y) : ∇v ⊗∇u dy − sin2(

√
λns

′)

∫
Rm
C(y) : ∇ T v√

λn
⊗∇ T u√

λn
dy

+ sin(
√
λns

′) cos(
√
λns

′)

∫
Rm
C(y) :

(
∇v ⊗∇ T u√

λn
−∇ T v√

λn
⊗∇u

)
dy

= cos2(
√
λns

′)

∫
Rm
C(y) : ∇v ⊗∇u dy − sin2(

√
λns

′)

∫
Rm
C(y) : ∇ T v√

λn
⊗∇ T u√

λn
dy.

Averaging over [0, S′] and letting S′ → +∞ yield∫
Rm

lim
S′→+∞

1

S′

∫ S′

0

G(s′)C∇u2s′ ds′ · ∇v dy =
1

2

∫
Rm
C :

(
∇v ⊗∇u−∇ T v√

λn
⊗ T u√

λn

)
dy

and finally, thanks to (67), we obtain

n(u, v) = lim
S→+∞

1

S

∫ S

0

(S − s)
{[

cos2(
√
λns)−

1

2

] ∫
Rm
C : ∇v ⊗∇u dy

−
[
sin2(

√
λns)−

1

2

] ∫
Rm
C : ∇ T√

λn
v ⊗∇ T√

λn
u dy

}
ds = 0.
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