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Multi-scale analysis for highly anisotropic parabolic problems

Thomas BLANC * Mihai BOSTAN f
(December 4, 2017)

Abstract

We focus on the asymptotic behavior of strongly anisotropic parabolic problems. We
concentrate on heat equations, whose diffusion matrix fields have disparate eigen-values.
We establish strong convergence results toward a profile. Under suitable smoothness
hypotheses, by introducing an appropriate corrector term, we estimate the convergence
rate. The arguments rely on two-scale analysis, based on average operators with respect
to unitary groups.

Keywords: Average operators, Ergodic means, Unitary groups, Homogenization.

AMS classification: 35Q75, 78A35

1 Introduction

The subject matter of this paper concerns the behavior of the solutions for heat equations
whose diffusion becomes very high along some privilegiated directions. This study is mo-
tivated by many applications like transport in magnetized plasmas [5], image processing
[13, 18], thermal properties of crystals [9, 14]. We consider the parabolic problem

O’ — divy (D(y)Vyuf) — édivy(b(y) Dby)V,u) =0, (ty) Ry xR™ (1)

u (0,y) =u™(y), yeR™ (2)

where D(y) € M,,(R) and b(y) € R™ are given matrix and vector fields on R™. For any
two vectors &, € R™, the notations £ ® n stands for the matrix whose entry (i,7) is &nj,
and for any two matrices A, B € M,,(R), the notations A : B stands for trace(*AB) =
> imy 2 jey AjiBji. The matrix field D is assumed symmetric, such that D +b®b is positive
definite. We analyse the behavior of the family (u®). for small ¢, let us say 0 < ¢ < 1, in
which case (D + %b ® b) 0<e<1 Temain positive definite. Another motivation for performing
this asymptotic analysis comes from the numerical simulation of highly anisotropic parabolic
problems. Notice that the explicit methods require very small time steps, through the CFL
stability condition At ~ ¢|Ay|?. Therefore implicit methods have been proposed in [2, 16, 17],
finite volume methods have been discussed in [10, 1] and asymptotic preserving schemes have
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been investigated in [8, 11]. For a detailed theoretical study of (1), (2) we refer to [3] where it
was shown that, for any initial condition u'™ € L?(R™), the family (u®). converges weakly *
in L2 (R ; L>(R™)) toward the solution of another parabolic problem, whose diffusion matrix
field appears like an average of the original diffusion matrix field D. The main goal of this
work is to go further into this analysis. We intend to give a complete description of the
behavior of (uf)., due to the high diffusion anisotropy. We prove a strong convergence result
toward a profile, and analyze the well posedness of the corresponding limit model.

We consider variational solutions for (1), (2). For doing that we introduce a weighted
Sobolev space H} see (23) and define the bounded symmetric bilinear form

1
a®(u,v) = [ D(y)Vu-Vody+ 5/ (b-Vu)(b-Vv)dy, u,ve Hp.

Rm m

The variational formulation for (1), (2) writes

u?(0) = u™, 7 | vt yely) dy+a (W (t),9) =0 in D'(Ry), v € Hp.

The well posedness of the above problem follows by standard results. Under coercivity as-
sumptions, for any £ €]0, 1], there is a unique solution u® € Cy(Ry; L*(R™))NLE (Ry; HE) € €
]0,1]. We consider the second order operator B = —T2, T = div,(-b) and the semi-group
(e77F);er, . The idea is to search for a solution v = v(t) of another variational problem, such
that

wi(t) = e Bu(t) + O(e) in LS, (Ry; LX(R™)). (3)

The main difficulties are to identify the limit problem satisfied by v(¢) and to construct a
corrector which will allow us to justify the approximation (3). The limit problem appears as
a variational formulation whose bilinear form, denoted by m, is defined in Proposition 5.5.
This bilinear form can be expressed in terms of two C?-groups of unitary transformations
operating on functions and matrix fields. We denote by Y (s;y) the characteristic flow of the
vector field b, by ({(s))ser the group of the translations along Y’

((s)lu=uoY(s;), uec L*(R™), scR
and by (G(s))ser the group acting on the weighted L? space of matrix fields He, given by
G(s)A=0Y (s;-) AoY(s;) 'OV I(s;-), A€ Hy, s€R

see Proposition 3.3. With these notations, the bilinear form m writes cf. Proposition 5.5

m(u,v):/m{< ) (y)Vu+ lim s/ >)VC(25)uds}-Vv dy

S——+o0

for any u,v € H}, where (D) is the average of D along the C°-group (G(s))ser cf. Proposition
3.2
1 S

(D) = SETOO S/o G(s)D ds in Hg.
The construction of the corrector requires a second bilinear form, see Proposition 7.1 for
details. We establish the following convergence result, see Section 8 for more details, under
suitable hypotheses : smoothness hypotheses on «'™, b and D, existence of a matrix field P
which satisfies (18), (19) and structural assumptions associated to the fields b and D, see
Sections 5.2, 7.1 and 7.2.
Theorem



Assume that u™,b, D are smooth enough. Moreover, we assume that the hypotheses (18),
(19) are satisfied, as well as the structural hypotheses given in Sections 5.2, 7.1 and 7.2. For
any € €]0,1] let us denote by u® € Cy(Ry; L2(R™)) N LE _(Ry; HL) the unique variational
solution of (1), (2)

u®(0) = u™, u(t,y)p(y) dy + o (us(t), ) =0 in D'(Ry), ¢ € Hp

&Rm

and by v € Cy(Ry; L2(R™)) N L (Ry; HYL) the unique variational solution

loc

L ot )oy) dy + m(u(t), ) =0 in D'(R,), ¢ € Hb.

O:ini
(0 =" g [

For any T € Ry there is a constant Cr such that

ue—e_ﬁlgv‘ ))+‘Vu€—Ve_§Bv <Cre, 0<e<l.

Le=([0,T];L? (R™ L2([0,T];Xp)

When the initial condition is well prepared, that is 7u™ = 0, there is no boundary layer at
t = 0 and the limit model is given by the parabolic equation associated to the average matrix
field (D), see Remark 8.1

d

v(0) = u™, T

| vtne) du+ [ (D) @)Vo(t) Viody =0 in D'(Ry). o € ).

Our paper is organized as follows. The main lines of the asymptotic analysis are presented
first in the finite dimensional case, cf. Section 2. The infinite dimensional case requires several
tools and hypotheses. We define average operators for functions and matrix fields, see Section
3. The spectral properties of the operator B, as well as its semi-group, are studied in Section
4. The eigen-spaces of the operator B will play a crucial role; a characterization of these
eigen-spaces is shown and a description of the associated projections is given, in terms of
ergodic averages. The bilinear form m is constructed in Section 5 and we study its main
properties. The well posedness of the problems associated to the bilinear forms a® and m is
established in Section 6, and uniform estimates for the solutions are highlighted. A second
bilinear form n is emphasized in Section 7, which will allow us to construct a corrector term.
Finally, in Section 8, we establish the asymptotic behavior of the problem (1), (2) cf. Theorem
8.1.

2 The finite dimensional case

We intend to investigate the behavior of the family (uf). of solutions for the parabolic prob-
lems (1), (2). It is very instructive to consider first the case of linear operators on finite
dimensional spaces. Let A, B € M, (R) be two real matrices and for any ¢ > 0 consider the
problem

%ue + Auf(t) + éBue(t) =0, teRy (4)

uf(0) = u'™ € R™. (5)
In the case when A and B are commuting, i.e., BA— AB = 0, it is easily seen that e "B A =
Ae ™8 7 € R, and a direct computation shows that ¢t — e=5Bus (t) satisfies the problem

d
T + Av(t) =0, te Ry (6)



v(0) = u™ € R™. (7)

We obtain the well-known commutation formula between the matrices e t4, e~™5

e~ t(A+2)in _ ut(t) = e_ti(t) = e_gBe_tAuin, teRy, >0

which allows us to describe the behavior of the family (u®). in terms of the solution of
problem (6), (7), and the semi-group (e_TB)TeRJr. For studying the general case, we need a
decomposition formula for the matrix A. Assume for example that B is symmetric, and let
us denote by Ej, ..., E,. the eigen-spaces of B, corresponding to the eigen-values Aq, ..., A,

Ei:ker(B—)\,-In), MER, 1<i<r, E1®..®E, =R"

For any i € {1,...,7}, the notation (B — A\;I,,)~! stands for the reciprocal application of
the isomorphism (B — A\ I,)|pL : Ei — Range (B — \;I,) = Ei-. We consider the linear
applications

m;(u) = Projg, Au, n;(u) = (B — A\il,)”'(Au — Projg Au), u€ E;, i€ {l,..,r} (8)
and we denote by M, N the matrices of the linear applications
m=m;®P ..My, Nn=n1D... DN,

that is
Mu=m(u) =mi(u), Nu=n(u)=n;(u), ueFE;, ic{l,..r}

We claim that the following decomposition holds true
A=M+ BN —-NB, BM — MB = 0,,. (9)
Indeed, for any ¢ € {1,...,r} and u € E; we have

(BN — NB)u= BNu— \Nu= (B — \NI,)|gini(u)
= Au — Projp, Au = Au — m;(u) = Au — Mu
and (BM — MB)u = BMu — \;Mu = 0, since Mu = m;(u) = Projg, Au € E;. Based on

the decomposition (9), we obtain the asymptotic behavior for the solution of (4), (5), when
¢ becomes small.

Proposition 2.1

Let A,B € M,(R) be two real matrices and u™ € R™. We assume that B is symmetric,
positive and consider the matrices M, N wverifying (9). For any T € Ry, there is a constant
Cr such that for any € > 0 we have

[uf(t) — e Be ™Myin| < Cre, t e [0, T

Proof. The idea is to introduce a corrector. Let us consider the function u! : Ry x R, — R"
given by . .
ut(t,7) = e TBNe My — NemTBemtMyin (1 1) e Ry x R, (10)

Notice that we have u'(¢,0) = 0, € R, and
aTul — _Be—TBNe—tMuin + NBG_TBe_tMUin
- _RB (e—TBNe—tMuin _ Ne—TBe—tMuin) o (BN _ NB)e—TBe—tMuin

= —Bul(t,7) — (BN — NB)e "Be~tMyin,



. L _tp _ ; .
Therefore, using the notation @ = e~ =Pe "My we obtain

d B
a{sul(t,t/a)} + (BN — NB)@(t) + ;{Eul(t,t/a)} = Ot (t,t/¢e). (11)
Taking into account that B and M are commuting, observe that

du® B
M@ () + =@ (t) = 0
dt+ u()+€u()

which combined with (11) yields

%{ff(t) b eul(t t/e)} + <A + f) (05 (1) + cul (1 £/2)} = 20l (1, 1/€) + e Aul (1, 1/2).

Finally, the function ¢t — 7¢(t) := u®(t) — a°(t) — eu'(t, t/¢) satisfies the problem

dre £ B £ 1 1
o AW+ Tt (t) = —e(O! + Au)(t.1/e), tERy

7‘5(0) — Us(O) _ as(o) _ 5u1 (0’ 0) — uin _ uin —0.
Taking the scalar product with r°(¢) and using the positivity of B imply

T t
[ (t)] < 5/ {10t (', [e)| + | A| |[u' (t', ¢ Je)|} dt’ + A\/ | ()| dt’, ¢t €1[0,T], €>0.
0 0

Here, for any matrix C, the notation |C| stands for the norm subordonated to the Euclidean
norm

|IC| = sup@ < (C:C)V2
20 €]

By Gronwall’s lemma we deduce that
T
r5(t)] < g/ {1 Je)| + |A] [t (¢, /o)y A’ T4l t e [0,T), €>0
0

and we are done provided that there is a constant Cr such that
lul(t, )| + |Oul(t,7)| < Cp, te0,T], TRy,
But thanks to the positivity of B, it is easily seen that
lul(t,7)| < 2IN| e ™Mu| < 2|N| |u| "M t e ]0,T], TR,

and
|8ut (t,7)| < 2IN| M| || TMI ¢t e]0,T], TR,

Remark 2.1
The key point of the above proof is the choice of the corrector u~. We retrieve formally the
expression of ut in (10) by appealing to the usual two scale Ansatz

1

u(t) = u(t, t/e) +eul (t,t/e) + ...
Indeed, plugging the previous Ansatz in (4), leads to

O-u(t,7) + Bu(t,7) =0 (12)



owu(t, 7) + Au(t,7) + d;ul(t,7) + Bul(t,7) =0 (13)

The equation (12) says that for any t € Ry there is a function v(t) = u(t,0) such that

u(t,7) = _TBv(t) The time evolution for v comes from (13), and we take as initial condition
v(0) = u(0, 0) ul™, which is obtained by letting formally & \, 0 in the equality u'™ = u(0) =
u(0,0) + eul(0,0) + .... We appeal to the decomposition (9). Notice that we have

dv

Opu(t,7) + Mu(t,7) = de "Pu(t) + Me ™Pu(t) = e ™8 <dt

+ Mot ))

and
(BN — NB)u(t,7) + 0;ul(t,7) + Bul(t,7) = e "B {e™PNe ™ Bu(t) + e"Pul(t,7)}.

Therefore the equation (13) becomes

dv
e ™8 <dt + Mo(t) + 0, {e"PNe ™ Pu(t) + eTBul(t,T)}> =0 (14)
or equivalently
dv
= M) + 0-{e™BNe ™ By(t) + eTBul(t,7)} = 0. (15)

Here we have used that (e"™8),cr is a group. Notice that (14) still implies (15) when
(e7F)rer . 15 only a semi-group, satisfying the backward uniqueness (as for the heat equation,
for example). Averaging with respect to the fast time variable suggests to consider

dv

pm + Mu(t) =0 and e™BNe "Bu(t) + e Pul(t,7) = No(t) + ul(t,0).

The solution satisfying the condition u'(t,0) = 0,t € Ry corresponds to the choice in (10).

Notice that the corrector in (10) is defined only in terms of the semi-groups (e—rB)T€R+7 (e*tM)teR+

and not of the groups (e B) cr, (e 7™M )icr. Therefore it will be possible to use it when ana-
lyzing (1), (2), in which case only semi-groups will be available.

Remark 2.2
1. The decomposition in (9), with B symmetric, is unique. More exactly, if
A=M+BN—-NB, BM—-MB=0, NE;C E}, ie{l,..,r}
then M = M and N = N. Indeed, for any i € {1,...,r} and any u € E; we have
Au = Mu + (B — )\Z-In)Nu, BMu = MBu = \Mu
saying that Au — Mu € Range (B —N\1,) = Eil, Mu € E;. Therefore we obtain
Mu = Projp, Au= Mu, i€ {l,..,1}, uek;

and
(B —X\I,)Nu= Au — Mu = Au— Mu = (B — \iI,)Nu

As we know that Nu, Nu € EL, one gets Nu= Nu for any u € Ej, i € {1,..,r}.

2. In particular, if A and B are symmetric, the matriz M is symmetric and the matriz N
is skew-symmetric.



Before ending this section, let us observe that the convergence of (uf)c~o when & becomes
small is not uniform on [0, 7], T € R, except for well prepared initial conditions u™® € ker B.
Indeed, if u™ € ker B, then the commutation property between B and M allows us to write

e—gBe—tMuin —tMe—gBuin e—tM,,in

=€

and therefore (u®). converges uniformly on [0, 7] toward e "My when e N\, 0. If the initial
condition is not well prepared, that is, if 4™ ¢ ker B, the limit function lim.\ o u® is not
continuous in ¢ = 0, and thus the convergence is not uniform on [0,7],7 € R;. In order to
check that, we appeal to the long time behavior of (e*TB)Te]R+

’e_TBv — Projye, gv| < € 7 |v — Proji, pv|, veR", 7R,
with ¢ := infj,—1 y1ker g Bv - v > 0. Thanks to Proposition 2.1 we obtain the pointwise
convergence
. . 4M —tB i M - —tB i u™ t=20
lim u®(t) = lim e ®Me72Bym = =M Ji ¢7=Byn = M. n
N0 N0 N0 e "M Projye gt ,t >0

which is discontinuous at ¢t = 0 when u'™ ¢ ker B. A time boundary layer [0,7%], of size
O(e) occurs at t = 0, during which any curve u® connects the initial condition u™ to

_ _Tep . i
e M= By ~ Projy,, gu'™.

3 Average operators

We intend to generalize Proposition 2.1 for the parabolic problems (1), (2). In this section, we
specify the definition and the properties of the average operators along a characteristic flow,
for matrix fields and functions. The construction of the average operator for matrix fields
relies on the existence of a matrix field P satisfying (18), (19). We introduce the transport
operator T = div,(- b), defined on

dom7 = {u € L*(R™) : div,(ub) € L*(R™)}.
We make the following standard assumptions on the vector field b

be Whe(R™), divyb=0 (16)

loc

and
3 C > 0 such that |b(y)| < C(1+|y|), y e R™. (17)

Sometimes we will also write 7 = b(y) - V,,, motivated by the fact that b is divergence free.
Under the above hypotheses, the vector field b possesses a global smooth characteristic flow
]-7

Y € W' (R x R™)
dy
ds

Since the field b is divergence free, the transformation y € R™ — Y (s;y) € R™ is measure

preserving for any s € R. We introduce the C°-group of unitary operators (¢(s))ser given by

bY(s:9)), (s,y) eRxR™, Y(0;y) =y, y€R™.

C(s)u=uoY(s;:), ue L*R™), scR.

The transport operator 7 appears as the infinitesimal generator of the C°-group ({(s))ser.
Sometimes we will use the notation fs(z) = f(Y (s;2)), given a function f = f(y).

Any time a C%-group of unitary operators acts on a Hilbert space, the orthogonal projection
on the kernel of its infinitesimal generator coincides with the ergodic mean of the group [15].



Theorem 3.1 (von Neumann’s ergodic mean theorem,)
Let (G(s))ser be a CO-group of unitary operators on a Hilbert space (H,(-,-)) and L be its
infinitesimal generator. Then for any x € H, we have the strong convergence in H

1 r+S
lim / G(s)x ds = Projye, px,  uniformly with respect tor € R.
S—+00 S r

As a direct consequence of Theorem 3.1 we obtain the following representation for the or-
thogonal projection on ker 7 = {u € L>(R™) : u(Y(s;-)) = u, V s € R}.

Proposition 3.1 (Average of L?(R™) functions)
Assume that (16), (17) hold true. Then for any u € L*(R™) we have the strong convergence
in L?(R™)

1 r+S
lim / uw(Y'(s;-)) ds = Projye, 7u  uniformly with respect to r € R.
S—+400 S r

We introduce the average operator (u) = limg_, oo & f:JrS u(Y(s;-))ds,u € L?*(R™). The
previous result says that the average operator coincides with the orthogonal projection on
ker 7. In order to handle parabolic operators, we will also need to average matrix fields of a
L? weighted space and L™ weighted space. We assume that there is a matrix field P such
that
tP=P, Py)E-€>0, E€R™\ {0}, ycR™, P! PcL?. (R™) (18)
[b,P]:=(b-V,)P—0,bP - P'9b=0, inD'(R;). (19)
We refer to Proposition 3.8 [3]

Proposition 3.2

Consider b € I/Vlifo (R™) (not necessarily divergence free) with at most linear growth at infinity

and A(y) € LL (R™). Then [b,A] =0 in D'(Ry) iff
A(Y (s;9)) = 9Y (s;9)A(y) '0Y (s1y), s €R, y e R™
Let us consider some useful spaces.

Definition 3.1 We introduce the linear space
Ho = {A . R™ — M (R) measurable : QY2AQY? ¢ L2} ,
where Q = P, which is a Hilbert space for the natural scalar product
(4, B)p, = /R QY2AQV?: Q\V2BQYV? dy = /R QA:BQdy, VA, BecHg.

The associated norm is denoted by |A|g,, -
Similarly we introduce the Banach space

Hgf = {A : R™ — M, (R) measurable : Q1/2AQ1/2 € LOO} ,

endowed with the norm

|Alng = Q2AQY?| 1.



Assume that there is a continuous function 1, which is left invariant by the flow of b, and
goes to infinity when |y| goes to infinity

e C(R™), voY(s;:) =1 forany s € R, lim (y) = +oo. (20)

ly| =400

Since the compact sets {¢) < k}, for k € N, are left invariant by the flow of b, we will be able
to perform our analysis in the local spaces

HQloc = {A : R™ — M (R) measurable : 1g,<3A € Hg for any k € N} .

We say that a family (A4;); C Hgoc converges in Hg joc toward some A € Hg o iff for any
k € N, the family (1;y<yAi); converges in Hg toward 1p,<;)A. Notice that we have the
continuous inclusion Hy C Hg1oc. As suggested by the characterization in Proposition 3.2,
we introduce the family of linear transformations (G(s))ser, acting on Hg (see Proposition
4.1 [4] for more details). Moreover, under the assumption (20), the group (G(s))ser also acts
on HQ,loc~

Proposition 3.3
Assume that the hypotheses (16), (17), (18), (19) hold true.

1. The family of applications
A= G(s)A =Y (s;-) A t(‘?Y_l(s; ) =0Y (—s5;Y (s;-)As LOY (—5;Y (s5))
is a CO-group of unitary operators on Hg.
2. If A is a field of symmetric matrices, then so is G(s)A, for any s € R.
3. If A is a field of positive semi-definite matrices, then so is G(s)A, for any s € R.

4. Let S CR™ be an invariant set of the flow of b, that is Y (s;S) = S, for any s € R. If
there is d > 0 such that Q2 (y)A(y)Q'?(y) > dIn,y € S, then for any s € R we have

QWG AW)Q () > Iy € S.

5. Moreover, if (20) holds true, then the family of applications (G(s))ser acts on HQ joc,
that is, if A € HQ loc, then G(s)A € Hg joc for any s € R. We have

1{¢§k}G(S)A = G(S)(l{wgk}A), A€ HQ,IOC; S € R, k e N.

Proof.
1. Thanks to the characterization in Proposition 3.2 we know that

P, = 0Y(s;-)P'0Y(s;-), s €R. (21)

For any s € R we consider the matrix field O(s;-) = ;/28}/(5; Q2. Observe that O(s;-)
is a field of orthogonal matrices, for any s € R. Indeed we have, thanks to (21)
‘0(s;)0(s;-) = Q712 19Y (5)Qy* QY20 (5)Q ™2
= Q712 (Y (si )P OY T (s5) T QM2
_Q12p1g1/2
=1,



implying that for any matrix field A we have
QY2G(s)AQY? = QV2Y 1 (s; ) Ay 1OY T (s;)QY? = 1O(s;)QY2AQV20(s; ). (22)

It is easily seen that if A € Hg, then for any s € R
Gls)Al = | Q'26(:)4Q" : QG(5)AQ dy
- /mt(’)(s;-)Q§/2A5Q§/QO(S;-) L 'O(s;)QP AQYPO(s; ) dy
— [ QPA.Q QP AQl 4y
-
— Rle/QAQl/Q . Q1/2AQ1/2 dy — |A|%—IQ

proving that G(s) is a unitary transformation for any s € R. The group property of the
family (G(s))ser follows easily from the group property of the flow (Y (s;-))ser
G(s)G(t)A =Y~ (5; ) (G(t)A)s' DY ~*(s; )
= Y (5500 (1 Y (53)) (Ar)s O (1Y (51 1)) Y (51 )
=YV Mt + 8 ) A OY Tt 4 s;) = Gt +5)A, A€ Hg.
The continuity of the group, i.e., lim,_,0 G(s)A = A strongly in Hg, is left to the reader.
2. Notice that G(s) commutes with transposition
HG(s)A) = (oY 1(s;-)As Y 1 (s34))
=Y " Y(s;-) TA, TOY (s )
= G(s) 'A.
In particular, if /A = A, then '(G(s)A) = G(s)A.
3. We use the formula (22). For any £ € R™ we have
G(s)A: Q%6 ® Q% = Q'°G(5)AQ? : £ ¢

= '0(s;)Qy/*A,Q)*0(s5) : €@ €

= QPA.QY? 1 O(s)( @ €) 'O(s; )

= QY2A.QY? 1 (0(s;)8) @ (O(s:)¢)

= A1 (Q70(51)€) ® (Q4%O(s3)6).
As A is a field of positive semi-definite matrices, therefore G(s)A is a field of positive semi-
definite matrices as well.
4. Assume that there is a > 0 such that QY/2AQY2? > al,, on S. As before we write for any
EeR™" yeS

QVPG(5)AQ'? 1€ @6 = (QV2AQY?).: (O(5:)€) ® (O(s:)€) = 0] O(s; 8| = ale)”

saying that QY/2G(s)AQY? > al,, on S.

5. Here G(s) stands for the application A — 9Y (—s;Y (s;:))A(Y (s5+)) 'OY (—s;Y (s5-))
independently of A being in Hg or in Hgoe. As v is left invariant by the flow of b, so is
1iy<ky, for any k € N. If A belongs to Hg 1oc, we have

Liyp<iyG(s)A = G(s)(y<yA) € Hg, k€N, seR

10



saying that G(s)A € Hg loc, s € R. Moreover, the applications (G(s))scr preserve locally the
norm of Hg

‘1{¢§/€}G(S)A‘HQ = ‘G(S)(l{wgk}AHHQ = |1{w§k}A‘HQ y k c N, LS R.

We introduce the infinitesimal generator of the group G

G(s)A—A in Ho)
s

L:domL C Hy — Hg, domL={A¢€ Hg : 3 hH(l)
S—r

and LA = lim,_, %;47‘4 for any A € domL. Notice that C}(R™) C domL and LA =
(b-V,)A—0bA— Atdyb, A € CLH(R™) (use the hypothesis Q € L% (R™) and the dominated

loc
convergence theorem). The main properties of the operator L are summarized below (see [3]

Proposition 3.13 for details).

Proposition 3.4
Assume that the hypotheses (16), (17), (18), (19) hold true.

1. The domain of L is dense in Hg and L is closed.
2. The matriz field A € Hg belongs to domL iff there is a constant C > 0 such that
|G(s)A — Aln, < Cls|, s€R.

1
3. The operator L is skew-adjoint and we have the orthogonal decomposition Hg = ker L®
Range L.

Remark 3.1 When working on Hq oc, the generator of (G(s))ser, which is still denoted by
L, is defined by

G(s)Qy<nyA) — Ly A

A € dom(L) zﬁﬂllg(l] . € Hy, keN
and G(5)(Lryery A) — Lipep) A
1(yepy L(A) = lim W SWSME g

s—0 S

Clearly, the generator in Hq .. extends the generator in Hg.

The transformations (G(s))ser also behave nicely in the weighted L space Hg. More
precisely, for any s € R, and any A € HZ, we have G(s)A € Hp and |G(S)A|Hco?o = |A|H5<>.
Indeed, thanks to (22) and to the orthogonality of O(s;-), observe that
Q2G(5)AQV? : QPG (5)AQ? = 10(s; QY2 A,QY20(s; ) 1O (5; ) QY2 A, QY2055 )
=(Q?A4Q"?: Q2 AQ?),, seR

and our claim follows immediately. Applying Theorem 3.1 to the group (G(s))ser, we deduce
that the average of a matrix field (A) := lim5_>+oo%f:+s G(s)A ds is well defined and
coincides with the orthogonal projection on ker L. Moreover, by Proposition 3.3, (G(s))scr

also acts on Hg 1o, and any matrix field of Hgf C Hg 1o possesses an average in H joc, still
denoted by (-) as for the matrix fields in Hy.

Theorem 3.2 (Average of H( ), matrix fields)
Assume that (16), (17), (18), (19) hold true.

11



1. For any matriz field A € Hg we have the strong convergence in Hg

r+S
(4) = Sl_igloo;/ Y (=5;Y (53))A(Y (s53-)) 'Y (=5;Y (55 +)) ds = Projye, A

uniformly with respect to r € R.
2. If A€ Hg is a field of symmetric positive semi-definite matrices, then so is (A).

3. Let S C R™ be an invariant set of the flow of b, that is Y(s;S) = S for any s € R. If
A € Hg and there is d > 0 such that

QY (Y AW)QY?(y) > dly, yeS

therefore we have
QY (y) (A) W)Q*(y) > dln, y€S
and in particular, (A) (y) is definite positive, y € S.

4. If A€ Ho N HE, then (A) € Ho N H and
() 1y < 1Alg, | (A) |z < |Alng.

5. Moreover, assume that (20) holds true. For any matriz field A € Hgjoc, the family

1 r+S
— Y (—5;Y (53 )A(Y (s5-)) tOY (—s; Y (s;-)) ds
(5] ovsy@par () oy -y as)

converges in Hgoc, when S goes to infinity, uniformly with respect to r € R, for any

fixred k € N. Its limit, denoted by (A), satisfies

Lip<i) (A) = <1{¢§k}A> , for any k € N

where the symbol (-) in the right hand side stands for the average operator on Hg. In
particular, any matriz field A € HEY has an average in Hqoc and |(A) |H5° < ’A‘HE)O'
If A€ Hgoc is such that

Q2 () A(y)QV*(y) > aly, yeR™,

for some o > 0, then we have
QY2 (y) (4) W)Q'2(y) = alm, y €R™.

Proof. We only sketch the arguments. For more details we refer to Theorem 2.1 [4]. The
first and second statements are obvious.

3. For any & € R™ ¢ € C%(S),% > 0 we have 1(-)P'/?2¢ ® PY/2¢ € Hg and we can write,
thanks to (22)

(GADOP e PG = [ 6@ 654 s € o ¢ dy
= | v '0(s;9) QY *A,QY*O(s1 )¢ - € dy
= | P A:Q7 : Olsiy)e ® O(siy)e dy
>a [ 0GiePi) dy
— ol [ vt d.
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Taking the average over [0, S] and letting S — +o0 yield

[ )@ ()@ g0t dy = (40P e PR > [ alePuly) dy

implying that
QY (y) (A) W)Q*(y) > alm, y€S.

4. Obviously, for any A € Hg, we have by the properties of the orthogonal projection on
ker L that | (A) [u, = [Pr0jye Alug, < |Aln,. For the last inequality, consider M € M,,(R)
a fixed matrix, ¢ € C2(R™), ) > 0 and, as before, observe that YPY2MPY? € Hg, which
allows us to write

(G(s)Ap PV 2MPY?) o = / QY2G(s)AQY? - y M dy
Rm
=/ 0(s;9)QY* AQY*O(s1y) : M dy

=/ QY2AQY? : O(s;y)M tO(s;y)y dy

< [ VP01 QY 4.0 VOl N 0T 5) : Ol )3 1O dy
< |Alag (M= M) | o) dy.
Taking the average over [0, S] and letting S — 400, lead to
| @24 @12 : Muly) dy = ((4) 0PV PMPY g < [Alg (M 302 [ u(y) ay.
We deduce that

QY2 (y) (A) QP (y) : M < | Al (M : M)'/?, y €R™, M € My (R)

saying that

[ (A) |1z = ess sup,ege/QY2(1) (A) (QV2(9) : QY2(y) (A) (1)Q(y) < |Al s
5. Let A be a matrix field in Hg joc. For any k € N, 11,41 A belongs to Hg, and by the first

statement we know that

) 1 r+S
G S/r G(s)(LpypsyA) ds = (Lyp<iy4) € Ho

uniformly with respect to » € R, for any fixed k € N. It is easily seen that for any k,l € N
we have

N 10
SEIEooS/O G(s)(Liyp<iyA) dS:SETooS’/O G(s)(Lyp<yA) ds

almost everywhere on {¢) < min(k,l)}, and thus, there is a matrix field denoted by (A),
whose restriction on {¢) < k} coincides with <1{¢§k}A> for any k£ € N. Notice also that for
any k € N we have <1{w§k}A> = 0 almost everywhere on {¢) > k} and thus we obtain

Lip<ry (4) = (Lpen4), keN.

13



Observe that for any k € N, we have the uniform, with respect to r € R, convergence in Hg

) 1 r+S ) 1 r+S
Jim ey [ GO A= Jim [ 604 ds = (e 4) = Lpa (4)

saying that limg_, 4 % f:JrS G(s)Ads = (A) in HQ o (uniformly with respect to r € R, for

any fixed k € N). The inclusion HZ® C Hq oc follows by the compactness of {¢) <k}, k € N.
By the fourth statement we have

A) |ge =sup]|l A) |ge =sup| (1 A)|ge <supll Alge = |Algee.
| (A) g keN| {w<ky (A) lug keN|< w<nyA) lug keN’ w<rAlag = |Alng

Let A be a matrix field of Hg oc, such that Q/2(y)A(y)QY?(y) > aly,y € R™, for some
a > 0. For any k € N we have 1(y<x)A € Hg and

QY2 () 1y AW)QY2(y) > alm, y € {¢ <k}
By the third statement we deduce that for any k € N
Q2 ()1 y<ry (A) WQ*(y) = Q2 () (11yemA) W)QY2(y) > alym, y € { <k}

saying that Q/2(y) (A) (y)Q"*(y) > aly,, y € R™. -

Remark 3.2

1. We have the following variational characterization of the average operator on Hg joc:
for any matriz field A € Hg oc, the average matriz field (A) is the unique matriz field
in Hg joc satisfying

(Lyyp<iy(A—(A)), M), =0, for any M € Hy,.

2. It is easily seen that the average operator on Hg o extends the average operator on
Hg.

3. Let A be a matriz field in Hgoc. For any k € N we have

G(s)(Lip<ry (A) — Ly (A) _ G(5) (LipemyA) — (Lipzny4) _

S S

0

saying that (A) € dom(L) and 1gy<pyL (A) =0, k € N, see Remark 3.1. Therefore
L(A) =0, for any A € HQoc-

We also introduce the linear spaces
Xg = {c: R™ — R™ measurable : Q(y) : c(y) @ c(y) dy < 400}
RmMm

X = {c:R™ — R™ measurable : |Q1/2C\ € L= (R™)}.

The linear space X, endowed with the scalar product

('7 ')XQ : XQ X XQ — R, (C7 d)XQ - ]RmQ(y) : C(y) ® d(y) dy, c¢,d € XQ

14



becomes a Hilbert space, whose norm is denoted by |c[x, = (c, c)ﬁ(/s), ce Xq.

The linear space X g 1sa Banach space with respect to the norm

|clxg = ess SuPyeRm|Q1/2(y)C(y)!, ce Xy

Notice that for any ¢ € XN X3, we have c® c € Ho N Hpy and

e ® clugy = ess supyepm QY2 (y)e(w)® = ez

1/2
el = ([ 1@l an) < Iexglel

Replacing the matrix field ) by the matrix field P, we obtain the linear spaces Xp, X7°.
For solving the parabolic problems (1), (2), we appeal to variational methods. We consider
the following linear subspace of L?(R™)

Hp ={ue L*(R™) : V,u€ Xp}. (23)

It becomes a Hilbert space, when endowed with the scalar product

(o, = [ ur@) dy+ [ PU): VeV dy, woe .

m

The choice of the above weighted H' space is motivated by the fact that the C°-group
(¢(s))ser acts on Hp.

Proposition 3.5 (Average of H} functions)
Assume that the hypotheses (16), (17), (18), (19) hold true. For any s € R and u € H},
we have us € Hp and \uS\H}D = \u|H}1D. The family of applications u € Hp — ¢H(s)u =

uoY(s;-) € H}p is a C-group of unitary operators on H}D. In particular, for any u € H}; we
have (u) € Hp,

1 r+S
Vy(u) = lim / Vyus ds, strongly in Xp, wuniformly with respect tor € R
S—+o00 S r

u—{(u) Lker TNHp in Hp, |Vy{u)|x, < |Vyulxp.

Proof. Let u = u(y) be a function in Hp. As the flow satisfies Y € Wli’coo(]R x R™), we
have Vu, = t0Y (s;-)(Vu)s. By Proposition 3.2 we know that Py = 9Y (s;-)P tdY (s;-), and
therefore we can write

ol = [ )P ay+ [ PwITu Ty

= [ @) i+ [ aV(spPl) 0V (s19): (Tu) o (Tu). dy

m

~~

P

= ’U\%%Rm) +|Vulk, = |u’§{113-
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The group property of ((1(s))secr comes by the group property of (¢(s))ser. In order to check
the continuity of (¢1(s))ser, observe that for any u € Hp, we can write

M) — ullyy — [6(s)u — ulZany = [Vus — Vulk,

= 2|Vu|§(P — 2(Vug, Vu) xp

—2fulk, ~2 [ P Y (s9)(Vu). - PV dy
tO(siy)Pa’?

=2|Vul%, — 2/ tO(s;9)(PY?*Vu), - PY/?Vu dy
]Rm
= |(P?Vu)s = PY2Vul}gm) — 2/ (PY2Vu)s - (O = I,,) PY*Vu dy.
Rm

Thanks to the continuity of ({(s))ser, we are done provided that the last integral terms
converges to 0, as s — 0. The convergence lim,_,00Y (s;y) = I,y € R™, implies the
convergences

lim P(Y (s;)) = lim 0Y (s:9) P(y) '0Y (s19) = P(y), lim PY2(Y(s;y)) = P2 (y)

s—0 s—0

lim Q(Y (s:9)) = lim "0Y "' (s:9)Q(y) OY }(s;) = Q). lim Q2(Y (s19)) = Q"2(y)
lim O(s; y) = lim Q*(Y (5;9))9Y (5;9)Q/2(y) = Lm, y € R™.

Since O(s; y) is orthogonal, we have |O(s;y)| = 1 for any s € R,y € R™, and by the dominated
convergence theorem we obtain

lim [ PY2Vu- (O(s;y) — L) PY?*Vu dy = 0

s—0 Rm™

implying that

lim [ (PY2Vu), - (O(s;y) — I,,))PY/*Vu dy

s—0 Rm

= lim [(Pl/QVu)S — PY2Vu| - (O(s;y) — I, ) PY*Vu dy = 0.

s—0 Rm

For the last limit we have used the convergence lim,_o(PY?Vu), = P/?Vu in L?*(R™), and
the upper bound |O(s;y) — I,| < 2, s € R,y € R™. Finally, by Theorem 3.1 we deduce the
strong convergence in H b

1 T+S 1
SEI—&I}OO E /T C (S)u ds = PrOJkerTﬂH}Du

implying that (u) = Proji.,7u = Projye rrmu € Hp, (Vu — V{(u),Vv)x, = 0 for any
v € ker T N H};, and the strong convergence in X p, uniformly with respect to r € R

] 1 r+S
SEI-‘,I:IOO S/’r Vus ds = V (u) .

For the last statement use |Vus|x, = |Vu|x,,s € R and the above convergence. O
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4 Properties of the operator B = —72

We introduce the operator B = —T7?2 = —div,(divy(- b)b) defined for any function in the
domain

domB = {u € domT : div,(ub) € domT} C L*(R™).

Clearly, this operator will play a crucial role when analyzing the asymptotic behavior for the
solutions of (1), (2) with small € > 0. In this section we study the semi-group generated by
the operator —B, together with the spectral properties of B. More precisely, we indicate a
characterization of the eigen-spaces of B and give a description, in terms of ergodic averages,
of the orthogonal projections on these eigen-spaces.

4.1 Semi-group generated by the operator —B

For any 6 > 0, the notation My stands for the one dimension Maxwellian, of temperature 6

The semi-group (e~ "5),¢cr, is given by

Proposition 4.1 (Semi-group generated by —B)
Let us consider the family of applications

1
VarT

and pou = u,u € L*(R™). The family (@r)rer, 15 a C° semi-group of contractions on
L*(R™), whose infinitesimal generator is —B, i.e. o, = e "B, 7 € R,.

52
Oru = /usMgT(s) ds = /u(Y(s; Ve 4 ds, ue L*R™), >0
R R

Proof. Clearly, for any u € L?(R™),7 > 0, we have

/ (<pTu)2 dy </ /U§M27(3> ds dy = /MQT(S)/ ug dy ds :/ u2(y) dy

saying that ¢, is a contraction of L?(R™). The semi-group property follows immediately,
thanks to the formula Mpy, x My, = My, 14,,01,02 > 0. Indeed, for any 7,h > 0,u € L*(R™)
we have

Oropu = /MQT(S)(cphu)s ds = /MQT(S)/Mgh(S/)US+SI ds’ ds
R R R
= /uS(MgT x Moyp,)(s) ds = /usM2(7+h)(s) ds = pripu.
R R
The continuity of the semi-group comes by the density of C.(R™) in L*(R™) and the con-
traction property, noticing that ¢ru = [ My (r)u Va7, dr. It remains to check that the in-
finitesimal generator of (7 )-er, is —B. Consider u € domB, that is u, Tu = div,(ub), Tu =

divy(divy (ub)b) € L2(R™) and let us establish that |, _op,u = —Bu in L2(R™). Thanks to
the equality in L?(R™)

1
up, = u + hdivy(ub) + h2/ (1 —8)(T?u)ps ds
0
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we can write for any 7 > 0

— U —Uu
CIOTU/ u _ / ]\41 (r) \/?T‘ d’l”

T

r

—u — v/ 27rdiv, (ub
/Ml T Vy( )

T

/ My(r / (1= 8)(T?) e, dsdr

My (r)r*T?u dr = T?u = —Bu in L*(R™).
7\,0 R

Conversely, assume that v € L?(R™) such that the following limit exists in L?(R™)

lim 278" = € L2(R™).
7\.0 T

A straightforward computation shows that for any 7 > 0 we have

h u m
(prudn — pralizgem < B e R

2h2|’LL|L2(Rm)
|(prw)n + (pru)-n = 20rulp2@m) < ——————, heR
saying that pru € domB for any 7 > 0 and
|U|L2(R ) 2 2|U|L2(R"L)
T erulpz@mm) < o T prulp2@m) < — 7> 0.

The semi-group property guarantees that

d
—pru = |prw|r2@m) < |w|2@my, T>0
A ram)
implying that
’T‘pfru&?(Rm) = /Rm(pTu 7-2907'15 dy
d
= —/ pri—prudy
R™ T
< lprulaqam |-
UlT2(Rm — u
> [PrUlL2(R™) dTSOT L&)

< |U|L2(Rm)|’w|L2(Rm), 7> 0.
For any h € R we can write

1/2 1/2

‘@T(uh_“)‘L%Rm) = ’(SOTU)h_SOTu|L2(Rm) < |hHT‘PTu|L2(Rm) < ‘h”U‘m(Rm lw ’LQ gy T2 0
and thanks to the continuity of the semi-group, we deduce
1/2 1/2
[un = ul 2gemy < |llul s 0] ol h € R

saying that v € dom7 . For any smooth function v € C2°(R™) we have (using the symmetry
of the Maxwellians My, (—s) = Ma,(s),s € R, 7 > 0)

/gp.ruvdy:/ uprvdy, TERL
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and therefore we obtain

wv dy = / — |r=0pruv dy = / g r=0prv dy

= / uT?vdy = — | TuTvdy.
m ]Rm
We deduce that Tu € domT and T?u = w € L*(R™).

Properties of the semi-group (¢;)rcr,

We inquire about the regularity propagation along the semi-group (¢-)-cr, . These properties
will be useful when justifying the regularity of the solution for the effective problem, and of

the corrector, see Theorem 8.1.

1. The semi-group (¢)-er, also acts on Hp. Indeed, for any function v € Hp and any

s € R we have

PY2(y)Vu, = PV2(y) 'Y (s;9)(Vu)s = *O(s;y) PY2(Vu)s.

As the matrices O(s;y) are orthogonal, we obtain

PY2(y)V(pru) = /R PY2(y)Vus Mo, (s) ds = /R LO(s;y)(PY?Vu) s Moy (s) ds

implying that

IV (pru)lxp = [PY2V (0ru)| p2m) < /R‘(PI/QVU)S|L2(RT”)MQT(S) ds = |Vulx,.

Therefore (¢r),cr, are also contractions on H}D

|‘P7u|%[}13 = ’@Tuﬁ,?(RM) + ‘v(@Tu)‘,%(p < ‘u’%Q(Rm) + ‘vu’%(}:' ’u‘Hl , UE€ H1137 T € R,

2. If uw € H} such that divy(PVu) € L*[R™), then div,(PVy,u) € L*(R™) for any

T € Ry, and
|div, (PVru)|p2@m) < [divy(PVu)|2@m), 7€ Ry,
Indeed, for any ¢ € C}(R™) we have
RmeTu Vi dy = /R / mPVus -V dyMa,(s) ds
= / / PVu- Vi dyMaz,(s) ds
// divy(PVu)y_s(y) dyMa,(s) ds

< /R|divy(PVU)’Lz(Rm)W—s\m(Rm)MzT(s) ds

= |divy (PVu)|p2@m)|¥]L2@mm)

saying that div,(PVy,u) € L?(R™), and |divy (PVoru)|p2@my < |divy (PVu)|p2@m)

for any 7 € Ry.
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3. More generally, the semi-group (¢r)-ecr, preserves all derivations c -V, along vector
fields ¢ : R™ — R™ in involution with respect to b, i.e. [b,c] = 0. More exactly, let ¢ be
a smooth field in involution with b, with growth at most linear and bounded divergence

ce WrE®™), sup S oo =0, dive e Lo®R™)
yERm1+‘y|

and let us denote by Z(h;y) the characteristic flow of c¢. For any function v € dom(c-V,)
we have
[(pru) 0 Z(h; ) — prulp2@mm) = [pr(uo Z(h;-) — u)|L2@m)
< o Z(h;-) — ulgamy < [h] € 1992 . Vulpagmy, T € Ry

saying that pru € dom(c-Vy) and [c- V(pru)|r2@m) < [c- Vulp2gm), T € Ry. Letting
h — 0 in the equality

(pru)o Z(h;') —p;u uoZ(h;-) —u
h B

gives the commutation of ¢, and c- V,, that is
C- V(QDTU) = SOT(C : VU)? TE R+'

Moreover, if ¢q, ¢y are two smooth fields in involution with respect to b and ¢; - V(c2 -
Vyu) € L?(R™), then ¢; - Vy(ca - Vypru) € L2(R™) and

le1 - Vy(ea - Vyoru)|pzmmy < le1- Vy(ez - Vyu)|r2gm), 7€ Ry
The above arguments allow us to propagate derivations along fields in involution with
respect to b, of any order, uniformly with respect to 7 € R...
4.2 Spectral properties of the operator B

We concentrate now on the spectral properties of B.

Proposition 4.2

The operator B is self-adjoint and positive. In particular the eigen-spaces are orthogonal, and
for any X\ we have ker(B — AId)* = Range (B — \Id).

Proof. For any u,v € domB and 7 € Ry we have

/@Tuvdy:/ u ;v dy

implying that meBuv dy = meu Bv dy. Therefore we have domB C domB* and B*v = Bv
for any v € domB. Conversely, assume that v € domB*, that is there is a constant C such
that

/ Buv dy < Clu|g2@m), for any u € domB.
RrRm

For any u € domB and h € R we have

1 1
wh = u+ hTu+ h2/ (1= ) (T2u)ns ds, u_p =u—hTu+ h2/ (1= 5)(T2u)_ps ds
0 0
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and thus we obtain

/ (v +v_p —20)udy = / v(up +u_p — 2u) dy

_ h2/ v {/01(1 ) (T2u)ns ds + /01(1 ) (T2u)_ps ds| dy

1
= h2/ (1-— 5)/ o(T?ups + Tu_ps) dyds < C|h|2‘u|L2(Rm).
0 m
As the domain of B is dense in L?(R™), it comes that

/ (vp +v_p —2v)u dy < Ch2|u‘L2(Rm), heR, ue L*R™) (24)

m

implying that
lvh + v_h — 20|2@m) < Ch®, hER. (25)

In particular, taking u = —v € L?(R™) in (24), one gets
lvop, — v[%Q(Rm) =— /Rm(vh +ov_p —2v)vdy < Chz\v]Lg(Rm). (26)

The estimates (26), (25) guarantee that v € domB and thus B* = B. Clearly, for any
u € domB we have [p,Buudy = [p.{Tu)? dy > 0, and therefore all the eigen-values belong
to R+. O

Description of the eigen-spaces and of the associated projections

For any A € Ry we denote by E) the subspace E) = ker(B—AId). Thanks to the equality
JpmBuu dy = [o(Tu)? dy,u € domB, it is easily seen that

Ey=kerB=kerT = {u € L*(R™) : us =u,s € R}.

By Proposition 3.1 we know that
1 r+S
Projg,u= lim — / ug ds, strongly in L*(R™), uniformly with respect to r € R.
S—+o00 S r

We will see that the orthogonal projections on the subspaces F) are also given by average
operators. For any A > 0 we introduce the family of transformations of L*(R™) x L?(R™)

G (8)(uy0) = (R(VAS) (s, 04) ) = (s, v)R(=VAs), (u,0) € LAR™) x L2(R™), 5 € R

where R stands for the rotation of angle 8 € R.

Proposition 4.3
For any X\ > 0 the family ((\(s))ser is a CP-group of unitary transformations of L*(R™) x
L?(R™). The subspace Ey writes

E, = {u € domT : us = cos(VAs)u + Sin(ﬁs)\gu, for any s € R}
= {u € dom7 : <u + z\%u)s = ¢ Vs (u + z\gu) , foranyse R}
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and for any u € L*(R™) we have

2 r+S T 2 r+S
Projg, u = SEIJIFIOO /T cos(VAs)us ds, \ﬁProjEku = Sl_i)rfoo /r sin(vV/As)us ds

in L?(R™), uniformly with respect to r € R. If u € domT, the orthogonal projection on E\
also writes

Projg,u = — EIEOO 5 / sin \fs)\rus ds
in L?(R™), uniformly with respect to r € R.
Proof. Clearly we have for any (u,v) € L2(R™) x L2(R™), s,h € R
O ()6 () (1, v) = (G (h) (1, 0))sR(=V As)
= (un, o) R(=VARR(=VXs)
= Qs + ) (u,v)

and

) = [ L+ @) dy= [ (o +0? ay.
The continuity of the group ({(s))ser guarantees the continuity of the group (¢x(s))ser-
We denote by T the infinitesimal generator of ({)(s))ser. Its domain is given by the pairs
(u,v) € L2(R™) x L*(R™) such that it exists
d
Th(u,v) = g\szog‘,\(s)(u, v) € L*(R™) x L*(R™).

It coincides with the set of the pairs (u,v) € L2(R™) x L?(R™) such that it exists

d d

£|S=O{CA(S)(UW)R(\/X5)} = T ls=o(us, vs) € LA(R™) x LA(R™).
Therefore domT) = dom7 x dom7, and for any (u,v) € domT) we have

Tx(u,v) = %|8:0§,\(3)(u,v) = VA, 0)R(—7/2) + (Tu, Tv) = (Tu— Vv, Tv+ Vu).

The kernel of Ty is Fy = {(u, %u),u € E\}. Notice that u € E) iff (u,—=u) € F), or

equivalently iff

T T
uw € domT, | us, —us | R —Vs) = (u, u) , for any s € R.
( VA > (=v9) VA Y
We deduce that v € E) iff u € dom7T and

T
"V

us = cos(VAs)u + sin(\F)\s)lu, for any s € R (27)
VA
T . T
\ﬁus = —sin(VAs)u + cos(ﬁs)\ﬁu, for any s € R. (28)

Observe that (28) comes from (27), by taking the derivative with respect to s and therefore
we obtain the following characterization for the subspace E)

E\ = {u e domT : us = cos(VAs)u + Sin(\f)\s)\gu for any s € R}

= {u € domT7 : <u + z\%\u)s — e~iVs (u + Z\%\u) for any s € R} .
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By Theorem 3.1, we know that for any (u,v) € L?>(R™) x L?(R™) we have

Projp, (u,v) lim S/ ) ds

S—+oc

in L2(R™) x L?(R™), uniformly with respect to » € R. In particular, we deduce that

r+S T+S
Projg, (u,0) lim S/ ds = lim S/ cos(V/As)us, sin(V/As)us) ds

S—+o0 S—+o0

in L*(R™) x L*(R™), uniformly with respect to 7 € R. But Proj, (u,0) = (U, %U) for some
U € E) satisfying

/m{( U)V—\%U\%V} dy=0, V€ E)

which also writes

/(uQU)de:O, V e Ey.

m

This exactly means that

2 r+S
Projg,u =2U = lim / cos(VAs)uy ds

S—+o00

in L2(R™), uniformly with respect to r € R. Notice that we also have

lPro' u—QLU— lim 2/T+Ssin(ﬁs)u ds
\/X JE U= \/X 55400 S r s

in L(R™), uniformly with respect to r € R. If u € dom7 we have

ug in L*(R™)

{sm<f3> } — cos(VAs)us + sin(v/As)——

ds

V2 Va

and thus we deduce

Projpu= lm / Hs{ds [sm(\f 5) f] —sin(\ﬁ)\s)\gus} ds

r+S
= — lim S/ sin( )\us ds

S—+o0

in L?(R™), uniformly with respect to r € R. O

Remark 4.1

1. It is easily seen that Ey = ker T = ker B is left invariant by the group (((s))ser and
that Projg, = (-) is commuting with ({(s))ser and T

Projp,us = Projg,u = (Projg,u)s, u€ L*R™), s€R

Projg,Tu =0 = TProjgu, u &€ domT, s€R.
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2. The subspaces Ey = ker(B — A d),\ > 0 are left invariant by the group ({(s))ser-
Indeed, for any v € domT such that

uti—u| =e V¥ (ut+ti—=u), seR
< VA >s VA
we have

up € dom7, | up+i—u =e VY up+i—=up ), seR
h ( h e h>s h o h

saying that up, € Ex,h € R, A > 0. In particular the subspaces Ey N H}D, A >0 are left
invariant by the group (C1(s))ser-

3. The application u € E) QH}D — \%u 15 a isometry with respect to the H}g norm. Indeed,

for any u € E\N H}; we have

T

us = cos(VAs)u + sin(vAs u, s€R.
s (VAs) ( )ﬁ
As we already know that u,us € ExN H};, we deduce that %u e BEynN H}, and thus we
can write
/ PVu-Vudy = PVus - Vug dy
m R'm

2
cos(VAs)PY/?Vu + sin(\f)\s)Pl/Zvlu dy

. 7

= cos(VAs)? [ PVu-Vu dy + sin(VAs)? / PV
R™ Rm™m

T T
—u-V—=ud
NV Y, e

+ sin(2V/\s) /mPVu : V\gu dy.

Taking the derivatives with respect to s at s = 0, we deduce that

/mPVu-V:gu dy=0

which implies that
T T
PYV—u-V—udy = / PVu-Vudy.
R VA VA m

Notice also that

/m<\gu>2 dy = —/mu7;u dy = /mu2 dy

T _ 1 T T _
and thus we have |\TAU|H}, = |u|H}1) for any uw € Ex N Hp and also (ﬁu, \T)\’U)H}) =
(u, U)H}D for any u,v € ExNH}. The reciprocal application of\%\EmH}) is _%|EWH}3'

4. The orthogonal projection on Ex,\ > 0 are commuting with the group (((s))ser

Projg, us = (Projp,u)s, s €R.
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In particular Projg,, A > 0 are commuting with T, that is, for any v € domT,A > 0
we have the equalities in L?(R™)

. . .. us—u . Projpus—Projpu
Projn. Tu = Projz. lim = lim A A
']E)‘ ']E)‘ s—0 S s—0 S

Projp. u)s — Projn. u
= lim( Ig s 22 = TProjg, u.

s—0 S

5. Many other commutations hold true, for example between ((x(s))ser, (Cu(S))scr, thanks
to the equalities

R(VAs)R(Vih) = R(Vih)R(VAs), A, >0, s,heR.
We study now the action of ({x(s))secr on Hp x Hp, for any A > 0. As in Proposition 3.5 we
prove

Proposition 4.4

Assume that the hypotheses (16), (17), (18), (19) hold true. For any (u,v) € H} x H},
we have (\(s)(u,v) € Hy x Hp and ]C,\(s)(u,v)|Hllij}1) = ](ujv)\H}DxH}). The family of
applications (3 (s))ser = (C)\(S)’H}DXH}D)SER is a CO-group of unitary operators on Hp x Hp.
In particular for any u € H}D we have Projp u € H};

9 [r+S T 9 [r+S
VProjp, u = SEIEOO g /T cos(V/As)Vu ds, V\T)\ProjExu = SEIEOO g /T sin(v/\s)Vu, ds
(29)

strongly in X p, uniformly with respect to r € R and
u—"Projpu Ll ExNHp in Hp, |VProjp ulk, <2|Vul%,.
Proof. Let (u,v) be an element of H5 x H}. By Proposition 3.5 we know that
(us,vs) € Hle X H113> |us|L2(Rm) = |U|L2(Rm)a |Us|L2(Rm) = |U’L2(Rm)
Vus|xp = [Vulxp, [Voslx, = [Volx,
and therefore we deduce
ICE(s) (u, v)@})m}j = |G (9) (1, V) T2 momy 2y + | €O8(VA8) Vg — sin(vAs) Vg [,

+ [ sin(VAs) Vg + cos(VAs) Vus[%
= |(uav)|%2(Rm)xL2(Rm) + | Vus %, + [Voslx,

o 2
= |(U:’U)’H},><H},'

The group property of (¢} (s))ser comes by the group property of ({x(s))ser, cf. Proposition
4.3. Notice that

G (8) (1, 0) = (u, V) G711, = 1O (8) (1, 0) = (1, 0) L2 gom o p2m)
+ | cos(VAs) Vg — sin(vVAs)Vog — Vulk,
+ | sin(VAs) Vg + cos(VAs) Vo — vu@(P
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and therefore, the continuity of (¢} (s))ser on Hp x H}, follows by the continuity of ((\(s))ser
on L%(R™) x L?(R™) and by the continuity of ((*(s))ser on Hp, thanks to the inequalities

| cos(VAs) Vs — sin(vVAs) Vo, — Vulx, < (1 — cos(VAs))|Vus|xp + Vs — Vulx,
+sin(VAs)| [Vus|x,,
and

| sin(VAs) Vg + cos(VAs) Vo, — Volx, < |sin(VAs)| [Vus|xp + [Vos — Volx,
+(1 — cos(VAs)) IVus|xp

and to the equalities |Vus|x, = |Vu|xp,|Vus|x, = |Vv|x,. Notice that the set of elements
in Hj, x H}, which are left invariant by the group (¢} (s))ser is given by

{(u,v) € Hp x Hp : (3(s)(u,v) = (u,v), s € R}
= {(u,v) € L*(R™) x L2 (R™) : a(s)(u,v) = (u,v), s € R} N (Hp x Hp)

:F,\O(H}DXH};):{<U,\7})\U> : uGEk}ﬂ(H}DXH};)

_{<u,\2u) : uGEAﬂH}D}.

For the last point we have used the third point of Remark 4.1.
Applying Theorem 3.1, we deduce for any u € H}D, the strong convergence in H}D X H}D,
uniformly with respect to r € R

. 1 r+S . ‘ T
lim 5/ G (8)(u, 0) ds = Projp, np, w i) (4, 0) = (U, \ﬁU

S—+oo

for some U € E\ N HY. This implies the following strong convergences in L?(R™) x L?(R™),
uniformly with respect to r € R

Sli)r}rloo 1 /TT+S(COS(\/XS),Sin(\/X8))US ds = <U, \gU)

and in Xp x Xp, uniformly with respect to r € R

1 r+S
SEI-EOO S/’r (cos(VAs), sin(vV/\s))Vug ds = (VU, V\gU) . (30)
By Proposition 4.3 we have the strong convergence in L? x L?
SETOO 5 / (cos(VAs), sin(VAs))us ds = 1_1}111Oo 5 / ) ds

1 . T .
=3 (Prol]Eku, \/XPI‘O‘]E/\U>
implying that ProjE u = 2U € E\ N Hp and the statements in (29) follow by (30). As
(u,0) — %(ProjEA ,\fProl]EX u) is orthogonal on F\ with respect to the scalar product of

L*(R™) x L2(R™), and also on FyN(H5 x HL) with respect to the scalar product of Hp x Hp,
we deduce that for any V € E) N H}, we have

T

Pro u, V—=V =0.
R SV/Y >XP

1 , 1
<Vu — QVPrOJEAu, VV) . + <O — 5 7

26



By the third statement of Remark 4.1, we deduce that
(Vu— VProjpu,VV)x, =0, V € ExNHp

which together with the orthogonality of u—Projg, v on E) in L?(R™), gives the orthogonality
of u — Projg, u on E\N H}; in H};. The last conclusion follows thanks to Proposition 3.5,
noticing that

2 r+S
|VProjp, ulx, < <gr_r>1}££5/ | cos(V/As)| ds> \Vulx,

1/2

1 r+S
< liminf 2 (S/ (cos(VAs))? ds> \Vulx,

S——+oo
= \@‘vu’XP'

Remark 4.2
The convergence in Proposition 4.4 being uniform with respect to r € R, it allows us to obtain,
by changing s to —s

2 [ . . T, .
Sgrfoo S/r (cos(VAs)Vu_s, —sin(VAs)Vu_) ds = <VPI‘O‘]E/\U, V\/XPIOJE/\U>

strongly in Xp X Xp, uniformly with respect to r € R.

5 The effective problem

The goal of this section is to introduce the effective bilinear form m and to justify its well
definition, see Proposition 5.5. In order to achieve this, in Section 5.1 we prove some technical
lemmas, which will provide the existence of the limit

10
SETooS/O G(s)DV{u(Y(2s;-))} ds (31)

strongly in Xg, for any u € ExNHph, A > 0 and D € Hg’. Moreover, the limit in (31) is
explicited through a new family of projections associated to the eigen-spaces of the operator
—L?, where L is the infinitesimal generator of the group (G(s))scr. These projections are
studied in Proposition 5.1. In Section 5.2 we indicate a structural hypothesis which allows
us to justify the existence of the limit (31) for any u € Hp.
5.1 Technical tools
For further developements, we need the following lemma.
Lemma 5.1

1. For any matriz field D € HoNHE and any vector field c € Xp we have the convergence

1 r+S
Shlf S/ G(s)Dcds = (D) c, strongly in Xq, uniformly with respect to r € R.
—+00 r

2. The above convergence still holds true for any matriz field D € HY, and any vector
field ¢ € Xp, where the average of D is considered in Hg . cf. Theorem 3.2.
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Proof.
1. We know by Theorem 3.2 that

1
lim / G(s)D ds = (D) strongly in Hg, uniformly with respect to r € R.

We define the sequence ¢, = 1{{|P1/zc|<k}}c k € N. Any vector field ¢, belongs to X7 and
we have the convergence limg_, 4o cx = ¢ in Xp. For any k € N we have the convergence

lim / s)Dcy, ds = (D) ¢, strongly in X¢, uniformly with respect to r € R
S—+o0 S

thanks to the inequality

<

‘1
XQ

r+S r+S
5 /T G(s)Dcy ds — (D) ¢y, S/r G(s)D ds — (D)

‘ 1

ek | xere
Hq

Observe that
‘ 1

r+S 1
S/r G(s)Dcds — (D) c

r+S
< ‘ / G(s)D(c —cx) ds
X S T
Q

Xq

1 r+S
+ ‘S / G(S)Dck ds — <D> Cl + ’ <D> (Ck — C)‘XQ
r XQ
1 r+S
< ‘ / G(s)D ds lc — cklxp
S r Ho>e

Q
1 r+S
+ ‘5/ G(s)Dcy, ds — (D) ¢,

+ (D) |ug ek — clxp
Xq

1 r+S
< 2|D|H5°|Ck_C|XP+ ‘S/ G(S)Dck ds — <D> Cl
r Xo
which implies that for any k£ € N

lim sup sup
S—+oco reR

r+S
% / G(s)Dcds — (D) ¢

< 2|D]h(5c>|c/1€ — | xp-
X

Our conclusion follows by letting & — +oo.

2. For any k € N we consider Dy = 1{¢§k}D. Since D € Hgf C Hgoc, we deduce that
Dy e HoNHy, and by the previous statement, we have for any £k € N

lim sup|—=

=0.
S—+o0 reR

S
/ G(s)Dycds — (Dg)c
Xq

Notice that

1 r+S 1 r+S 1 r+S
‘ G(s)Dcds — (D)c| — ‘/ G(s)Drcds — (D) e| < ‘/ G(s)(D — Dg)cds
S Jr X, S Jr b's Sy X
Q Q Q
+ [ (Dx, — D) c|x,
1 r+S
S J, Xo Q

r+S
<5 [ 16Dl mryely ds+ D) g Lmmyelxs

<2[(D) |ug Liyp>ryclxp
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which implies that

r+S
lgrgitig ?«lel]g 5 G(s)Dcds —(D)c|  <2[(D) |ug [Ly>k}clxp-
T XQ
Our conclusion follows by letting k — +o0. O

The purpose of the following proposition is to introduce the orthogonal projections on the
eigen-spaces of —L?, by appealing to the von Neumann ergodic mean theorem, in respect
with a new family of unitary C°-groups. These new projections will allow us to justify the
existence of the limit in (31). As suggested in Proposition 4.3, for any A > 0, we introduce
the family of transformations of Hg x Hg

GA(s)(A, B) = (cos(VAs)G(s) A — sin(vAs)G(s) B, sin(v/As)G(s) A + cos(VAs)G(s) B)
for any (A,B) € Hg x Hg,s € R.

Proposition 5.1
For any A > 0, the family (Gx(s))ser s a CO-group of unitary transformations of Hg x Hg,
whose infinitesimal generator Ly is given by

domLy = domL x domL, Ly(A,B) = (LA—VAB,LB+ VA), (A,B) e domL x domL

where L is the infinitesimal generator of the group (G(s))ser. For any A € Hg we have, with
the notation £, = ker(—L? — \Id)

L
(ProngA, ﬁProngA> = hm g / (cos(VAs)G(s) A, sin(vVAs)G(s)A) ds
strongly in Hg x Hg, uniformly with respect to r € R, and

[Proje, Ala, = Proje, Al < |A|ng,-

Hg

7

Moreover, if A€ Ho N HZ, then Projng Proje, A € H) and

' UX

[Proje, Al < 2|Alis.

7

Projg, A ‘ < 2’A‘Hgg°-
HE

Proof. It is easily seen that (G(s))ser is a CP-group. For any (A, B) € Hg x Hg we obtain
by direct computations

1GA()(A, B) gy = (A, B) s

saying that (Gx(s))scr are unitary transformations of Hg x Hg. As before we check that
domZLy = domL x domZL and

Lx\(A,B) = (LA— VAB,LB + VA), (A,B) € domL x domL.

The kernel of Ly is given by

iy ={ (4. 54) s aeef.
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Notice that A € &) iff (A, WA) € ker Ly, or equivalently iff A € domL and G(s) (A7 %A) =
<A, fA) for any s € R, that is

G(s)A = cos(VAs)A + sin(ﬁs)\%fl, seR (32)
L ) L
WG(S)A = —sin(VAs)A + cos(ﬁs)ﬁfl, s eR. (33)

Observe that (33) comes from (32), by taking the derivative with respect to s and therefore
we obtain the characterization

&= {A € domL : G(s)A = cos(VAs)A + sin(ﬁs)\%A, s € ]R}

:{AedomL : G(s) <A+z’\Lf)\A> = Vs <A+i\Lf)\A>, seR}.

Applying Theorem 3.1, we know that for any (A, B) € Hg x Hg we have

Projyerr,, (4, B) SETOO S/ Ga(s)(A, B) ds

in Hg x Hg, uniformly with respect to » € R. In particular we have the uniform convergence
in Hy x Hg, with respect tor € R

S—+oo S

r+S
Projyerr, (4,0) = lim 1/ (cos(VAs)G(s) A, sin(VAs)G(s) A )ds< ,\%Z) (34)

for some Z € £,. Therefore, for any W € £, we have

(A= Z,W)n, + (0— \%Z,\%W)H = 0.

As (G(s))ser is a unitary group, its infinitesimal generator L is skew-adjoint, and thus
(A— 2Z,W)HQ =0, Weé&,

saying that Projg, A = 2Z. Thanks to (34) we obtain the uniform convergence in Hg x Hg,
with respect to r € R

o L 2 .
<PI‘OJ5>\A, \FAPTOJ&\A) = SBI-II}OO S/r (cos(VAs)G(s) A, sin(VAs)G(s)A) ds.

Assume now that A € HoNH 0 The above convergence in Hg x Hg guarantees the existence
of a sequence (Sy), such that lim, 4o S, = +00 and

2 [
lim / cos(VAs)G(s)A ds = Projg, A, for a.a. y € R™
0

n—+00 Jp,

Sn
lim ;/ sin(vV/As)G(s)A ds = iProjgkA, for a.a. y € R™

n—-+00 \/X
But the sequence < fo cos(VAs)G(s)A, sin(vAs)G(s)A) ds) is bounded in H x HE

< 2|A|pee,

< 2’A‘Hoo
- Q
Hy

Hy

;n/o cos(VAs)G(s)A ds

;n/o sin(V/As)G(s)A ds
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We deduce that Proj&A Proje, A € HYY and

'UA

Proje, Alis < 2/Alz. PrngAA\ <2/ Alys.

[eS]

i

Remark 5.1
It is easily seen, thanks to the skew-symmetry of L that & := ker(—L?) = ker L and thus
Projg, A = Projy., A = (A), for any matriz field A € Hg,.

Remark 5.2

1. As in the last statement of Theorem 3.2, the operator Projg, extends from Hg to Hg oc-
Indeed, let A be a matriz field in HQoc. For any k € N, A := 11,1y A belongs to Hg,
and by Proposition 5.1 we know that

S—+oo

r+S
lim ;/ (cos(VAs)G(s) Ag, sin(vVAs)G(s)Ay) ds = (ProngAk, PrOngAk)

L
VA

strongly in Hg x Hg, uniformly with respect to r € R. We have

) ) r+S ) ) 2 r+S .
lim S/r(cos(\f)\s),sm(\f)\s))G(s)Ak ds = Shm 5 /T(cos(\F)\S),sm(\f)\s))G(s)Al ds

S—400 —+o0

almost everywhere on {tp < min(k,l)}, and thus there are two matriz fields B,C €
Hgoc such that

) r+S
lim = / (cos(VAs)G(s) Ay, sin(VAs)G(s)Ay) ds = 1y<py (B, C)

S—+oo

= <ProngAk, ProjgkAk>

L
VA
strongly in Hg x Hg, uniformly with respect to r € R, for any fized k € N. We claim
that B € dom(L?), and L?B + AB = 0, that is B € ker(—L? — \Id), where L is
considered in Hg .. Indeed, we have for any k € N

1yy<iy B = Proje, Ay € dom(L|p,,)
saying that B € dom(L). Moreover
liy<iyLB = L(l{wgk}B) = L(ProngAk) € dom(L’HQ)
implying that LB € dom(L) and

1iy<ipL?B = 1gy<iy L(LB) = L(1{y<; LB) = L(L(Projg, Ay))
= —)\ProngAk = _1{1/)§k:})‘B7 ke N.

We deduce that B € dom(L?) and L?B + A\B = 0. Notice that for any k € N we have

L i L
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saying that C' = %B € dom(L). It is easily seen that the matriz field B € Hgoc
satisfies

B e ker(—L? — Md), (Liy<py(A—B),M)p, =0 for any M € Ey,k €N

and that B is uniquely determined by the above variational characterization. Moreover,
if A€ Hg, then B coincides with Projg, A C Ex C Hg. Therefore, for any A € Hq oc,
the family

< 5 /THS(cosms)G(s)A’ sin(VAs)G(5)4) ds)

converges in Hgioc X HQloc, as S — +oo, toward (B, %B), where the application

A€ Hgloc = B € Hgoc extends the projection Projg, : Hg — Hg. We use the same
notation B = Projg, A independently of A being in Hg or in HQ oc-

S>0

2. For any matriz field A € Hy C Hqoc and any k € N, the matriz field Ay = 1py<py A
belongs to Hg N Hy, and by Theorem 5.1 we have

‘PI‘OJg)\Ak‘Hg?o S 2‘Ak‘H5° S Q‘A‘ngo

Projg, Ay

< 2|Aklugy < 2|Alng-

i

OO

We deduce that
|Pr0j5/\A’H(o?o = igg |1{w§k}PI‘Ojg>\A|H%o = Zlelg ’PrOjSAAk’Hg) < 2’14‘[{50
and

< Q‘A‘Hoo
- Q
Ay

L. L
1{w<k}ﬁPr0J5AA‘ = sup \f)\PrOJ&Ak

PI‘O']g)\A‘ = sup
keN H(%o keN

oo

7

The unitary C%-groups (G (s))ser, A > 0 emphasized in Proposition 5.1 allow us to establish
the following convergences.

Lemma 5.2

1. For any matriz field D € HgN Hé’f and any function u € E\ N H}D, A > 0, we have the

convergence
lim $)DVugs ds = Pro DVu —|— ——Proje DV—
S—+o00 S 2s IEa 2 /4N JEu \f/\

strongly in Xq, uniformly with respect to r € R.

2. The above convergence still holds true for any matrix field D € HY and any function

u € E,\OH};, A > 0, where the operators Projg,,, L are considered in Hg joc cf. Remarks
5.2, 3.1.

Proof.
1. For any s € R we have ugs = cos(V4As)u + sin(v4 s) ~u. By the third statement of

Remark 4.1, we know that fu € E\xNH} p and therefore we have the following equality in
Xp

Vg, = cos(V4AAs)Vu + sin(V4As)V (35)

T
ot
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We claim that

L2 [T .
sl_lﬁloo g /T cos(V4As)G(s)DVu ds = Projg,, DVu (36)
lim > /Hss' (VIAS)G () DV - —u ds = —=_Proje DV-L (37)
im — in s)G(s —uds=——=Pr —u
$54s0 S ). VA VZ5 W VY

strongly in X, uniformly with respect to r € R. We introduce the sequence ¢, = 1{{|P1/2Vu|§k}}Vu.
Any vector field ¢, belongs to X and we have the convergence limy_, o ¢ = Vu in Xp.
By Proposition 5.1 we have
2 r+S
lim S/r cos(V4rs)G(s)D ds = Projg,, D

S—+o0

strongly in Hg, uniformly with respect to » € R. As in the proof of Lemma 5.1 we have

2 r+S ]
‘S/r cos(V4As)G(s)DVu ds —PI"O_]&D\DVU‘XQ < 4\D|H5o]Vu — cklxp
2 r+S ]
+ ’S /r cos(V4As)G(s)D ds — Projg, D|  |ck|xss

Hq

which implies that for any k£ € N

2 [T+S
lim sup sup / cos(V4As)G(s)DVu ds — Projg,, DVu| < 4|D|ge|Vu — cp|x,-
S—+oo rER r Xq @
The formula (36) follows by letting & — +o0. For the formula (37) use the field V%u € Xp

and the convergence

9 r+S
lim S/ sin(V4As)G(s)D ds =

Proj. D
S—+oo J&U‘

L
VAN
strongly in Hg, uniformly with respect to € R. Combining (36), (37), (35) yields

. . T
SETOO 5 / $)DVugs ds = PI'OJ54>\DV'LL + 5 rPrOJ&MDVﬁ
strongly in X¢, uniformly with respect to r € R.

2. For any k € N, let us consider Dy = 1y,<x3 D € Hg N H(y. By the previous statement we
have

1+ 1 1 T
li D s ds — =Proje . D ———P D = 0.
sirfooiléﬂg /r G(s)DrVugs ds 5 Froje,, rVu 5 \ﬁ r0jg, kvﬁ . 0
(38)
Notice also that we have
1 r+S 1 T
- D s ds — P D —P D
‘ / G(5)DVugs ds rojg,, DVu — 2\/7 r0jg, | Vﬁ .
/ $)DrVugs ds — Pro DypVu — 1LPIO' D Vlu
S kVU2s Jenk 2Vax JenVk V5N o
1 1 )
< 'S/ )(D — Dy)Vugs ds . + B ‘PI"O_]&M(D]{ — D)Vu‘XQ
1 L T
5 ' PI‘O‘]54/\ - D)Vﬁu .
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It is easily seen that

‘; rglfs)(D — D)Vugs ds| = ’ ré?s)Dl{w>k} (cos(\/ﬁs)Vu + sin(\/ﬁs)VTu>
T XQ T \/X XQ
< |Dl|ug <|1{¢>k}VU|Xp + ‘1{¢>k}v\gu )
Xp
and
L |Projg,, (Dy, — D)Vu| ‘ Projg,. (D, — D)Vlu
2 [ xo T3l vy e V3lxg
< %!PTOJ'EMDIHg; 1gpsiy Vulx, + 3 ‘LPFOJE D‘ ’1{¢>k}v7-u
VA “” HE VA lx,
< Dl <|1{w>k}vu|xp + ‘1{¢>k}v7u ) .
VA lxp
Combining the convergence (38) with the previous estimates yields
. L[+ 1 T
lggiligigﬂg /r G(s)DVugs ds—§Pr0354ADVu Q\ﬁPrOJ&MDV\A .
< 2’D|H5° <‘1{w>k}Vu|Xp + '1{¢>k}VTu ) )
VA lxp
Our conclusion follows by letting £ — +o0. O

5.2 Structural hypotheses associated to B

Notice that any E) is closed and E\ L E, for any A # pu, thanks to the symmetry of B. In
order to extend the existence of the limit (31) to any function u € H 113, we need to decompose
the space H} through the spaces (Ey)x>0. We assume that L?(R™) is the Hilbertian sum of
a countable family of subspaces E) i.e., span(UpenEy, ) is dense in L2(R™)

L*R™) = @EA, E,, =ker(B— A\, Id), A\, >0, neN. (39)

neN

Without loss of generality, we assume that Ao = 0 (independently with respect to 0 being an
eigen-value of B or not) and A, > 0, E) = ker(B — \,Id) # {0},n € N*.

Example 5.1 (Periodic case)
Assume that the characteristic flow Y (s;y) is So-periodic, that is

350 >0 such that Y(s+ So;y) =Y(s;y), s€R, yeR™.

We claim that any eigen-value of B = —T?2 writes /A, = nwo,n € N,wg = 2m/Sy. Indeed, if
Ao = 0 is an eigen-value of B, it corresponds to n = 0. Let A > 0 be a positive eigen-value of
B. This means that there is u € dom7T ,u # 0 such that

\fgus — Vs (u + z\gu) , seR.

Us + ¢
Taking s = Sy, one gets

<u + Z\%u) (1 - e—mSO) =0
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implying that VASy = 2wn,n € N*. In this case the hypothesis (39) holds true. Indeed, if
u € L?(R™) is such that Projg, =0 for any eigen-value Ay, then we have

1[5
ProjEOZSO/O us ds =0

and for any n € N*

SO 7' SO
Proj U= — cos(nwps)us ds = 0, ——Proj U= — sin(nwps)us ds = 0.
IE2.8 So Jo (muos)us T nwo IB 2.3 So Jo (nuos)us

Therefore, all the Fourier coefficients of the Sp-periodic function s — u(Y (s;-)) € L*(R™)
vanish, and thus u(Y (s;-)) = 0 for any s € R, saying that v = 0.

Example 5.2 (Almost periodic case)

We investigate now a very important particular case: that when the CO-group (((s))scr is
almost periodic. We assume that for any u € L*(R™), the function s € R — ((s)u € L*(R™)
is almost periodic, that is, the trajectory s — ((s)u € L?(R™) is the limit in C(R; L>(R™))
of a sequence of trigonometric polynomials with coefficients in L*(R™) (see [6] for a detalied
study of almost periodic functions with values in Banach spaces).

Proposition 5.2

Assume that the hypotheses (16), (17) hold true and that the C°-group ({(s))ser is almost
periodic. Then the family of non trivial subspaces Ey = ker(B — Ald),\ € Ry is countable
and L*(R™) = ©F,,,, Ey, = ker(B — \,Id) # {0}.

Proof. Let u € L?(R™) be a function orthogonal to E) = ker(B — AId) for any eigen-value
A. Therefore u is orthogonal to E) = ker(B — AId) for any A € Ry

—+00 —+00

1 S 2 S
Projpu= lim — /C(s)uds =0, Projpu= lim — /cos(\F)\s)C(s)u ds=0, A>0.
S S 0 A S S 0
Notice that we also have

) S
\’gProjEAu = SETOO g /Osin(\f)\s)C(s)u ds=0, A > 0.
Therefore all the Fourier coefficients of s — ((s)u vanish, implying that u = 0 in L?(R™) and
thus span(Uyer, Ex) = L*(R™). As L?(R™) is separable and the subspaces (Ex)rer, are
orthogonal, we deduce that Ey # {0} only for a countable set {\,}, saying that (39) holds
true. |

A direct consequence of (39) is given by

Proposition 5.3
The space Hp is the Hilbertian sum of the spaces (Ey, N Hp)nen-

Proof. The spaces (Ex, N Hp)nen are closed in Hp, since (Ey, )nen are closed in L2(R™).
By Propositions 3.5, 4.4 we have

u—Projg, ul E\,NHp in Hp, u€ Hp, n €N.
Therefore, for any u € E), N Hp, k # n we have

u—01Ey,, NH: in Hp
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saying that Eyx, N Hp L Ey, N H} in Hp, for any k # n. Let u be an element of Hj. As
L?(R™) is the Hilbertian sum of (E), )Jnen, we have u =" . Projg, w in L*(R™). For any
n € N we have Proj By, U= Projp, n LU and therefore the Bessel inequality

. 2 . 2 2
> [Projg, , ul, = > [Projg, , nayulyy, < lulyy
neN neN

guarantees that )\ Projg, u converges also in H}. Tts sum in L?(R™) being u, we deduce

that u =Y, .y Projp, uin Hp, saying that H}, = span(Unen(Ex, N Hp)). O

By Lemmas 5.1, 5.2 we deduce that (% f:JrS G(s)DVusgs ds)s , converges strongly in X,
>

when S — 400, uniformly with respect to r € R, toward some limit not depending on r, for
any u € span {U,en(Ex, N Hp)}. Thanks to the inequality

1 r+S
’S/ G(S)DVUQS ds < |D’H5°‘VU|XP7

Xq

we deduce that the above convergence holds true strongly in Xg, uniformly with respect to
r, toward some limit not depending on r, for any u € @pen(Ey, N H}D) = H}D. We are led to
the following result.

Proposition 5.4
For any matriz field D € HY and any function u € H}g, the quantity

1 r+S
g / G(s)DVugs ds

converges strongly in X¢q, when S — +oo, uniformly with respect to r € R, toward some limit
not depending on .
5.3 Definition and properties of the bilinear form m

We intend to apply variational methods for solving (1), (2). We need to construct the bilinear
form corresponding to the limit problem. We perform this construction for any field D of
symmetric positive matrices, satisfying

Q' (y)(D(y) +b(y) @ b(y))Q"*(y) > dln, y € R™ (40)
for some constant d > 0. We suppose also that
DeHy, be X§. (41)

The above hypotheses have to be considered together with the previous assumptions in (16),
(17), (18), (19), (39). We introduce the following bilinear applications.

Proposition 5.5

1. For any € > 0, let us consider the application a : H}; X H}D - R

1
a®(u,v) = [ D(y)Vu-Vovdy +5/ (b-Vu)(b- Vo) dy, u,v€ Hp.
Rm m

~~

a(u,v)

The bilinear form a° is well defined, continuous, symmetric, positive. For any ¢ €]0,1]
it is coercive on H} with respect to L*(R™).
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2. For any r € R, let us consider the application m : H}D X H}J —R
1 r+S
m(u,v) = / {( ) (y)Vu+ lim / (G(s)D — (D))Vuas ds} -Vu dy
m S—+oo S r

The bilinear form m is well defined, not depending on r € R, continuous, symmetric,
positive and also writes

S/2
m(u,v):/< ) (y)Vu-Vody+ lim / / NVus-Vo_g dyds,u,v € Hp.
m —»+a> S/2 m
(42)
The following equality is satisfied
m(u,v) = [ DVu-VProjg, vdy, u€ Ej, NHL neN, ve Hp. (43)

Rm
3. The bilinear form m satifies the following commutation property with the operator B
m(u, Bv) = m(Bu,v) for any u,v € Hp such that Tu, Tv, Bu, Bv € Hb.

Moreover, the bilinear form (u,v) = m(u,v) + [p.b- Vu)(b- Vv) dy is coercive on H},
with respect to L?(R™).

Proof.
1. For any u,v € H}D we have

|DVu- Vol = [Q'2DQY? : (PY?Vv) @ (PY?Vu)| < |D| g |P?Vo| |P2Vul.
and
[(b-Vu)(b- Vo) = QY2 @ bQY? : (PY2Vv) @ (PY/?Vu)|
< |b® blag [PV 0] |PY2Vu| = b3 | P2V 0| |[PY2V4).
We deduce that )
ja%(u,v)| < (!DHw + H) |ul gy [0l

saying that a® is well defined, and continuous on H 113. It is also symmetric and positive, thanks
to the symmetry and positivity of D(y),y € R™. The coercivity comes by (40), observing
that for any u € H}J,O < e <1 we have

. b ®b
o (u, ) +d\u\%Q(Rm) _ /Rgl/z ( ) QY% (PV?Vu) @ (PY*Vu) dy+d]u\%2(Rm)
> dlulf, -

2. We justify that m is well defined and not depending on r € R. By Proposition 5.4, see
also Lemmas 5.1, 5.2, we know that for any u € H}g, the family

(3] o - opvias) = (4 [ @60 0T )

S$>0 S>0

converges strongly in Xg, when S — 400, uniformly with respect to r € R, toward some
limit not depending on 7 € R. Therefore m(u,v) is well defined for any u,v € H}. Obviously
m is bilinear. In order to establish the symmetry observe that

G(s)(D — (D))Vugs - Vv

= G(5)(D — (D)) "0Y (s39)(Vus) (Y (s39)) - "0 (5;9)(Vo—s) (Y (55))
= (D= (D))Vus - Vo),
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implying that

S/2
m(u,v) = / (D) Vu- Vv dy + hm / (D))Vus - Vu_g dyds.

Obviously m is continuous on H}D X H};
m(u,v)| < 3|D|ug|Vulx, |[Volx, <3|Dlmglulgylvlgy, u,ve Hp.

The symmetry of m comes by the symmetry of D(y),y € R™, after performing the change
of variable s — —s. Another useful formula for m comes by observing that for any u €
E\, N HL,n € N, we have

ugs + u = 2cos(y/Aps)us, s € R. (44)

Indeed, the above formula is trivial when n = 0. When n € N*, notice that

77;\/)\77,8 u = 6 \/An

L (u +iTu> u+1 T (u +iTu>

/—An s /—)\n s ) /—)\n s /—)\n s
implying that ugs + u = R{2 cos(v/A\ns)(us + zrus)} = 2cos(vAnS)us, s € R. Thanks to
(44), the average term of m writes, for any u € Ex, N Hp,n € N*, v € H},

r+S
/ % / (G(s)D — (D))Vuss ds - Vo dy (45)
R™ T
/ S/ cos(\/ An8)G(8)DVus ds - Vo dy
Rm

r+S
— / / G(s)DVu ds- Vv dy — / 1/ Vugs ds - (D) Vo dy.
rmS Jy mS J,

By Lemma 5.1 we have

Ugs +1 Ugs = €

SETOOS/ DV'LL—< )VU

strongly in X¢, uniformly with respect to » € R and thus

lim / S/ s)DVu ds - Vv dy—/ (D) Vu - Vv dy. (46)
Rm

S—+o00 m

By Proposition 3.5, we deduce thanks to the orthogonality E), L Ep,n € N*

SEIEOO 5 / Vugs ds = VProjg,u =0

strongly in X p, uniformly with respect to » € R and thus

1 r+S
lim / S/ Vugs ds - (D) Vo dy = 0. (47)

S—~4o00

For the remaining term in the right hand side of equation (45), notice that
G(8)DVus - Vv = 9Y (s;9)G(s)D Y (s;9)(Vu)s - (Vv_s)s = (DVu - Vu_g)s

and therefore we obtain

2 r+S
/ g / cos(\/ An$)G(8)DVus ds - Vo dy = DVu - S/ cos(v/ Ans)Vu_g ds dy.
Rm Rm r
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By Remark 4.2 we know that

L2 [T .
Sl_1)riloo S/r cos(V Ans)Vu_s ds = VProjg, v

strongly in Xp, uniformly with respect to r € R, implying that

lim / / cos(v/Ans)G(s)DVus ds-Vody = | DVu-VProjp, vdy (48)
S—4o00 RmS R™ An

uniformly with respect to » € R. Combining (45), (46), (47), (48) leads to the following
expression for the average term of m

S—lgloo/RmS/ — (D))Vugs ds - Vo dy . Vu - VProjg, vdy

/ D)Vu-Vuvdy, ue E\, NHp,n N vec Hp
and therefore

m(u,v) = [ DVu-VProjg, vdy, u€ E,, NHpneNve Hp. (49)
Rm

We claim that the above formula also holds true for u € Ey N H}D,v € H};. Indeed, taking
into account that u = ugs = us(Y(s;+)), v = v_s(Y(s;-)) we obtain

G(s)DVugs - Vv = G(s)D '0Y (5;-)(Vug)s - 0Y (s;-)(Vo_s)s
= (DVugs - Vu_g)s = (DVu - Vo_g)s.

By Proposition 3.5 we deduce

1 S
m(u,v) = SEI—EOO Ranu : S/ Vo_sdsdy = RmDVu - VProjg,v dy.

By (49) and the hypothesis D > 0 we have
m(u,v) =0, u € By, NHp,v € Ex, N Hp,n#k

and

m(u,u) = | D(y)Vu-Vudy >0, u€ Ey, NHp, n €N.
Rm

As m is bounded on H}J X H}D, it is easily seen that for any u € H}g we have

=m (Z Projg, u, ZProjEkk u) = Z m(Projg, u,Projg, u) >0

neN keN neN

saying that the quadratic form u — m(u,u) is positive on H}g. Notice also that for any
u,v € H}, we have

m(u,v) = Zm(ProjEAnu,ProjEAnv) = Z DVProjg, w-VProjg, vdy

Rm
neN neN
<Y |D|ug|VProjp, ulx,|VProjg, vlx,
neN

< |Dlug [Vulxp [ Volxp < |Dlmglul gy, [l g,
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3. We focus on the equality m(u, Bv) = m(Bu,v), with u,v € H}, such that Tu, Tv, Bu, Bv €
H}D. Observe that

1
/ (D)Vu-VTvdy=1lim — [ (D)Vu-V(v, —v)dy

:liml{ N (h)(D)Vu-Vvhdy—/ <D)Vu-Vvdy}

1
= lim — [ ((D)Vu_p — (D) Vu) - Vu dy
h—0 Rm

:—/ (D)VTu- Vv dy

and thus

/ (D)Vu-VBvdy = / (D)VTu-VTvdy = / (D) VBu - Vv dy. (50)

m

For the second term in the right hand side of (42) we notice that
d
1s {/ (D —(D))Vus - VTv_s dy +/ (D — (DY)VTus - Vu_g dy}
R™ Rm

= / (D —(D))Vus - VBu_g dy — / (D —(D))VBus - Vu_g dy

m m

and therefore

S/2
lim 1/ {/ (D —(D))Vus - VBu_s dy — / (D —(D))VBus - Vu_g dy} ds
S—+o00 S —S/2 Rm m

S/2
= lim 1 {/ (D —(D))Vus-VTu_s dy +/ (D —(D))VTus-Vu_g dy]
S—+o0 m m ~5/2
=0. (51)

Combining (50), (51), we deduce that m(u, Bv) = m(Bu,v).
It remains to justify the coercivity. For any u € E\, N Hb,v € E\, N Hp, we have

(u) U)H}l;, = 6nk(ua ,U)H}Da m(ua U) = Onk RmD(y)vu Vo dy

/ (b-Vu)(b-Vu)dy =— | Tuvdy=X\, | u(y)v(y)dy
~Nibai | ulw)ely) dy = b [ (b Vu)(b- Vo) dy,
m Rm
It is easily seen, thanks to (40), that for any u € span Unen (Ey, N Hb) we have

m(u, u) —|—/ (b- Vu)?* dy + d/ 2(y) dy > d\u!fq}g.

u
m ]Rm

Since the bilinear forms (u,v) — m(u,v), (u,v) = [pub- Vu)(b- Vv) dy are bounded on
H} x H} (use the hypotheses b € X§ for the second form), the above inequality still holds

true for any u € ®pen(Ex, NHp) = Hp, saying that (u,v) — m(u,v) + [p.b- Vu)(b- Vv) dy
is coercive on H}, with respect to L*(R™). O
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Remark 5.3
When u € Ey, N H} such that divy(D(y)Vu) € L*(R™), we deduce by (43)

m(u,v) = —/ divy (DVu)Projg, vdy = —/ Projg, divy(DVu)v(y) dy, v € Hp

m m

saying that the restriction on Ey, N H}D of the linear operator associated to the bilinear form
m is Projp, (—divy(D(y)Vu)), for any u € Ex, N H} such that divy(D(y)Vu) € L*(R™),
see also (8).

6 Uniform estimates

In this section, we justify the well posedness of the problem (1), (2) and of the effective
problem associated to the bilinear form m. We indicate uniform estimates for the solutions
of these problems. We consider the continuous embedding H}g — L?(R™), with dense image
(since CH(R™) C Hb). In the following propositions, we are looking for variationnal solutions
of the above problems.

Proposition 6.1
Let u™ be a function in L*(R™). For any ¢ €]0,1] there is a unique variational solution of
(1), (2). Moreover we have

. Uin m
0| o 2y < U L2mmys VS| L2 I O P
Lo Ry L2 (R™)) L2(R™) L2(R45Xp) od

Proof. This is a direct consequence of Theorems 1, 2 [7] p.513, see also [12]. By Proposition
5.5 we know that, for any e €]0, 1], the bilinear form a® is coercive on H}D with respect to
L*(R™). We deduce that, for any ™ € L?(R™), there is a unique variational solution u¢ for
(1), (2), that is u® € Cp(R4; L2(R™)) N L2 (Ry; Hp) and

loc

w(0) = u™, W (t,y)p(y) dy + (@ (1), 9) =0 in D(Ry) for any ¢ € HP.

dt Jgm

By the energy balance we obtain for any ¢ € R, e €]0, 1]

1 t 1 t 1 in

ol @y [ 90 ) ds < Gl @O gy + [ 08 (5),07(9) ds = g u e
0 0

implying that

. +oo ‘uin’%2 RrR™

o) < Py, [ 1900, ds < .

1
We intend to proceed similarly for solving the variational problem associated to the bilinear
form m. As shown in Proposition 5.5, we only know that (u,v) = m(u,v) + [pu(b- Vu)(b -
Vv) dy is coercive on H} with respect to L?(R™). Nevertheless m is coercive on Ey, N H},
with respect to E), , for any n € N. Indeed, for any n € N,u € E), N H}g, we have, thanks
to (40)

m(u, 1) + (Ao + d)|uff2gm) = / DVu - Vu dy +/ (b-Vu)* dy + d/ u?(y) dy
R™ R™

m

:/ QA (D +b®b)Q'Y?: (PV*Vu) ® (PV*Vu) dy+d/ u?(y) dy > dluff, .
m Rm
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Proposition 6.2
For any n € N, let ul™ be an element of Ey,. There is a unique function v, € Cy(Ry; Ey, )N
L2 (Ry;Ey, N Hl) such that

. d
vn(0) =uis [ wn(ty)¢(y) dy + m(va(t), ) = 0 in D'(Ry), for any ¢ € By, N Hp.
Rm

M()’) eover we htll}(i
n LC:(R ,LQ(Rm)) — n LQ(Rm), ; n L:Q(R ,LZ(Rm)) — ; n LQ(Rm)

ul® - n .
[Von| 2 (j0,0:x Sm-l- — | Tu}r2wmy, t € Ry, n €N,
([0,t];:Xp) V/2d d n |L2(R™)

If ul € E,, N H}D and there is a function f, € E\,  (the function f, will be denoted by
Projg, (—divy (DVui))) such that

s D(y)Vup - Ve dy = X Fa)e(y) dy, for any ¢ € Ex, N Hp

then
\ProjEM(—divy(Dan(t)))]Lg(Rm) < \ProjEAn(—divy(DVugl))]Lg(Rm), teRy

and
Ovp + Projg, (—divy(DVun(t))) =0, t € Ry.

Proof. We use the inclusion E),A N H}g — E),,n € N. The existence and uniqueness of the
variational solutions (v,), come by Theorems 1,2 [7]. The energy balance gives

1 ! 1 in
§|Un(t)|%2(Rm) +/0 RmD(y)an . VUn dyds = §|Un |%2(Rm)
implying
ln ()| r2@m) < luilr2@m), [ Ton()|r2@my < [Tup|p2@my, t€Ry,n €N,

For the last estimate we have used the equality fR"(Tv dy = \n me ) dy,v € Ej,.
Observe also that for any ¢t € Ry, n € N we have

/\an % ds</ / {DVv,(s) - Vuu(s) + (b- Vua(s))?} dyds
< 5’ m|L2 R™) +t’7-um‘L2 (R™)*

Assume now that ul" € E, N H} such that Projg, (—div, (DVuil)) exists. For any h € R
we have

G | @ty = va0)0(w) dy-+ mion(t+0) —en0)9) = 0 i D'(R), ¢ € By, T}
R'm

implying that

1d

23 (Un(t + hyy) — va(t, y))? dy = —m(v,(t 4+ h) — v (), va(t + h) — v, () < 0.
Rm
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We deduce that
[ont + ) = va(8) (g < [0n(h) = va(0) 2y, th € R (52)

Notice also that

331D = 0 OBy + [ DOIT(0a(1) = 000)) - T () = 0,(0)) dy

- RmD(y)an(O) - V(vn(h) — va(0)) dy

and therefore

S 10n(h) = 0n 0) By < / | Proig,, (=div, (D)Tu)(0n(5.9) = 0 (0,3) dyds

< [Projp, (=divy(D(y)Vuy))|r2m) /Oh [vn(s) = 0n(0)|L2(mm) ds.
Thanks to Bellman’s lemma, one gets
[0n(h) = vn(0)| 2 (rm) < h[Projp, (—divy(D(y)Vuy))| L2 (gom)- (53)
Combining (52), (53) we deduce
[on(t + 1) = va ()] L2@m) < [0a(h) = 02 (0)| L2(@m) < hIProjpg, (—divy(D(y)Vuy))|z2@m)

saying that .
|Opvn|L2@®m) < [Projp, (—divy(D(y)Vuy))|r2@m), t € Ry

By the variational formulation we know that
devnp dy + | D(y)Vue(t)- Ve dy =0, ¢ € By, NHp
R™ R™

implying that
Projg, (—divy(D(y)Vun(t))) = —0wn € Ey,, t € Ry

and thus
Projp, (—divy (D(y)Von(t))|L2rm) = [0rvn(t)] r2mm) < [Projp, (=divy(D(y)Vu))| 2.
]

Corollary 6.1

Assume that (A\y)n is increasing and lim,_, oo A\, = +00. Under the hypotheses of Propo-
sition 6.2, for any u™ € domT, there is a unique v € Cy(Ry; L2(R™)) N L2 (Ry; Hb),
Tv € L®(Ry; L2(R™)) such that

v(0) = ™, v(t,y)e(y) dy + m(v(t), ) =0 in D' (Ry), for any ¢ € H}p. (54)
Rm

dt

Moreover we have

0l iz2@my) < W p2@my, [Tl z2@my) < 1Tu™|p2@m)

m|L2 R™)
IVolL2(0,0:xp) < |Tu |L2(®m)-
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If u™ € Hp and 3 ey [Projp, , (~divy (DVProjg, u™)[f2gm) < +00, then

Z \ProjEAn (—divy(DVPTOJ'EAnU@)))‘%%R’") < Fo0
neN

and
O + Z Projg, (—divy(DVProjg, v(t))) =0, t€R,.
neN

Proof. For any n € N, we denote by v,, the solution given by Proposition 6.2, corresponding
to ull = Projg, uw". By Remark 4.1 we know that TProjp, u™ = Projg, Tu™ n € N,
implying that

Z "Un(t)ﬁz(Rm) S Z |PI‘OjE/\nUin’%2(Rm) = |uin|%2(Rm), t e R+

neN neN
> [ Tva®fFa@my < D [Projp, Tu™fzgmy = [Tu™|J2@m, t € Ry.
neN neN

Therefore Y, .y Un(t), > ey TUn(t) converge in L*(R™), for any ¢t € R;. Let us introduce
v(t) =D enUnl(t), w(t) = cnToa(t),t € Ry. For any ¢ € domT and any N € N we can
write

N N
[ wttoTeds+ [ 3 Toutew) dy=0
mn:O Rmn:O

which implies, by letting N — +oo

/ vu(t,y)Te dy + / w(t, y)e(y) dy = 0.
Therefore v(t) € dom7 and w(t) = Tov(t). In particular

I ToO 2@y = D [ TonlGo@ny < Y [Projg, Tu™Fagmy = [Tu™ Fagm.

neN neN

Actually the convergence v = )y vy, is uniform with respect to ¢ € Ry, thanks to

N
1 1 1 in
[wO=3_ on®)lZame < 5= D Malon(Olian = 57 D ITon(Oliaen < 31T Een

and therefore v € Cy(Ry; L>(R™)). By Proposition 5.3, we know that the spaces (Ej, N
H}:)neN are orthogonal in H}D and thus

t
| nl) sy ds =0, te Ry n k.
0
Moreover we have for any t € R

> lonlZagogmny = D Aonlieogz2@my) + 1V0nlT2o0.0x0m )
neN neN

o 1 o ¢ - i
<t Z ‘PTOJEM u1n|%2(Rm) + 2d Z ’PrOJEAnuln‘%%Rm) + P Z ‘PrOJEAn Tuln‘%2(Rm)
neN neN neN

_ 1 in|2 13 in|2
= <t+ 2(1) |u |L2(Rm) + g|TU |L2(Rm) < 40
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implying that there is z € L (R4; H}) such that Y omeNUn = Z in L*([0,t]; H}) for any
t € Ry. In particular Y, v, = z in L*([0,¢]; L*(R™)) for any t € R+ and therefore
>nenUn(t) = 2(t) in L*(R™) for a.a. t € Ry. We deduce that v = z € L} (Ry; Hp),
v="> cnvnin L*([0,t]; H}) for any t € R} and

™| 2 (rom t in
|VU‘L2([O,t};Xp) < # + g ‘T’U/ |L2(Rm), te R+.

For any n € CL(R}),p € Hp and N € N we have

—n(0 /RZPTOJE,\ uo(y )dy—/ / Zvnty y) dydt

"n=0

neN

+oo
+ /0 n(t)m(Zvn(t),w) dt = 0.

n=0

Letting N — 400, it is easily seen, thanks to the boundedness of the bilinear form m on H}D,
that

. oo toe
=1(0) [ Wt dy— [0 [ oo dat+ [ aomo).e) =0

m

saying that

v(0) = u'™, v(t,y)e(y) dy +m(v(t), ) =0 in D'(R4) for any ¢ € Hp.

dt Ju

The uniqueness follows by the energy balance and the positivity of the quadratic form

u€ Hb — m(u,u).

Assume now that u™ € Hp, >, [Projg, (—divy(DVuy')) %2(Rm) < 4oo with uy' = Projg, u™ €
Ey, N H}D, n € N. By Proposition 6.2 we know that

Orvn + Projp, (—divy(D(y)Voa(t)) =0, t€ R,
Projg, (—divy(D(y)Vua(t))|r2@m) < [Projg, (=divy(D(y)Vup))|r2@m), t € Ry

Therefore we obtain for any ¢ € R
> [Projp, (=divy(D(y)Vou(t)[F2@m) < Y IProjp, (—divy(D(y)Vull))[72@m) < +00.
neN neN

We claim that ¢ — v(t) is differentiable in L*(R™) and that 6w = Y, .y Orvp. Indeed we

have

|’U(t + h) — v(t)’%2(Rm) = Z ‘vn(t + h) - Un(t)|%2(Rm)

neN
<> fon(h) = vn(0)Fagmy < h2 Y [Projg, (—D(y)Vul)agm,
neN neN

saying that 9;v € L®°(R,; L2(R™)). For any n € CL(R,),p € L*(R™) we have

+oo . +oo ,
| [ owet) aye = =) / et dy= [0 [ oot duar

m

S0 / Dar=3 [0 [ ontet) e

neN neN
+oo
= Z/ atvnsa( ) dydt.
neN
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But for any ¢t € Ry we have

Do 10wa(®f7: = Y [Projp, (—divy(DVuu(t))[72 < Y [Projp, (—divy(DVuy))[7a

neN neN neN

saying that Y, Osvn(t) converges in L*(R™), for any ¢ € Ry. We deduce, thanks to the
dominated convergence theorem

+o0 +oo
/ n(t) | dwe(y) dydt = / n(t) / > Ownply) dydt
0 R™ 0 R™
implying that

O =Y dp=—»_ Projp, (—div,(D(y)Vu,(t)))

neN neN
=~ Projp, (—divy(D(y)VProjEMv(t))) , tER,.
neN

Remark 6.1 The following conditions are equivalent

2
< +00.

1 ueHL and Y, ‘Proj . (—divy(D(y)VProj EM@) .

2. uw € H} and there is a constant C' € R, such that

m(u, ¢) < Clglr2mm), @ € Hp.

For any u satisfying 1. or 2. we have
m(u ) =~ [ (o) 3 Proj, div,(D()VProj, ) dy. ¢ € H}.
" neN

Indeed, if 1. holds true, then for any u € H}D we have u = ) .y ProjEAnu n H};., and by
the continuity of m we deduce, thanks to (43)

m(u, @) = Zm(ProjEknu,go Z VPrOJE u-VProjp, ¢dy
neN neN Rm
= Z/ Projg, divy(D(y)VProjEknuU o(y) dy
neN
< |3 Projp,, (~divy(D(y)VProjp, w) ol 2y
neN L2(R™)

1/2
2 1
L2(Rm)> [plL2@m), ¢ € Hp.

_ (Z ‘Proj . (—divy(D(y)VProj EAnu))

neN

Conversely if 2. holds true, there is a function f € L*(R™) such that

m(u,p) = Rmf(y)sO(y) dy, ¢ € Hp.
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In particular, for any ¢ € Ey, N H}g we obtain

/R Projp,, few) dy = | fW)ely) dy =m(u,¢) =m(p,u) = | DVi:VProjp, udy

and therefore

2
3 ‘Proj By (—divy(D(y)VProj Eknu))
neN

= Z ’ProjEAnf|%2(Rm) = |f|%2(Rm) < +o0.
neN

L2(R™)
The linear transformation

Mu = Z Projg, (—divy(D(y)VProjEMu))
neN

defined on

domM = {u € Hp, Z ‘ProjEM (—divy(D(y)VProjEAnu))
neN

2
< +oo}
L2(R™)

1s the operator associated to the bilinear form m : H}:, X H}g i,e.,
m(u, ) = [ Mup(y)dy, uedomM, e Hp.
Rm

Therefore the last statement in Corrolary 6.1 says that if u™ € domM, then
v(t) € domM and 0w+ Muo(t) =0, t e Ry.

Remark 6.2

1. The Corollary 6.1 defines a C° semi-group of contractions with respect to the L*> norm
Y™ = ou(t), teRy, u™ e domT

where v is the unique solution of (54). This semi-group extends by continuity to a C°

semi-group of contractions on whole L?>(R™), still denoted by (Yi)ter, (use the density
of domT in L*(R™)).

2. We claim that the C° semi-groups (6778)7@1@+ and (i)ier, are commauting. Indeed,
for any v € E), N H}D,n € N, there is, cf. Proposition 6.2 a unique function v €
Co(Ry; Ey,) N LE (Ry; By, N HE) such that

o0) =u. G [ o(t0)oly) dy+ m(ult) ) =0 i DRy, @€ By N Hp. (55)
.

Notice that for any ¢ € Ex, N Hb, k # n we have

/ ol y)pl) dy =0, m(u(t),9) =0, 1Ry

and thus (55) holds true for any ¢ € span{Uxen(Ex, N Hb)} = HL. Therefore we have
Yu=v(t) € Ex, N Hp, for anyt € Ry,n € N. We obtain

e_TB¢tu = e_TAn¢tu = ¢t(€_TAnu> = wte_TBua t, T € RJra u € E)\n N H}Dv n €N

which extends by density to any u € L*(R™).
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3. For any € €]0,1], we know by the second statement of Proposition 5.5 that (u,v) —
m(u,v) + 2 [ofb- Vu)(b- Vo) dy is coercive on H}, with respect to L>(R™). Therefore,
for any u € L*(R™) there is a unique function @ € Cyp(Ry; L2(R™)) N LE (Ry; HL)
such that @ (0) = u™ and for any ¢ € Hb

d

S aE ) dy+m@E ). 0) + / (b- V()b V) dy =0 in D'(Ry).

m

We claim that 4 (t) = e‘ﬁBwtuin = ¢te Buin t € Ry. We are done if we prove it for
u™ e Ey, N H}),n €N, that is

ut(t) = e_?‘”iﬁtuin, teRy.

Indeed, for any ¢ € H}; we have

d —= in 1 in
T A e 2/\"1/;tu o(y) dy + m(e™ "1/Jtu o) + 5/ b-V(e” "¢tu )b- Ve dy
_t d in .
et L8 [ vt dy-t m )} =0 in DR

Therefore u®, 675’\"1/1tuin satisfy the same variational formulation, with thetsame mitial
condition u™. By the uniqueness of the solution, we deduce that @€ = e~ = u™, t €
R,.

7 The operator N and the associated bilinear form n

As suggested by Proposition 2.1, we intend to establish u®(t) = e —:B v(t)+0(e) in LS (Ry; L2(R™)),
as € \, 0, where v(t) = yu™,t € R,. The key point is to emphasize a corrector like in (10),
which requires the construction of a second operator N, which enters a decomposition of

A = —divy(D(y)V,) with respect to B = —T2 similar to (9). More exactly we are interested

in solving for (B — Apld)u = Au — Mu = Au — Projg, Au,n € N, see (8). Obviously, this

is not always possible, since Au — Mu belongs to E)%n = Range (B — A\, Id) which is larger

than Range (B — A\, Id), when the range of B — A, Id is not closed. In order to define the
bilinear form associated to the operator N' we introduce new structural hypotheses for the
matrix field D.

7.1 Structural hypotheses for the matrix field D

Recall that the infinitesimal generator L of the group (G(s))secr is skew-adjoint on Hg and
thus Range L = (ker L)+, implying that D — (D) € Range L. We assume that D is a matrix
field in H¢Y such that D — (D) € Range L, that is

3C €domL N HZ such that D = (D) + LC, (56)

where the operators (-),L are considered in Hq o, see Proposition 3.2 and Remark 3.1.
Replacing C by C — (C) we can suppose that C € ker (-) N Hg’. Thanks to the symmetry of
D, (D), we have

L(C - 'C)=LC - Y(LC)=D — (D) — “(D— (D)) =0

implying that C' — ‘C € ker L Nker (-) = {0} and thus C is also symmetric. Moreover, we
will require that

3 Cy € ker (-) N Hgy such that Cp = tCy, LCy = —C. (57)
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Notice that (56), (57) say that there is Cp € ker(-) N Hg’ such that Cp = tCy, LCy €
domL N HE and D — (D) = —L2Cy. We also make the following hypotheses for any n € N*
C —Projg, C = (—=L?—4X,1d)C,,, C, € ker Proje,, NHZ, LC, € HF, C,= 'Cy (58)

where the operators Projg T E N* are considered in H oc cf. Remark 5.2. In the sequel
we work under the hypotheses (16), (17), (18), (19), (40), (41), (39), supplemented by (56),

(57), (58).
7.2 Definition and properties of the bilinear form n

We introduce a second bounded bilinear form on H}, X H}, and a corrector is constructed in
terms of the operator associated to this form.

Proposition 7.1
Assume that the following conditions hold true

2
Z—<+oo ZA <|C g +‘ Chn ) < +400. (59)
n>1 An n>1 VA Hg

We consider the application n : H}J X H}, —-R

= [ 4 [l

for any u,v € H}D. The bilinear form n is well defined, bounded on H}D X H};., skew-symmetric
and verifies

19
$)CVugs — lim — G(s')CVUQS/ds'

S b0 S ds- Vo dy

a(u,v) = m(u,v) + n(u, Bv) — n(Bu,v), (60)

for any u,v € Hb such that Tu, Tv,Bu,Bv € HL. Here, by Tu € Hb we understand that u
belongs to the domain of the infinitesimal generator of the CO-group (¢1(s))ser and a(u,v) =
me y)Vu-Vou dy,u,v € H1 Moreover we have n(u,v) =0 for any u,v € E), ﬂH}D,n e N.

The proof of Proposition 7.1 is very technical and it is postponed to Appendix A.

Remark 7.1
We denote by N the operator associated to the bilinear form n, that is

1[5 1[5

[ 5 [s=9 |6600vum— tm & [7 6610V as| s Vo
=n(u,v) = [ Nuvdy, uecdomN, ve Hp.
RrRm
We deduce that
1[5
Nu = —div, 1_1}141_100 5 / —5) |G(s)CVugs — o 1—1>r£oo = G(s)CVugy ds'| ds
= —divy C’OVPrOJEou—i—nz;l [8\ﬁ \/KPI"OJ54)\ C+ LC ] VProjEMu
+Z [1Pro' C — +/4),C ] VLPro' U
n>1 8vn Y TV 15,

provided that b, D,u are smooth enough.
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8 Asymptotic behavior

We are ready to establish the asymptotic behavior of the variational solutions (u®).> for (1),
(2). We follow the arguments in the proof of Proposition 2.1.

Theorem 8.1

Let u™ be an element in the domain of T. We assume that the vector field b and the matriz
field D satisfy the following hypotheses (16), (17), (18), (19), (40), (41) and that the structural
hypotheses (39), (56), (57), (58), (59) hold true. For any ¢ €]0,1] let us denote by u® €
Cyp(Ry; LAR™)) N LE (Ry; HY) the unique variational solution of (1), (2)

loc

uE(O) — uin’

1
3 o wtyely)dy+ | Dy)Ve - Vedy+- / (b-Vus)(b- V) dy =0
R™m Rm m

a(us,p)

in D'(Ry), for any ¢ € H} cf. Proposition 6.1, and by v € Cp(Ry; LA(R™)) N L2 (Ry; H})

the unique variational solution (see Proposition 5.5 for the definition of the bilinear form m)
v(0) = u'®,

A v(t,y)e(y) dy +m(v(t), ) =0 inD'(Ry), ¢ € Hp

cf. Corollary 6.1. Then, provided that u™,v,b, D, P are smooth enough, for any T € R,
there is a constant Ct such that

_t
u — e =By

—i—}Vua—Ve_%Bv <Cre, 0<e<l.

‘L‘X’([O,T];LQ(R’”)) L2([0,T]; Xp)

Proof. By Proposition 6.1 and Corollary 6.1 we know that

. u® m
[u®| Lo (ry;L2Rm)) < (U |L2@my, (VU L2Ryxp) < m, 0<e<l1
' ’ v2d

and
V| Loy sz2@my) < W p2@mys [ TLoo®ysz2@m)) < [TU™|L2@m)

. < - n my.
Voleaogxs) < — 2 T/ g [Tu" 2@
We consider the function
ut(t,7,-) = e TBNu(t,-) — Ne Bu(t,-), (t,7) e Ry x Ry.

We assume that v is regular enough, such that Nwv(t,-) is well defined, see Remark 7.1.
Moreover, as the semi-group (e_TB)T€R+ preserves the regularity, see Section 4.1. We deduce
that Ne~"Bu(t,-) is also well defined, uniformly with respect to 7 € R, implying that

jul(t, 7, )| p2@my < Cr, t€[0,T], T€Ry

for some constant C‘T. We also ask for the estimates

T T
/0 sup |Opul (t, T, N2 @m) dt—l—/o sup |div,(DVul(t,, DNr2@my dt

T€R+ T€R+

T vz
+ ( / sup [Val (t,7,) %, dt) <y
0

TER
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which can be achieved provided that u!™, v,b, D, P are smooth enough. We also assume the
existence of smooth fields in involution with respect to b, in order to guarantee the propagation
of the regularity along the semi-group (e~ 75),cg .- The derivative of u! with respect to the
variable 7 writes (assuming that v is regular enough)

drul = —Be BN wu(t) + NBe ™Bu(t)
= —B (e ™PNu(t) = Ne ™Pu(t)) + NBe Bu(t) — BNe ™Pu(t)
= —Bu' — (BN — NB)e ™Bu(t)

and therefore

% {eul(t,t/)} + (BN — NB)e™ Bo(t) + g{eul(t,t/a)} = el (t,t/¢). (61)

By the third statement of Remark 6.2 we know that a(t) = efésv(t) € Cy(Ry; L2(R™)) N
L} (Ry; H}) satisfies

loc

#0) =" 3 [ @ o) du+ @ ©.)+ 1 [ G-vEw)0- Vo dy=0 (62

in D'(R4), for any ¢ € Hj. Combining (61), (62) we obtain @°(0) + eu!(0,0) = v(0) = u™
and

d

1 {U (t,y) + eu' (t,t/2,y)}o(y) dy +m(@(t), ) + n(@ (), Bp) — n(Ba(t), ¢)

+ é / (b V[EE(®) +eul (t,t/))(b- Vo) dy =e Rmatul(t7 t/e,y)ey) dy
(63)

in D'(Ry), for any ¢ € Hy such that Ty, By € H). By Proposition 7.1 we know that

m(@" (), ) + n(@° (1), Be) — n(Bu* (), ) = a(u(t), ¢)

and therefore (63) becomes

G )+ e bl dy @ 0.0+ - [ (0 VD) + el (/2] (b V) dy

m

i et (t,t/2,y)p(y) dy
in D'(Ry), for any ¢ € Hp. Finally the functions r°(t,y) = u®(t,y) — a°(t,y) — eu'(t, t/e,y)
satisfy the variational problem
4
at Jg

m

(e dy+ a0, 0) + - [ 009 )0 Ve dy

m

= —6/ [Opul(t,t/e,y) — divy(DVul(t,t/a,y) ) dy

in D'(Ry), for any ¢ € Hp and the initial condition r¢(0) = 0. Thanks to the coercivity
condition (40) we deduce
1d 2 € 2 €
Ol agmy + AV (O < el (02

sup |Opul(t, T Nr2@my + sup |divy( (DVul(t, 7)) lL2mmy|, 0<e<1
TER Y TER
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We obtain the estimates

T
7| oo (0,72 (R Y) < 5/ sup \8tu1(t,7')]Lz(Rm)dt
0 TeER4

T -
+ 5/ sup |div, (DVu!(t, )| r2@mydt <eCr, 0 <e <1
0

TER
and ~
V5] < gce<t
L2([0,T];:Xp) = Nz =

which implies immediately that

<e swp |, 7)p@m +eCr < e(Cr + Cr), t € [0,T]

€ _ _58
ut(t) — e = u(t) LER™) (¢ ,7)€[0,T] xRy

- 1
Vs (t) — Ve =Pu(t <eC (1+>
7t - ve Olpagomixn =T\ 72

for any 0 < e < 1. O

Remark 8.1

1. For any ¢ € H}D we have by Proposition 5.5 and Lemma 5.1
m(v(t), () = m((v(t)), (¢)) = m((v(t))

)
S
- / D)V (ul) - Vep dy + /R g /0 G(s)(D — (D)) (u(t)) ds - Vi dy
— [ D)V (w0} Vo

and therefore we have the equalities in D'(R4.)

d

a . w®) (W)ely) dy = 4 v(t,y) (p) (y) dy = —m(v(t), (¢))
am

at Jam

—— [ (D)@Y (v} Vo dy.

The function (v) € Cp(Ry; L2(R™)) N L2

2 (Ry; H}) satisfies the variational problem

(0(0)) = (u™), i/@(t» (¥)e(y) dy+/<D> (y)V (v(t)) - Vo dy =0 in D'(Ry)

]Rm m
for any p € H};.

2. If the initial condition is well prepared, i.e., Tu™ = 0, we deduce thanks to the inequality
| Tv| ooy ;2 (Rm)) < |Tuin|L2(Rm) = 0, that Tv = 0 and in this case v = (v) satisfies
the parabolic problem associated to the average matriz field (D)

v(0) = u™ € ker T, 4

3 [otwe) dr [ D))V Vedy=0 inD'(R.)

m m

1
for any ¢ € Hp.
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A Proofs of Proposition 7.1

Proof. (of Proposition 7.1)

Boundedness of n

We show that limg_, e & fOS(S —s) [G(s)CVugs —limgr 00 27 fOS/ G(s")CVugy ds’} ds
converges, as S — +00, strongly in X¢, for any u € Hp, which will imply that n(u,v) is well
defined for any (u,v) € Hp x Hp. We appeal to the Hilbertian sum Hp = @pen(Ey, N Hp).
Ifue Eyn H}D, we know by Lemma 5.1 that

N Y L TN B Ly :
S’l—lg-loog ; G(s')CVugy ds _S’l—lg-loo§ ; G(s')CVuds = (C)Vu=0

strongly in X and therefore, by (57), we obtain

S S’
SETOO% . (S - 8) G(S)CVUQS - S’l—ig-looé A G(S/)CVUZS’ dS/] ds (64)
_ 2L S(S ) iG(S)C Vu ds
S 0 ds 0
1 s 1 [%
=——[(S —s5)G(s)CoVulg — = G(s)CoVuds — CoVu — (Cy) Vu = CyVu
S S 0 S—4o00
strongly in X¢. Assume now that u € Ey, N Hp,n € N*. We know by Lemma 5.2 that
.1 1. . 1 L , T
S'I—lgfoo 5/, G(s)CVugy ds' = 5PI’OJ5‘4)\HCVU + 5\/TTTLP1"0354MCV\/TTLU,
strongly in X¢ and therefore
fu(s) == G(s)CVuzs — lim e ’ G(s)COVusy ds' = U(s)Vu + V(s)V T u
“ o 2 S/ =400 S’ 0 2 - \/E
with
1 . . 1 L .
U(s) = cos(v/4M\,8)G(s)C — §PrOJ£4An C, V(s) =sin(y/4\,8)G(s)C — 5\/TTnPI‘OJ54>\n C.

Notice that the hypothesis (58) writes
L C — Proje,, C
o (60 ) - (o S i)
4 4dn

where the operators L, Ly, are considered on Hq joc, HQ 10c X H( loc Tespectively, see Remark
3.1. We have

d L C - Proj&MnC’
L) (cn, %C"> — G (s) (o, M)

= (sin(v/4\,s), — cos(v/4Ans))

G(s)C — G(s)Projg,, C

4An
We obtain
sin(v/Ah8)G(s)C = sin(y/A0, ) [Cowﬁns)f’mimc * Si““‘ms)ﬂLTijg“” C}
G(s)Projg,, C
L
PV S [cos<ms>a<s>0n - sin(v/4hs)G(s) mc"]

53



and

L
cos(\/4M,8)G(s)C = cos(/4\,s) [cos(\/4)\ns)Projg4AnC + sin(\/4)\ns)\/TTProjg4An C’}

~~

G(s)Projgv\n C

4)\n% [Sin(\/él)\ns)G(s)Cn + cos(V 4, 5)G(s) \/anCn]

and the matrix fields U(s), V (s) write

U(s fcos 4\ﬁ5 PI“OJ&M C’—I— sin(4v/\ps) PTOJ&M o

s [sin<ms>a<s>cn+cos<ms>G<s> \/fTC] (65)
V(s) = %sin(il\/ES)Pl‘Ojgun COS (4V/Ans) PrOJ&u ¢

4%% {COSM/@s)G(S)Cn—Sm(msms) Ai C”}' (66)

Recall that we intend to establish the convergence, as S — +o00, of

1[5 I T
S/o (S — 8) fuls) ds:S/o (5 = SHU () Vu+ V() V =} ds

in Xg. Observe that

S S
lim 1/0 (S —s)cos(4v/ Aps) ds =0, lim ;/0 (S — s)sin(4y/ A\ps) ds = 4%. (67)

S—+o00 S S—+oo

After integration by parts one gets
L

— l S(S $)\V 4 n j [Sin(\/4>\ns)G(s)Cn + cos(v/4As)G \/704 dsVu
d ) L T
S/ — 8)V/4A, "l [cos(\/él)\ns)G(s)Cn — sin(v/4\,5)G \/704 dsV m

T VAN, /S ( ( )

— LC, Yt — /20, C ¥ —— G Cor = ) v —vu).
u \/Eu—i— s/ ax, (9) s ﬁu u

(68)

As Pr0j54>\n C,, =0, we know, cf. Remark 5.2, that

2 r+S
lim S/ (cos(v/ 4N, 8)G(8)Chp,sin(y/4M,8)G(s)Cy,) ds = (0,0)

S—+o00

in Hg joc X HQ 1oc, implying that

) L L
PI‘OJkerL4)\n <C’n,4)\ncn> = S—>+oo S/ Gan, (s ( n an) ds
L

N B .
= lim S/r (cos(\/4)\ns)G(s)Cn—sm(\/4)\ns)G(s)T)\C’n,

S—+00 n
sin(v/4\ns)G(s)Cy, + cos(v/4A,5)G(s) - Cy) ds
= (Oa 0)

3
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in Hyjoe X HQjoc- As Cy, \/70 belong to HQ and Vu, Vru belong to Xp, we prove,
by adapting the arguments in Lemma 5.1, the strong convergence in Xg

L T
li ——C, ) d ——u, — =0.
Sj}IilOOS/ Gan, (s ( 4/\nC> s (V )\nu Vu> 0 (69)
Finally (65), (66), (67), (68), (69) lead to the convergence in X¢

lim

1 S
S%JrooS/o (S — 8)fu(s) ds = [ég\ﬁ\/KPrOJ&lA C+LC ] Vu

T

[SFPrOJ&“ C— \/4)\n0n} Vﬁu. (70)

Up to now, we know that ( fo w(S) ds) . converges in Xg, as S — 400, for any
5>

u € span Upen (Ey, N Hp). In order to Justlfy the existence of the previous limit for any

u € H};., it is enough to bound ( fo w(S) ds) . in X¢ uniformly with respect to
5>

S >0 and u € span Upey (Ey, N Hb), ]u|H113 < 1. By (64) we have

];A?s—$nwww

and by the previous computations, Remark 5.2 and the fourth statement of Remark 4.1 we
obtain for any u € Ey, N H}D,n e N~

5 [ s-ane ]

< 2’CO‘H50‘VZL’XP, u € Ey ﬂH}J
Xq

PerJg4A C + |Projg4XnC|H(3<>

Hg

|Vulx,

S ['m
+3\/K[

_HCalug | [Vulx,

\/K

L ¢

’VU|XP.

|Cn‘H5° +‘

2
<
=

HE
Pick u € spanUypen (Ey, NHp), that is u = Zgzo U, Uy, € Ex,NH} for any n € {0, ..., N} and
let us introduce the notation ¢, = \Cn|H(50 + ’\/‘anCn’Hg; ,n € N*. Using the orthogonality

of (Vup)o<n<n in Xp, we deduce

S
/ (S — 8)fuls) ds
0 XQ

N 1/2 N 1/2
< 2|Col g [Vulxp +2|C|mgy (Z A) [Vulxp +6 (Z Awﬁ) Vulx,
n=1""

n=1
1/2 1/2

1
< |2[Colmg +2[Clag ZA +6 > e |ul

n>1"" n>1

1

S

N
2
< 2|Col g [Vuolxp + Z [W\CHg; + 6/ )\ncn:| Vun|xp
n=1 n

saying that n is well defined and bounded on H}D X H}g.
Skew-symmetry of n
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Let us focus now on the skew-symmetry of n. We are done if we show that for any u € H}
we have the convergence in X

L P L o /
sl_lﬁloos/ (S—s) {G(S)CVUQS ~ g l_lg_loo 5/, G(s")CVugy ds' » ds

0

1
=— Sl—1>I-sr-loo S/ (S+s { s)CVugs — hmOO v/ G(s')C’Vuzsl ds/} ds. (71)

Indeed, let us assume for the moment that (71) holds true. As the field C' of symmetric
matrices belongs to ker (-) N Hgy, we know by Proposition 5.5 that

me(u,v) == /Rms’—>+oos S/G YCVugy ds’ - Vo dy

defines a symmetric bounded bilinear form on H} x Hp. We obtain, thanks to the symmetries
of C' and m¢

. 1 s 1 s / /
n(u,v) = /RWS'EI-POO g /O(S —s) {G( )CVugs— liriloo 5/, G(s")CVugy ds’ » ds - Vv dy

= / lim / (S+s { s)CVugs — hm 1 G( "NCVugy ds'} ds - Vv dy
R

mS—+00 S —+00 S’
= — lim / S—{—s)[ CVus - Vo_g dy — me(u, ’U):| ds
Rm
] ds

=— lim / (S—ys) [ CVu_s - Vus dy — me(u,v)
S R

S—+o0
:_SETOOS/ -5 [RmC'Vvs Vu_s dy — me(v, u)] ds
L[ /
- 1 . s— lim — o :
/RmS—lglooS/ s) < G(s)CVuy T G(s)CVv2 ds pds-Vudy
= —n(v,u)

The key point when justifying (71) is that (G(s))ser, (Gan, (S))ser,n € N* are groups, and
thus the previous arguments work also with s € R_. It is enough to check (71) for u €
span Upen (Ey, N H}D) If u € Ey N Hp, we know by Lemma 5.1 that

S’ —+00

— —
S’—>+ooS /S,G )CVugy ds’ = lim 5 /S,G )CVu ds' = (C)Vu =0

strongly in X¢, and by (57) we obtain

1 0
—3 (S 4+ 5)G(s)CVugs ds = / (S +s)—G(s)CoVu ds
-8
1
= £ [(5 + 9)C()CoVul / §)CoVu ds
— COVu — <Co> Vu = CoVu
S—+4o00

o L0 L /
_SETOOS/O (S—ys) {G(S)CVUQS_S’I—IH—IOOSV/ G(s")CVugy ds' p ds
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cf. (64). Assume now that u € Ey, N Hp,n € N*. By Lemma 5.2 we know that

——=Projg, C’Vlu

1
S'—>+ooS /S/G )OVugy ds’ = *PI‘Ot]gzl/\ CVu+ - oW

L
2V/4\,

strongly in X¢ and therefore

1 0 1 0

5 [seofowevi - g & [ 6610w as} o
- ! ’ (S+s) {U(S)Vu + V(S)VTu} ds
S/ vV

where the matrix fields U(s), V (s) were defined in (65), (66). Following the same arguments
as before we deduce

0
1
lim 1/ (S + s)cos(4y/ Aps) ds =0, lim / (S + s)sin(4y/ A s) ds = —
-5

S—+o00 S S—r+o00 S 4\/E

lim — / "5l [sin(\/él/\ $)G()Crr + cos(v/Thns)G(s)

S—+o00
L

L
—C, | dsV
o } sVu

and

R Y d _ L T
SETOO g /S(S + s)$ [cos(\/élx\ns)G(s)Cn — sm(\/4)\ns)G(s)4)\nCn} dsvﬁu

= C’nV\/%u in Xg.

Finally we obtain cf. (70)

I I
lim — — (S+s){G(s)CVu23— lim — G(s')C’VUQS/ ds’}ds

S—+0 S J_g 8’ —+too S’
1 . T
[&ﬁ \/KPI“OJ&M C+ LC, ] Vu + [WPTOJ&U%C VAN C, ] \/E
. Ly :
= SETOO S/o (S —s) {G(S)CVUQS ~ 1_1)1[11Oo 5/, G(s')CVugy ds } ds.

Decomposition formula
Let us check (60). Assume that u,v, Tu, Tv,Bu, Bv € H},. Therefore we have

n(u, Bv) — n(Bu,v)

= lim S/ -5 { G(s)CVugs - VBv — G(s)CVBugs - Vu dy
Rm

S/
— lim / G(s")OVusy - VBv — G(s')CVBugy - Vv dy ds’} ds.
R™m

It is easily seen that for any h € R we have

G(s)CVugs - Vo, dy = G(h)G(s — h)CV (ugs—p)p - Vop, dy
Rm R™
G(s — h)CVugs_p - Vo dy
Rm
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implying, thanks to the hypotheses u, Tu,v, Tv € Hp,C € HE that

G(s)CVus, - VTvdy = lim | G(s)CVuz, v Y gy
1
= lim — [ [G(s — h)CVugs_p — G(s)CVugs] - Vv dy
h—0 Rm

_ / (G(5)(D — (DY)Vuss + G(s)CV T uss] - Vv dy.

Applying twice the above formula, by taking into account that u, 7w, Bu,v, Tv, Bv € H};, we

obtain

G(s')CVusy - VBv — G(s')CVBugy - Vo dy = — G(s")CVBuyy - Vo dy
R™ R™

- /m[G(s’)(D —(D))Vugy + G(s)CVTusy] - VTv dy

G()(D — (D) Vusy -VTudy — [ G(s')(D — (D)) VT usy - Vo dy
R?’n Rm
= / (D — (D))Vuy - VTu_g dy — / (D —(D))VTug - Vo_g dy
= —i, (D — (D))Vuy - Vu_g dy
ds Rm

S/
lim / G(s')CVugy - VBv — G(s')CV Bugy - Vv dyds’
1
= lim — (D — (D)) : [Vv® Vu — Vu_g ® Vug] dy = 0.
Similarly we have

S
;/ (S—3s) | G(s)CVuys - VBv — G(s)CVBugs - Vv dyds
0 R

~ L [se )d/ (D — (D)) Vs - Vo_, dyd

-5/ s Jam s 7 VU= YA

:/ (D —(D))Vu- Vv dy—/ / ))Vug - Vo_g dyds
P a(u,v) —m(u,v).

Orthogonality condition
Let us check that n(u,v) = 0 for any u,v € E) N H};., n € N. Notice that for any u,v € H};

we have

G(s)[P(Vv ® Vu)P] = 9Y (53 ) P5[(Vv)s ® (Vu)s] Ps 10Y "1 (s5)
=Y (s; )P, LAY 1 (s;-) LAY (55 )[(V)s @ (Vu)s)OY (s;-) OY 1 (s;-) Py Y "1 (s; )
G(s)P=P tG(s)P=tP=P
= P(Vvs ® Vug)P. (72)
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In particular, when u,v € Ey N Hp, the matrix field P(Vv ® Vu)P is left invariant by
(G($))ser and thus, by Lemma 5.1, we obtain cf. (64)

n(u,v) = | CoVu-Vody= [ QCy: P(Vv® Vu)PQ dy
Rm Rm

= [ QG(s)Co: P(Vve Vu)PQdy= | G(s)CoVu-Vuvdy
R™ R™

1 S
= /RmS /0 G(s)CoVuds- Vv dy S_>—+>OO 0.

Consider now u,v € Ey, N H}D, n € N*. We claim that the matrix field

T T
P — P
< wM“‘Q@f®WO

is left invariant by (G(s))ser. Indeed, by formula (72) we have

G(s)P ( F V}@Vu) (VUS@VW \ﬁ

:ﬂmwMWHmwaﬁj{m¢s fm¢s>}
—P {Cos (VAns)V f — sin(yv/Ans) VU] {COS(\/ES)VU—FSin(\/ES)V;%}
e
We deduce, thanks to Lemma 5.1, that

T T
C’() (VU@VW Vmw@Vu) dy
T

T
_SEIEOO/RmS/ G(s)C ds: (Vv@Vmu—va@@Vu) dy = 0.

Now we are ready to check that n(u,v) = 0,u,v € E), N Hh,n € N*. For any s € R we
obtain, thanks to the equalities usy = ug (Y (s';+)),v = v_g(Y(s';))

— s ® Vus> P

G(s)CVuyy - Vo dy = C(y)Vug - Vo_g dy
R”L R"L
T
C [cos VA 5 )Vu + sin(y/A s ] [cos VA s )Vou —sin(y/ A s ]
\ﬁ \ﬁ
Tv Tu
= cos?® ns') : Vo @ Vu dy — sin® ns') .V ®V d
(VA Y (VA o C(y) AV
Tu T >
+ sin( s') cos(v/ Ans') u | dy
(/) o) (Ve v L -V L
T
= cos?(\V/ Ans’ C(y) : Vo ® Vu dy — sin®(v/ A\, s’ / C(y ®V—
W) Jo Ve

Averaging over [0, 5] and letting S” — +oo yield

s 1 Jv Tu
. / _ - . _
/Rmsfl 0o G( "NCVugy ds' - Vo dy = 2/mC’ (VU@ Vu Vm® \/E) dy
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and finally, thanks to (67), we obtain

n(u,v) = lim S/ —s {[COS V AnS) } C: Vo Vudy
Rm

S—+o00

—[sm (VAns) — }/ﬂ rv@V\ﬁudy}ds:O.
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