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Abstract

We provide an infinite sequence of upper bounds for the number of rational points
of absolutely irreducible smooth projective curves X over a finite field, starting from
Weil classical bound, continuing to Ihara bound, passing through infinitely many n-
th order Weil bounds and ending asymptotically to Drinfeld-Vlăduţ bound. We
relate this set of bounds to Oesterlé one, proving that these are inverse functions
in some sense. We explain how Riemann hypothesis for the curve X can be merely
seen as an euclidean property, coming from the Toeplitz shape of some intersection
matrix on the surface X×X together with the general theory of symmetric Toeplitz
matrices. We also give some interpretation for the defect of asymptotically exact
towers.

This is achieved by pushing further the classical Weil proof in term of eu-
clidean relationships between classes in the euclidean part FX of the numerical
group Num(X × X) generated by classes of graphs of iterations of the Frobenius
morphism. The noteworthy Toeplitz shape of their intersection matrix takes a cen-
tral place by implying a very strong cyclic structure on FX .

AMS classification : 11G20, 14G05, 14G15, 14H99, 15B05, 11M38.
Keywords : Curves over a finite field, Rational point, Weil bound, Toeplitz matrices,
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A Appendix 39
A.1 Conic programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.2 Real symmetric positive semi definite Toeplitz matrices . . . . . . . . . . 41

A.2.1 Rank of real symmetric, positive semi-definite, Toeplitz matrices . 42
A.2.2 A first isometry: the switch . . . . . . . . . . . . . . . . . . . . . . 43
A.2.3 Singular bordered Toeplitz matrix . . . . . . . . . . . . . . . . . . 44
A.2.4 A second isometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Introduction

Let X be an absolutely irreducible smooth projective curve of genus g defined over the
finite field Fq with q elements. Weil’s [Wei48] classical proof of his bound |]X(Fq) −
(q + 1)| ≤ 2g

√
q for the number ]X(Fq) of Fq-rational points rests upon Castelnuovo

identity, today an easy corollary of Hodge index Theorem for the smooth algebraic
surface X ×X. The intent of this article is to push further this viewpoint by forgetting
Castelnuovo Theorem. We come back to the consequence of Hodge index Theorem that
the intersection pairing on the numerical space Num(X ×X)R is anti-euclidean on what
can be though as its non-trivial part, the orthogonal complement EX of the trivial plane
generated by the horizontal and vertical classes. Thus, the opposite 〈C,D〉 = −C ·D of
the intersection pairing endows EX with a structure of euclidean space.

A very pleasant point is that Weil bound is nothing more than Schwartz inequality
applied to the non trivial parts of the classes of the diagonal and of the graph of the
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Frobenius morphism in this Euclidean space EX ! The benefit of using Schwartz instead
of Castelnuovo is the following. While we do not know what could be a Castelnuovo
identity for more than two numerical classes, we do know that Schwartz for any number
of vectors is the non-negativity of their Gram determinant. We are thus encouraged to
investigate the consequences of the non-negativity of larger Gram determinants involving
(some normalisation1 γk of) the non-trivial part p(Γk) of the numerical classes of the
graph Γk of several k-th iterations of the Frobenius morphism.

Then, a very fruitful property appears: the symmetric semi-definite Gram matrix
of these non-trivial parts is a Toeplitz one2. For instance, this mere fact entails by
general properties of such symmetric semi-definite Toeplitz matrices that multiplication
by the graph of the Frobenius3 is a similarity of ratio

√
q on FX , from which Riemann

hypothesis follows by elementary spectral theory of similarities in an Euclidean space!
This means actually that the subspace FX of Num(X × X) generated by the p(Γk)’s
is an independant of ` rational realization of the part corresponding to the minimal
polynomial of the Frobenius endomorphism ϕ` acting on the Tate module T`(Jac(X))
in the decomposition of T`(Jac(X)) in sum of cyclic sub-spaces for ϕ`. We then deduce
integrality by the Fatou property of the rational integer ring Z. This Toeplitz structure
also yields very naturally for instance to some asymptotic bounds, such as Tsfasmann
bound, so as to some relationships between the numbers of points on some extensions of
scalars of the finite base field, containing as a special case the well known fact that an
extremal curve over Fq is minimal over Fq2 .

To go further, the natural arithmetic constraints ]X(Fqi) ≥ ]X(Fq) have to be taken
into account for any i ≥ 1 as suggested by Ihara. For the family γ0, γ1, γ2, we recover
the well known Ihara bound [Iha81] which improves Weil bound for curves of genus

greater than g2 =
√
q(
√
q−1)
2 , a constant appearing very naturally with this viewpoint

in section 3.3 (especially looking at figure 1 therein). It follows that the classical Weil
bound can be seen as a first order Weil bound, in that it comes from the euclidean
constraints between γ0 and γ1, while the Ihara bound can be seen as a second order
Weil bound, in that it comes from euclidean constraints together with an arithmetic one
between γ0, γ1 and γ2. This process can of course be pushed further: by considering the
family γ0, γ1, γ2 and γ3, we obtain a new third order Weil bound (Theorem 16), which

improves the Ihara bound for curves of genus greater than another constant g3 =
√
q(q−1)√

2
.

We then proceed to the general n-th order Weil bound in our main Theorem 14
for any given n ≥ 1, upper bounding the number of points of a curve of genus g by
some quantity N?

n(g) provided g is greater than a certain explicitly given genus gn.
Moreover, this upper bound N?

n(g) is explicitly related by formula (17) below to some
optimal solution x?1,n(g) of an explicit convex optimisation problem, and these bound
are sharper and sharper as n increases.

1This normalisation is not crucial, it serves only to obtain Toeplitz matrices below. Removing this
normalisation would yield to some “skew Toeplitz” shape matrices such as in formula (6), for which
standard Toeplitz theory can be easily adapted.

2That is, of the form (5).
3For the composition low ◦ of correspondences on X ×X.
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Unfortunately, computing x?1,n(g) explicitly requires the resolution of high degree one
variable polynomial equations over R. Indeed, item (iv) of Theorem 14 states for small
values of n that the usual Weil bound requires the resolution of a degree one equation,
Ihara and the third order Weil bounds require the resolution of second order equations4,
while fourth and fifth order Weil bounds require the resolution of third order equations,
and so on. In any way, a simple glance at Ihara second order Weil bound and at our
explicit third order Weil bound will convince the reader that they become more and
more ugly as the order n increases!

To be precise, the situation is the following. For any given order n ≥ 1, we can
associate to a curve X of genus g a point (x0, x1, . . . , xn) ∈ Rn+1, where x0 = 2g and xi
is the scalar product

〈
γ0, γi

〉
. By the Toeplitz shape of the intersection matrix and the

semi-definite positiveness of Gram matrices, this point should lie in some convex domain
Wn, we call the n-th Weil domain. This can be thought as a geometrico-euclidean
constraint, first in that it comes from the positivity of gram determinants (an euclidean
feature) itself coming from Hodge index Theorem for the surface X × X (a geometric
feature), second in that the Toeplitz shape coming ultimately from projection formula
(a geometric feature) entails strong euclidean properties. By the arithmetic constraints
already described above, it should actually lie in some convex sub-domain, “under” some
Ihara line we denote by Ign. Then, Theorem 14 states that x?1,n(g) is the smallest x1
abscissa of the intersection points of the Weil domain and the Ihara line. This intersection
is constraining provided g ≥ gn, and is then given by the zero set of an explicit one
variable polynomial. It turns out that we did not succeed to prove this statement of
Theorem 14 using pure convex analysis. We rely instead this optimization problem to
the Oesterlé one.

Roughly speaking, given q, our optimization problem is to find the greatest number
N of rational points of a genus g curve over Fq can have given only the above geometrico-
euclidean and arithmetic constrains, while Oesterlé one is to find the smallest genus g a
curve over Fq having N rational points can have given only some constraints we describe
in the paper. We then prove that both sets of constraints entails that these optimisation
problem are inverse to each other. Then, we use Oesterlé explicit solution of his problem
to prove this last result on x?1,n(g).

Nevertheless, note that while Oesterle have considered the infinite dimensional opti-
mization problem taking into account the infinitely may arithmetic constraints ]X(Fqk) ≥
]X(Fq) for any k ≥ 2, we do consider, for a given order n, a finite dimensional optimiza-
tion problem by considering only these arithmetic constraints for 2 ≤ k ≤ n. From this,
we prove that our point of view works also for q = 2.

It worth to insist that we do now have for any value of q infinitely many ordered
Weil bounds, starting from the usual Weil one, then to the Ihara one and so on. It is a
remarkable feature that our bounds of orders n goes, as n tends to infinity, to the well
known Drinfeld-Vlăduţ bound as stated in Theorem 29. Hence, it can be said that all

4Hence closed formulas involving only square roots can be written down.
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these higher order Weil bounds fulfill the gap between the already known one — Weil
and Ihara ones of order 1 and 2, to Drinfeld-Vlăduţ one of infinite order.

Once the smallest x1-coordinate is theoretically well understood — it is the largest
non-positive root of some polynomial equation in one variable, giving n-order Weil
bounds for orders n ≥ 4 is a computational one. We use an algorithm which, for a
given genus g and a given field size q, returns the best upper order Weil bound for the
number of Fq-rational points of a genus g curve, together with the corresponding best
order n. In the figure below illustrating some statements of Theorem 14, we represent
the successive Weil bounds (in logarithmic scales) of order from 1 to 5 for q = 2. Note
that taking into account the logarithmic scale for the y-axis, higher order Weil bounds
become significantly better than usual Weil one even for small genus!

Weil bounds of order 1 to 5 for ]X(Fq) for q = 2. Note that the y axis is logarithmic. For
small genus, red usual first order Weil bound N?

1(g) = q + 1 + 2g
√
q is the best one. Then

from genus g2 =
√
q(
√
q−1)

2
, yellow Ihara second order Weil bound N?

2(g) becomes better,

up to the genus g3 =
√
q(q−1)√

2
where green third order Weil bound N?

3(g) becomes better.

From genus g4, light blue fourth order Weil bound N?
4(g) is the best up to genus g5, where

dark blue fifth order Weil bound N?
5(g) becomes better, and so on. The approximate values

of g2, g3, g4, g5 are particularly small, respectively about 0.3, 1, 2.35 and 4.67. This means
for instance that the best bound for q = 2 and g = 3 is the fourth order one! Continuing
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with this process for larger and larger orders will lead by Theorem 29 to Drinfeld-Vlăduţ
bound.

The paper is organized as follows. In Section 1 we recall some basic facts on in-
tersection pairing on X × X, we prove Proposition 5 that the intersection matrix of
the non-trivial parts γk is Toeplitz, and we deduce Riemann hypothesis for curves in
section 1.3 from general facts on Toeplitz matrices gathered in Appendix A.2.

Then, we introduce in Section 2 the n-th Weil domain resulting from the geometrico-
euclidean constraint, and deduce the usual Weil bound and Proposition 12 coming from
this geometrico-euclidean constraint alone.

We turn in the main Section 3 to results coming from both geometrico-euclidean and
arithmetic constraints. We state the main Theorem 14 giving the general n-th order
Weil bound. We study extensively the cases of orders 2 and 3, getting respectively Ihara
bound and a new explicit bound in Theorem 16. Then, the relationship with Oesterlé
problem is studied in subsection 3.5, from which we deduce a proof of Theorem 14.

We conclude with an asymptotic Section 4. We begin by proving Theorem 28, a
stronger form of Tsfasman [Tsf92] bound in that it gives an interpretation for the defect
of an asymptotically exact tower as a limit of nice euclidean vectors in (E , 〈·, ·〉). We also
push to the infinite-order Weil bound, proving Theorem 29 that it is exactly Drinfeld-
Vlăduţ bound.

For the convenience of the reader, some results on conic programming are given in
Appendix A.1, and some results on symmetric semi-definite Toeplitz matrices are given
in Appendix A.2.

In the whole paper, we denote by X an absolutely irreducible smooth projective
curve of genus g defined over the finite field Fq with q elements.

Acknowledgments. We are grateful to Yves Aubry, Christine Bachoc, Gilles
Lachaud and Hugo Woerdeman for useful discussions.

1 The euclidean subspaces EX and FX inside Num(X ×X)

We introduce some “non-trivial part” space EX and its subspace FX “generated by
the Frobenius”. Both are euclidean vector spaces for the opposite of the intersection
pairing. We prove the very fruitful Proposition 5 that some Gram matrix in FX has
Toeplitz shape. From this mere fact follows for instance a rational interpretation of the
whole set of Riemann Hypothesis for X.

1.1 Intersection in the surface X ×X

In the spirit of Weil’s proof of Riemann hypothesis for curves over finite fields, we use
intersection theory in the group of divisors Div(X ×X) of the product surface X ×X.
There is a unique additive symmetric pairing Div(X × X)2 → Z, denoted by C · D
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for any C,D ∈ Div(X × X), such that C · D equals ]C ∩ D when C and D are non-
singular curves meeting transversally and depending only on the linear equivalence class
of divisors (cf. [Har77, Chap V, Th 1.1]).

We need for our purpose to intersect the horizontal and vertical divisors H and V ,
the diagonal divisor ∆ and the graphs Γ of the q-Frobenius morphsim F : X → X,
respectively defined by:

H = X × {∗}, V = {∗} ×X, ∆ = {(P, P ) | P ∈ X}, Γ = {(P, F (P )) | P ∈ X}.

In the following proposition, we recall some well known intersection numbers between the
previous divisors. We choose to detail their computation in order to make the document
self-contained.

Proposition 1. The intersection matrix in the surface X × X of the horizontal and
vertical divisors H and V , the diagonal divisor ∆, and the graph Γ of the Frobenius
morphism F : X → X is given by

0 1 1 q

1 0 1 1

1 1 2− 2g ]X(Fq)
q 1 ]X(Fq) q(2− 2g)




H V ∆ Γ
H

V

∆

Γ

Proof — Since the intersection pairing does not depend on the linear classes of divisors,
the auto-intersection H2 is equal to (X × {P}) · (X × {Q}) where P,Q are two distinct
points on X. Therefore this auto-intersection must be zero. The same holds for V 2.
One has V ·H = 1 since V and H meet transversally at one unique point.

The divisors ∆ and Γ can be seen as the graphs of the regular morphisms Id and F ,
from X to X, of degree 1 and q respectively. We deduce that ∆ · H = ∆ · V = 1 and
that Γ ·H = q, Γ · V = 1.

Since ∆ and Γ intersect transversally, one has ∆ · Γ = ]X(Fq).
To compute the auto-intersection ∆2, we use the adjunction formula (cf. [Har77,

Chap V, Prop 1.5]) which states that 2g(∆) − 2 = ∆2 + ∆ ·KX×X , where g(∆) is the
genus of the curve ∆, and where KX×X is the canonical class of the surface X × X.
Since ∆ is isomorphic to X, one has g(∆) = g. As for the canonical class it is known
to be equal to (2g − 2)(H + V ) (cf. [Har77, Chap II, Ex 8.3]). This leads to the value
of ∆2.

The auto-intersection Γ2 can be computed in the same way. Note that the genus of Γ
is still g since the projection morphism (P, F (P )) 7→ P defines an isomorphism from Γ
to X. �

Let NS(X ×X) be the Neron-Severi group of X ×X, that is the group Div(X ×X)
modulo algebraic equivalence. This group is known to be a finitely generated abelian
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group (cf. [Har77, Chap V, Ex 1.7]). The intersection pairing on Div(X × X), de-
pending only on equivalence classes, induces a symmetric bilinear pairing on NS(X ×
X). Let Num(X × X) be the quotient of NS(X × X) by the kernel of this pairing.
Then Num(X ×X) is a free finitely generated abelian group and extending the scalars,
one obtains a finite dimensional real vector space Num(X ×X)R = Num(X ×X)⊗Z R.
The most important result about this space, from which we will deduce all bounds in
the sequel, is the Hodge index Theorem (cf. [Har77, Chap V, Th. 1.9, Rk 1.9.1]).

Theorem 2 (Hodge index Theorem). The bilinear form induced by the intersection
pairing on the real vector space Num(X × X)R is non-degenerate, definite negative on
the orthogonal supplement of any ample divisor on the surface X ×X.

Remark – In fact, this result is true for any smooth surfaces. Here only the case of a
square surface is needed. This special case was known by Weil and is contained in his book
on curves [Wei48].

For the ample divisor H +V (for instance by Nakai-Moishezon criterion, see [Har77,
Chap V, Th 1.10], or using Veronese embeding) the intersection pairing is thus definite
negative on 〈H + V 〉⊥. Nevertheless, working in the orthogonal Vect(H,V )⊥ of the big-
ger subspace generated by H and V yields to better bounds. Of course, the intersection
pairing is also definite negative on Vect(H,V )⊥. By non-degeneracy on Num(X ×X)R,
there is an orthogonal decomposition

Num(X ×X)R = Vect(H,V )⊕Vect(H,V )⊥

and the orthogonal projection p onto the non-trivial part Vect(H,V )⊥ is given by

p : Num(X ×X)R −→ Vect(H,V )⊥

D 7−→ D − (D · V )H − (D ·H)V.
(1)

Definition 3. Let E = EX = Vect(H,V )⊥ inside the real vector space Num(X ×X)R.
We define on E a scalar product, denoted by 〈·, ·〉, as〈

ε, ε′
〉

= −ε · ε′, ∀ε, ε′ ∈ E .

The associated norm on E is denoted by ‖ · ‖.

From now on, all the computations will take place in this euclidean space (E , 〈·, ·〉).
In particular, all the Gram matrices so as their determinants are relative to this scalar
product; they are respectively denoted by Gram(ε1, . . . , εn) and DetGram(ε1, . . . , εn)
for ε1, . . . , εn ∈ E .

1.2 The vector space FX generated by iterations of the Frobenius mor-
phism

In fact, all the computations will take place in a smaller subspace F ⊂ E generated by
the projections of the graphs of iterated Frobenius morphism. The key role will be payed
by the projections p(Γk) of the graph of the k-th iterations Frobenius morphism on this
euclidean vector space, or more conveniently by some normalization of it.
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Definition 4. Let Γk ∈ Num(X × X) be the class of the diagonal for k = 0, and the
class of the graph of the k-th iterated Frobenius morphism F k : X → X for k ≥ 1. For
any k ≥ 0, let

γk =
p(Γk)√
qk
∈ E (2)

be some normalization of the non-trivial part p(Γk) of Γk in E and put

F = FX = Vect(γk, k ≥ 0). (3)

To begin with, let us compute the Gram matrix of the normalized graphs of the
iterates of the Frobenius morphism.

Proposition 5. For every i, j,≥ 0, one has

〈
γi, γj

〉
=

{
2g if i = j

x|i−j| if i 6= j
, or Gram

(
γj , γj+i

)
=

(
2g xi
xi 2g

)
if i ≥ 1,

where

xi =
〈
γ0, γi

〉
=

(qi + 1)− ]X(Fqi)
√
qi

(4)

for i ≥ 1. Hence, the Gram matrix of the whole truncated ordered family (γ0, γ1, · · · , γn)
is a Toeplitz one

Gram(γ0, . . . , γn) =



2g x1 · · · xn−1 xn

x1
. . .

. . . xn−1
...

. . .
. . .

. . .
...

xn−1
. . .

. . . x1
xn xn−1 · · · x1 2g


. (5)

Remark – Note that removing the normalization factor would yield by the proof below
to the “skew Toeplitz” Gram matrices

Gram
(
p
(
Γ0) , p (Γ1) , . . . , p (Γn)

)
=



u0 u1 · · · un−1 un

u1 qu0

. . . qun−1

...
. . .

. . .
. . .

...

un−1

. . . qn−1u0 qn−1u1

un qun−1 · · · qn−1u1 qnu0


(6)

with

u0 = 2g ∈ Z and un =
〈
p
(
Γ0) , p (Γn)

〉
= (qn + 1)− ]X(Fqn) ∈ Z.
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Proof — Since
〈
γk, γk+i

〉
= −γk · γk+i and γk = 1√

qk
p(Γk) = 1√

qk

(
Γk −H − qkV

)
, we

have only by (1) and by (4) to check that we have the following intersection matrix:

0 1 qk qk+i

1 0 1 1

qk 1 qk(2− 2g) qk]X(Fqi)

qk+i 1 qk]X(Fqi) qk+i(2− 2g)





H V Γk Γk+i

H

V

Γk

Γk+i

The special case k = 0 and i = 1 corresponds to the intersection matrix of Proposition 1.
The self-intersections in the general case can be computed as in this special case using
the adjunction formula. For the same reason why Γ0 · Γ1 = ∆ · Γ = ]X(Fq), one
has Γ0 · Γi = ∆ · Γi = ]X(Fqi) for every i ≥ 1. The remaining intersections to be
calculated are the Γk ·Γk+i for k, i ≥ 1. One can relate them to the intersections Γ0 ·Γi,
using the projection formula (see [Liu02, Th 2.12, p. 398]) for the morphism Φk = F k×Id.
We have (Φk)∗(∆) = Γk and (Φk)∗

(
Γk+i

)
= qkΓi, so that

Γk · Γk+i = (Φk)∗(∆) · Γk+i = ∆ · (Φk)∗

(
Γk+i

)
= qk∆ · Γi.

Formula (5) for the Gram matrix follows. �

1.3 Toeplitz interpretation of Riemann hypothesis for curves over fi-
nite fields

In this section, we point out the close link between on the one hand the euclidean
structure on the “Frobenius” space F (Definition 4) coming ultimately from the Toeplitz
shape of the Gram matrix as described in Appendix A.2 and on the other hand the
Riemann hypothesis for curves. Note that the space F comes from the group Num(X ×
X) which is a Z-module of finite type. Therefore, F has a natural Q-structure. We
begin with a purely “Toeplitz version” of the Riemann hypothesis for curves.

Theorem 6 (Toeplitz version of Riemann hypothesis for curves). We keep the notation
of Definition 4 and we denote by d the rank of the space F over Q. Let ρ : F → F
be the linear map defined by p(Γn) 7−→ p(Γn+1) for 0 ≤ n ≤ d − 1. Then ρ is a
similarity on F of ratio

√
q, satisfying p(Γn) 7→ p(Γn+1) for any n ≥ 0, and whose

eigenvalues ω1, . . . , ωd ∈ C are algebraic integers of complex modulus
√
q. Moreover,

there exists some non-negative integers λ1, . . . , λd ∈ N∗ such that

d∑
i=1

λi = 2g

and for any n ≥ 1,

(qn + 1)− ]X(Fqn) =

d∑
i=1

λiω
n
i .

10



Proof. Thanks to Proposition 5, we know that the euclidean space F has a “Toeplitz
structure”, that is Gram(γ0, . . . , γn) is a Toeplitz matrix for any n ≥ 0. Using Lemma 33
in Appendix A.2, we deduce that the dimension d of F corresponds to the minimal integer
such that Gram(γ0, . . . , γd) is singular. Let (a0, . . . , ad) ∈ Qd+1 be a generator of the ker-
nel of this Gram-matrix. Then F =

⊕d−1
i=0 Qγi and γd = − 1

ad

(
a0γ

0 + · · ·+ ad−1γ
d−1),

where ad 6= 0 since the family (γi)0≤i≤d−1 is free. Besides, the map ι : F → F defined
by γn 7→ γn+1 for 0 ≤ n ≤ d − 1 is an isometry by item (i) of Theorem 36 in Ap-
pendix A.2. Therefore its eigenvalues have modulus 1 and moreover one easily proves
recursively that ι(γn) = γn+1 for any n ≥ 0.

Since p(Γn) =
√
qnγn by Definition 4, the map ρ of the statement is nothing else

than
√
q × ι. Thus it is a similarity of ratio

√
q, so that all its eigenvalues have modu-

lus
√
q, and F is also a cyclic space under ρ.

To prove that these eigenvalues are algebraic integers, note that p
(
Γ0
)
, p
(
Γ1
)
, . . . , p

(
Γd−1

)
being a Q-basis of FQ, there exist b1, . . . , bd ∈ Q such that

p
(

Γd
)

= b1p
(

Γd−1
)

+ · · ·+ bdp
(
Γ0
)
.

Hence ρd = b1ρ
d−1 + · · ·+ bd Id since F is cyclic under ρ. Applied to p

(
Γi
)
, we get that

for every i ≥ 0,

p
(

Γd+i
)

= b1p
(

Γd−1+i
)

+ · · ·+ bdp
(
Γi
)
.

Taking the scalar product with p
(
Γ0
)
, we obtain

ud+i = b1ud−1+i + · · ·+ bdui.

The sequence (ui)i≥0 is thus a rationally defined recursive integer valued sequence, and
Fatou Lemma below implies that b1, . . . , bd are rational integers.

To prove the last assertion, there exist by item (iv) of Theorem 36 some non negative
real numbers λ1, . . . , λd ∈ R∗+ such that

(qn + 1)− ]X(Fqn) =
d∑
i=1

λiω
n
i

for any n ≥ 1. This means that the Riemann Zeta function of X equals

ZX(T ) =

∏d
i=1(1− ωiT )λi

(1− T )(1− qT )
.

But it is well known, for instance using Riemann-Roch Theorem on X as in Stichtenoth
[Sti93, Theorem V.1.6, p. 161], that this Zeta function is a rational function. This implies
that the λi’s are rational integers, and the proof is complete.

Lemma 7 (Fatou [Fat04]). Let b1, . . . , bd ∈ Q and (un)n≥0 be a rational sequence defined
by its first terms u0, . . . , ud−1 ∈ Q and the recursive relation ud+i = b1ud−1+i+ · · ·+bdui
for all i ≥ 0. If the sequence (un)n≥0 is an integers sequence, then the coefficients of the
recursive relation b1, . . . , bd must also be integers.

11



One can now rephrase the previous statement in a more standard language. We
have proved that the vector space F is a cyclic space under the endomorphism ρ. It
can be turned into an algebra over R and even over Q. One can give a more geometric
flavour of this structure of algebra by means of of the composition ◦ of correspondences,
à la Weil. In fact, there exists such a composition law on Div(X × X): given two
divisors D,D′ ∈ Div(X × X), Weil [Wei48, Chap 2, §1, N◦5, page 37] has defined
their composition D ◦ D′ ∈ Div(X × X). One check that Γi ◦ Γj = Γi+j and that this
composition low is compatible with the numerical class equivalence. The similarity ρ
of the previous theorem is nothing else than the multiplication map by p(Γ) inside the
algebra (F ,+, ◦).

Then this similarity ρ can be related to the usual Frobenius morphism acting on the
Tate module as follows. The non trivial part E = 〈H,V 〉⊥ of the group Num(X ×X) is
known to be isomorphic to the Endomorphism group Hom(J(X)) of the jacobian J(X)
of X [Zar95, App. Chap VII, p. 153]. Under this isomorphism, the projection p(Γ) cor-
responds to the usual Frobenius morphism acting on J(X). Then using Hom(J(X)) ↪→
Hom (T`(J(X))), we do recover the usual Frobenius action. Under the decomposition
of T`(J(X)) as sum of cyclic sub-spaces for the Frobenius morphism ϕ`, the Q-vector
space FX maps to the cyclic component corresponding to the minimal polynomial of ϕ`.
Hence, it can be said that F is a rational realization of the “minimal polynomial of the
Frobenius” part of the Tate module.

2 Weil domains

For any integer n ≥ 1, one can associate to any absolutely irreducible smooth projective
curve X of genus g defined over Fq a point (x0, x1, . . . , xn) ∈ Rn+1, where x0 = 2g and xi
is defined by formula (4) for i ≥ 1. Thanks to Proposition 5 and standard properties of
Gram and Toeplitz matrices, we prove Proposition 10 that this point is contained in a
convex domainWg

n we call the n-th Weil domain defined below. We give some properties
of this Weil domain in Proposition 9 and few consequences such as classical Weil bound
as a very special case, making likely that this viewpoint should have other consequences.

2.1 Description of the Weil domain of order n

Recall that a Toeplitz matrix is a square matrix whose coefficients ai,j depend only on
the difference i − j. It is symmetric if ai,j depends only on the absolute value |i − j|.
For n ≥ 0 and (x0, . . . , xn) ∈ Rn+1, let Tn+1(x0, . . . , xn) denote the symmetric Toeplitz
matrix of size n+ 1 defined by

Tn+1(x0, . . . , xn) =



x0 x1 · · · xn−1 xn

x1
. . .

. . . xn−1
...

. . .
. . .

. . .
...

xn−1
. . .

. . . x1
xn xn−1 · · · x1 x0


(7)

12



In section A.2, we collect some useful results about positive, semi-definite such matrices.
The Weil domain defined below is closely related to these matrices. In the sequel, the
notations T � 0 and T � 0 mean respectively positive, definite and positive, semi-
definite.

Definition 8 (The Weil domain). Let n ≥ 1, and g ≥ 0. The n-th Weil domain Wn

and the n-th affine Weil domain Wg
n at height g, or also at genus g, are defined by

Wn =
{

(x0, . . . , xn) ∈ Rn+1 | Tn+1(x0, x1, . . . , xn) � 0
}

(8)

Wg
n = {(x1, . . . , xn) ∈ Rn | Tn+1(2g, x1, . . . , xn) � 0} . (9)

Let (x0, x1, . . . , xn) ∈ Rn+1 be such that Tn+1(x0, x1, . . . , xn) � 0. As explained in
subsection A.2.1 of Appendix A.2, we shall think of Tn+1(x0, x1, . . . , xn) as the matrix of
a symmetric positive definite bilinear form with respect to a family γ0, . . . , γn which gen-
erates a finite dimensional vector space. In other words, one has Tn+1(x0, x1, . . . , xn) =
Gram(γ0, . . . , γn). With the help of Lemmas 34 and 35, we give some properties and
alternative descriptions of the Weil domain.

Proposition 9. The Weil domains satisfy the following assertions.

(i) Both Weil domains,Wn and the affine onesWg
n are convex. The affine domainWg

n

is bounded, contained in [−2g, 2g]n.

(ii) The interior of the Weil domain can be recursively defined by

◦
Wn =

{
(x0, . . . , xn) ∈

◦
Wn−1 × R | Det(Tn+1(x0, . . . , xn)) > 0

}

(iii) There exist two functions w+
n , w

−
n :

◦
Wn−1 → R such that

(x0, . . . , xn) ∈
◦
Wn ⇐⇒ (x0, . . . , xn−1) ∈

◦
Wn−1 and

w−n (x0, . . . , xn−1) < xn < w+
n (x0, . . . , xn−1)

(10)

Moreover the function w+
n is concave while w−n is convex and one has

w+
n (x0, . . . , xn−1)− w−n (x0, . . . , xn−1) = 2 · Det (Tn(x0, . . . , xn−1))

Det (Tn(x0, . . . , xn−2))

Proof. Item (i). The fact that both domains are convex is easy to prove. If Tn+1(g, x1, . . . , xn) �
0 then

(
2g xi
xi 2g

)
� 0 and thus Wg

n ⊂ [−2g, 2g]n.

Item (ii) follows from the well known fact that a symmetric matrix is definite positive
if and only if all its leading principal minors (obtained by deleting the last rows and
columns one after the other) are positive [HJ90, Theorem 7.2.5].
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Item (iii). Let (x0, . . . , xn) ∈
◦
Wn and let say that Tn+1(x0, . . . , xn) = Gram(γ0, . . . , γn).

Using notations of lemma 34, we have

Gram
(
γ′0, . . . , γ

′
bn
2
c

)
� 0

and Gram
(
γ′bn

2
c+1, . . . , γ

′
n

)
� 0

, so that
DetGram

(
γ′0, . . . , γ

′
bn
2
c

)
> 0

and DetGram
(
γ′bn

2
c+1, . . . , γ

′
n

)
> 0

.

Developing both determinants along their first column, one obtains two affine function in

the variable xn whose xn-coefficient are the two positive factors DetGram
(
γ′0, . . . , γ

′
bn
2
−1c

)
and DetGram

(
γ′bn

2
c, . . . , γ

′
n−2

)
. This proves the existence of the two functions w±n .

In order to be more explicit, one has to relate to Lemma 35. In fact, the two val-
ues w±n (x0, . . . , xn−1) must be the two scalar products denoted x±n in this lemma. The
rest of the item follows.

Remark – Working with the closed setWn instead of its interior is a little bit more subtle.
The reason is that the characterization of definite positiveness used to prove item ii is not
true anymore to characterize semi-definite positiveness. All diagonal minors have to be
taken into account, and not only the so called principal ones.

Remark – When the euclidean space we deal with comes from a curve, we use exponent
numbering for the datas (as for instance in Definition 4), and we use index numbering
otherwise (as for instance in the previous paragraph).

2.2 The geometrico-euclidean constraint

The connection between Weil domains and our purpose is contained in the next propo-
sition, coming from Proposition 5, positivity of Gram matrices and Definition 8.

Proposition 10 (Geometrico-euclidean5 constraint for curves). If X is an absolutely
irreducible smooth projective curve of genus g defined over the finite field Fq, then for
any n ≥ 1, the euclidean point (2g, x1, . . . , xn) defined by formula (4) lies in the affine
Weil domain Wg

n.

2.2.1 Weil bound of order 1

Let us look closer at the first non-trivial geometrico-euclidean constraint given by Propo-
sition 10, that is for n = 1. We have Gram(γ0, γ1) � 0. But(

2g x1
x1 2g

)
� 0 ⇐⇒

∣∣∣∣2g x1
x1 2g

∣∣∣∣ ≥ 0 ⇐⇒

∣∣∣∣∣ 2g
(q+1)−]X(Fq)√

q
(q+1)−]X(Fq)√

q 2g

∣∣∣∣∣ ≥ 0,

which is nothing else than Weil bound!

5Euclidean because of positiveness of a symmetric Gram matrix in an euclidean space, and geometric
because the euclidean feature comes from the geometry of the algebraic surface X ×X via Hodge Index
Theorem.
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Theorem 11 (Weil inequality). Let X be an absolutely irreducible smooth projective
curve of genus g defined over Fq, then

|]X(Fq)− (q + 1)| ≤ 2g
√
q

So, Weil inequality boils down only to the Schwartz inequality for the vectors γ0, γ1 ∈
E . Likewise, for every i ≥ 1, the condition Gram(γ0, γi) =

(
2g xi
xi 2g

)
� 0 leads to Weil

inequality over Fqi .

2.2.2 Comparison between ]X(Fq) and ]X(Fq2)

In the same spirit, from the fact that Gram(γ0, γ1, γ2) � 0, one can deduce that

Gram(γ0, γ1, γ2) =

2g x1 x2
x1 2g x1
x2 x1 2g

 � 0, hence (2g − x2)(4g2 + 2gx2 − 2x21) ≥ 0,

so that 2g2 + gx2 − x21 ≥ 0.

From the values of x1, x2 in (4), we obtain the following proposition which states that
for a non rational curve X, any lower bound for the deviation of ]X(Fq) from (q + 1)
yields to a better upper bound than the Weil one for ]X(Fq2).

Proposition 12. Let X be a curve of genus g > 0 over Fq, then

]X(Fq2)− (q2 + 1) ≤ 2gq − 1

g

(
]X(Fq)− (q + 1)

)2
.

In the same way, the positivity Gram(γ0, γ1, γi) � 0 yields to a (quite ugly) similar
upper bound for ]X(Fqi) in terms of ]X(Fq) and ]X(Fqi−1).

It worth to notice that Proposition 12 contains the well known fact that a Weil
maximal or minimal curve over Fq is Weil minimal over Fq2 . Just for fun, we can also
easily recover this fact directly on the Gram determinant. Indeed, being Weil maximal
over Fq means, by Theorem 11 and notation (4), that x1 = −2g. Therefore

DetGram(γ0, γ1, γ2) =

∣∣∣∣∣∣
2g −2g x2
−2g 2g −2g
x2 −2g 2g

∣∣∣∣∣∣ = −2g(2g−x2)2 ≥ 0, so that x2 = 2g,

that is, by Theorem 11 and notation (4), X is minimal over Fq2 . Then

DetGram(γ0, γ2, γ3) =

∣∣∣∣∣∣
2g 2g x3
2g 2g −2g
x3 −2g 2g

∣∣∣∣∣∣ = −2g(2g+x3)
2 ≥ 0, so that x3 = −2g,
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that is X is maximal over Fq3 , and so on. . . In the same way, if X is minimal over Fq,
that is if x1 = 2g, then

DetGram(γ0, γ1, γ2) =

∣∣∣∣∣∣
2g 2g x2
2g 2g 2g
x2 2g 2g

∣∣∣∣∣∣ = −2g(x2 − 2g)2 ≥ 0, that is x2 = 2g,

and X still minimal over Fq2 . And so on again. . .

3 Weil bounds of higher orders

To get better bounds, we need to add some arithmetic constraints to the geometrico-
euclidean previous one. Besides the description of the arithmetic constraints, all this
section is devoted to the illustration and the proof of the main Theorem 14 of this paper
below, stating that the set of constraints lead to a sequence of better and better Weil’s
order n upper-bounds as n increases, in accordance with the figure in the Introduction
for q = 2.

3.1 Description of the arithmetic constraints for the generalized Weil
bounds

As suggested by Ihara [Iha81], the natural arithmetic constraints ]X(Fqi) ≥ ]X(Fq), for
every i ≥ 1, should be fruitfully taken into account. They are easily traduced into some
inequalities involving the scalar products xi defined by equation (4):

xi =
1 + qi − ]X(Fqi)

√
qi

=
(1 + q − ]X(Fq)) + (qi − q)− (]X(Fqi)− ]X(Fq))

√
qi

=
1

√
qi−1

1 + q − ]X(Fq)√
q

+
√
q

(
√
qi−1 − 1

√
qi−1

)
−
]X(Fqi)− ]X(Fq)

√
qi

≤ `i(x1),

where `i(x1) are the affine functions6

`i(x1) =
x1
√
qi−1

+
√
q

(
√
qi−1 − 1

√
qi−1

)
. (11)

The aim of this section is to investigate the bounds that can be derived from the con-
junction of all constraints.

The
geometrico-
euclidean

one:
Gram(γ0, . . . , γn) = Tn+1(2g, x1, . . . , xn) � 0
that is (2g, x1, · · · , xn) ∈ Wg

n.
, (12)

The arithmetic ones: xi ≤
x1
√
qi−1

+
√
q

(
√
qi−1 − 1

√
qi−1

)
, 2 ≤ i ≤ n. (13)

6Note that `1(x1) = 1.
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A new phenomenon arises here. Unlike in section 2.2.1, the arithmetic constraints
yield to better bounds than Weil one (Theorem 11) only for large enough genus g. A nice
point of this point of view is that the genus from which better bounds can be obtained
appears very naturally, if not to say visually!

In order to ease the statements of the main Theorem, we need to give a name to the
set of points (x1, . . . , xn) satisfying equalities in the arithmetic constraints, cutout by
the hyperplane x0 = 2g.

Definition 13 (The Ihara line). For g ≥ 0, the Ihara line Ign is the affine line whose
equations are {

x0 = 2g

xi = `i(x1) 2 ≤ i ≤ n

in the affine hyperplane x0 = 2g of Rn+1, where

`i(x1) =
x1
√
qi−1

+
√
q

(
√
qi−1 − 1

√
qi−1

)
. (14)

3.2 Statement of the main Theorem

We now state the main Theorem of this paper.

Theorem 14 (Weil bound of order n). There exist a strictly increasing sequence (gn)n≥1
of non-negative real numbers and a sequence (N?

n)n≥1 of strictly increasing functions
from [gn,+∞[ to R, such that for any g ≥ gn, the value N?

n(g) is an upper bound for
the number of rational points of any smooth, projective and absolutely irreducible curve
over Fq of genus g. More precisely:

(i) For any smooth, projective and absolutely irreducible curve X over Fq of genus g ≥
gn, one has

]X(Fq) ≤ N?
n(g) (15)

for the sequences (gn)n≥1 and (N?
n)n≥1 given by

gn =
√
qn+1

n∑
k=1

1
√
qk

cos

(
kπ

n+ 1

)
(16)

N?
n(g) = (q + 1)−√q × x?1,n(g), (17)

where x?1,n(g) is the smallest x1-coordinate of the intersection points of the Ihara
affine line Ign with the convex affine Weil domain Wg

n.

(ii) We have
N?
n(gn+1) = N?

n+1(gn+1) = 1 +
√
qn+2, (18)

and the bound N?
n+1(g) is sharper than N?

n(g) for g > gn+1, that is N?
n+1(g) <

N?
n(g).
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(iii) The genus gn is the genus g for witch the Ihara line Ign meets the affine Weil domain
Wg
n at the intersection7 of the two hypersurfaces xn = w±n (2g, x1, . . . , xn−1).

(iv) For g ≥ gn, the minimum x?1,n(g) is reached on the intersection of the Ihara line
with the hypersurface xn = w−n (x1, · · · , xn−1), that is is a solution of the equation

w−n (x1, `2(x1), · · · , `n−1(x1)) = `n(x1). (19)

Remark – Note that item (ii) means that the Weil bounds N?
n glue together to give

a continuous global bound N? in such a way that N?(g) = N?
n(g) for the order n such

that g ∈ ]gn, gn+1].

For instance, we have x?1,1(g) = −2g at order 1, and we will give the value for x?1,2(g)
at order 2 in formula (21). Although it is not strictly necessary, we start to study in
details the cases n = 2 and n = 3 in subsections 3.3 and 3.4. This allows to explain,
and especially to give “a view” of the phenomena that arises. During this way, we
also recover that Ihara bound is neither that this actual second-order Weil bound, and
we write down the new third-order Weil bound. We postpone the complete proof of
Theorem 14 in subsection 3.5 by linking our problematic to the Oesterlé one.

3.3 Weil bound of order 2 (Ihara bound)

For n = 2, the geometrico-euclidean constraint is Gram(γ0, γ1, γ2) � 0, or more conve-

niently Gram
(
γ0+γ2√

2
, γ1, γ

0−γ2√
2

)
� 0, (see Lemma 34) that is

2g + x2
√

2x1 0√
2x1 2g 0
0 0 2g − x2

 � 0, meaning that

{
−2g ≤ x1 ≤ 2g
x21
g − 2g ≤ x2 ≤ 2g

.

Note that this contains the condition Gram(γ0, γ1) � 0. Using the notations of Propo-

sition 9, one has w+
2 (2g, x1) = 2g and w−2 (2g, x1) =

x21
g − 2g. As for the arithmetic

constraint, this is only

x2 ≤ `2(x1) =
x1√
q

+ q − 1.

In other terms, inside the affine plane x0 = 2g, the points (2g, x1, x2) must lie in the
convex affine Weil spaceWg

2 , and under the Ihara line Ig2 whose equation is the arithmetic
constraint. One can distinguish three cases depending on the genus g. A picture of each
of them is drawn in figure 1. It appears that if the genus is not large enough, then
the added arithmetic constraint does not restrict the Weil domain. On the other hand,
making the genus growing, then this constraint turns to become active. This happens

7This can be called the seam of the third affine Weil domain.
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x1

x2

−2g 2g

−2g

2g

g <
√
q(
√
q−1)
2

x1

x2

−2g 2g

−2g

2g

g =
√
q(
√
q−1)
2

x?1,2(g)

x1

x2

−2g 2g

−2g

2g

g >
√
q(
√
q−1)
2

Figure 1: Three affine Weil domains Wg
2 and Ihara lines Ig2 for different genus g inside

the plane x0 = 2g: points (x1, x2) coming from a curve must lie in the dashed area.

from the value of g for which in the affine plane x0 = 2g, the line x2 = x1√
q + q− 1 passes

through the point (−2g, 2g), that is for

g =

√
q
(√
q − 1

)
2

. (20)

Notice that the point (−2g, 2g) and (2g, 2g) correspond to the locus inside Wg
2 in the

affine space x0 = 2g where the two graphs x2 = w+
2 (2g, x1) and x2 = w−2 (2g, x1) do

meet, in accordance with item (iii) of Theorem 14.

For g >
√
q(
√
q−1)
2 , the arithmetic constraint restricts the Weil domain and we get a

better8 lower bound x?1,2(g) for the abscissa x1. From the right part of figure 1, this bound

is the x1-coordinate of the left intersection point of the curve x2 = w−2 (2g, x1) =
x21
g − 2g

with the affine Ihara line Ig2 (see Definition 13) whose equation is x2 = x1√
q + q − 1. An

easy computation leads to a best abscissa

x?1,2(g) =
g −

√
(8q + 1)g2 + 4q(q − 1)g

4
√
q

. (21)

Going back to ]X(Fq) using formulas (4), we recover the well known Ihara bound.

Theorem 15 (Ihara bound [Iha81]). Let X be a curve of genus g over Fq then

]X(Fq)− (q + 1) ≤
√

(8q + 1)g2 + 4q(q − 1)g − g
2

8Than the usual Weil bound x1 ≥ −2g.
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and this bound is better than the Weil one as soon as g ≥
√
q(
√
q−1)
2 .

Of course, the values given by formula (21) and g2 =
√
q(
√
q−1)
2 meet those given

respectively by equations (16) and (17) in the main Theorem 14.

Remark – One may wonder whether one can also optimize in this way the usual Weil
lower bound ]X(Fq) ≥ (q + 1) − 2g

√
q, that is x1 ≤ 2g. For g large enough9, one indeed

obtain a best upper bound for x1, that is a lower bound for ]X(Fq), seemingly optimizing
Weil lower bound. Unfortunately, this works only for so large genus that this “new” lower
bound is negative!

3.4 Weil bound of order 3 (new bound)

For n = 3, the geometrico-euclidean constraint is Gram(γ0, γ1, γ2, γ3) � 0, or more
conveniently as in Lemma 34

Gram

(
γ0 + γ3√

2
,
γ1 + γ2√

2
,
γ0 − γ3√

2
,
γ1 − γ2√

2

)

=


2g + x3 x1 + x2 0 0
x1 + x2 2g + x1 0 0

0 0 2g − x3 x1 − x2
0 0 x1 − x2 2g − x1

 � 0.

It is equivalent to (2g, x1, x2) ∈ W2 together with the two inequalities coming from the
semi-positiveness of the the preceding sub-Gram determinants:

−2g +
(x1 + x2)

2

2g + x1︸ ︷︷ ︸
w−3 (2g,x1,x2)

≤ x3 ≤ 2g − (x1 − x2)2

2g − x1︸ ︷︷ ︸
w+

3 (2g,x1,x2)

As for the arithmetic constraints, they are

x2 ≤ `2(x1) =
x1√
q

+ q − 1 and x3 ≤ `3(x1) =
x1
q

+
q2 − 1
√
q
.

By item (iii) of Theorem 14, the genus from which the last constraint becomes active is
the one for which the Ihara line Ig3 meets the affine Weil domain Wg

3 at the intersection
of the two affine surfaces x3 = w−3 (2g, x1, x2) and x3 = w+

3 (2g, x1, x2).
Let us begin by computing this intersection. The two last equalities correspond to

the nullity of both DetGram
(
γ0+γ3√

2
, γ

1+γ2√
2

)
and DetGram

(
γ0−γ3√

2
, γ

1−γ2√
2

)
, that is to

(x3 + 2g)(x1 + 2g) = (x1 + x2)
2 and (x3 − 2g)(x1 − 2g) = (x1 − x2)2.

9To be precise, from the genus g =
√
q(√q+1)

2
for which the Ihara line passes through the upper right

point (2g, 2g) of the Weil domain.
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Figure 2: The affine Weil domainsWg
3 for g ≥ 0 are all homothetic to the domain drawn

in the top-left figure. In the other three figures, we add the affine Ihara line (intersection
of the green and yellow affine hyperplane). Top-right: the genus is too small and the

new constraint is not active. Bottom-left: the genus g =
√
q(q−1)√

2
and the Ihara line meet

the Weil domain at its seam. Bottom-right: the new constraint becomes active.
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This also implies that DetGram(γ0, γ1, γ2) = 0, or more conveniently

DetGram

(
γ0 + γ2√

2
, γ1,

γ0 − γ2√
2

)
=

∣∣∣∣∣∣
2g + x2

√
2x1 0√

2x1 2g 0
0 0 2g − x2

∣∣∣∣∣∣ = 0.

Therefore, either x2 = 2g, in which case x1 = x3. Or gx2 = x21 − 2g2, and we deduce
that

g(x2 + x1) = (x1 − g)(x1 + 2g), g(x2 − x1) = (x1 + g)(x1 − 2g),

and thus x3 =
x31
g2
− 3x1. In conclusion, inside the affine space x0 = 2g, the two sur-

faces x3 = w±3 (2g, x1, x2) meet along the union of the two segments of parametric curves

{(x1, 2g, x1) , −2g ≤ x1 ≤ 2g} ∪
{(

x1,
x21
g
− 2g,

x31
g2
− 3x1

)
, −2g ≤ x1 ≤ 2g

}
(22)

Remark – For the second segment and for i = 1, 2, 3, if we put yi = xi
g

, then one has yi =
Ci(y1), where C1, C2, C3 denote the first three Chebychev polynomials.

Now, the genus from which the second constraint x3 = x1
q + q2−1√

q becomes active is

thus the one for which the curve given by formula (22) above meets the Ihara line, which
is parametrized by(

x1,
x1√
q

+ q − 1,
x1
q

+
q2 − 1
√
q

)
, x1 ∈ R

To find such a genus it suffices to eliminate x1 in the system of equation
x21
g − 2g = x1√

q + q − 1
x31
g2
− 3x1 = x1

q + q2−1√
q .

Using magma, we compute the resultant in x1 of the two polynomials obtained by differ-
ence in the preceding system; up to a power of g factor, the result is

(g − 1)

(
g −
√
q(q − 1)
√

2

)(
g −
√
q(1− q)
√

2

)
After taking off unadmissible solutions, it only remains the value

g =

√
q(q − 1)
√

2
(23)

which of course meets the value of g3 given by equation (16) of Theorem 14. For g ≥
g3 =

√
q(q−1)√

2
, the last arithmetic constraint become active and the minimum x?1,3(g)

of the abscissa x1 is attained by item (iv) of Theorem 14 on the intersection of the
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surface x3 = w−3 (x1, x2) with the Ihara line. In order to calculate this intersection, we
have to solve the system of equations

(x1 + x2)
2 − (g + x1)(g + x3) = 0

x2 = `2(x1) = x1√
q + q−1

2

x3 = `3(x1) = x1
q + q2−1

2
√
q

This leads to some quadratic equation in x1 whose discriminant and roots, althought
really ugly, are easily computed. Skipping these calculations, we only give the final result
which is nothing else than the case n = 3 of Theorem 14.

Theorem 16. Let X be a smooth, projective, absolutely irreducible curve defined over Fq,
of genus g ≥ g3 =

√
q(q−1)√

2
. Then

]X(Fq)− (q + 1) ≤


√
a(q) + b(q)

g + c(q)
g2
− q+1

q −
d(q)
g

√
q + 2

 g
√
q,

where 
a(q) =

(5q−2√q+1)(
√
q+1)2

q2

b(q) =
(q−1)(q+1)(3

√
q−1)(√q+1)

q
√
q

c(q) =
(q−1)2(q2−4q√q−2q−4√q+1)

4q

d(q) =
(q−1)(q−2√q−1)

2
√
q

The formula becomes nicer if we let g going to infinity. We obtain the following third
order asymptotic bound for Ihara constant A(q) (see [Iha81]).

Corollary 17. The Ihara constant A(q) is bounded above by:

A(q) ≤

√
5 + 8√

q + 2
q + 1

q2
−
(

1 + 1
q

)
1 + 2√

q

√
q.

Remark – For q large the preceding upper bound is equivalent to (
√

5−1)
√
q ' 1, 236

√
q.

This is better than the upper bound of A(q) following from Ihara bound

A(q) ≤
√

8q + 1− 1

2
,

which is equivalent to
√

2q ' 1, 414
√
q for q large. Later, in Theorem 29, we prove that

the upper bounds for A(q) that are deduced from the Weil bounds of growing orders,
asymptotically tend to the Drinfeld-Vlăduţ bound, A(q) ≤ √q − 1.

3.5 Oesterlé bounds and proof of Theorem 14

In order to prove the main Theorem 14, it is convenient to turn the generalized Weil
bound optimization problem into a conic optimization one. We relate then this opti-
mization problem to the one formulated and solved by Oesterlé for his own bounds. The
reader is referred to Appendix A.1 for details on conic programming.
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3.5.1 Two optimization problems

Depending on whether we choose to fix a genus or a number of points, one can express
two optimization problems.

Weil primal optimization problem. — In the spirit of the preceding sections, we fix
a genus g and we intend to give an upper bound for the number of points N over Fq that

can have a curve of genus less than g from some constraints. Since x1 = 1+q−N√
q by (4),

maximizing the number of points N is equivalent to minimizing the scalar product x1.
The geometrico-euclidean and arithmetic constraints (12) and (13) lead to what we call
the generalized Weil optimization problem.

Definition 18 (generalized Weil optimization problem). Put

α =
1
√
q
, βi =

√
q

(
√
qi−1 − 1

√
qi−1

)
, (24)

and let g ≥ 0 be a constant (thought as a genus). The associated generalized Weil
optimization problem of order n ≥ 1 consists in computing the minimum

x?1,n(g)
def.
= min

x1
Tn+1(x0, x1, . . . , xn) � 0
x0 ≤ 2g

xi − αi−1x1 ≤ βi, 2 ≤ i ≤ n

 . (Wn)

We denote by
N?
n(g) = 1 + q −√q × x?1,n(g) (25)

the corresponding value for the maximum of the number N .

Oesterlé primal optimization problem. — On the other hand, one can fix after
Oesterlé a number of points N and intend to give a lower bound on the genus of a
curve X over Fq that has at least N rational points over Fq, i.e. ]X(Fq) ≥ N . For
every i ≥ 1, one imposes the arithmetic constraint ]X(Fqi) ≥ ]X(Fq) ≥ N , which turn
be

xi =
1 + qi − ]X(Fqi)√

qi
=

1 + qi −N√
qi

−
]X(Fqi)−N√

qi

≤ 1 + qi −N√
qi

.

Taking into account the geometrico-euclidean constraint (x0, x1, . . . , xn) ∈ Wn leads to
the following optimization problem.

Definition 19 (Oesterlé optimization problem). Let N ≥ 1 be a constant (thought as a
number) and put

∀i ≥ 1, δi(N) =
1 + qi −N√

qi
. (26)
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The Oesterlé optimization problem of order n ≥ 1 consists in computing the minimum

g?n(N)
def.
=

1

2
min

{
x0

Tn+1(x0, x1, . . . , xn) � 0
xi ≤ δi(N), 1 ≤ i ≤ n

}
. (On)

Both optimization problems enter the class of semi-definite optimizations problems
because they involve a condition where a symmetric matrix must be positive semi def-
inite. One can also turn these problems into what is called a conic program, making
easier the formulation of the corresponding dual problem and leading to the proof of the
fact that these two problems are equivalent in some sense.

3.5.2 Conic reformulation of (Wn) and (On) with their dual problems

The optimization problems (Wn) and (On) can be turned into conic optimization prob-
lems using trigonometric polynomials.

Let T = {z ∈ C, |z| = 1} be the complex unit circle and let PolTn denote the real
vector space of trigonometric polynomials of degree less than n, with real coefficients,
and having real values on the unit circle:

PolTn =

{
P (z) =

n∑
i=−n

aiz
i | ai ∈ R, and P (T) ⊂ R

}
.

The latter condition is equivalent to a−i = ai for all i ≥ 1, so that PolTn has dimen-
sion n+ 1 with basis

PolTn =
n⊕
i=0

RPi,

with

P0 = 1, and Pi = zi +
1

zi
, 1 ≤ i ≤ n.

This space is endowed with a structure of (n + 1)-dimensional euclidean space for the
usual scalar product defined by〈

n∑
i=0

aiPi,
n∑
i=0

biPi

〉
= a0b0 + 2

n∑
i=1

aibi.

Note that the basis (P0, . . . , Pn) is orthogonal but not orthonormal since 〈Pi, Pi〉 = 2

for i ≥ 1. It follows that one has P = 〈P, P0〉+
∑n

i=1
〈P,Pi〉

2 Pi for every P ∈ PolTn. Last,
we need to introduce two very important subsets of PolTn.

Definition 20. Let n ≥ 1.

(i) We denote by PolT≥0n the subset of non-negative trigonometric polynomials:

PolT≥0n = {P ∈ PolTn | P (T) ⊂ R+} .
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(ii) To each trigonometric polynomial P =
∑n

i=0 aiPi, we associate the symmetric

Toeplitz matrix T (P )
def.
= Tn+1(a0, . . . , an) given by (7), and we put10

PolT�0n = {P ∈ PolTn | T (P ) � 0} .

We have ([BW11, Lemma 1.1.6]):

Proposition 21. Both subsets PolT≥0n and PolT�0n are cones in PolTn, dual to each
other.

We can now reformulate both optimization problems (Wn) and (On) and their asso-
ciated dual problems in a conic way.

Definition 22 (Conic versions of the optimization problems). Let n ≥ 1.
• For g ≥ 0, the generalized Weil optimization problem of order n and its dual consist

in the following minimizing/maximizing optimization problems: find

min

〈P, P1〉
P ∈ PolT�0n
〈P, P0〉 ≤ 2g〈
P, Pi − αi−1P1

〉
≤ 2βi 2 ≤ i ≤ n


and

max

−
〈( y0

y2
...
yn

)
,

 β0
β2
...
βn

〉
Rn

P1 + y0 +
∑n

i=2 yi
(
Pi − αi−1P1

)
∈ PolT≥0n ,

y0 ≥ 0, yi ≥ 0, 2 ≤ i ≤ n

 .

• For N ≥ 0, the Oesterlé optimization problem of order n and its dual consist in
the following minimizing/maximizing optimization problems: find

min

{
〈P0, P 〉

P ∈ PolT�0n
〈P, Pi〉 ≤ 2δi(N), 1 ≤ i ≤ n

}
and

max

{
−

〈( z1
...
zn

)
,

(
δ1
...
δn

)〉
Rn

P0 +
∑n

i=1 ziPi ∈ PolT≥0n ,
zi ≥ 0, 1 ≤ i ≤ n

}
.

Note that both primal programs do have a solution. In the Weil program, a poly-
nomial P =

∑n
i=0 xiPi must satisfies 0 ≤ x0 ≤ 2g and ( x0 xi

xi x0 ) � 0, thus the domain of
feasibility of the Weil program is a compact one contained in [−2g, 2g]n+1. Anyway, the
continuous function 〈P, P1〉 attains its minimum on this domain. The Oesterlé program
has a solution because the first coordinate function P 7→ 〈P, P0〉 to be minimized is
bounded below by zero.

10Notice the difference between notations ≥ and �.

26



3.5.3 Explicit Oesterlé solution for the Oesterlé conic program

Oesterlé has computed an explicit trigonometric polynomial P ∈ PolT�0n satisfying all the
constraints of the primal problem with equalities instead of inequalities, i.e. an element
of the so-called “strict border”, together with a second trigonometric polynomial Q ∈
PolT≥0n satisfying all the constrains of the dual problem, which is orthogonal to P . More
precisely, such trigonometric polynomials P and Q must be of the form:

P (z) = x0 +

n∑
i=1

δi(N)

(
zi +

1

zi

)
∈ PolT�0n

Q(z) = 1 +

n∑
i=1

yi

(
zi +

1

zi

)
∈ PolT≥0n , and yi ≥ 0

and they have to be orthogonal. Thanks to Proposition 31, this proves that the poly-
nomial P is a minimizing element for the Oesterlé optimization problem. With the
terminology of Definition 32, one can say that the polynomial Q is a certificate for P
being a minimizing element of this problem.

Before describing the Oesterlé construction, in the spirit of sections 3.3 and 3.4,
let us give an informal vision of what is going on. Let us see the polynomial P in-
side Rn+1. It must be inside the Weil domain Wn, but also on the line defined by
the equations xi = δi(N) for 1 ≤ i ≤ n, where δi(N) are given by formula (26). By
convexity, the minimizing polynomial for the first coordinate function should be on the
border ∂Wn of Wn. So one can understand the constant coefficient x0 of the mini-
mizing polynomial P as follows. Having cases n = 2, 3 in mind, one can easily con-
vince ourselves that Rn+1 =

⋃
x0≥0 ∂W

x0
n and this union is disjoint. The minimizing

polynomial P corresponds to the one having its constant term x0 ≥ 0 in such a way
that (x0, δ1(N), . . . , δn(N)) ∈ ∂Wn. This ends our informal paragraph.

The little bit intricate description of the explicit solution becomes more natural
working with the Toeplitz matrix T (P ) instead of the polynomial P itself. Indeed, this
matrix should satisfies

Tn+1(x0, δ1(N), . . . , δn(N)) � 0 and rk (Tn+1(x0, δ1(N), . . . , δn(N))) = n,

the rank condition coming from the fact that P must be an element of the boundary
of Wn. Such a matrix is known to have a very specific structure by Theorem 36 in
Appendix A.2): there exist ε1, . . . , εn ∈ T and λ1, . . . , λn ∈ R∗+ such that

T (P ) =



∑
λi

∑
λiεi · · ·

∑
λiε

n−1
i

∑
λiε

n
i∑

λiεi
. . .

. . .
∑
λiε

n−1
i

...
. . .

. . .
. . .

...∑
λiε

n−1
i

. . .
. . .

∑
λiεi∑

λiε
n
i

∑
λiε

n−1
i · · ·

∑
λiεi

∑
λi


, (27)
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where all sums are from 1 to n. Instead of computing directly the coefficient x0, the
method of Oesterlé consists in constructing first the εi’s, then the λi’s, then the con-
stant coefficient x0, and last the certificate polynomial Q. This construction works only
for N > 1 +

√
qn+1.

A key observation made by Oesterlé is that the special shape of the coefficients δi(N)
implies strong conditions on the set of eigenvalues ε1, . . . , εn.

Lemma 23 (Oesterlé). If the matrix Tn+1(x0, δ1(N), . . . , δn(N)) is positive semi definite
of rank n, then the eigenvalues ε1, . . . , εn are roots of the polynomial

R0(z) = zn+2 + t(zn+1 + z) + 1 ∈ R[z], where t =
1 +
√
qn+2 −N

√
q
(
N − 1−√qn

) . (28)

Proof. Since Tn+1(x0, δ1(N) . . . , δn(N)) is positive semi-definite of rank n, it is the Gram
matrix of the family of all iterations of an element by an isometry in a cyclic euclidean
space (see section A.2). More precisely, let (a0, . . . , an) ∈ Rn+1 be a non-zero element of
the kernel of Tn+1 and let us consider the finite R-vector space R[X]/ 〈P 〉 =

⊕n−1
i=0 Rxi

where x = X mod P . Then the identity

Gram(1, x, . . . , xn) = Tn+1(x0, δ1(N) . . . , δn(N))

defines a scalar product on R[X]/ 〈P 〉, in such a way that the multiplication by x is an
isometry. This isometry has P as minimal polynomial and can be diagonalized over C.
Let R be the set of roots of P . Being the spectrum of an isometry, we have R ⊂ T.
From elementary linear algebra, we have

C[X]/ 〈P 〉 =
⊕
ε∈R

CPε(x) where Pε(x) =
∏

ε′∈R\{ε}

x− ε′

ε− ε′
=

P (x)

P ′(ε)(x− ε)

is the interpolation polynomial taking value 1 on ε, and value 0 on all other ε′ ∈ R. One
also have xPε(x) = εPε(x), Pε(x) ⊥ Pε′(x) for ε′ 6= ε, and with

∑
ε∈R Pε(x) = 1.

We now prove that each ε ∈ R is a root of the polynomial R0. The key point is that
the coefficients δi(N) can be written as follows:

δi(N) =
1 + qi −N
√
qi

=
√
qi − (N − 1)× 1

√
qi
.

Setting a =
√
q and b = N − 1 for simplicity, this means that

〈1, xQ(x)〉 = aQ(a)− b

a
Q(1/a) (29)

for any polynomial Q of degree ≤ n − 1. Let us compute the square norm λε of each
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eigenvector Pε(x):

λε = 〈Pε(x), Pε(x)〉 = 〈1, Pε(x)〉 since Pε(x) ⊥ 1− Pε(x)

=
1

ε
〈1, εPε(x)〉 =

1

ε
〈1, xPε(x)〉 since xPε(x) = εPε(x)

=
1

ε

(
aPε(a)− b

a
Pε(1/a)

)
by (29)

=
1

ε

(
aP (a)

P ′(ε)(a− ε)
− b

a
× P (1/a)

P ′(ε)(1/a− ε)

)
=

1

ε

(
aP (a)

P ′(ε)(a− ε)
− b P (a)a−(n+1)

P ′(ε)(1/a− ε)

)
since P (1/a) = P (a)a−n

=
P (a)

εP ′(ε)
×

1− ba−n +
(
ba−(n+1) − a

)
ε

ε2 − (a+ 1/a) ε+ 1
.

In the same way

λ1/ε =
P (a)

P ′(1/ε)/ε
×

1− ba−n +
(
ba−(n+1) − a

)
/ε

(ε2 − (a+ 1/a) ε+ 1) /ε2

=
P (a)

εP ′(ε)
×
−εn+1

(
(1− ba−n) ε+

(
ba−(n+1) − a

))
(ε2 − (a+ 1/a) ε+ 1)

since P ′(1/ε) = −P ′(ε)/εn−2.

To conclude, we take into account the fact that the starting point matrix has real coef-
ficients. Therefore one must have λε = λ1/ε and thus(

1− ba−n
)
εn+2 +

(
ba−(n+1) − a

) (
εn+1 + ε

)
+ 1− ba−n = 0

or

εn+2 +
b− an+2

a (an − b)
(
εn+1 + ε

)
+ 1 = 0.

The result follows.

The Lemma 23 is a key step of the explicit construction of the solution of the Oesterlé
optimization problem. The complete construction is given in the theorem below. As far
as we know, no complete proof of the validity of this construction has been published
so far. Oesterlé himself, for sure, has never published his result and we never have in
hand a copy of his original notes. The two published sources that we know are the
Serre’s Harvard course notes titled “rational points on curves over finite fields” [Ser] and
a survey of Hansen [Han95], but both references only contain partial proof. In fact, we
know only one (unpublished) source containing a complete proof: the chapters 4 and 5 of
the thesis of A. Edouard (whose advisor was G. Lachaud) are devoted to a twenty pages
long complete proof of the Oesterlé bound. Since we do not succeed in substantially
simplifying this proof, we refer to this thesis for the two skipped tedious calculations
below.
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Theorem 24 (The Oesterlé solution). Let n ≥ 1, N > 1 +
√
qn+1, and let R0 ∈ R[z] be

the polynomial defined in Lemma 23. It has all its roots in the unit circle T; we denote
by eiϕ0 the root of R0 having the smallest positive argument, by Q0 ∈ R[z] the quotient of
the polynomial R0 by the quadratic polynomial

(
z − eiϕ0

) (
z − e−iϕ0

)
, and by y0, . . . , yn ∈

R the coefficients of the trigonometric polynomial Q0(z)Q0(1/z) = y0+
∑n

i=1 yi
(
zi + 1

zi

)
.

Then the trigonometric polynomials

P (z) = 2

(
1 +

N
(√
q cos(ϕ0)− 1

)
q − 2

√
q cos(ϕ0) + 1

)
+

n∑
i=1

1 + qi −N
√
qi

(
zi +

1

zi

)
(30)

Q(z) = 1 +
y1
y0

(
z +

1

z

)
+ · · ·+ yn

y0

(
zn +

1

zn

)
(31)

are such that:

(i) the polynomial P is in PolT�0n , is a feasible solution for the Oesterlé conic program,
and T (P ) is of rank n;

(ii) the polynomial Q is in PolT≥0n and is a feasible solution for the Oesterlé dual conic
program;

(iii) the polynomials P and Q are orthogonal.

Proof with two skipped tedious calculations — We give the main steps of the
proof and skip the most tedious computations with trigonometric polynomials.
• Proving the fact that if N ≥ 1 +

√
qn+1, then the polynomial R0 has all its roots

in the unit circle T is a first course calculus exercise. The elements e±iϕ0 ∈ T are the
two roots of R0 having the smallest argument in absolute value; we denote by εj = eiϕj ,
1 ≤ j ≤ n, the others. Note that if n is odd then −1 is one these εj ’s.
• To prove that this choice of the εi’s is the good one, it is worth to notice that taking

into account the matrix equality (27), the scalars λ1, . . . , λn can be uniquely expressed
in terms of the εi’s and the δi(N)’s. Indeed equality (27) leads to the following invertible
linear system ε1 · · · εn1

...
...

εn · · · εnn

×
λ1...
λn

 =

δ1(N)
...

δn(N)


It remains to prove that such λi’s are all positive. It can be done by explicitly compute
them. A (skipped) tedious calculation leads to

λi =
N sin(ϕi)

sin ((n+ 1)ϕi) + (n+ 1) sin(ϕi)

(
q − 1

q − 2
√
q cos(ϕ0) + 1

− q − 1

q − 2
√
q cos(ϕi) + 1

)
if εi 6= −1, or

λi =
N(1− t)

(n+ 2)− nt

(
q − 1

q − 2
√
q cos(ϕ0) + 1

− q − 1

q − 2
√
q cos(π) + 1

)
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if εi = −1. In any cases, one has λi > 0, since the function ϕ 7→ sin(nϕ) + n sin(ϕ)
is positive for every n ∈ N∗ and every ϕ ∈ ]0, π[ (easy first course calculus exercise).
This shows that T (P ) � 0, that rk(T (P )) = n and that P is a feasible solution for the
Oesterlé conic program.
• The computation of the λi also permits to give the value of the coefficient x0

since x0 =
∑n

i=1 λi.
• By construction, Q ∈ PolT≥0n and 〈P,Q〉 = 0. The only thing that remains to

be proved is that Q is a feasible solution for the Oesterlé dual conic program. For
this, it suffices to show that the coefficients yi are all positive. This can be done by
explicitly computing the coefficients of the trigonometric polynomial Q. A (skipped)
tedious calculation leads to:

yk
y0

=

∑n−k
j=0 cos

((
n
2 − (j + k)

)
ϕ0

)
cos
((

n
2 − j

)
ϕ0

)∑n
j=0 cos2

((
n
2 − j

)
ϕ0

)
and the positiveness of this coefficient comes from the fact that 0 < ϕ0 <

π
n+1 . �

Going back to the number of points, using the preceding theorem together with
Proposition 31, we recover the well known Oesterlé bounds.

Theorem 25 (Oesterlé bounds). Let n ≥ 1, and N ≥ 1 +
√
qn+1. The minimizing

function of the Oesterlé optimization problem (On) is given by the function

g?n :
[
1 +
√
qn+1,+∞

[
−→ [gn,+∞[

defined by

g?n(N) = 1 + <
(

N
√
qeiϕ0 − 1

)
= 1 +

N
(√
q cos(ϕ0)− 1

)
q − 2

√
q cos(ϕ0) + 1

where ϕ0, depending on n and N , is defined as in Theorem 24. Moreover, the value gn
is given by:

gn = g?n

(
1 +
√
qn+1

)
=

(√
qn+1 − 1

)√
q cos

(
π
n+1

)
+ q −√qn+1

q − 2
√
q cos

(
π
n+1

)
+ 1

(32)

=
√
qn+1

n∑
k=1

1
√
qk

cos

(
kπ

n+ 1

)
. (33)

Strictly speaking, the construction of Oesterl’e works for N > 1 +
√
qn+1 but it can

be easily continuously extended. The expression of the value gn = g?n
(
1 +
√
qn+1

)
comes

from the fact that, at the order n, the polynomial R0 is very simple:

N = 1 +
√
qn+1 =⇒ R0(z) =

(
zn+1 + 1

)
(z + 1) by Lemma 23

=⇒ ϕ0 =
π

n+ 1
by Theorem 24,
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and the given value of gn follows.
There is another simple value of the function g?n coming from another simple poly-

nomial R0:

N = 1 +
√
qn+2 =⇒ R0(z) = zn+2 + 1 by Lemma 23

=⇒ ϕ0 =
π

n+ 2
by Theorem 24

=⇒ g?n

(
1 +
√
qn+2

)
= gn+1.

We deduce the the two functions g?n and g?n+1 coincide at 1 +
√
qn+2 with:

gn+1 = g?n

(
1 +
√
qn+2

)
= g?n+1

(
1 +
√
qn+2

)
. (34)

3.5.4 Proof of the main Theorem 14

The strategy to prove our main Theorem is to show that the minimizing polynomial con-
structed by Oesterlé to solve his optimization program is also a minimizing polynomial
for the Weil optimization problem.

Proposition 26. Let n ≥ 1, N > 1 +
√
qn+1, and let P,Q be the trigonometric poly-

nomials given in Theorem 24. Then the minimum of the Weil optimization problem of
order n associated to the genus g?n(N) is attained at P and the functions

N?
n : [gn,+∞[ −→

[
1 +
√
qn+1,+∞

[
and g?n :

[
1 +
√
qn+1,+∞

[
−→ [gn,+∞[

are strictly increasing inverse functions, where N?
n is defined by equation (25).

Proof. By construction, one has

P = 2g?n(N) +

n∑
i=1

δi(N)Pi,
P ∈ PolT�0n ,
〈P, P0〉 = 2g?n(N),
〈P, Pi〉 = 2δi(N), 1 ≤ i ≤ n.

For i ≥ 2, we deduce that〈
P, Pi − αi−1P1

〉
= 〈P, Pi〉 − αi−1 〈P, P1〉 = 2δi(N)− αi−12δ1(N) = 2βi.

Therefore, P is an element of the “strict border” of the domain corresponding to the
Weil program of order n associated to the genus g?n(N).

As for the polynomial Q, it can be rewritten as follows:

Q = 1 +
n∑
i=1

ciPi = 1 +

(
n∑
i=1

αi−1ci

)
P1 +

n∑
i=2

ci
(
Pi − αi−1P1

)
.

Put c =
∑n

i=1 α
i−1ci, then the polynomial 1

cQ = P1 + 1
c +
∑n

i=2
ci
c

(
Pi − αi−1P1

)
belongs

to PolT≥0n and has non negative coefficients. Since
〈
P, 1cQ

〉
= 0, the polynomial 1

cQ can
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be used to certify that the polynomial P is a minimizing element for the Weil program
(see Proposition 31). We deduce that x?1,n(g?n(N)) = 〈P, P1〉 = δ1(N), which means
that N?

n(g?n(N)) = N .
Now, the functions g?n and N?

n have to be increasing from their definition. Being
inverse to each other, they are in fact strictly increasing and the proposition follows.

We are now ready to prove the main Theorem 14.

Proof of Theorem 14, item (i) — We consider the sequence gn given for n ≥ 1 by
Theorem 25. First note that since gn = g?n

(
1 +
√
qn+1

)
and gn+1 = g?n

(
1 +
√
qn+2

)
by

formula (34), we can deduce from Proposition 26 that the sequence (gn)n≥1 is strictly
increasing. We also consider the sequence of functions N?

n(g) given by formula (25).
The functions N?

n(g) are strictly increasing and defined for g ≥ gn by Theorem 25 for
any n ≥ 1.

Thanks to Proposition 26, the minimizing element for the n-th Weil optimization
problem for g is attained at the polynomial P = 2g+

∑n
i=1 δi(N)Pi ∈ PolT�0n , where N ≥

1 +
√
qn+1 is the value such that g = g?n(N). Going back to Rn+1, the minimum is

attained at the point (2g, δ1(N), . . . , δn(N)) ∈ Wg
n. More precisely, this point lies on the

border of Wg
n, since by Theorem 24, the matrix T (P ) given by equation (26) has rank n

and size n+ 1. Last, we observe that δi(N) = 1√
qi−1 δ1(N) +βi from equation (24) which

means that the point (2g, δ1(N), . . . , δn(N)) is also an element of the Ihara line Ign. Thus
the “strict border” for the Oesterlé optimization problem corresponds to the Ihara line
for the Weil optimization problem. Hence x?1,n(g) = δ1(N) is the smallest x1-coordinate
of the points of Wg

n ∩ Ign. �

Proof of Theorem 14, item (ii) — Applying both functions N?
n and N?

n+1 to equal-
ity (34) and taking into account Proposition 26 leads to the first equalities of item (ii)

N?
n(gn) = 1 +

√
qn+1 and N?

n(gn+1) = N?
n+1(gn+1).

The application π : Wg
n+1 → W

g
n defined by (x0, . . . , xn+1) 7→ (x0, . . . , xn) is surjective.

This implies that N?
n+1(g) ≤ N?

n(g). Suppose that equality holds and let us denote by N
their common value. Then minimizing tuples/polynomials for the n-th and (n + 1)-th
order Weil problems are respectively

Pn = (2g, δ1(N), . . . , δn(N)) ∈ Wg
n and Pn+1 = (2g, δ1(N), . . . , δn+1(N)) ∈ Wg

n+1

with rk(T (Pn)) = n and rk(T (Pn+1)) = n + 1 (cf. Theorem 24). But the Toeplitz
matrix T (Pn) being a sub-matrix of the Toeplitz matrix T (Pn+1), by Lemma 33, neces-
sarily rk(T (Pn+1)) = rk(T (Pn)). This is thus contradictory and therefore equality does
not hold. �

Proof of Theorem 14, item (iii) — Let n ≥ 2, g > gn and put x?i,n = αn−1x?1,n(g)+βn
for i ≥ 1. Then the point minimizing the n-th Weil optimization problem is(

2g,x?1,n(g), . . . ,x?n,n(g)
)
∈ Wg

n ∩ Ign
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It even lies inside the border of Wg
n and thus is such that

w−n
(
2g,x?1,n(g), . . . ,x?n−1,n(g)

)
≤ x?n,n(g) ≤ w+

n

(
2g,x?1,n(g), . . . ,x?n−1,n(g)

)
(35)

and

w+
n

(
2g,x?1,n(g), . . . ,x?n−1,n(g)

)
− w−n

(
2g,x?1,n(g), . . . ,x?n−1,n(g)

)
= 2 ·

Det
(
Tn
(
2g,x?1,n(g), . . . ,x?n−1,n(g)

))
Det

(
Tn−1

(
2g,x?1,n(g), . . . ,x?n−2,n(g)

)) (36)

Since x?1,n(gn) = x?1,n−1(gn), one has x?i,n−1(gn) = x?i,n(gn) for each 1 ≤ i ≤ n − 1 and
the point (

2gn,x
?
1,n(gn), . . . ,x?n,n−1(gn)

)
is the minimizing element of the (n− 1)-th Weil optimization problem. Therefore

Det
(
Tn
(
2gn,x

?
1,n(gn), . . . ,x?n−1,n(gn)

))
= 0

Det
(
Tn−1

(
2gn,x

?
1,n(gn), . . . ,x?n−2,n(gn)

))
6= 0

This permits us to let g tends to gn in (36) and by (35), we obtain

x?n,n(g) = w−n
(
2g,x?1,n(g), . . . ,x?n−1,n(g)

)
= w+

n

(
2g,x?1,n(g), . . . ,x?n−1,n(g)

)
(37)

so that this item is proved. �

Proof of Theorem 14, item (iv) — Since the minimal value x?1,n(g) is reached on
the line segment Wg

n ∩ Ign by item (i), it is also reached on any subset of the Weil
domain Wg

n containing this segment. This is the case of the Weil domain cut-out by
the two dimensional plane (x1, `2(x1), · · · , `n−1(x1), xn) parallel to the-xn-axis over the
(n − 1)-th Ihara line Ign−1. By Proposition 9, this means that x?1,n(g) is the minimum
of the set x1 |

(x1, · · · , xn−1) ∈ W
g
n−1;

xi = `i(x1), 2 ≤ i ≤ n− 1;
xn ≤ `n(x1);

w−n (x1, · · · , xn−1) ≤ xn ≤ w+
n (x1, · · · , xn−1)

 .

This can also be written as

x?1,n(g) = min{x1 | x?1,n−1(g) ≤ x1 ≤ bn−1(g), xn ≤ `n(x1) and fn(x1) ≤ xn ≤ gn(x1)}
(38)

for the value bn−1(g) such that the (n− 1)-th Ihara line cuts the (n− 1)-th affine Weil
domain on the x1 parameter set [x?1,n−1(g), bn−1(g)], and where{

fn(x1) = w−n (x1, `2(x1), · · · , `n−1(x1)),
gn(x1) = w+

n (x1, `2(x1), · · · , `n−1(x1)).

Since w−n is convex by item (iii) of Proposition 9 and the `i-th are affine, the univariate
function fn is convex; in the same way gn is concave. Now by item (ii), we have
x?1,n(g) > x?1,n−1(g) since g is assumed to be greater than gn. It follows from (38) by
elementary convexity task for univariate functions that the minimum is reached at the
point satisfying xn = `n(x1) = fn(x1), which concludes the proof of the theorem. �
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4 Asymptotic bounds

In this section, we show that our point of view also leads to the known general asymp-
totic bounds. Let (Xk)k≥1 be an asymptotically exact sequence of absolutely irreducible
smooth projective curves defined over Fq, of genus g(Xk). This means that the genus
sequence (g(Xk))k≥1 tends to infinity and that for any r ≥ 1, the limit `r of the relative11

number of points of exact degree r sequences do exist:

`r = lim
k→+∞

1
r ]
{
P ∈ Xk(Fq) | degFq

(P ) = r
}

g(Xk)
∈ R+, ∀r ≥ 1. (39)

Last, we introduce after Tsfasman and Vlăduţ the defect δ (see [TV02]) of the asymp-
totically exact sequence

δ = 1−
+∞∑
r=1

r`r√
qr − 1

. (40)

The known result is the following Tsfasman theorem, stating that the defect is always
non-negative.

Theorem 27 (Tsfasman [Tsf92]). Let (Xk)k≥1 be a asymptotically exact sequence of
absolutely irreducible smooth projective curves over Fq. Then

∞∑
r=1

r`r√
qr − 1

≤ 1,

where the sequence (`r)r≥1 is defined as in (39).

As in section 1, one can associate to each curve Xk an euclidean space (E(Xk), 〈·, ·〉Xk
)

with norm ‖·‖Xk
and a subspace F(Xk) generated by the projections γiXk

of the iterations

of the Frobenius morphism. The quantity to be studied being the ratio
]Xk(Fq)
g(Xk)

, it is
convenient to change the normalization, putting

ηiXk
=

γiXk√
g(Xk)

. (41)

Then ‖ηiXk
‖Xk

= 2 and for any n ≥ 1,

Gram(η0Xk
, . . . , ηnXk

) =



2 y1 · · · yn−1 yn

y1
. . .

. . . yn−1
...

. . .
. . .

. . .
...

yn−1
. . .

. . . y1
yn yn−1 · · · y1 2


with yi =

1 + qi − ]Xk(Fqi)
g(Xk)

√
qi

.

(42)

11Relative to the genus.
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Note that omitting reference to Xk, the xi’s defined in (4) and the yi’s are related
by yi = xi

g .
Just as for the finite order case, one can first wonder about the consequences of

the geometrico-euclidean constraint alone, second about both geometrico-euclidean and
arithmetic constraints consequences. The bound derived in this last way can be consid-
ered as the Weil bound of infinite order.

4.1 Weil domain and asymptotic (Tsfasman bound)

Let us first look at the geometrico-euclidean constraint alone. Just expressing non-
negativity of the norm of a well-chosen vector in the euclidean spaces E(Xk) yields to
an interpretation for the defect of the sequence. Note that Tsfasman bound follows just
pointing out that a norm is non-negative.

Theorem 28. Let (Xk)k≥1 be an asymptotically exact sequence of absolutely irreducible
smooth projective curves over Fq. Then its defect δ, defined as in (40) satisfies

δ = lim
m→+∞

lim
k→+∞

∥∥∥η0Xk
+ η1Xk

+ · · ·+ ηm−1Xk

∥∥∥2
Xk

2m
.

Note that this can also be written as

δ = lim
m→+∞

lim
k→+∞

∥∥∥η0Xk
+ η1Xk

+ · · ·+ ηm−1Xk

∥∥∥2
Xk∥∥∥η0Xk

∥∥∥2
Xk

+
∥∥∥η1Xk

∥∥∥2
Xk

+ · · ·+
∥∥∥ηm−1Xk

∥∥∥2
Xk

.

Proof. Inside the euclidean space E(Xk), one can compute the norm:

1

2m

∥∥∥∥∥
m−1∑
i=0

ηiXk

∥∥∥∥∥
2

Xk

=
1

2m

(
1 · · · 1

)
×Gram

(
η0Xk

, . . . , ηm−1Xk

)
×

1
...
1


=

1

m

[
m+

m−1∑
i=1

(m− i)yi

]

= 1 +
1

m

m−1∑
i=1

(m− i)
(qi + 1)− ]Xk(Fqi)

g(Xk)q
i
2

= 1 +
1

g(Xk)

m−1∑
i=1

(1− i

m
)
(
q

i
2 + q−

i
2

)

−
m−1∑
i=1

(1− i

m
)
∑
r|i

1

q
i
2

×
]
{
P ∈ Xk(Fq) | degFq

(P ) = r
}

g(Xk)

 .
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Letting k growing to +∞ leads, for any m ≥ 1, to

lim
k→+∞

1

2m

∥∥∥∥∥
m−1∑
i=0

ηiXk

∥∥∥∥∥
2

Xk

= 1−
m−1∑
r=1

bm−1
r
c∑

s=1

(
1− rs

m

) 1

q
rs
2

 r`r. (43)

To conclude, for any r,m ≥ 1,we remark that

1

q
r
2 − 1

−
bm−1

r
c∑

s=1

(
1− rs

m

) 1

q
rs
2

=

+∞∑
s=1

1

q
rs
2

−
bm−1

r
c∑

s=1

(
1− rs

m

) 1

q
rs
2

=

+∞∑
s=m−1

r

1

q
rs
2

+
1

m

bm−1
r
c∑

s=1

rs

q
rs
2

.

Being the remainder of a convergent series, the first term of the right hand side goes to
zero when m grows to infinity. The second term also goes to zero by Cesaro Theorem.
Therefore

lim
m→+∞

bm−1
r
c∑

s=1

(
1− rs

m

) 1

q
rs
2

=
1

q
r
2 − 1

,

and the Theorem follows letting m tends to +∞ in (43).

4.2 Generalized Weil bound of infinite order (Drinfeld-Vlăduţ bound)

Let us now take also into account the arithmetic constraints. As a result of the nor-
malization (41) ηi = γi√

g at the beginning of this section, the picture changes a little bit

compared to what was going on in section 3. Using the γi’s, the affine Weil domain Wg
n

in the (x1, . . . , xn) system of coordinates depends on g, while the Ihara constraints do
not. Normalizing by

√
g turns things around. The Weil domain Wg

n in the (y1, . . . , yn)
system of coordinates, with yi = xi

g by (42), does not depends on g anymore and is a fixed

bounded convex domain, which looks like the affine Weil domain W1
n in the (x1, . . . , xn)

system of coordinates. The Ihara constraints in the (y1, . . . , yn) system of coordinates
become

yi ≤ αi−1y1 +
βi
2g

∀2 ≤ i ≤ n, (44)

and the Ihara line becomes

J gn =

{
(y1, . . . , yn) ∈ Rn | yi = αi−1y1 +

βi
2g
, 2 ≤ i ≤ n

}
.

With these notations, our main Theorem 14 can be reformulated in its y-form: for
any n ≥ 1 and for g ≥ gn, a curve X of genus g has a number of rational points
satisfying

]X(Fq)
g

− q + 1

g
≤ −2

√
q × y?n(g) (45)

where y?n(g) denotes the y1-coordinate the intersection point of the convex domain W1
n

with the Ihara line J gn having the smallest y1 coordinate.
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The goal of this section is to investigate the asymptotic behaviour of the bound (45)
when both n and the genus g of X grow to infinity. Roughly speaking, the situation is
very nice. For g =∞, the Ihara affine line given by (44) becomes the vectorial line J∞n
whose equations are simply yi = αi−1y1, for 2 ≤ i ≤ n. This line intersects the bounded
convex Weil domain at a segment whose “left point” for the y1-coordinate’s order has
y1 coordinate y?n(∞) and (45) becomes

lim
g→∞

]X(Fq)
g

≤ −2
√
q × y?n(∞). (46)

The limit y?n(∞) being the largest negative solution of some explicit determinantal equa-
tion, y?n(∞) turns to be related to the spectral radius of some very simple non-negative12

matrix of size n.
Let us turn this idea into a complete proof.

Theorem 29. We have

lim
n→∞

lim sup
g≥gn,g→∞

N?
n(g)

g
=
√
q − 1. (47)

This means of course that the infinite order Weil bound is exactly Drinfeld-Vlăduţ
Theorem [VD83] stating that A(q) ≤ √q − 1.

Proof. Let us begin by writing down Theorem 14 for some given order n ≥ 1 using
the new normalization (41). For any g ≥ gn, the intersection of the Weil domain with
the Ihara line J gn is a segment whose left end for the y1-coordinate order has a y1
coordinate y?n(g), and we have

N?
n(g)

g
− q + 1

g
= −2

√
q × y?n(g). (48)

Still by Theorem 14 and by formulas (9) and (7), y?n(g) is the largest non positive root
of the polynomial

Dn,g(Y ) = Det

(
Tn+1

(
1, Y, αY +

β2
2g
, . . . , αn−1Y +

βn
2g

))
.

The family (Dn,g(Y ))g≥gn of polynomials of degree ≤ n converges when g goes to infinity
to the polynomial Dn,∞ defined by

Dn,∞(Y ) = Det
(
Tn+1

(
1, Y, αY, . . . , αn−1Y

))
Since y?n(g) ∈ [−2, 2] for any n, g ≥ gn, one can assume by compacity that (y?n(g))g≥gn
converges, say to y?n(∞). Then Dn,∞(y?n(∞)) = 0 and y?n,∞ is the non-positive y1-
coordinate of the intersection point of the Ihara line J∞n with the Weil domain. Since
the origin of the space Rn is a common element of the Weil domain and of J∞n , one must

12In the sense that its entries are non-negative.
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have y?n(∞) ≤ 0, and y?n(∞) is the greatest negative root of the polynomial Dn,∞(Y ).
Letting g going to infinity, we deduce from (48) that

∀n ≥ 1, lim sup
g→∞

N?
n(g)

g
= −2

√
q × y?n(∞). (49)

We are then reduced to prove that limn→+∞ y?n(∞) =
1−√q
2
√
q . To this end, we relate this

limit to the asymptotic spectral radius of some specific Toeplitz matrix. One has

Tn+1(1, Y, αY, . . . , α
n−1Y ) = In+1 + Y Tn+1(0, 1, . . . , α

n−1)

= In+1 + Y × 1

α
[Tn+1(1, α, . . . , α

n)− In+1]

= −Y
α

[(
Y − α
Y

)
In+1 − Tn+1(1, α, . . . , α

n)

]
.

Therefore the map λ 7−→ λ−α
λ defines a one-to-one correspondence from the roots of

the polynomial Det
(
Tn+1

(
1, Y, αY, . . . , αn−1Y

))
to the set of eigenvalues of the ma-

trix Tn+1 (1, α, . . . , αn). This bijection maps the largest negative root y?n(∞) to the
largest non negative real eigenvalue. Since the matrix Tn+1 (1, α, . . . , αn) is non negative
(i.e. all its coefficients are non negative), this eigenvalue turns to be its spectral radius
([HJ90, Chap 8, Th. 8.3.1]) which we denote by ρn(α). Thus

y?n(∞)− α
y?n(∞)

= ρn(α), that is y?n(∞) =
α

1− ρn(α)
.

But the spectral radius ρn(α) is asymptotically known, see Lemma 30 below. This leads
to

lim
n→+∞

y?n(∞) =
α

1− 1+α
1−α

=
α− 1

2
=

1−√q
2
√
q

which completes the proof together with formula (49).

We would like to thank Hugo Woerdeman for letting us aware of Lemma 30 and for
giving us the reference to Nikolski [Nik01, Corollary 4.1.7, p. 246].

Lemma 30. Let α ∈ [0, 1[ and let ρn(α) denote the spectral radius of the symmetric
Toeplitz matrix Tn+1(1, α, . . . , α

n). Then limn→+∞ ρn(α) = 1+α
1−α .

A Appendix

A.1 Conic programming

We recall here some very usual results on conic programming. Most of the times, the
optimization problems, such as the description of the dual problem, are presented “with
equalities”. For our applications, we need to deal with problems with inequalities. There

39



is a folklore technique to transform a problem with inequalities into another one with
equalities. We recall this trick and formulate suited statements for our applications.

Let (E, 〈·, ·〉E) be an euclidean space and let C be a cone inside E. Let p0, p1, . . . , pn ∈
E and δ1, . . . , δn ∈ R. The primal conic program (with inequalities) associated to these
data is the problem of minimizing the objective function x 7→ 〈p0, x〉E subject to the
convex constraint x ∈ C and 〈pi, x〉E ≤ δi for 1 ≤ i ≤ n. That is, to find

ρ
def.
= min

{
〈p0, x〉E

x ∈ C
〈x, pi〉E ≤ δi, 1 ≤ i ≤ n

}
(50)

An element x ∈ E is said to be a feasible solution of this primal program if it satisfies
all the constraints. It is said to be a strictly feasible solution if in addition it lies in the
interior of the cone C.

Some dual program can be associated to this primal program. To this end, one can
reformulate the primal conic program with inequalities to another conic program (in a
bigger euclidean space) with equalities only as follows. Consider the space Rn with its
canonical basis (e1, . . . , en) and its usual scalar product 〈·, ·〉Rn , and let F = E × Rn
endowed with the scalar product defined by 〈(x, v), (y, w)〉F = 〈x, y〉E + 〈v, w〉Rn . The
initial cone C is replaced by a new one D = C ×Rn+, and finding a solution for the initial
primal conic program (with inequalities) is equivalent to finding:

ρ = min

{
〈(p0, 0), (x, d)〉F

(x, d) ∈ D
〈(x, d), (pi, ei)〉F = δi, 1 ≤ i ≤ n

}
Note that the added variables play the role of the differences δi − 〈x, pi〉E whose posi-
tiveness are now part of the conic conditions.

We now formulate the dual program. It involves the dual cones C∗ and D∗ = C∗×Rn+
(recall that Rn+ is auto-dual in Rn). Put δ = (δ1, . . . , δn) ∈ Rn. The dual program is the
following maximization problem:

ρ∗
def.
= max

{
−〈δ, y〉Rn

y = (y1, . . . , yn) ∈ Rn
(p0, 0) +

∑n
i=1 yi(pi, ei) ∈ D∗

}
= max

{
−〈δ, y〉Rn

y = (y1, . . . , yn) ∈ Rn+
p0 +

∑n
i=1 yipi ∈ C∗

}
.

As in the primal program, an element y ∈ Rn that satisfies all the constraints of the
dual program is called a feasible solution of the dual program.

The relevance of duality to optimization is contained in the following key remark.
Let x ∈ C and y = (y1, . . . , yn) ∈ Rn+ be any pair of feasible solutions of the primal and
dual programs respectively. Then, by duality, 〈x, p0 +

∑n
i=1 yipi〉 ≥ 0 and thus

〈x, p0〉 ≥ −
n∑
i=1

yi 〈x, pi〉 ≥ −
n∑
i=1

yiδi
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since yi ≥ 0 and 〈x, pi〉 ≤ δi. Therefore, one has

〈x, p0〉 ≥ ρ ≥ ρ∗ ≥ −
n∑
i=1

yiδi.

Suppose now that x? and y? is a pair of feasible solutions such that equality 〈x?, p0〉 =
−
∑n

i=1 y
?
i δi holds. Then both optimization problems are solved, and their solutions

satisfy
ρ = 〈p0, x?〉 = ρ∗ = −〈δ, y?〉 .

Thank to this observation, one can give a criterion for an element contained in the
“strict border” of the convex domain (i.e. an element where all scalar product inequalities
are equalities) to be a minimizing element.

Proposition 31. Let x? ∈ C be a feasible solution of the primal program such that 〈x?, pi〉 =
δi for 1 ≤ i ≤ n (equalities instead of inequalities). If there exists y? = p0 +

∑n
i=1 y

?
i pi ∈

C∗ a feasible solution of the dual program (i.e. y?i ≥ 0 for 1 ≤ i ≤ n) which is orthog-
onal to x?, then the minimum (resp. maximum) of the primal (resp. dual) program is
attained at x? (resp. y?) and one has ρ = ρ∗ = 〈p0, x?〉.

Proof. The facts that 〈x?, y?〉 = 0 and that 〈x?, pi〉 = δi for 1 ≤ i ≤ n imply that

〈x?, p0〉 =
n∑
i=1

−y?i 〈x?, pi〉 =
n∑
i=1

−y?i δi,

so that one can conclude using the remark preceding the Proposition.

To sum up, an element x? of the “strict border” of the domain is a minimizing
element provided that there exists an element y? in the dual of the domain which is
orthogonal to x?. In this situation, we choose to give a name to y?:

Definition 32. If (x?, y?) ∈ C × C∗ satisfies the hypotheses of the preceding proposition
we say call y? a certificate for x? being a minimizing element of the primal problem.

A.2 Real symmetric positive semi definite Toeplitz matrices

In this section, we gather some known results on the euclidean structure hiden behind a
real symmetric positive semi-definite Toeplitz matrices Tn(x0, . . . , xn−1) of rank r. Our
main reference is Bakonyi and Woerdeman’s book [BW11]. More precisely, this section
can be seen as answers to Exercises 15 and 20 of Chapter 1.

As usual, for a symmetric real matrix S, the notation S � 0 (respectively S �
0) means that S is definite positive (respectively semi-definite positive). Recall that
any matrix S � 0 of size n and rank r is the Gram matrix of the column vectors
v1, . . . , vn of its square root S

1
2 ([HJ90, Cor 7.2.11]). In particular, there exists an

euclidean space (E, 〈·, ·〉) of dimension r and a family of vectors γ1, . . . , γn ∈ E such
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that Gram(γ1, . . . , γn) = S. If r = n, that is if S � 0, then S is nothing else than the
matrix of the scalar product in the basis (γi)1≤i≤n.

In order to shorten the statements, we need to introduce some notations for some
specific matrices, where the index is the size of the matrix.

Toeplitz Tn(x0, . . . , xn−1) =


x0 x1 · · · xn−1

x1
. . .

. . .
...

...
. . .

. . . x1
xn−1 · · · x1 x0



Diagonal
anti-diagonal

Dn(λ1, . . . , λn) =

λ1 . . .

λn

 , Jn =

 1
...

1



Vandermonde
Vn,m(ε1, . . . , εn) =

1 ε1 · · · εm−11
...

...
...

1 εn · · · εm−1n


Vn(ε1, . . . , εn) = Vn,n(ε1, . . . , εn)

A.2.1 Rank of real symmetric, positive semi-definite, Toeplitz matrices

The rank of a symmetric semi-definite positive Toeplitz matrix can be characterized as
follows.

Lemma 33. Let Tn(x0, . . . , xn−1) be a (non zero) real symmetric, positive, semi-definite
Toeplitz matrix. Then its rank is equal to the size of largest non-zero leading minor
(obtained by keeping the first lines an columns), that is

rk (Tn(x0, . . . , xn−1)) = max
1≤m≤n

{Det(Tm(x0, . . . , xm−1)) 6= 0}

Proof. As already noted, one can consider an euclidean space (E, 〈·, ·〉) of dimension r
and γ1, . . . , γn ∈ E such that

Gram(γ1, . . . , γn) = Tn(x0, . . . , xn−1).

Necessarily x0 6= 0 since otherwise we would have 〈γi, γi〉 = 0, that is γi = 0, for every i,
hence Tn(x0, . . . , xn−1) should be zero, in contradiction with the assumption. The max
in the lemma is thus well defined, say equals s. By definition, one has

Gram(γ1, . . . , γs) 6= 0 and Gram(γ1, . . . , γs+1) = 0
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in such a way that the family γ1, . . . , γs is free while the family γ1, . . . , γs+1 is not. It
follows that γs+1 ∈

⊕s
i=1Rγi. Using the Toeplitz structure, we know that

Gram(γ2, . . . , γs+1) = Gram(γ1, . . . , γs) 6= 0,

so that the family γ2, . . . , γs+1 is free and that
⊕s

i=1Rγi =
⊕s+1

i=2 Rγi. Step by step,
we deduce that the full family γ1, . . . , γn has rank s and that Tn(x0, . . . , xn) has also
rank s.

A.2.2 A first isometry: the switch

Let Tn(x0, . . . , xn−1) be a real symmetric Toeplitz matrix. An easy calculation shows
that

JnTnJn = Tn. (51)

Suppose that Tn(x0, . . . , xn−1) � 0 and that it is the defining matrix of a scalar product
in the basis (γi)0≤i≤n−1 on the vector space E =

⊕n−1
i=0 Rγi. Then formulae (51) means

that the so called switch linear map defined by

γi 7→ γn−1−i

is an involutive isometry of E. Let us denote it by sE or by s. Since s2 = Id, the space E
decomposes into a direct sum E = E[1]⊕E[−1] of the two orthogonal subspaces E[±1],
the two eigenspaces corresponding to the eigenvalues ±1. This decomposition is made
explicit in the next lemma. We choose to state this lemma in the little more general
context of semi-definite Toeplitz matrices.

Lemma 34. Let Tn+1(x0, . . . , xn) = Gram(γ0, . . . , γn) be a symmetric Toeplitz semi-
definite positive matrix. Then the family (γ′i)0≤i≤n defined by

(
γ′0, . . . , γ

′
n

)
=


(
γ0+γn√

2
, . . . ,

γn−1
2

+γn+1
2√

2
, γ0−γn√

2
, . . . ,

γn−1
2
−γn+1

2√
2

)
if n is odd(

γ0+γn√
2
, . . . ,

γn
2−1+γn

2 +1√
2

, γn
2
, γ0−γn√

2
, . . . ,

γn
2−1−γn

2 +1√
2

)
if n is even

is such that the two sub-spaces Vect(γ′0, . . . , γ
′
bn
2
c) and Vect(γ′bn

2
c+1, . . . , γ

′
n) are orthogo-

nal and thus

Gram
(
γ′0, . . . , γ

′
n

)
=

Gram
(
γ′0, . . . , γ

′
bn
2
c

)
0

0 Gram
(
γ′bn

2
c+1, . . . , γ

′
n

)
Moreover, one has

DetGram (γ0, . . . , γn) = DetGram
(
γ′0, . . . , γ

′
n

)
= DetGram

(
γ′0, . . . , γ

′
bn
2
c

)
×Det Gram

(
γ′bn

2
c+1, . . . , γ

′
n

)
.
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Proof. One way to rephrase the fact that the symmetric matrix is Toeplitz is to say that
for every 0 ≤ i, j ≤ n, 〈γi, γj〉 = x|i−j|. Therefore, if 0 ≤ i, j ≤ n

2 , one has

〈γi + γn−i, γj − γn−j〉 = x|i−j| − x|i−(n−j)| + x|(n−i)−j| − x|(n−i)−(n−j)|
= x|i−j| − x|n−(i+j)| + x|n−(i+j)| − x|i−j|
= 0

If moreover n is even then
〈
γn

2
, γj − γn−j

〉
= 0 for all 0 ≤ j ≤ n

2 . The form of Gram (γ′0, . . . , γ
′
n)

follows.
The equality between the determinants of the two Gram matrices is due to the fact

that the change of bases matrix from the family (γi)0≤i≤n to the family (γ′i)0≤i≤n, is an
unitary one.

A.2.3 Singular bordered Toeplitz matrix

Let Tn(x0, . . . , xn−1) � 0 be a real, symmetric, positive definite Toeplitz matrix of size n.
First, we prove that there exists only two values x±n ∈ R such that the bordered Toeplitz
matrix Tn+1(x0, . . . , xn−1, x

±
n ) is positive semi-definite of size n+ 1 and of rank n.

Lemma 35. Let Tn(x0, . . . , xn−1) = Gram(γ0, . . . , γn−1) be a real, symmetric, positive
definite, Toeplitz matrix where (E, 〈·, ·〉) is an euclidean space with base (γi)0≤i≤n−1.
There exist two (eventually equal) γ±n ∈ E such that

Gram(γ0, . . . , γn−1, γ
±
n ) = Tn+1(x0, . . . , xn−1, x

±
n )

is still a Toeplitz matrix of same rank n. Moreover, the two possible upper-right and
lower-left coefficients x±n = 〈γ0, γ±n 〉 are related by

x+n − x−n = 2 · DetGram (γ0, . . . , γn−1)

DetGram (γ0, . . . , γn−2)

In this situation, Tn+1(x0, . . . , xn) is called a singular bordered Toeplitz matrix.

Proof. The elements γ ∈ E satisfying the conclusion of the lemma are characterized by

〈γ, γi〉 = xn−i, 1 ≤ i ≤ n− 1, 〈γ, γ〉 = x0,

and the new coefficient is then xn = 〈γ, γ0〉. Certainly, there exists a unique element
of the hyperplane F =

⊕n−1
i=1 Rγi, satisfying the (n − 1) first conditions. We denote

by πF : E → E the orthogonal projection onto F and by sF : F → F the “switch”
isometry defined on the subspace F . Then sF (πF (γ0)) is this unique element of F , since
for every 1 ≤ i ≤ n− 1, one has

〈sF (πF (γ0)), γi〉 = 〈πF (γ0), sF (γi)〉 (since sF auto-dual)

= 〈πF (γ0), γn−i〉 (by definition of sF )

= 〈γ0, γn−i〉 (since γ0 − πF (γ0) ∈ F⊥ and γn−i ∈ F )

= xn−i
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The orthogonal line F⊥ is generated by γ0 − πF (γ0) and any element γ of the whole
space E such that 〈γ, γi〉 = xn−i for every 1 ≤ i ≤ n − 1, must be of the form γ =
sF (πF (γ0)) + λ (γ0 − πF (γ0)) for some λ ∈ R. Adding the last condition 〈γ, γ〉 = x0
leads to

x0 = ‖sF (πF (γ0)) + λ (γ0 − πF (γ0))‖2 = ‖πF (γ0)‖2 + λ2 ‖γ0 − πF (γ0)‖2

= ‖πF (γ0)‖2 + ‖γ0 − πF (γ0)‖2

and thus λ = ±1. The two choices are thus γ±n = sF (πF (γ0))± (γ0 − πF (γ0)), and

x±n =
〈
γ±n , γ0

〉
= 〈sF (πF (γ0))± (γ0 − πF (γ0)) , γ0〉

= 〈πF (γ0), sF (πF (γ0))〉 ± ‖γ0 − πF (γ0)‖2 .

By difference, x+n − x−n is related to the norm ‖γ0 − πF (γ0)‖ which is nothing else than
the distance of γ0 ∈ E to the subspace F . This distance is known to be equal to the
ratio of the two Gram determinants:

x+n − x−n = 2 ‖γ0 − πF (γ0)‖2 = 2 · DetGram (γ0, . . . , γn−1)

DetGram (γ1, . . . , γn−1)

= 2 · DetGram (γ0, . . . , γn−1)

DetGram (γ0, . . . , γn−2)
,

the last equality coming from the Toeplitz structure of the family (γ0, . . . , γn−1).

A.2.4 A second isometry

In this section, we study the resulting Toeplitz matrix of the previous lemma, that is a
semi-definite Toeplitz matrix having a kernel of dimension 1.

Theorem 36. Let Tn+1(x0, . . . , xn) = Gram(γ0, . . . , γn) be a real, symmetric, positive
semi-definite Toeplitz matrix of size (n+1) and of rank n, where (E, 〈·, ·〉) is an euclidean
space with basis (γi)0≤i≤n−1. Let (a0, . . . , an) ∈ Rn+1 be non-zero element of its kernel
and let P = anX

n + · · ·+ a0 ∈ R[X]. Then:

(i) The coefficient an is non zero, γn = − 1
an

(an−1γn−1 + · · ·+ a0γ0), and the linear
map defined by

γi 7→ γi+1, 0 ≤ i ≤ n− 1

is an isometry which has P as minimal and characteristic polynomial.

(ii) The polynomial P (X) has n distinct complex roots ε1, . . . , εn ∈ C all of norm 1.

(iii) Let P1, . . . , Pn ∈ C[X] the unique interpolation polynomials of degree ≤ n sat-
isfying Pi(εj) = δi,j. The family (Pi(u)(γ0))1≤i≤n is an orthogonal basis of the
hermitian space E ⊗R C.
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(iv) The Toeplitz matrices factorizes as
x0 x1 · · · xn−1

x1
. . .

. . .
...

...
. . .

. . . x1
xn−1 · · · x1 x0

 =


1 · · · 1
ε1 · · · εn
...

...

εn−11 · · · εn−1n

×
λ1 . . .

λn

×
1 ε1 · · · εn−11

...
...

...
1 εn · · · εn−1n

 ,

where λi = ‖Pi(u)(γ0)‖2 ∈ R∗+. For any 0 ≤ k ≤ n, one has xk = 〈γ0, γk〉 =∑n
i=1 λiε

k
i and more generally,

〈A(u)(γ0), B(u)(γ0)〉 =

n∑
i=1

λiA(εi)B(εi)

for all A,B ∈ C[X].

Proof. By lemma 33, the matrix Tn(x0, . . . , xn−1) is non-singular and thus an 6= 0. More-
over, one has a0γ0 + · · · anγn = 0. The fact that Gram(γ0, . . . , γn) = Tn+1(x0, . . . , xn)
implies that 〈γi, γj〉 = x|i−j| for all 0 ≤ i, j ≤ n. By definition of the map u, one has

〈u(γi), u(γj)〉 = 〈γi+1, γj+1〉 = x|(i+1)−(j+1)| = x|i−j| = 〈γi, γj〉

for all 0 ≤ i, j ≤ n− 1. Therefore u is an isometry. Moreover,

a0γ0 + · · ·+ anγn = 0⇒ a0γ0 + a1u(γ0) + · · ·+ anu
n(γ0) = 0

⇒ (a0 Id +a1u+ · · ·+ anu
n) (γ0) = 0

⇒ (a0 Id +a1u+ · · ·+ anu
n) (γi) = 0 ∀i ≥ 0 (apply ui).

We deduce that P (u) = a0 Id +a1u + · · · + anu
n = 0, and P must be the minimal

polynomial of u otherwise the family (γi)0≤i≤n−1 would not be free. This means that
the vector space E is a cyclic space under u, that is E ' R[X]/ 〈P (X)〉, the isomorphism
being defined by X mod P 7→ γ0. Under this isomorphism, the multiplication by X mod
P acting on the right space corresponds to u acting on E, from which item (i) follows.

Since P is the minimal polynomial of an euclidean isometry, all its complex roots
must be simple and of norm 1, so that item (ii) holds true.

As an euclidean isometry, u is diagonalizable over C. So let us extend the scalar to C
and work in E ⊗R C with the hermitian form defined by the matrix Tn(x0, . . . , xn−1) in
the basis (γi)0≤i≤n−1. The interpolation polynomials P1, . . . , Pn ∈ C[X] are explicitly
given by

Pi(X) =
∏
j 6=i

X − εj
εi − εj

,

and thus P divides (X−εi)×Pi. We deduce that (u−εi Id)◦Pi(u) = 0. Applying the left
endomorphism to γ0 leads to u (Pi(u)(γ0)) = εiPi(u)(γ0). The family (Pi(u)(γ0))1≤i≤n
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is thus a family of eigenvectors of u associated to the eigenvalues (εi)1≤i≤n. This must
be an orthogonal basis, as stated by item (iii):

E ⊗R C =
n⊕
i=1

CPi(u)(γ0) with 〈Pi(u)(γ0), Pj(u)(γ0)〉 = 0, ∀i 6= j.

It follows that the matrix of the hermitian product in this basis is diagonal

Mat
(
〈·, ·〉 , (Pi(u)(γ0))1≤i≤n

)
=

λ1 . . .

λn

 λi = ‖Pi(u)(γ0)‖2 > 0
1 ≤ i ≤ n .

Now, it is well known that the inverse of the Vandermonde matrix Vn(ε1, . . . , εn) is the
matrix whose columns are made of the coefficients of the polynomials P1, . . . , Pn, the
bases-change formula for sesquilinear hermitian forms gives item (iv):

Tn(x0, . . . , xn−1) = tVn(ε1, . . . , εn)×Dn(λ1, . . . , λn)× Vn(ε1, . . . , εn).

This can be re-written xk =
∑n

i=1 λiε
k
i for every 0 ≤ k ≤ n−1. More generally for every

polynomials A,B ∈ C[X] of any degree, one has:

〈A(u)(γ0), B(u)(γ0)〉 = 〈(A mod P )(u)(γ0), (B mod P )(u)(γ0)〉

=

n∑
i=1

λi(A mod P )(εi)(B mod P )(εi) =

n∑
i=1

λiA(εi)B(εi)

since (A mod P )(εi) = A(εi) for every 1 ≤ i ≤ n. This completes the proof of Theo-
rem 36.
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