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Abstract

We provide a new framework for a posteriori validation of vector-
valued problems with componentwise tight error enclosures, and use
it to design a symbolic-numeric Newton-like validation algorithm for
Chebyshev approximate solutions of coupled systems of linear ordi-
nary differential equations. More precisely, given a coupled differential
system of dimension p with polynomial coefficients over a compact
interval (or continuous coefficients rigorously approximated by poly-
nomials) and polynomial approximate solutions Φ◦i in Chebyshev basis
(1 6 i 6 p), the algorithm outputs rigorous upper bounds εi for the
approximation error of Φ◦i to the exact solution Φ?

i , with respect to
the uniform norm over the interval under consideration.

A complexity analysis shows that the number of arithmetic oper-
ations needed by this algorithm (in floating-point or interval arith-
metics) is proportional to the approximation degree when the differ-
ential equation is considered fixed. Finally, we illustrate the efficiency
of this fully automated validation method on an example of a coupled
Airy-like system.

1 Introduction
Notations. Let p be a positive integer for the ambient space Rp, whose
canonical basis is denoted by (e1, . . . , ep). For a ring A,Mp(A) denotes the
set of order p square matrices, with 1 and 0 the identity and zero matrices.
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The order 6 over R is componentwise extended to a (partial) order over Rp

and Mp(R): for all u, v ∈ Rp (resp. A,B in Mp(R)), u 6 v if and only if
ui 6 vi for all i ∈ J1, pK (resp. A 6 B iff Aij 6 Bij for all i, j ∈ J1, pK).

Unless otherwise specified, a function f is defined over the interval [−1, 1],
with ‖f‖∞ = supx∈[−1,1] |f(x)| denoting the uniform norm over [−1, 1].
Problem statement and contributions. We present a symbolic-numeric
a posteriori fixed-point validation algorithm for Chebyshev approximations
to solutions of coupled linear ordinary differential equations (LODEs), that
provides componentwise and tight error enclosures. Coefficients of the sys-
tem must be continuous functions, given as polynomials with rigorous error
bounds. However, for the sake of simplicity, we mainly focus on the poly-
nomial case, and refer to the solutions as vector-valued D-finite functions.
Although such functions can be seen as vectors of (scalar) D-finite functions,
the decoupling of the system followed by a possible desingularization step
may produce hard to validate scalar LODEs (see Section 4). Moreover, in
the nonpolynomial case, such techniques do not apply.

Using an appropriate integral transform of the linear differential system,
we obtain a Volterra integral equation of the second kind with polynomial
kernel, whence the following problem statement:

Problem 1. For a given integral equation of unknown Φ : [−1, 1]→ Rp:

Φ(t) +

∫ t

−1
K(t, s) · Φ(s)ds = Ψ(t),

with a p-dimensional polynomial kernel K(t, s) ∈Mp(R[t, s]) and Ψ ∈ R[t]p,
assuming we are given for each component Φ?

i of the exact solution Φ? a
polynomial approximation Φ◦i in Chebyshev basis, compute componentwise
error bounds εi, as tight as possible:

‖Φ◦i − Φ?
i ‖ 6 εi, for all i ∈ J1, pK.

Fixed-point methods are extensively used in the field of functional analy-
sis and differential equations. They provide iterative approximation schemes,
like Picard-Chebyshev which integrates nonlinear dynamical systems arising,
for instance, in space flight mechanics problems [8, 4]. They also underlie
numerous validation methods for function space problems [13, 23].

A wide range of fixed-point validation methods use Banach fixed-point
theorem. Given an equation x = T · x with T contracting of ratio λ ∈ (0, 1)
over a complete metric space, and an approximation x to the exact solution
x?, it provides an enclosure of the error:

‖x−T · x‖
1 + λ

6 ‖x− x?‖ 6 ‖x−T · x‖
1− λ . (1)
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However, in the case we consider, x belongs to a product space, and the
classical method consisting in endowing it with a global norm fails to produce
componentwise tight error enclosures. This is particularly annoying when the
components of the system are of different nature (e.g., position and speed)
or magnitude.

Based on a new refinement with lower bounds for Perov fixed-point the-
orem (a vector-valued generalization of Banach fixed-point principle), we
propose a validation algorithm to solve Problem 1. It is a generalization of
the validation method presented in [7] to vectorial LODEs, within a new
general framework for vector-valued fixed-point validation.

Theorem 1. Algorithms 1 and 3 solve together Problem 1 by providing com-
ponentwise error enclosures.

(i) Algorithm 1 only depends on the integral equation (not on the provided
approximation). It produces and rigorously bounds a Newton-like validation
operator and requires O(p3Nval

2d) arithmetic operations.
(ii) Algorithm 3 computes the error enclosures for the approximation

and runs in linear time with respect to the maximum degree of the approx-
imations Φ◦i and the right-hand sides Ψi. More precisely, its complexity is
O(p2d2Napp + pNrhs + p2Nval min(max(Napp + d,Nrhs), Nval)).

where:

• Napp = maxi deg Φ◦i and Nrhs = maxi deg Ψi;

• d = 1 + maxij deg kij(t, s);

• Nval is a truncation index used to rigorously approximate the problem
in finite dimension.

We assume a uniform complexity model, i.e., a unit cost for each arith-
metic operation (+, −, ×, /,√), with, say, floating-point or interval operands.

The previous complexity estimates still involve a truncation index Nval,
which is directly related to how tight the desired error enclosures have to be.
As detailed in Theorem 4, its minimal value ensuring a contracting Newton-
like operator is potentially exponential with respect to the magnitude of the
coefficients of the integral equation, in the case of stiff LODEs for example.
In practice however, this method works efficiently and fully automatically.
An open source library implementing this validation method (and its exten-
sion to the nonpolynomial case) can be found here 1. It was also recently
used for a space flight dynamics application [3].

1http://perso.ens-lyon.fr/florent.brehard
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Previous work. In this context, applications of Banach fixed-point theo-
rem include early works [13, 23], where variations of Newton’s method per-
form a posteriori validation in function spaces. More recent works developed
techniques (e.g., radii polynomials [10]) to find a stable neighborhood of an
approximation ϕ over which Banach fixed-point theorem applies. They have
the advantage of dealing with nonlinear problems (examples can be found
in [14, 22, 10]). However, the above mentioned methods were not fully auto-
mated and little emphasis was put on their algorithmic aspects.

By contrast, [5] is a pioneer work towards effective methods for validation
of approximations of D-finite functions in Chebyshev basis. At the cost of
a more restricted class of functions, namely, D-finite functions, this article
introduces a fully automated algorithm together with complexity estimates,
based on a Picard iteration scheme. In line with this work, [7] describes
another algorithm based on a Newton-like method in an appropriate func-
tion space, which is easily extended to the case of continuous coefficients
rigorously approximated by Chebyshev polynomials.

The above mentioned validation techniques are usually transposed to the
vectorial case by fixing a norm over the vector-valued function space. How-
ever, this does not provide componentwise tight error enclosures. To over-
come this limitation, we consider the notion of vector-valued (or generalized)
metric spaces and generalized contractions (or P-contractions) [11, 21, 18].
Perov fixed-point theorem [11, 19] is a natural extension of Banach fixed-point
theorem and provides componentwise upper bounds for the approximation
error. Several works applied this theorem in various settings, for example [24]
for the Newton method or [2, 20, 16] for ODEs with nonlocal conditions. To
the best of our knowledge, however, none of these works investigate the ex-
istence of lower bounds, nor address validation problems.

Outline. Section 2 introduces a general framework for componentwise fixed-
point validation in generalized metric spaces. In Section 3, we design the
Newton-like validation algorithm for Chebyshev approximations of vector-
valued D-finite functions. Finally, Section 4 details the validation of a two-
dimensional highly oscillating system. For completeness, we also provide a
comparison with a decoupling technique that boils down to solving scalar
LODEs.
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2 A Framework for Vector-Valued Validation
Problems

We address the general problem of componentwise validating an approxima-
tion x to the exact solution x? of a fixed-point equation x = T ·x. Section 2.1
gives a rigorous definition of “several components and norms” with the no-
tion of generalized metric spaces, leading to Perov fixed-point theorem. Sec-
tion 2.2 presents a new result that complements Perov theorem with lower
bounds on the componentwise approximation errors.
A toy example in the plane illustrates the vector-valued validation frame-
work. Consider the trigonometric equation sin3 ϑ+ cos 3ϑ = 0 for ϑ ∈ R. By
introducing c = cos x and s = sin x, this is equivalent to finding the roots of
the following polynomial system in the plane (c, s):

F · (c, s) =

(
s3 + 4c3 − 3c
c2 + s2 − 1

)
= 0. (2)

Let x? = (c?, s?) be an exact solution and x◦ := (c◦, s◦) = (0.84, 0.55) an
approximation of it. In order to validate this solution with respect to a given
norm ‖·‖ on R2, we define a Newton-like operatorT·(c, s) = (c, s)−A·F·(c, s)
with A :=

(
0.25 −0.20
−0.37 1.2

)
≈ (DFx◦)

−1 ∈M2(R) an approximate inverse

of the Fréchet derivative DFx◦ of F at x◦. Since A is injective, its fixed points
are exactly the roots of F. In this example, F is nonlinear, so one must find
a stable closed neighborhood over which T is contracting, for Banach theorem
to apply. It suffices to determine a radius r > 0 satisfying the following two
conditions:

(i) λ := sup‖x−x◦‖6r ‖1−A ·DFx‖ < 1;
(ii) ‖x◦ −T · x◦‖+ kr 6 r.

If such a radius exists, then by Banach fixed-point theorem, we have ‖x◦ − x?‖ 6
‖A · F · x‖/(1− λ). However, such a bound captures a “global” error, which
may not be what we expect, if, for example, the two components are of
different nature (e.g., position and velocity), or differ by several orders of
magnitude.

2.1 Generalized Metric Spaces and Perov Fixed-Point
Theorem

Definition 1. Let X be a set (resp. E a linear space). A function d :
X×X → Rp

+ (resp. ‖ ·‖ : E → Rp
+) is a vector-valued or generalized metric

(resp. norm) if for all x, y, z in X or E and λ ∈ R:
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• d(x, y) = 0 iff x = y, resp. ‖x‖ = 0 iff x = 0;
• d(x, y) = d(y, x), resp. ‖λx‖ = |λ|‖x‖;
• d(x, y) 6 d(x, z) + d(z, y), resp. ‖x+ y‖ 6 ‖x‖+ ‖y‖.

Then (X, d) (resp. (E, ‖ · ‖)) is a vector-valued or generalized metric space
(resp. linear space).

A straightforward example is the product of p metric spaces (Xi, di),
i ∈ J1, pK (resp. p normed linear spaces (E, ‖ · ‖i)) and the vector-valued
metric d(x, y) = (d1(x1, y1), . . . , dp(xp, yp)) (resp. the vector-valued norm
‖x‖ = (‖x1‖1, . . . , ‖xp‖p)).

Remark 1. A vector-valued metric space (respectively a vector-valued normed
linear space) can be trivially seen as a metric space (respectively a normed lin-
ear space) by taking the maximum of all the components of the vector-valued
metric (respectively norm). We therefore recover all the useful topological
notions of convergence, limit, neighborhood, completeness, etc.

In the context of vector-valued metric spaces, the notion of contracting
map needs to be generalized. LetM→0

p (R) ⊆Mp(R) denote the convergent
to zero matrices, that is the matrices M such that Mk → 0 as k → ∞.
Equivalently, these are matrices M with spectral radius ρ(M) < 1. Then,
M→0

p (R+) =M→0
p (R) ∩Mp(R+) denotes those among them with nonnega-

tive coefficients.

Definition 2. Let (X, d) be a vector-valued metric space and T : X → X an
operator.

• T is Λ-Lipschitz for some Λ ∈Mp(R+) if:

d(T · x,T · y) 6 Λ · d(x, y), for all x, y ∈ X.

• If moreover Λ is convergent to 0 (Λ ∈M→0
p (R+)), then T is said to be

a generalized contraction.

Using these definitions, Perov fixed-point theorem2 is a generalization of
Banach fixed-point theorem.

Theorem 2 (Perov). Let (X, d) be a complete vector-valued metric space and
T : X → X a generalized contraction with a Lipschitz matrix Λ ∈M→0

p (R+).
Then:

2Although commonly attributed to Perov [19] (in Russian), the idea of generalizing
Banach fixed-point theorem to generalized norms for investigating the componentwise
errors in an iterative process first appeared in Kantorovich’s work [11] (in Russian too).
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(i) T admits a unique fixed-point x? ∈ X;

(ii) for every x◦ ∈ X, the iterated sequence defined by x0 = x◦ and xn+1 =
T · xn converges to x? with the following upper bound on the approxi-
mation error:

d(xn, x
?) 6 Λn · (1− Λ)−1 · d(x◦,T · x◦), for all n ∈ N. (3)

A proof of this theorem is given in Appendix A.1. Reference proofs may
also be found in [18].
Perov theorem applied to the toy example. Endowing R2 with the
vector-valued norm ‖(c, s)‖ := (|c|, |s|) does not change the definition of T.
The two conditions needed to apply Banach fixed-point theorem are adapted
to Perov theorem as follows. Choose a multi-radius r = (r1, r2) such that:

(i) Λ := (|(DT)ij|)16i,j62 satisfies ρ(Λ) < 1;

(ii) ‖x◦ −T · x◦‖+ Λ · r 6 r.

For r = (0.005, 0.005), one obtains:

Λ =

(
5.81 1.31
5.63 3.40

)
· 10−2, ρ(Λ) = 7.57 · 10−2,

which satisfies (i) and (ii). Hence, Theorem 2 gives:

|c◦ − c?| 6 2.90 · 10−3, |s◦ − s?| 6 3.65 · 10−3.

To assess the tightness of these bounds, we provide lower bounds on the
componentwise approximation errors.

2.2 Lower Bounds and Error Enclosures

Let ε = d(x◦, x?) ∈ Rp
+ be the vector of unknown errors and η = d(x◦,T·x◦) ∈

Rp
+. By the triangle inequality, ε is circumscribed into a polytope of Rp

+:

(1− Λ) · ε 6 η,

(1 + Λ) · ε > η,

ε > 0.

(4)

The first inequality gives the upper bounds ε+ = (1− Λ)−1 · η, as stated by
Theorem 2 (with n = 0). However, the second one does not directly give the
desired lower bounds, say ε−, because the inverse (1 + Λ)−1 =

∑
k>0(−Λ)k

is not nonnegative in general. It is clear that each ε−i is given by the i-th
coordinate of some vertex of this polytope. Instead of testing its 2p vertices,
the following theorem identifies the correct vertex.
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Theorem 3 (Lower bounds for Perov theorem). With the above notations,
for each i ∈ J1, pK, the lower bound ε−i on the i-th component εi of the ap-
proximation error of x◦ to x? is given by the i-th component of the vertex
defined by the intersection of the i-th lower-bound constraint together with all
the j-th upper-bound constraints with j 6= i from (4). Formally:

εi > ε−i with ε−i = eTi · (1−Di · Λ)−1 · η,

where Di is the order p diagonal matrix defined by (Di)ii = −1 and (Di)jj = 1
for j 6= i.

Remark 2. Contrary to the one-dimensional case, the obtained lower bound
ε−i may be negative, in which case we round it to 0, meaning that the overes-
timation factor of the upper bound provided by Theorem 2 is not controlled
(see Appendix A.2).

The proof of Theorem 3 relies on the following technical lemma, whose
proof is given in Appendix A.1.

Lemma 1. Let Λ ∈ M→0
p (R+) be a convergent to zero nonnegative matrix.

Then, for every i ∈ J1, pK, Λ−Di is nonsingular and the entries on the i-th
row of its inverse are nonnegative.

Proof of Theorem 3. Among the Inequalities (4), take the p upper-bound
constraints and replace the i-th one by the corresponding lower-bound con-
straint. Multiply these p − 1 upper-bound constraints by −1 to obtain the
following system of inequalities:

(Λ−Di) · ε > −Di · η. (5)

From Lemma 1, Λ−Di is nonsingular and its inverse has nonnegative coef-
ficients on its i-th row. Hence we can multiply (5) by (Λ − Di)

−1 and only
keep the resulting i-th constraint:

εi = eTi · (Λ−Di)
−1 · (Λ−Di) · ε
> eTi · (Λ−Di)

−1 · (−Di) · η = eTi · (1−Di · Λ)−1 · η.

Lower bounds for the toy example. The polytope given by the linear
constraints (4) is depicted in Figure 1. The top right vertex corresponds
to (ε+1 , ε

+
2 ). Also, the ε−1 (resp. ε−2 ) is given by the top left (resp. bottom

right) vertex, which is consistent with Theorem 3. This gives the following
numerical enclosures:
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ε−1 = 2.48 · 10−3 6 ε1 = |c◦ − c?| 6 ε+1 = 2.90 · 10−3,

ε−2 = 3.09 · 10−3 6 ε2 = |s◦ − s?| 6 ε+2 = 3.65 · 10−3.
(6)

A discussion on the tightness of these enclosures is carried out in Ap-
pendix A.2. Roughly speaking, the ratio ε+i /ε

−
i depends not only on Λ (like

in the univariate case), but also on η = d(x◦,T · x◦).

2.6 2.8 3

3.2

3.4

3.6

•η

ε1 (×10−3)

ε2 (×10−3)

ε−1 ε+1

ε−2

ε+2

Figure 1: Error polytope for the toy example.

3 Componentwise Validation of Chebyshev Ap-
proximations to Vector-Valued D-finite Func-
tions

We present the validation method to solve Problem 1. Section 3.1 contains
reminders about Chebyshev approximation theory and LODEs. This leads
to an efficient approximating procedure (Section 3.2). Section 3.3 presents
Algorithms 1 and 2 to create and bound a Newton-like operator associated
to a given vectorial LODE, then Algorithm 3 to compute componentwise
error enclosures for any Chebyshev approximation (Φ◦i )16i6p.

3.1 Some Reminders about Chebyshev Approximations
to LODEs

Chebyshev series and Ч1 space. The Chebyshev family of polynomials is
defined by the three-term recurrence Tn+2 = 2XTn+1 − Tn with initial terms
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T0 = 1 and T1 = X. They satisfy the fundamental trigonometric relation
Tn(cosϑ) = cos(nϑ), from which we deduce some of their basic algebraic
properties:

TnTm =
1

2
(Tn+m + T|n−m|),

∫
Tn =

Tn+1

2(n + 1)
− Tn−1

2(n− 1)
= Tn (n > 2), (7)

and that |Tn(t)| 6 1 for x ∈ [−1, 1].
Let L2

Ч = L2(1/
√

1− t2) denote the space of real-valued measurable func-
tions f over [−1, 1] such that

∫ 1

−1 f(t)2/
√

1− t2dt < ∞. The inner product
:

〈f, g〉 =

∫ 1

−1
f(t)g(t)/

√
1− t2dt =

∫ π

0

f(cosϑ)g(cosϑ)dϑ,

defines a Hilbert space structure over L2
Ч, for which the Chebyshev polyno-

mials form a complete orthogonal system. To any continuous function f in
this space we can associate its Chebyshev coefficients:

[f ]n =

{
1
π

∫ π
0
f(cosϑ)dϑ, if n = 0,

2
π

∫ π
0
f(cosϑ) cos(nϑ)dϑ, if n > 0.

Hence, the truncated Chebyshev series f [N ] = пN · f :=
∑N

n=0[f ]nTn of f
is simply the orthogonal projection of f onto the finite-dimensional sub-
space spanned by T0, . . . , TN . In addition to the L2

Ч convergence, and analo-
gously to Fourier series, Chebyshev series have excellent approximation prop-
erties [6]. For example, if f is of class Cr over [−1, 1] with r > 1, then f [N ]

uniformly converges to f in O(N−r), and the convergence is even exponen-
tial for analytic functions. Moreover, at fixed degree N , the N -th truncated
Chebyshev series f [N ] is a near-best approximation of f among degree N
polynomials, with a factor growing relatively slowly, in O(log(N)) [15].

We call Ч1 the Banach space of continuous functions with absolutely
summable Chebyshev series, and define the associated norm ‖f‖Ч1 =

∑
n>0 |[f ]n|.

Note that Ч1 is analogous to the Wiener algebra A(T) of absolutely conver-
gent Fourier series [12, §I.6]: for f ∈ Ч1, we have ‖f‖Ч1 = ‖f(cos)‖A(T). We
obtain a Banach algebra structure: ‖fg‖Ч1 6 ‖f‖Ч1‖g‖Ч1 . Moreover, this
norm is a safe overestimation of the supremum norm ‖ · ‖∞ over [−1, 1]:

‖f‖Ч1 > sup
−16t61

∑
n>0

|[f ]nTn(t)| > sup
−16t61

|f(t)| = ‖f‖∞.

Given an endomorphism F : Ч1 → Ч1, the operator norm induced by the
Ч1 norm is given by:

‖F‖Ч1 = sup
‖f‖Ч161

‖F · f‖Ч1 = sup
n>0
‖F · Tn‖Ч1 . (8)
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This corresponds to the maximum sum of the coefficients in absolute value
over all columns of the matrix representation of F.

D-finite equations and integral transforms. We consider a generic p-
dimensional order r system of LODEs over the compact interval [−1, 1]:

Y (r) + Ar−1(t) · Y (r−1) + · · ·+ A1(t) · Y ′ + A0(t) · Y = G(t), (9)

of unknown Y = (Y1, . . . , Yp) : [−1, 1] → Rp, with polynomial coefficients
Ak = (akij)16i,j6p ∈ Mp(R[t]) and right-hand side G = (G1, . . . , Gp) ∈ R[t]p.
We also fix initial conditions at −1:

Y (i)(−1) = vi, vi ∈ Rp, for all i ∈ J0, r − 1K. (10)

Together, (9) and (10) form an Initial Value Problem (IVP).
Several barriers arise when working directly on a differential equation (9):

the differentiation of Chebyshev polynomials does not admit a compact for-
mula, whence a dense linear system to solve, and, from the theoretical point
of view, the space Ч1 is not stable under differentiation. A common way to
circumvent these limitations is to apply an integral transform onto the IVP
problem so as to obtain an equivalent Volterra integral equation of the second
kind over [−1, 1]:

Φ + K · Φ = Ψ, with K · Φ(t) =

∫ t

−1
K(t, s) · Φ(s)ds, (11)

with a bivariate polynomial kernel K = (kij)16i,j6p ∈ Mp(R[t, s]) and right-
hand side Ψ = (Ψ1, . . . ,Ψp) ∈ R[t]p. Depending on the integral transform,
the unknown function Φ = (Φ1, . . . ,Φp) : [−1, 1] → Rp can be either Y or
one of its derivatives. For example, [5] acts over Y , whereas [7] considers the
last derivative Y (r).

In any case,K : Φ 7→
∫ t
−1K(t, s)·Φ(s)ds is a bounded linear operator from

(Ч1)p to itself. We may describe it by blocks K = (Kij)16i,j6p, where each
Kij is a one-dimensional integral operator of kernel kij(t, s). By decomposing
kij(t, s) in Chebyshev basis with respect to s, we obtain unique polynomials
bijk(t) such that:

kij(t, s) =

κij∑
k=0

bijk(t)Tk(s), Kij · ϕ(t) =

κij∑
k=0

bijk(t)

∫ t

−1
Tk(s)ϕ(s)ds.

Consequently to the multiplication and integration formulas (7), the (infi-
nite dimensional) matrix representation of Kij : Ч1 → Ч1 has a so-called
(hij, dij) almost-banded structure [17], meaning that the nonzero entries are
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located on the hij first rows (horizontal band with initial entries) and the
diagonal plus the first dij upper and lower diagonals (diagonal band with di-
agonal entries), with hij = max06k6κij deg bijk(t) and dij = 1+deg kij(t, s) =
1 + max06k6κij k + deg bijk(t) (see Figure 2(a)).

3.2 Efficient numerical solving

The integral equation (11) is an infinite-dimensional linear system over the
Chebyshev coefficients of the unknown function Φ. The projection method
(also sometimes called Galerkin method [9]) consists in truncating for a given
index Napp and solving the obtained finite-dimensional linear system. In our
case, this can be efficiently done by taking advantage of its sparse structure.

Define the Napp-th truncation of K as K[Napp] = (K
[Napp]
ij )16i,j6p, where

пNapp ·Kij ·пNapp (see Figure 2(b)). It is represented by the order p(Napp + 1)
square matrix depicted by blocks in Figure 2(c). By permuting the natural
basis Bp,Napp of (пNapp ·Ч1)p into B′p,Napp

:

Bp,Napp = (T0e1, . . . , TNappe1, . . . . . . , T0ep, . . . , TNappep),

B′p,Napp
= (T0e1, . . . , T0ep, . . . . . . , TNappe1, . . . , TNappep),

(12)

K[Napp] recovers a (ph, pd) almost-banded structure, where h = maxij hij and
d = maxij dij (see Figure 2(d)).

Hence, solving the approximate problem:

Φ + K[Nval] · Φ = Ψ

requiresO(p3Nappd
2) operations, using the algorithm of [17] for solving almost-

banded linear systems.

3.3 Validation Procedure

We extend the validation procedure of [7] to the vectorial case. We prove the
main Theorem 1 in order to solve Problem 1 in two steps: (1) a Newton-like
validation operator is created and bounded by Algorithm 1. This first step
is independent of the approximation degree Napp. (2) The error enclosure
of the given approximation is computed by Algorithm 3, following Theo-
rems 2 and 3.

Newton-like validation operator. Following the idea of Newton’s method
and similar approaches, Equation (11) is transformed into the fixed-point

12



(a) Almost-banded structure of
Kij

(b) Truncation K
[Napp]
ij of Kij

(c) K[Napp] in Bp,Napp
, by blocks

(p = 3)
(d) K[Napp] in B′p,Napp is almost-
banded

Figure 2: Almost-banded structure of integral operators
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equation:

T · Φ = Φ, T · Φ := Φ−A · (Φ + K · Φ−Ψ), (13)

which is equivalent to (11) as soon as A : (Ч1)p → (Ч1)p is injective. More-
over, T is an affine operator of linear part DT = 1 − A · (1 + K). The
main challenge is to efficiently compute A and bound ‖DT‖(Ч1)p . This is
handled by Algorithm 1. Similarly to numerical solving, A approximates
(1 + K[Nval])−1, for some truncation order Nval. Choosing Nval is a trade-
off between proving T is contracting (Nval must be large enough so that
‖K−K[Nval]‖(Ч1)p is rigorously proved to be sufficiently small) and efficiency
requirements (see [7] for heuristics to find Nval).

Once Nval is fixed, Algorithm 1 first computes an approximate inverse A
(lines 1-4). Since 1+K[Nval] is almost-banded in B′p,Nval

, its numerical inverse
can be either computed with [17], or approximated by a (ph′, pd′) almost-
banded matrix [7, Algorithm 5]. This requires O(p3Nval(h

′ + d′)(h + d))
floating-point operations. The operator A is defined by extending A to the
whole space (Ч1)p by the identity.

Second, Algorithm 1 bounds a Lipschitz matrix for T, as ‖DT‖(Ч1)p =
(‖(DT)ij‖Ч1)16i,j6p, block by block, using the triangle inequality:

‖DT‖Ч1 6 ‖1−A · (1 + K[Nval])‖Ч1 + ‖A · (K−K[Nval])‖Ч1 . (14)

The first part of (14) is the approximation error, measuring how far A is
from the inverse of 1 + K[Nval]. This is straightforwardly bounded as ΛA by
Algorithm 1 (lines 5-9) using O(p3Nval(h

′ + d′)(h+ d)) interval arithmetic
operations.

The second part of (14) is the truncation error, because the truncated
operator K[Nval] only approximates K. Let Eij be the (i, j) block of E :=
A · (K−K[Nval]):

Eij =

p∑
k=1

Aik · (Kkj −K
[Nval]
kj ). (15)

Algorithm 1 (lines 10-16) computes ΛT > ‖E‖(Ч1)p by blocks, with the
triangle inequality: each subterm of (15) is rigorously bounded by Algo-
rithm 2. This algorithm, detailed below, requires O((h′ + d′)(h + d)2) in-
terval arithmetic operations. Hence the computation of ΛT is in O(p3(h′ +
d′)(h+ d)2).

Finally, Algorithm 1 computes Λ = ΛA + ΛT and checks that this Lips-
chitz matrix is convergent to zero, in which case the constructed Newton-like
operator T is contracting.
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Proof of Theorem 1(i). The detailed description ofAlgorithm 1 above proves
its correctness, and the given complexity estimates for lines 1-4, 5-9 and 10-
16 sum to a global complexity of O(p3Nval(h

′ + d′)(h + d)) operations. In
the worst case, when A is dense (h′ + d′ ≈ Nval), we recover the estimate of
Theorem 1(i).

Truncation error bounding. From Equation (15), one needs to bound
‖Aik ·(Kkj−K[Nval]

kj )‖Ч1 , where Aik is the extension to Ч1 of the order Nval+1
matrix Aik by the identity if i = k, and zero otherwise. This computation
is handled by Algorithm 2, which is a modification of [7, Algorithm 6],
that only treats the case i = k.

Specifically, let K denote here a one-dimensional (h, d) almost-banded
integral operator, and A : Ч1 → Ч1 the extension of an order Nval +1 matrix
A by the identity or zero. We have:

‖A · (K−K[Nval])‖Ч1 = sup
`>0

B(`), with B(`) = ‖A · (K−K[Nval]) · T`‖Ч1 .

Indices ` are divided into four groups, reflecting how the initial and diagonal
coefficients are impacted by the action of A: J0, Nval−dK, JNval−d+1, NvalK,
JNval + 1, Nval + dK and JNval + d + 1,+∞K. The T` in the first group lie
in the kernel. The second and third ones are explicitly computed, yielding
bounds δ(1) and δ(2) in Algorithm 2 (lines 1-7 and 8-13). For the infinite
last group, B(`) is decomposed as BI(`) + BD(`), the contribution of the
initial and diagonal coefficients. Algorithm 2 uses the efficient bounding
strategy of [7]. First, it computes the image of TNval+d+1 for the initial and
diagonal coefficients (lines 16 and 22). Then, it bounds the difference be-
tween the images of TNval+d+1 and the remaining T` for ` > Nval + d + 1 to
finally deduce bounds δ(3) and δ(4) (lines 17 and 23).

Error enclosures. Finally, Algorithm 3 implements the validation pro-
cedure of Theorems 2 and 3 by applying the operator T to the candidate
approximation Φ◦, bounding the distance of the resulting polynomial to Φ◦

and producing componentwise error enclosures to Φ? with respect to the Ч1

norm.

Proof of Theorem 1(ii). Algorithm 3 computes Φ◦−T ·Φ◦ = A · (Φ◦+K ·
Φ◦ − Ψ). Each Pk (line 1) is a polynomial of degree at most max(Napp +
d,Nrhs), and computing its Chebyshev coefficients is in O(pd2Napp + Nrhs).
Then, the computation of the coefficients of each Aik · пNval

· Pk (line 3) is
in O((h′ + d′) deg(пNval

· Pk)) = O((h′ + d′) min(max(Napp + d,Nrhs), Nval)).
Finally, the complexity of computing the enclosures (lines 6-7) only depends
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Algorithm 1 Create and bound a Newton-like operator T
Require: A polynomial integral operator K = (Kij)16i,j6p given by the

(bijk)
16i,j6p
06k6κij

, and a truncation order Nval.
Ensure: An approximate inverse A of 1 + K[Nval] and a certified Lipschitz

matrix Λ for 1−A · (1 + K), or fail if Nval not large enough.
B Compute an approximate inverse matrix A.

1: M = (Mij)16i,j6p ← 1 + K[Nval], by blocks
2: M ′ ←M in basis B′p,Nval

3: A′ ← a numerical approximate inverse of M ′, either dense or almost-
banded.

4: A = (Aij)16i,j6p ← A′ in basis Bp,Nval
, by blocks

B Compute the approx error ΛA = (λAij) in interval arith.
5: for i = 1 to p and j = 1 to p do
6: C ←∑

16k6pAik ·Mkj

7: if i = j then C ← C − 1Nval+1

8: λAij ← ‖C‖Ч1

9: end for
B Compute the trunc error ΛT = (λTij) in interval arith.

10: for i = 1 to p and j = 1 to p do
11: λTij ← 0
12: for k = 1 to p do
13: δ ← Algorithm 2 on Kjk, Aik and diag := (i = k).
14: λTij ← λTij + δ
15: end for
16: end for

B Compute Λ and check if T contracting.
17: Λ← ΛA + ΛT

18: if ρ(Λ) < 1 then
19: return A, Λ
20: else
21: print "Fail, Λ is not convergent to 0"
22: end if

16



Algorithm 2 Bound the truncation error
Require: A polynomial (one-dimensional) integral operator K given by the

(bk)06k6κ, a truncation order Nval, a Nval + 1 order square matrix A, and
a Boolean diag.

Ensure: An upper bound δ for ‖A·(K−K[Nval])‖Ч1 , whereA is the extension
of A to the whole space Ч1 by the identity if diag = true, and by zero
otherwise.
B All operations are performed in interval arithmetics
B Compute δ(1) > sup`∈JNval−d+1,NvalKB(`)

1: δ(1) ← 0
2: if diag then
3: for ` = Nval − d+ 1 to Nval do
4: P ← (1− пNval

) ·K · T`
5: if ‖P‖Ч1 > δ(1) then δ(1) ← ‖P‖Ч1

6: end for
7: end if

B Compute δ(2) > sup`∈JNval+1,Nval+dKB(`)

8: δ(2) ← 0
9: for ` = Nval + 1 to Nval + d do
10: P ← A · пNval

·K · T`
11: if diag then P ← P + (1− пNval

) ·K · T`
12: if ‖P‖Ч1 > δ(2) then δ(2) ← ‖P‖Ч1

13: end for
B Compute δ(3) > sup`>Nval+d+1BD(`)

14: `0 ← Nval + d+ 1 and B ←∑κ
k=0 ‖bk‖Ч1

15: if diag then
16: P ← (1− пNval

) ·K · T`0
17: δ(3) ← ‖P‖Ч1 + (κ+1)B

(`0−(κ−1))2
18: else
19: δ(3) ← 0
20: end if

B Compute δ(4) > sup`>Nval+d+1BI(`)
21: B′ ←∑κ

k=0 ‖A · bk‖Ч1

22: P ← A · пNval
·K · T`0

23: δ(4) ← ‖P‖Ч1 + (κ+1)3B′

(`20−(κ+1)2)2

24: δ ← max(δ(1), δ(2), δ(3) + δ(4))
25: return δ
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on p, and is therefore negligible. The overall complexity is:

O(p2d2Napp + pNrhs + p2(h′ + d′) min(max(Napp + d,Nrhs), Nval)),

which gives the estimate of Theorem 1(ii) when h′, d′ ≈ Nval.

Algorithm 3 Validate a candidate solution of an integral equation
Require: A polynomial integral operator K = (Kij)16i,j6p given by the

(bijk)
16i,j6p
06k6κij

, a polynomial right-hand side Ψ = (Ψ1, . . . ,Ψp), a truncation
order Nval, (A,Λ) obtained from Algorithm 1 with Λ convergent to 0, and
a candidate solution Φ◦ = (Φ◦1, . . . ,Φ

◦
p).

Ensure: Two vectors of upper and lower bounds ε+ and ε− such that ‖Φ◦i −
Φ?
i ‖Ч1 ∈ [ε−i , ε

+
i ] for 1 6 i 6 p.

B All operations are performed in interval arithmetics
1: for k = 1 to p do Pk ← Φk +

∑p
j=1 Kkj · Φ◦j −Ψk

2: for i = 1 to p do
3: Qi ←

∑p
k=1Aik · пNval

· Pk + (1− пn) · Pi
4: ηi ← ‖Qi‖Ч1

5: end for
6: ε+ ← (1− Λ)−1 · η
7: for i = 1 to p do ε−i ← ((1−Di · Λ)−1 · η)i
8: return ε+ and ε−

Estimating Nval. The following theorem provides a worst-case estimate for
the minimal value of Nval.

Theorem 4. Let Bij =
∑κij

k=0 ‖bijk‖Ч1 and B = (Bij)16i,j6p. The following
bound estimates the minimal possible value for Nval making Algorithm 1
produce a contracting Newton-like operator:

Nval = O
(
dρ(B)2 exp(2ρ(B))

)
, (16)

where ρ(B) denotes the spectral radius of B.

The proof is an adaptation of the argument given in [7] to the vectorial
case, and is given in Appendix A.3. Note that although theoretically interest-
ing, this exponential bound is overpessimistic for a wide range of examples.

4 Example and Discussion
Consider the following order 1, two-dimensional system, for x ∈ [0, a] with
a > 0, whose solutions (depicted in Figure 3) are highly oscillating functions.
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Rescale it over [−1, 1] with the change of variable x = a
2
(1 + t):

y′1 = −xny2
y′2 = xmy1
y1(0) = 1, y2(0) = 0

⇒


Y ′1 = −

(
a
2

)n+1
(1 + t)nY2

Y ′2 =
(
a
2

)m+1
(1 + t)mY1

Y1(−1) = 1, Y2(−1) = 0

. (17)

0 1 2 3

−1

0

1

x

y1(x)

y2(x)

Figure 3: Solution of (17) with n = 5, m = 4 and a = 3

We give two different integral transforms associated to this equation. The
integral transform described in [5] consists in integrating Equation (17) once,
resulting into an integral equation for Y with polynomial kernel and right-
hand side given by:

K(t, s) =

(
0

(
a
2

)n+1
(1 + s)n

−
(
a
2

)m+1
(1 + s)m 0

)
, Ψ(t) =

(
1
0

)
.

K(t, s), which is of degree 0 in t, is decomposed over the Chebyshev basis
with respect to s into constant polynomials b001, b101, . . . , bn01 and b010, b110, . . . , bm10.

On the other side, the integral transform used in [7] allows us to validate
the derivative Φ = Y ′. The polynomial kernel and right-hand side are:

K(t, s) =

(
0

(
a
2

)n+1
(1 + t)n

−
(
a
2

)m+1
(1 + t)m 0

)
, Ψ(t) =

( (
a
2

)n+1
(1 + t)n

0

)
.

Now, K(t, s) is of degree 0 with respect to s, giving two polynomials b001 and
b010 of respective degrees n and m.

Let’s now focus on the first integral transform, with n = 5, m = 4, a = 3.
Using the spectral method explained in Section 3.1 and implemented in our
C library, we fix an approximation degree Napp = 100 and obtain numerical
approximations Y ◦1 and Y ◦2 , that must now be validated. The whole imple-
mented procedure automatically computes and bounds for increasing values
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of Nval the Newton-like operator T associated to the truncated operator
K[Nval]. The approximate inverse is computed as an (2h′, 2d′) almost-banded
order 2(Nval + 1) matrix. This process stops as soon as the total Lipschitz
matrix returned by Algorithm 1 has a spectral radius less than 1. In case
of failure of Algorithm 1, the procedure is relaunched with Nval ← 2Nval.
For this example, we obtain Nval = 1664, h′ = 48 and d′ = 304, giving the
following Lipschitz matrix:

Λ =

(
9.73 · 10−4 9.89 · 10−2

3.60 · 10−2 9.92 · 10−2

)
, ρ(Λ) = 6.06 · 10−2.

The last step is performed by Algorithm 3. Given the numerical ap-
proximations Y ◦1 and Y ◦2 , it computes η = ‖Y ◦ −T · Y ◦‖(Ч1)2 (the examples
gives η1 = 3.20 · 10−3 and η2 = 1.91 · 10−3) and outputs the error enclosures
given by Theorems 2 and 3:

ε−1 = 2.99 · 10−3, ε+1 = 3.41 · 10−3,

ε−2 = 1.78 · 10−3, ε+2 = 2.04 · 10−3.

This whole process for this example takes about 30 seconds on a modern
computer.

Comparison with decoupling/desingularization. In the case of poly-
nomial coefficients, an alternative to our method consists in decoupling the
system to obtain p scalar LODEs of order p, at the cost of introducing sin-
gularities in the equations. As an example, the first component y1 in the
system (17) satisfies the following differential equation:

xy′′1 − ny′1 + xn+m+1y1 = 0. (18)

This equation is singular, as its leading coefficient vanishes at 0 (that is, at
−1 in the corresponding rescaled equation). This prevents us from directly
applying the validation method in the scalar case. However, one can use
desingularization techniques [1] to obtain a higher order but nonsingular
equation, whose set of solutions (strictly) contains the ones of the singular
equation. In our example, it is possible to differentiate Equation (18) n times
and divide the result by x:

y
(n+2)
1 +

1

x

dn

dxn
(xn+m+1y1) = 0. (19)

By inverting the roles of n and m, a similar equation can be deduced
for the second component y2. Hence, validating the approximation y of Sys-
tem (17) can be entirely realized with the validation algorithm for the scalar
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case, presented in [7]. Several caveats must therefore be raised. Applying the
integral operator of [7] results into a totally intractable problem, since the
minimal value for proving that T is contracting is far too large (in practice,
we stopped at Nval ' 106). This is due to the fact that this transform is used
to validate the last derivative y(n+2)

1 , which increases very rapidly due to the
highly oscillating behaviour of y1. On the other hand, the integral transform
of [5] yields a far more tractable problem: a truncation order Nval = 750
is sufficient for our example. However, Equation (19) is very ill-conditioned
because of the factorial terms created by the n differentiations. For instance,
with classical double precision (53 bits), the scalar validation procedure is
able to produce and bound a contracting Newton-like operator T (Algo-
rithm 1), but Algorithm 3 outputs an upper bound ε+1 = 2.57, which is
3 orders of magnitude larger than what was found with the vector-valued
validation method.

The non D-finite case. In the case of nonpolynomial coefficients ai(t),
there is no general method to decouple and desingularize the system. More-
over, these coefficients may not be known exactly, but only given as poly-
nomial approximations together with rigorous error bounds. We do believe
that in such a general case, the vector-valued approach presented in this ar-
ticle is essential to approximate and validate the solution. Detailing such a
“realistic” example is beyond the scope of this article, but a successful appli-
cation of our method is given in [3] for a station keeping problem of a satellite.

Future extensions include: validated expansions in other orthogonal poly-
nomial bases for LODEs; automation and complexity analysis for some classes
of nonlinear ODEs; formally proving this method in a proof assistant.
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[3] P. R. Arantes Gilz, F. Bréhard, and C. Gazzino. Validated Semi-
Analytical Transition Matrix for Linearized Relative Spacecraft Dynam-

21



ics via Chebyshev Polynomials. In 2018 Space Flight Mechanics Meeting,
AIAA Science and Technology Forum and Exposition, page 24, 2018.

[4] X. Bai. Modified Chebyshev-Picard iteration methods for solution of
initial value and boundary value problems. PhD thesis, Texas A&M
University, 2010.
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Appendix

A.1 Complementary Proofs for Section 2

Proof of Theorem 2. (i) Endow X with the metric d∞(x, y) = ‖d(x, y)‖∞ =
max16i6p di(x), so that (X, d∞) is a complete metric space. For an order p
square matrix A, define:

‖A‖∞ = max
16i6p

∑
16j6p

|Aij| = sup
‖x‖∞61

‖A · x‖∞.

Since Λk → 0, there is a k such that µ = ‖Λk‖∞ < 1. Then Tk is a µ-
contraction for the d∞ metric, so that Banach theorem applies and gives x?
as the unique fixed-point of Tk. Hence T can have at most one fixed point.
From the following inequality:

d∞(x?,T · x?) = d∞(Tk · x?,Tk+1 · x?)
6 ‖Λk‖∞d∞(x?,T · x?) < d∞(x?,T · x?),

we get that x? = T · x? is the unique fixed point of T.
(ii) Let x◦ ∈ X. Since d(x◦, x?) 6 d(x◦,T · x◦) + d(T · x◦, x?) 6 d(x◦,T ·

x◦) + Λ · d(x◦, x?), we get:

(1− Λ) · d(x◦, x?) 6 d(x◦,T · x◦). (20)

Since Λk → 0 as k → ∞, it is easy to prove that 1 − Λ is nonsingular,
with nonnegative inverse (1 − Λ)−1 =

∑
k>0 Λk > 0. Therefore, multiplying

both members of Inequality (20) by (1 − Λ)−1 is licit, so as to obtain the
upper bound (3) for n = 0. The general bound for n > 0 follows from the
fact that T is Λ-Lipschitz.

In order to prove the technical Lemma 1, we need the following fact:

Lemma 2. Let A ∈M→0
p (R+) a convergent to zero nonnegative matrix and

B ∈Mp(R) a matrix whose entries are dominated by those of A:

|Bij| 6 Aij, for all i, j ∈ J1, pK.

Then B is convergent to zero.

Proof. Since A has nonnegative entries which bound those of B, it can be
easily shown by the triangle inequality that for any exponent k > 0, |Bk

ij| 6
Akij for all i, j ∈ J1, pK. This directly implies the conclusion of Lemma 2.
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Proof of Lemma 1. First, 1−Di ·Λ is nonsingular because Di ·Λ is convergent
to zero by use of Lemma 2, since its entries are clearly dominated by those
of Λ ∈M→0

p (R+). Hence so is Λ−Di.
Then we prove that 1−Λ and 1−Di ·Λ both have positive determinant.

The segment 1− τΛ (τ ∈ [0, 1]) connects 1 to 1− Λ, and all these matrices
are nonsingular, because τΛ converges to zero according to Lemma 2. Since
det(1) = 1 > 0, we get by connectedness that det(1 − Λ) > 0. A similar
argument proves that det(1−DiΛ) > 0, and hence det(Di − Λ) < 0.

Remember that for a nonsinglular matrixM , we haveM−1 = (detM)−1Cof(M)T ,
where Cof(M) is the cofactor matrix of M , whose entries are the minors of
M . Noticing that Cof(Di−Λ)ji = Cof(1−Λ)ji for j ∈ J1, pK and using the
fact that det(Di − Λ) < 0, det(1 − Λ) > 0 and all entries in (1 − Λ)−1 are
nonnegative, we conclude that all entries on the i-th row of (Di − Λ)−1 are
non-positive.

A.2 Discussion About the Tightness of Error Enclosures
of Section 2

In the one-dimensional case with a contracting operator of Lipschitz constant
λ ∈ (0, 1), the ratio of the upper bound and the lower bound given by Banach
fixed-point theorem is equal to (1 + λ)/(1 − λ) > 1. This quantity does
not depend on the approximation x◦, and uniformly tends to 1 as λ → 0,
justifying the principle: the more contracting the operator is, the tighter the
obtained enclosure is.

This section aims at extending this study to the vectorial case, for the
bounds obtained from Theorems 2 and 3. Let’s first exhibit an expression
for the ratio of this enclosure.

Lemma 3. Let T be contracting of Lipschitz matrix Λ ∈ M→0
p (R+) and

η = d(x◦,T · x◦). Fix an index i ∈ J1, pK and let ε+i = eTi · (1− Λ)−1 · η and
ε−i = eTi · (1 −Di · Λ)−1 · η denote, respectively, the upper and lower bounds
for the i-th component of d(x◦, x?), as given by Theorems 2 and 3.

Then, if ε−i > 0, the ratio of the enclosure is equal to:

ε+i
ε−i

=
d′

d

ciηi +
∑

j 6=i cjηj

ciηi −
∑

j 6=i cjηj
, (21)

where d = det(1−Λ), d′ = det(1−Di ·Λ) and c = (c1, . . . , cp) = eTi ·(1−Λ)−1

is the i-th row of (1− Λ)−1.

Proof. We have:

ε+i = ciηi +
∑
j 6=i

cjηj, and ε−i = c′iηi +
∑
j 6=i

c′jηj,
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where c = (c1, . . . , cp) = eTi ·(1−Λ)−1 and c′ = (c′1, . . . , c
′
p) = eTi ·(1−Di ·Λ)−1.

Reusing the discussion led in the proof of Lemma 1, we have:

dci = d′c′i, and dcj = −d′c′j for all j 6= i.

This directly provides Equation (21).

In particular, Lemma 3 shows that the ratio now depends not only on Λ,
but also on η = d(x◦,T · x◦).

Let’s first fix η with ηi > 0, and make Λ tend to zero. Then 1 − Λ and
1−Di ·Λ are closed to the identity matrix (hence d, d′ ≈ 1), and so are their
inverses, meaning that ci ≈ 1 and cj � ci for j 6= i. We thus recover the
principle: the smaller Λ is, the tighter the enclosure is.

Let’s now fix Λ, as small as desired. As long as cj > 0 for some j 6=
i, there exists a vector of errors η that makes the ratio arbitrarily large
(take ηj large enough), or even makes ε−i become negative, in which case the
overapproximation factor of the upper bound ε+i provided by Theorem 2 is
not controlled.

Let’s now fix a maximal value κ > 1 for the ratio ε+i /ε
−
i . This yields the

following condition over η:

ηi >
κd+ d′

κd− d′
1

ci

∑
j 6=i

cjηj, (22) which roughly states that ηi should

not be too small compared to the other components of η. By stating similar
constraints for all i ∈ J1, pK, we get that η must live in a cone Cκ, that we call
tightness cone, in order to ensure an overapproximation ratio smaller than κ.
Under a certain value for κ, Cκ is empty, meaning that T is not contracting
enough to achieve this ratio, whatever η is. The cone Cκ grows to a limit
cone C∞ as κ → +∞, defined by replacing (κd + d′)/(κd − d′) by 1 in the
constraints (22). A point η outside C∞ means that the componentwise error
distribution is so unbalanced that some lower bound ε−i is negative (hence
rounded to zero). Figure 4 illustrates the cones Cκ for different values of κ and
the limit cone C∞ arising in our toy example. In particular, we observe that
η belongs to ∈ C1.2 but not to C1.17, which is consistent with the numerical
values (6) for ε−1 , ε

+
1 , ε

−
2 , ε

+
2 obtained in Section 2.2.

A.3 Proof of Theorem 4

Proof. The value of Nval must be sufficiently large to ensure that the trun-
cation error ‖(1+K[Nval])−1 · (K−K[Nval])‖Ч1 is a convergent to zero matrix.

• We have as a direct consequence of the one-dimensional case [7, Lemma 3.5]:

‖K−K[Nval]‖Ч1 = O

(
B

Nval

)
.
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Figure 4: Tightness cones for the toy example

• For i > 0, the bound ‖Ki‖ 6 (6di + 1) (2C)i

i!
is generalized from the

one-dimensional case contained in the proof of [7, Lemma 3.3], where
C = (Cij)16i,j6p with Cij = sup−16s,t61 |kij(t, s)| is bounded by B.
Since K[Nval] converges to K, we may approximate:

‖(1 + K[Nval])−1‖Ч1 ≈ ‖(1 + K)−1‖Ч1 = O (dB exp(2B)) .

We therefore have:

‖(1 + K[Nval])−1 · (K−K[Nval])‖Ч1 = O
(
dB2 exp(2B)

)
,

which gives the estimate (16) for Nval to obtain a matrix with spectral radius
less than 1.
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