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Abstract: Nowadays, lots of software companies rely on web technologies to test market hypothesis and develop viable
businesses. They often need to quickly build web services that are at the core of their Minimum Viable Prod-
ucts (MVPs). MVPs must be reliable and are based on specifications and hypothesis that are likely to change.
Model Driven Engineering approaches have been proposed and used to develop and evolve web services.
However, these approaches lack the ability to be suitable for both (i) rapid prototyping, (ii) model verification
and (iii) compatibility with common programming languages. Here we propose a meta-model to express web
services and the related tool to verify models consistency. We adopt a shallow verification process to allow
rapid prototyping by developers who are not formal methods experts, while still offering design-time guar-
antees that improve product quality and development efficiency. Web services are defined using parametric
components which enable to express and formally verify web service patterns and to safely reuse them in other
contexts. We built a tool to check consistency of models and associated components implementations in order
to generate corresponding web services. This allows us to give flexibility to developers, as well as verification
support and an easier onboarding for new developers.

1 INTRODUCTION

Context. Web agencies are software companies that
often work with their customers to help them develop
new projects involving the web. Most of these cus-
tomers need web applications to bring value to their
own customers. These web applications are built it-
eratively to limit their cost while allowing startups to
converge toward a viable market. This approach be-
gins by building a Minimum Viable Product (MVP).
In this context, it is a web application with a high level
of quality but a limited set of features. MVPs (among
other kinds of web applications) need to be functional,
reliable, usable and designed with users’ emotions in
mind, with only the features required to test market
hypotheses. In this domain, it is very common for
agencies and IT companies to be paid a lump sum
which is negotiated with customers before projects
begin. Startup Palace, a web agency that evolves
in this context, is investigating new ways of building
web applications for several years.

Motivation. Software companies, and more specif-
ically web agencies, are always in need of new ap-
proaches to reduce time-to-market while ensuring
quality of web applications and profits. When de-
veloping a MVP it is important to focus on features
that really bring value to users, also called game-
changers. Other features, called show-stoppers, do
not bring value directly but are required to make the
application functional, reliable or usable. With that
in mind, lump sum payments imply that if a project
takes too much time to reach the expected (and sold)
level of quality and features, companies will have to
reduce their profits. Show-stopper features are often
tedious to implement and so error-prone. Further-
more, because of the iterative process and the purpose
of MVPs, specifications are likely to evolve, which
can introduce bugs. This means that developers need
abstractions to be able to safely express, isolate, reuse
and evolve behaviors. Some programming languages
do provide such abstractions, along with modern type
checkers that are able to statically verify consistency
of programs. But this is not practicable in our con-
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text because we would like to leverage existing ex-
pertises of developers instead of forcing them to learn
a new programming language and its ecosystem from
scratch. While these motivations relate to web appli-
cations, they also apply to web services development
that is addressed in this article. Web services are ap-
plications provided by a server, which are communi-
cating with other applications using the HTTP pro-
tocol through the network. Lots of web applications
rely on web services as they allow to separate UI from
core features and data management, which is useful,
for example, when having several UIs (like in mobile
applications).

Contribution. This work is an attempt to solve the
problem of building web services using safe abstrac-
tions on top of an existing programming language in
order to ease development and reuse of show-stopper
features.

We introduce a meta-model to express web ser-
vices and a corresponding semantics for verification.
This leverages existing theory in Model Driven En-
gineering (MDE) (Bernardi, Cimitile, Di Lucca, et
al. 2012; Rocheteau and Sferruzza 2016; Scheid-
gen, Efftinge, and Marticke 2016) and a component-
based approach in order to provide an expressive
and language-agnostic solution to build web services.
This meta-model does not allow to completely specify
web services but is rather limited to a high-level rep-
resentation in order to provide support while keeping
models simple.

We propose a tool (Sferruzza 2017) (i) to check
models consistency, (ii) to generate working web ser-
vices from a given valid model. For example, every
component preconditions must be fulfilled in their in-
stance contexts in order for a model to be consistent.
This mechanism, coupled with the consistency check-
ing, gives developers means to quickly and safely
write and use components, and to reuse them in a re-
liable way.

The article is structured as follows. Section 2 de-
scribes the meta-model of web services. Section 3
defines consistency of compliant models and shows
how they can be checked. Section 4 introduces a tool
to generate actual implementations from models. Sec-
tion 5 shows a case study that illustrates our approach.
Section 6 presents related work. Finally, Section 7
concludes the article with some lessons and future
work.

2 A META-MODEL TO EXPRESS
WEB SERVICES

We introduce a meta-model of web services. This
meta-model is voluntarily simple in order to provide
two advantages: (i) to give developers good abstrac-
tions to write reusable code while giving them a good
flexibility and (ii) to allow tools to provide support to
developers, such as design-time consistency verifica-
tion (see Section 3).

2.1 Notations

The union or sum type of two types T1 and T2 is de-
noted T1]T2.

A tuple T is a product type between n types T1 to
Tn, with n≥ 2. It is denoted T ≡ T1× . . .×Tn. A value
t of type T is written as t = (t1, . . . , tn) where t1 ∈ T1,
. . . , tn ∈ Tn. The notation t(x) is also used to designate
tx, where x ∈ {1, . . . ,n}.

A record R is a tuple with labeled elements. It is
denoted R ≡ 〈label1 : T1, . . . , labeln : Tn〉. It is syn-
tactic sugar over a tuple T1 × . . .× Tn and n func-
tions label1 : R → T1, . . . , labeln : R → Tn. As
for tuples, a value r of type R is written as r =
(t1, . . . , tn) where t1 ∈ T1, . . . , tn ∈ Tn. Associated
functions can also be written r.label1, . . . , r.labeln.
For example, for a record person = (”Batman”,35)∈
〈name : String,age : Int〉 we have name(person) =
person.name = ”Batman” ∈ String.

A set whose elements are all of type T has the type
P(T ).

A sequence or list of type T is a set of elements
of type T which are listed in a specific order. It is de-
noted List(T ). It is similar to a function from indexes
I to values of T , that is List(T ) : I → T where I is a
1..N and N = card(List(T )). It can also be written as
List(T )≡ [t1, . . . , tn] where t1, . . . , tn ∈ T .

The projection of a set or list of tuples S on the
ith element of a tuple is written Pr ji(S). Similarly, the
projection of a set or list of records S on one of the ele-
ments of a record labeli is written Pr jlabeli(S). For ex-
ample, for a set of records S∈P(〈name : String,age :
Int〉) where S = {(”Batman”,35),(”Robin”,26)},
Pr jname(S) = {”Batman”,”Robin”} ∈P(String).

2.2 The Meta-model

A meta-model of web services is defined by the
UML class diagram in Figure 1. It does not aim
to replace existing standard meta-models like for in-
stance the OpenAPI Specification (Open API Ini-
tiative 2017) or RAML (RAML Workgroup 2017),
but rather to be compatible and complementary with



them. These models allow to define programming
language-agnostic interface descriptions for HTTP
APIs (i.e. informal contracts) in order to be able
for both humans and computers to discover and un-
derstand their capabilities, while our meta-model al-
lows to express actual implementations of such HTTP
APIs. It is designed in order to match needs and re-
quirements about verification (see Section 3), gener-
ation and ease of writing (see Section 4). For this
reason, and to be more accessible to practitioners, our
approach does not rely on existing standards such as
BPEL (Fu, Bultan, and Su 2004) or WSDL (Gronmo
et al. 2004).

A model of web services mi ∈M is specified as a
record of three elements: a set of entities of type E
that stands for the data model, a set of components
of type C that stands for the process model and an
ordered list of services of type S that exposes compo-
nent to the outer world (see Formula (1)).

M ≡ 〈entities : P(E),components : P(C),

services : List(S)〉 (1)

Entities are non-primitive data types. An entity
ei ∈ E is represented by a record of two elements: a
name and a set of variables that represent attributes:
E ≡ 〈name : String,attributes : P(V )〉. A variable
vi ∈V is defined by a record composed of a name and
a type: V ≡ 〈name : String, type : T 〉. An attribute of
an entity can be another entity, making it a recursive
type.

Components are units of processes and computa-
tions that occur inside web services. Their execution
happens in an isolated context, that can contain vari-
ables. They can mutate this context by adding and
removing variables. A component ci ∈C is defined as
the union type of atomic components AC and com-
posite components CC: C , AC ]CC. Both types
of components are defined by a name and a set of
variables that express components’ parameters. Be-
cause they have parameters, we call them paramet-
ric components. An atomic component aci ∈ AC is
represented by a record of the following elements:
name, parameters, preconditions (a set of variables
that might be needed in the execution context), ad-
ditions (a set of variables that will be added to the ex-
ecution context) and removals (a set of variables that
will be removed from the execution context): AC ≡
〈name : String, params : P(V ), pre : P(V ),add :
P(V ),rem : P(V )〉. A composite component cci ∈
CC is represented by a record of the following el-
ements: name, parameters and an ordered list of
component instances: CC ≡ 〈name : String, params :
P(V ),components : List(CI)〉. A component in-

stance cii ∈ CI is represented by a record of two el-
ements: a component and a set of bindings used to
instantiate the component by associating arguments
to its parameters: CI ≡ 〈component : C,bindings :
P(〈param : V,argument : Term〉)〉. Terms can be
variables or literal values: Term ,V ]Value. Atomic
components are meant to be along with an implemen-
tation written using a programming language whereas
composite components are not. Components can be
seen as an abstraction to encourage separation of con-
cerns and reusability by leveraging two mechanisms:
composition and parametrization.

Services are the entry points of web services. A
service si ∈ S is represented by a record of four el-
ements: a HTTP method, a URL pattern, a set of
variables that represent expected input parameters and
a component instance: S ≡ 〈method : String,url :
String, params : P(V ),component : CI〉. URL pat-
terns are regular expressions with named capturing
groups. It is easy to use one of these regular expres-
sions to check if it matches the URL part of an incom-
ing HTTP request, or to do a projection to get a set
of expected parameters (corresponding to the named
capturing groups). In a model of web services, ser-
vices are gathered in an ordered list. This abstrac-
tion is very common in web frameworks and is often
called router. Instead of considering a web applica-
tion as a huge function of HTTP requests to HTTP re-
sponses, a router allows to dispatch HTTP requests to
several such functions by filtering them declaratively
by method and by URL pattern. That is to reduce
complexity of the whole application by encouraging
separation of concerns.

2.3 Concrete Syntax for Models of Web
Services

We presented a mathematical definition of our meta-
model in Section 2.2 and an equivalent class diagram
in Figure 1. These notations are meant to introduce
formal definitions that are used to define properties
on the meta-model, which we do in Section 3. But
they are cumbersome to read or write actual models.

We introduce a concrete syntax that is more com-
pact and readable. Because it is equivalent to diagram
in Figure 1, we won’t define it formally here but only
provide some intuition on it.

A model is represented, with respect to its formal
definition, as an unordered list of definitions, each
on its own lines. A definition starts with an element
identifier: e for entity, s for service, ac for atomic
component and cc for composite component. Ele-
ment’s properties are placed on their own indented
line and prefixed with the property name (or a short



C Model

C Entity

name : Identifier

C Variable

name : Identifier

A Type

C String C Boolean C Integer C Float C Date C DateTime

A Component

name : Identifier

C AtomicComponent

C CompositeComponent

C ComponentInstance

C Binding

A Term

C Constant

value : object

C Service

method : method
url : url

attributes *

type 1

params *
pre * add * rem *

«ordered»

components *

component 1

bindings *

param 1

argument 1

type 1

params *

component 1

entities *

components *

«ordered»

services *

Figure 1: Meta-model diagram



alias). Here is an example of a service declaration.

s

method POST

url \/getName\/(?<email>[^\/]+)

params (email: String)

ci GetName

For readability reasons, every item of a composite
component list of component instances can be written
on its own line (see examples in Section 5). The con-
crete syntax of the other structures of the meta-model
is defined in a similar way.

2.4 Evaluating a Model of Web Services

Our meta-model gives helpful abstractions to develop
web services but the built models need a rigorous
evaluation semantics. Here is how web services based
on an instance of this meta-model could handle in-
coming HTTP requests.

Routing. First, the application receives a HTTP re-
quest. Its list of services is sequentially scanned un-
til a service matches the request; that is, the HTTP
method is the same and the URL matches the pattern.
If no service matches, then a static 404 HTTP re-
sponse is sent back.

Flattening. Then, the component instance con-
tained in the service is reduced to a flattened ordered
list of instances of atomic components: instances of
composite components are recursively replaced by
their subcomponents. We define by cases a function
f latten(c) that flattens a given component:

if c ∈ AC, then f latten(c) = [c]

if c ∈CC, then f latten(c) =
⋃

ci∈c.components

f latten(ci)

if c ∈CI, then f latten(c) = f latten(c.component)
(2)

Evaluating Components. An initial evaluation
context is created by extracting parameters (if
present) from the request URL and putting them into
an empty context. This flattened list is then evaluated:
every atomic component is executed given the previ-
ous context as an input and produces a new context
as an output. This behavior is very similar to state
monads (see § 2.5 in (Wadler 1992)).

Responding. Finally, a HTTP response is built.
There are two cases to consider. If one of the eval-
uated components returned a HTTP response instead
of a new context, the following components are not
evaluated and this response is returned to the client.
Otherwise, the context is serialized and encapsulated
into a HTTP response of code 200.

3 CONSISTENCY OF WEB
SERVICES

Section 2 showed that our web services meta-model
uses components as an abstraction to improve sepa-
ration of concerns and reusability. In order to allow
developers to safely use this abstraction we propose
a way to do verification of models. This verifica-
tion checks if a model is consistent. It can happen
at design-time – outside any evaluation context – so
that inconsistent models won’t be run in production.

Definition. A model of web services m ∈M is con-
sistent if it verifies the following properties identified
by Formulas (3) to (13).

Component Name Uniqueness. Every component
in a model has a unique name:

∀c ∈ m.components,∀c′ ∈ m.components·
(c.name = c′.name⇒ c = c′) (3)

Entity Name Uniqueness. Every entity in a model
has a unique name:

∀e ∈ m.entities,∀e′ ∈ m.entities·
(e.name = e′.name⇒ e = e′) (4)

Same Entity’s Attributes Name Uniqueness. Ev-
ery attribute of an entity has a unique name:

∀e∈m.entities,∀a∈ e.attributes,∀a′ ∈ e.attributes·
(a.name = a′.name⇒ a = a′) (5)

Composite Components Flattenability. When re-
cursively resolving component references from a
composite component’s subcomponents, there can’t
be a reference to this component:

∀c ∈ m.components·(c /∈ f latten(c)) (6)



Context Variable Name Uniqueness. Variables in
atomic components cannot have the same name if
they are not identical:

∀c ∈ m.components,∀v ∈ (c.pre∪ c.add∪ c.del),

∀v′ ∈ (c.pre∪ c.add∪ c.del)·
(v.name = v′.name⇒ v = v′) (7)

Composite Component Nonemptiness. Compos-
ite components must have subcomponents:

∀c ∈ m.components·
(c ∈CC⇒ c.subcomponents 6= /0) (8)

Context Immutability. Components don’t override
existing variables of the context. Every atomic com-
ponent does not add a new variable to its output con-
text if there is already a variable with the same name
in its input context:

∀c ∈ m.components·
(c ∈ AC⇒ c.add∩ c.pre = /0) (9)

Component’s Precondition Exhaustivity. Com-
ponents depend on the variables they remove. Every
atomic component has every variable it will remove
from the context in its preconditions:

∀c ∈ m.components·
(c ∈ AC⇒ c.rem⊆ c.pre) (10)

Component Instances’ Parameters Exhaustivity.
Component instances provide values for every param-
eter of the instantiated component. Every component
instance provides exactly as much arguments as the
component it instantiates needs parameters. Names
and types of the arguments match those of the param-
eters:

∀c∈m.components·(c∈CC⇒∀ci∈ c.components·
(Pr jparam(ci.bindings) = ci.component.params))

(11)

∀s ∈ services·(Pr jparam(s.component.bindings) =
s.component.params) (12)

Context Validity. Components are instantiated in
contexts that fulfill their preconditions. When build-
ing flat ordered lists of atomic components for each
service (see Section 2.4), every atomic component of
these lists has its preconditions fulfilled by its input
context:

∀s ∈ S·( f latten(s.component)J s.params) (13)

We introduce J as a function of List(C) ×
P(V )→ Boolean in infix notation1. This function is
true when applied to a component and a context that
satisfies the component’s preconditions. It is defined
by the following semantic rules:

ctx0 ∈P(V )

[ ]J ctx0
(14)

ctx0 ∈P(V )
∀i ∈ [0,n],ci ∈CI c0.pre⊆ ctx0

ctx1 = ctx0∪ c0.add \ c0.rem
[c1, . . . ,cn]J ctx1

[c0, . . . ,cn]J ctx0

(15)

The point of these properties is not to ensure that
a model is consistent with functional specification of
web services; it would be too intrusive in the develop-
ment process and the cost would not be worth the gain
in our context. It is rather to guarantee a structural
consistency of a model at a very small cost, so that
developers can use abstractions offered by our meta-

1cs J ctx means that the context ctx satisfies the compo-
nent list cs

model while having a certain level of confidence on
the result. This cannot prevent all bugs from happen-
ing at runtime; this is the price of the flexibility of
our approach. But this can catch bugs related to the
misuse of abstractions offered by our meta-model at
design-time, thus reducing the footprint in terms of
added complexity and unreliability of our approach.



4 A TOOL TO GENERATE
CONSISTENT WEB SERVICES

The meta-model we introduced in Section 2 allows
to write web services models whose consistency can
be verified by the properties introduced in Section 3.
We propose a tool (Sferruzza 2017) to build actual
web services from models that conform to the meta-
model, after performing consistency verifications on
them (see Section 3). This tool takes two inputs: a
model file containing a serialized representation of an
instance of our meta-model, and a path to a direc-
tory which contains implementations of atomic com-
ponents.

As shown in Figure 2, our tool follows three se-
quential steps:

Model Parsing Input model is parsed as concrete
syntax of the meta-model (see Section 2.3).

Model Consistency Verification The model is
checked in order to establish its consistency (see
Section 3).

Web Services Generation The model is used to gen-
erate an implementation of the web services that
it represents.

This process is generic: it can be implemented us-
ing different technologies. For example, we choose
to specialize our implementation by adding two hy-
potheses: atomic components’ implementations uses
the PHP programming language (The PHP Group
2016) and the generated web services relies on the
Laravel web framework (Otwel 2016). This choice is
made because PHP and Laravel are well known and
used by our first end-users: Startup Palace’s devel-
opers.

To be able to conclude about consistency of web
services generated from a consistent model (see Sec-
tion 3), we need to assume or manually verify that
atomic component implementations and their specifi-
cations in the model are compliant. This is currently
a limitation that will be removed in a future work by
automating the compliance verification.

The last step of our tool is the generation step.
Many similar tools (see Section 6) take the approach
to generate and output a standalone web application
that includes everything necessary to operate it. We
took another approach by generating code that should
never be manually edited; the generated code does not
override any existing files in a Laravel’s architecture
and can be easily hooked to an existing web applica-
tion through configuration.

Currently, developers still have to handle secu-
rity aspects outside of the scope of our solution, for

instance when writing atomic components, because
they have control on implementation details.

5 EXPERIMENTATIONS

In order to validate our approach, that is to show that
the meta-model defined in Section 2 is able to express
real web services, we illustrate it here with a volun-
tarily minimalistic case study, for the sake of brevity.
Further case studies focus on comparison with other
approaches or technologies. This section specifies
web services we want to build, shows how we imple-
ment them and discusses advantages of our approach
such as flexibility, reusability and safety.

Problem Statement. In order to maintain a digital
registration list for an event named “Mastering cURL
and cheese”, we would like to create and expose web
services that would, on one hand, allow people to reg-
ister themselves, and allow organizers to check regis-
tered people, on the other hand.

Informal Specification. To register, a user would
use cURL to send a POST HTTP request to the
endpoint /register/[name]/[email] where
[name] is her name and [email] her email ad-
dress. If this user is already registered, the service
would return an error message with a 403 HTTP
code. If the given email address is invalid, the ser-
vice would return an error message with a 422 HTTP
code. If both conditions are fulfilled, the registration
would be persisted in a relational database along with
the registration datetime, and the service would re-
turn the input information with a 200 HTTP code.
To see registered people, an organizer would use
cURL to send a GET HTTP request to the endpoint
/attendees/[key] where [key] is a string that
needs to be the same as the one hardcoded in the ser-
vice in order to authenticate the request. If the given
key is invalid, the service would return an error mes-
sage with a 401 HTTP code. If it is valid, it would
fetch registrations from the database, serialize them
and return them with a 200 HTTP code.

Implementation. In the following examples, we
use the concrete syntax introduced in Section 2.3. We
show a possible implementation of this informal spec-
ification into a model and explain the different steps
to build it.

First, we define our data model, that is the
entities element of our model. We have only one
entity: Registration.
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Figure 2: Tool process

e

name Registration

attributes (name: String, email: String, date:

DateTime)

Then, we define two services that are linked to two
composite component instances that we will define
afterwards. These services will be the interfaces be-
tween our application and the outer world, as defined
in the informal specification.

s

method POST

url \/register\/(?<name>[^\/]+)\/(?<email

>[^\/]+)

params (name: String, email: String)

ci Registration

s

method GET

url \/attendees\/(?<key>[^\/]+)

params (key: String)

ci GetAttendees(apiKey = "mykey")

Then, we define the two composite components
linked to the services. As they are composite compo-
nents, they are defined in terms of other components.
This step is important because here we choose how
to split the features into several components, to max-
imize separation of concerns and reusability.

cc

name Registration

ci ValidateEmail

ci CheckDupRegistration

ci CreateRegistration

ci SaveRegistration

ci RegistrationSerializer

cc

name GetAttendees

params (apiKey: String)

ci CheckKey(correctKey = apiKey)

ci FetchRegistrations

ci RegistrationsSerializer

The last modeling step is to define the atomic

components used in our composite components.

ac

name ValidateEmail

pre (email: String)

ac

name CheckDupRegistration

pre (name: String, email: String)

ac

name CreateRegistration

pre (name: String, email: String)

add (registration: Registration)

ac

name SaveRegistration

pre (registration: Registration)

ac

name RegistrationSerializer

pre (registration: Registration)

ac

name CheckKey

params (correctKey: String)

pre (key: String)

ac

name FetchRegistrations

add (registrations: Seq(Registration))

ac

name RegistrationsSerializer

pre (registrations: Seq(Registration))

Finally, we can implement these atomic compo-
nents using PHP. As an example, here is the imple-
mentation of the CheckKey component.

<?php

class CheckKey implements Component

{

public static function execute(Params $params,

Ctx $ctx)

{

$correctKey = $params->get(’correctKey’);

$key = $ctx->get(’key’);

if ($correctKey === $key) return $ctx;

else return response(’Invalid key’, 401);

}

}

Consistency. We use our tool to check whether
the model verifies the properties defined in Sec-
tion 3 in order to prove its consistency. As
a partial example, we show that the CheckKey



atomic component is well defined. It verifies For-
mula (9) because /0∩ {(”key”,String)} = /0. It ver-
ifies Formula (10) because /0 ⊆ {(”key”,String)}.
We also show that the CheckKey atomic com-
ponent is well used. It has one instance in
the definition of the GetAttendees composite
components. This instance verifies Formula (11)
because it reduces to {(”correctKey”,String)} =
{(”correctKey”,String)}. The GetAttendees
component is instantiated by a service that provides
{(”key”,String)} as an initial context (according to
its parameters). The CheckKey instance is well
used in the context of this service because it reduces
to {(”key”,String)} ⊆ {(”key”,String)} (see Formu-
las (13) to (15)).

Generating web services. The next step is to gen-
erate a consistent and working implementation of the
web services. First, PHP implementations for each
atomic component of the model are written. We as-
sume that these implementations are in adequation
with both the model and the informal specification.
Next, our tool generates working web services that in-
tegrate easily in a Laravel application (see Section 4).
Finally, we setup other parts of the Laravel applica-
tion to benefit from helper features such as external
dependencies management, database schema migra-
tions or end-to-end tests.

Discussion. This case study is a first step to show
that our meta-model is flexible enough to express
minimalistic yet realistic web services. Components
offer a first-class system to split computations into
several smaller parts. Because assemblies of com-
ponents are checked to ensure their consistency, de-
velopers can see them as black boxes which helps a
lot when designing, implementing and testing these
components. Implementing atomic components in the
same language and environment as the generation tar-
get allows to have a fine control on what is gener-
ated without losing the advantages of building using
high-level constructions. Because generated code in-
tegrates easily in a Laravel application, the result can
be deployed like any Laravel application thus ben-
efiting from good practices such as those described
in (Wiggins 2012). Apart from generating code, our
approach makes it easy to generate diagrams from
models that allow easy visualization of how services
are implemented or what are components dependen-
cies, for example. This might be a game changer for
new developers onboarding. Finally, MDE approach
improves maintainability. For example, if we want
to make an evolution and allow attendees to modify
their registration information and status by adding a

new service, it is easy to implement it while reusing
existing components and still be confident about con-
sistency, thanks to the verification step.

Yet, we performed preliminary experiments with
the approach; developers of Startup Palace have
been involved in these experiments. However we plan
to implement systematic evaluation tools in order to
support more realistic (by nature and by size) case
studies.

6 RELATED WORK

The use of MDE for development and automatic gen-
eration of web services or web applications is not a
new topic (Bernardi, Cimitile, Di Lucca, et al. 2012;
Bernardi, Cimitile, and Maggi 2016; Rocheteau and
Sferruzza 2016; Scheidgen, Efftinge, and Marticke
2016).

This work is built on the approach of REIFIER,
presented in (Rocheteau and Sferruzza 2016). As in
REIFIER, we use a meta-model approach instead of a
meta-programming one, as recommended for server-
side code generation in (Scheidgen, Efftinge, and
Marticke 2016). We also share the meta-modeling
approach with the M3D tool introduced in (Bernardi,
Cimitile, Di Lucca, et al. 2012) and extended
in (Bernardi, Cimitile, and Maggi 2016), which is it-
self based on Declare (see (van der Aalst, Pesic, and
Schonenberg 2009)). M3D uses as an input a 4-layers
meta-model: information layer by means of UML
class diagram, service layer by means of BPMN,
presentation layer by means of (Spring/Android)-like
meta-model and a process layer by means of Declare.
M3D is evaluated on a case study to show that 90% of
the time spent developing the application is spent on
modeling. This is advantageous as modeling is often
faster, produces more stable applications and models
are easier to maintain than code.

Our approach was developed with this idea in
mind, thus focusing on design-time support. But it
differs from existing tools in several different ways,
related to both flexibility and support. First, as REI-
FIER but not M3D, it is built to allow property verifi-
cation at design-time. This verification takes the form
of a set of rules that ensure structural consistency of
models. This ensures confidence in the resulting sys-
tems without the drawbacks of heavy formal meth-
ods. Second, because our components are specified
in terms of preconditions and effects, instead of inputs
and outputs in REIFIER, we can ease their reusability
by minimizing the coupling to their instantiation con-
text while providing the same level of verification.

To avoid shortcomings such as described



in (Gronmo et al. 2004), that is WSDL models
contain too much technical details and are difficult to
understand for humans, our method makes it possible
to express technical details in components’ imple-
mentation that are not captured in the model. This
is an attempt to ease onboarding of new developers
by both offering lots of MDE-related advantages and
at the same time giving full flexibility on technology
and implementation details.

Our approach is more related to Eiffel (Meyer
1992), than to BPEL (Fu, Bultan, and Su 2004)
or to Join Calculus (Fournet and Gonthier 2002).
As BPEL, we acknowledge that programming-in-the-
large and programming-in-the-small require different
types of languages (DeRemer and Kron 1975); but
our meta-model is simpler than BPEL, thus relevant
for developing web services. Join Calculus is de-
voted to the design or semantics of distributed lan-
guages, which is out of our scope. We share with
Eiffel the principle of using contracts, of being exten-
sible, reusable, and reliable. However, because our
contracts are simpler (a subset of first-order logic),
our approach is suitable for being used by non for-
mal methods experts while providing useful support
for them to build safe and reusable components.

7 CONCLUSION

We proposed a method to build web services. It is
fast, simple, robust and flexible. It is based on a meta-
model that makes it possible to describe web ser-
vices using high-level constructions (such as paramet-
ric components) which enables verifying their consis-
tency using an axiomatic semantics as well as gener-
ating working web services. We also built a tool that
leverages this process in the technological context of a
web company, Startup Palace. The whole approach
was illustrated on a case study to show its advantages.
Even if one of the motivations was to develop MVPs
applications, the approach is not limited to this scope
and is suitable to most applications based on web ser-
vices.

Several main prospects are here sketched. First,
the type system used to describe component parame-
ters, preconditions and model’s entities (among oth-
ers) is at the core of the consistency verification, yet it
is not flexible enough. Making it more expressive, by
allowing subtyping in component preconditions for
example, while keeping at least the same level of ver-
ification might be necessary to reach a good reusabil-
ity on bigger projects. Another perspective is to allow
and ease safe model composition, to allow develop-
ers to reuse concepts between projects when it makes

sense. Finally, the whole approach needs to be eval-
uated on more realistic (by nature and by size) case
studies. This evaluation must rely on metrics that have
a good correlation with the benefits of our approach,
such as easing new developers to onboard on projects
and reuse of exisiting code.
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