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Abstract – A new calibration method for Inertial Measurement 
Unit (IMU) of strapdown inertial technology was presented. IMU 
has been composed of accelerometers, gyroscopes and a circuit of 
signal processing. Normally, a rate transfer test and multi-position 
tests are used for IMU calibration. The new calibration method is 
based on whole angle rotation or finite rotation. In fact it is sug-
gested to turn over IMU around three axes simultaneously. In 
order to solve the equation of calibration, it is necessary to pro-
vide an equality of a rank of basic matrix into degree of basic ma-
trix. The results of simulated IMU data presented to demonstrate 
the performance of the new calibration method.      

                                                                                                                                                                                                                                  
Keywords – Inertial Measurement Unit; Accelerometers; 

Calibration; Gyroscopes. 
  

I. INTRODUCTION 
 

Inertial Measurement Unit (IMU) is a base for developing of 
Strapdown Inertial Navigation Systems. Each one IMU consist 
at least three accelerometers and three gyroscopes. 

Normally, accelerometers and gyroscopes should go via    
autonomous testing before they will be assembled to IMU. But 
it is very important to determinate their features and parameters 
in whole IMU, because output signals of accelerometers and 
gyroscopes would be tied to IMU’s frame. Therefore IMU  
calibration is an integral stage of his preparing to work or 
alignment of the Inertial Navigation System (INS). The calibra-
tion is a determination of IMU parameters or his errors for    
further using or compensation during INS’s working. 

Usually the IMU calibration is going on by multi-position 
tests [1-3] for sets of accelerometers, using a precision dividing 
head. A photograph of such equipment from NTUU ‘KPI’  
laboratory is shown in Figure 1. This equipment has a setting 
accuracy near one second of arc, enables the sensitive axis of 
an accelerometer rotate with respect to the gravity vector. For 
calibration of a set of accelerometers it is need to measure  
output signals, at first to turn the them around ox axis, then to  
reinstall the set of accelerometers for to measure of output  
signals by turning around oy axis, and finally to repeat the  
procedure to measure of output signals by turning around oz 
axis. It should be noted that such technology is an artificial 
case. Actually the vehicle or body turns for whole angle      
rotation or finite rotation, which is a result of turnings around 
two or three axes. 

For the gyroscopes calibration in IMU by rate transfer tests it 
is using rate table (precision turntable). A photograph of such 
equipment from NTUU ‘KPI’ is shown in Figure 2. During the 
transfer test the IMU is mounted on the turntable at first with 
one sensitive axis. For example, axis ox is parallel to the axis of 
rotation of the rate table and rate table is stepped through a 
series of angular rates ωxi starting at zero by recording data at 
each stage. Such test repeated for rotation around axis oy with 
angular rates ωyi and, finally, for rotation around axis oz with 
angular rates ωzi, i – the number of tests. Need to mark that 
such method is required a lot of time and at real life the vehicle 
or body is rotated around the each one of rotation axes. 

There are some methods for estimation and compensation of 
sensors output signal noises. Most known is Kalman filter, 
used in [4-7]. For estimation of noise features were used Allan 
variance methods and some time – Wavelet transform [8].  
Also, it is well known of using of fuzzy logic techniques [9] 
and neural networks [10, 11]. 

There is the scalar method of IMU calibration used for      
gyroscopes and accelerometers [12, 13], based on a scalar   
reference input motion. For the gyroscopes in the Earth’s   
gravitational field such scalar value is the rotation rate Ω, and 
for accelerometers – the value of gravity vector g. 

In this paper was suggested to use a new method of          
3D-calibration. The new calibration method based on whole 
angle rotation. In fact it is suggested to turn over IMU around 
three axes simultaneously. 

 
Fig. 1. IMU calibration with a precision dividing head. 



 

 
Fig. 2. IMU MAX 21105 calibration with a two axial rate table.  

 
II. CALIBRATION OF IMU’S SET OF AXIAL ACCELEROMETERS 

 
Output signals of the IMU’s axial accelerometers may be 

expressed according to source [1]: 
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where:  
Bax, Bay, Baz – g-independent biases; 
ax, ay, az – accelerations acting along the x, y and z axes of the 
sensor respectively; 
nax, nay, naz – zero-mean random biases or output measurements 
noises; 
Oxyz – body frame, 3×3 matrix representing the g-dependent 
biases induced by accelerations ax, ay, az; 
k11, k22, k33 – scale-factor coefficients of accelerometers,      
another one coefficients of the matrix are cross-coupling     
coefficients.  

For reducing noises of output measurements we will average 
output signals during 30…60 seconds. Therefore in the future 
we will ignore of nax, nay, naz value. Let’s write the expression 
(1) for each one accelerometer and for i – position of IMU  
testing: 
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We will do a set of testing measurements, which are under-
taken multi-position tests for turn angles α, β, γ around three 
axes simultaneously with exact step of turn.  

Normally the precision dividing head is using for calibration 
of accelerometers. But in this case, when IMU is turning 
around three axes simultaneously or whole angle rotation or 
finite rotation, the three-axes turntable is used instead a typical 
precision dividing head. A kinematic diagram of three axial 
rate table is shown in Figure 3. 

Modern three axial rate tables have got very precision data. 
For example, ACUTRONIC’s AC3350-08 has a position    
accuracy 1,5 arc sec RSS per each one axis, command resolu-

tion 0,00001 deg and repeatability less than 1 arc sec. For   
angular rate the range are ±1000; ±500 and ±400 deg/sec for 
each one axis and command resolution is 0,0001 deg/sec per 
each axis. Besides, the accuracy of calibration on the rate table 
is depended from inclination of testing equipment under the 
horizon. Modern liquid levels could provide the accuracy of 
inclination not less 2 angular minutes. 

Consider an output signal of the first accelerometer: 
1-st measurement: 

Uax1 = Bax + k11ax1 + k12ay1 + k13az1; 
2-nd measurement:  

Uax2 = Bax + k11ax2 + k12ay2 + k13az2; 
……………………………………… 

n-st measurement: 
Uaxn = Bax + k11axn + k12ayn + k13azn. 

Above set of equations we can represent in matrix form: 
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It is possible to receive the same equations for other one   
accelerometer – for second: 
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and third: 
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After that let’s to combine the received matrix equations to 
single ‘equation of calibration’ for IMU’s set of accelerome-
ters: 

Ua1 = G n×4 ∙ X1,  (2) 
where 
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Fig. 3.  IMU calibration with a three axial rate table. 

We will solve the last matrix equation by least-squares 
method: 

  1
ˆ

a
T

4×n
-1

4×n
T

4×n1 UGGG=X . (3) 
Here symbol ‘T’ is mean a transposed matrix. 
  
Sample 1. We will consider the IMU’s accelerometers with 

the below followings nominal parameters: 
Bax = Bay = Baz = 2.5 V/g; 
k11 = k22 = k33 = 1.0 V/g; 
k12 = 0.01 V/g, k13 = -0.01 V/g, k21 = -0.01 V/g,  
k23 = 0.01 V/g, k31 = 0.01 V/g, k32 = -0.01 V/g, 
Body’s turns with angles α, β, γ which will change from 0 to 

400 degrees with the same step of 10 degrees (the number of 
positions is 40).  

The calculated values of output signals (2) for matrix G n×4  
are shown on Fig. 4. 

The above output signals should be used for calculation of 
(3). 
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Fig. 4. Averaging output signals of axial accelerometers. 

After calculations according to (3), we will have: 
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Thus, as a result of measuring (2) and calculations (3) it is  
succeeded to get estimations of the biases aB̂ , scale factors and 

cross-coupling coefficients – elements of matrix 3×3. 
Consider that the above method can be used for the IMU’s 

set of pendulum accelerometers. 
 

III. CALIBRATION OF IMU’S SET OF PENDULUM                  
ACCELEROMETERS 

 
Output signals of the IMU’s set of pendulum accelerometers 

may be expressed according to source [1]: 
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   (4) 

 When the set of n-measurements will be done and    
after averaging of output signals during 30…60 seconds we 
will have a new matrix ‘equation of calibration’: 

27×na2 XG=U  ,                                  (5) 
where 
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Solving the last matrix equation (5) by least-squares method: 
  a2

T
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7n× UGGG=X2

ˆ .  (6) 
Sample 2. We will consider the IMU’s pendulum accel-

erometers with the below followings nominal parameters: 
Bax = Bay = Baz = 2.5 V/g; 
k11 = k22 = k33 = 1.0 V/g; 
k12 = 0.01 V/g, k13 = -0.01 V/g, k21 = -0.01 V/g,  
k23 = 0.01 V/g, k31 = 0.01 V/g, k32 = -0.01 V/g, 
l11 = l22 = l33 = -0.001 V/g2; 
l12 = l13 = l21 = l23 = l31 = l32 = 0.001 V/g2; 
Body’s turns for angles α, β, γ will change from 0 to 400  

degrees with the same step of 10 degrees (the number of posi-
tions is 40). 

After calculations according to (6), we will have: 
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Thus, as a result of measuring (5) and calculations (6) it is 
succeeded to get estimations of the biases aB̂  and elements of 
matrixes 3×3. 

 
IV. CALIBRATION OF IMU’S SET OF GYROSCOPES 

 
Output signals of the IMU’s gyroscopes may be expressed 

according to source [1]: 
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Here B*ωx, B*ωy, B*ωz - biases of each one gyroscopes, 
which may be depends from g and g2 – drifts, ωx, ωy, ωz – turn 
rates, acting along the x, y and z axes of the sensor respectively, 
nωx, nωy, nωz - zero-mean random biases or output measure-
ments noises,  3×3 matrix representing the biases induced by 
ωx, ωy, ωz, n11, n22, n33 – scale-factor coefficients of gyro-
scopes, another one coefficients of the matrix are              
cross-coupling coefficients. 

Consider a calibration when IMU turns around three axes 
simultaneously. 

When the set of n-measurements will be done with turn rates 
ωxi, ωyi, ωzi and after averaging of output signals during 30…60 
seconds we will have a new matrix ‘equation of calibration’: 

33 Xω=U 4n×ω  ,   (8) 
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On the face of it the structure of the equation (8) is very similar 
to equation (2). The difference is that matrix 4×nω  consists 

from turn rates ωxi, ωyi, ωzi and matrix 4×nG  - from accelera-
tions axi, ayi, azi. However if we have ordered turn series    
without any limitations for calibration of IMU’s set of         
accelerometers, otherwise we should provide a below          
following rule: 

An equation of calibration will have a decision if the rank of 
coefficient matrix n×mω  is equal to number of columns of the 

same matrix or by other words mω m×n rank .   
The above rule is based on Kronecker-Capelli theorem [14]. 
This condition could be provided, for example due nonlinear 

depending of last columns of matrix 4×nω .  
Solving the last matrix equation (8) by least-squares method: 
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Sample 3. Consider the IMU’s gyroscopes with the below 

followings nominal parameters: 
B*ωx = B*ωy = B*ωz = 2.0 V; 
n11 = 0.01 V/(d/s);   n12 = 0.01 V/(d/s); n13 = -0.02 V/(d/s); 
n21 = -0.01 V/(d/s); n22 = 0.1 V/(d/s);   n23 = 0.01 V/(d/s); 
n31 = 0.03 V/(d/s); n32 = -0.01 V/(d/s); n33= 0.1 V/(d/s);    

To provide the rank of matrix 4×nω  to order of matrix: 

44×nωrank , 
we will arrange the projections of angular rate of turntable in 

below following series: 
3/12/1 ,, iziiyiixi   . 

We will change the angular rate ωi from 0 to 100 degrees/sec 
with the same step of 10 degrees/sec. The number of tests is 10. 

Solving the equation of calibration according to (9) by   
least-squares method we will have 
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Thus, as a result of measuring (8) and calculations (9) it is 
succeeded to get estimations of the gyro’s biases and elements 
of the matrix 3×3. 

 
A. Extended model. 

Output signals of the IMU’s gyroscopes for extended model 
may be expressed according to source [1]: 
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Still consider the calibration when IMU turns around three 
axes simultaneously. 



When the set of n-measurements will be done with turn rates 
ωxi, ωyi, ωzi and after averaging of output signals during 30…60 
seconds we will have a new matrix ‘equation of calibration’: 

44 Xω=U 7×nω  ,  (11) 
where  
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Solving the last matrix equation (11) by least-squares method: 

  44
ˆ

ω
T

7n×
-1

7n×
T

7n× Uωωω=X . (12) 
Sample 4. Consider the IMU’s gyroscopes with the below 

followings nominal parameters: 
B*ωx = B*ωy = B*ωz =2.0V;  
n11 = 0.01 V/(d/s);   n12 = 0.01 V/(d/s); n13 = -0.02 V/(d/s); 
n21 = -0.01 V/(d/s); n22 = 0.1 V/(d/s);   n23 = 0.01 V/(d/s); 
n31 = 0.03 V/(d/s); n32 = -0.01 V/(d/s); n33= 0.1 V/(d/s);    
p11 = p22 = p33 = -0.001 V/(d/s)2;   
p12 = p13 = p21 = p23 = p31 = p32 = 0.001 V/(d/s) 2; 

  To provide 77×nωrank , we will arrange the projections 
of angular rate of turntable in below following series: 

2,, iziyiixi
ie     . 

We will change the angular rate ωi from 0 to 10 degrees/sec 
with the same step of 1 degree/sec. The number of tests is 10. 

Solving the equation of calibration according to (12) by 
least-squares method we will have  
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Thus, as a result of measuring (11) and calculations (12) it is 
succeeded to get estimations of the gyro’s biases and elements 
of the matrixes M1ω, M2ω.  

However, it should be noted that output signal’s models (7) 
and (10) are inherent to optical sensors like ring laser and fiber 
optic gyroscopes.  
 
 
 

V. AN ERROR ESTIMATION OF 3D-CALIBRATION 
 
For considering an error of estimation, we can rewrite ex-

pressions (3), (6), (9) and (12) as following bellow: 
ˆ X = B U ,   (13) 

where, for example, for axial accelerometers from item II, we 
will have n×4-matrix 

 -1T T
n×4 n×4 n×4B = G G G . 

For the axial accelerometers, the expression (13) will have 
such view 
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According to last expression, we can receive expression for 
each one seeking parameter as a function of components     
n×4-matrix and measured output signals: 
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To estimate an error of biases we should calculate  
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Here 1 ,i xib U   - errors of components 1st -line n×4-matrix 
and errors of measured output signals. 

Similar expressions could be received for scale-factor coeffi-
cients of accelerometers and cross-coupling coefficients of 
3×3-matrix from (1). 

If we will have results of m-tests (m≠n), it is possible to cal-
culate a root-mean-square error for each one bias: 
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Therefore, errors of 3D-Calibration are depended from errors 
of measured output signals, from an accuracy of angular posi-
tions of precision rate table for calibration of accelerometers 
and an accuracy of angular rate of testing equipment for cali-
bration of gyroscopes. Also, the accuracy of 3D-Calibration is 



depended from inclination of testing equipment under the hori-
zon. 

 
CONCLUSIONS 

 
A new calibration method for IMU of strapdown inertial 

technology was suggested. The new calibration method is 
based on whole angle rotation. In fact it is suggested to turn 
over Inertial Measurement Unit around three axes simultane-
ously. In order to solve the equation of calibration, it is neces-
sary to provide an equality of a rank of basic matrix to degree 
of basic matrix. It is received the general error estimation of 
3D-Calibration. The results of simulated IMU data are present-
ed to demonstrate the performance of the new calibration 
method. 
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