
HAL Id: hal-01654221
https://hal.science/hal-01654221v1

Preprint submitted on 3 Dec 2017 (v1), last revised 10 Apr 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A framework for composing with Boolean automata
networks

Kévin Perrot, Pacôme Perrotin, Sylvain Sené

To cite this version:
Kévin Perrot, Pacôme Perrotin, Sylvain Sené. A framework for composing with Boolean automata
networks. 2017. �hal-01654221v1�

https://hal.science/hal-01654221v1
https://hal.archives-ouvertes.fr

A framework for composing with Boolean

automata networks

Kévin Perrot1, Pacôme Perrotin⋆1, and Sylvain Sené1

Université d’Aix-Marseille, CNRS, LIF, Marseille, France

Abstract. Boolean automata networks (BANs) are a generalisation of
Boolean cellular automata. In such, any theorem describing the way
BANs compute information is a strong tool that can be applied to a
wide range of models of computation. In this paper we explore a way of
working with BANs which involves adding external inputs to the base
model (via modules), and more importantly, a way to link networks to-
gether using the above mentioned inputs (via wirings). Our aim is to
develop a powerful formalism for BAN (de)composition. We formulate
two results: the first one shows that our modules/wirings definition is
complete; the second one uses modules/wirings to prove simulation re-
sults amongst BANs.

Keywords: Boolean automata networks, modules, wirings, simulation.

1 Introduction

Boolean automata networks (BANs) can be described as a generalisation of
cellular automata that enables the creation of systems composed of Boolean
functions over any graph, while cellular automata only operate over lattices of
any dimension. The study of the dynamics of a BAN, that describes the set of
all computations possible in such a system, is a wide and complex subject. From
very simple networks computing simple Boolean functions to possibly infinite
networks able to simulate any Turing machine, the number of configurations
always grows exponentially with the size of the network, making any exhaus-
tive examination of its dynamics impractical. The study of such dynamics is
nevertheless an important topic which can impact other fields. BANs are for
example used in the study of the dynamics of gene regulatory networks [6,10,15]
in biology.

Many efforts to characterise the dynamics of BANs have already been put
forward. For example, some studies [1,12] examine the behaviour of networks
composed of interconnected cycles. The modularity of BANs has been studied
from multiple perspectives. In particular from a static point of view [2,11], and
a functional one [4,5,14]. In this paper, we explore a compositional approach to
BANs that allows to decompose a BAN into subnetworks called modules, and to

⋆ Corresponding author: pacome.perrotin@lif.univ-mrs.fr.

pacome.perrotin@lif.univ-mrs.fr

compose modules together in order to form larger networks. We define a module
as a BAN on which we add external inputs. These inputs are used to manipulate
the result of the network computation by adding extra information. They can
also be used to interconnect multiple modules, making more complex networks.
Those constructions resemble the circuits described in Feder’s thesis [7], and
modules can be seen as a generalisation of circuits over any update mode.

Section 2 introduces BANs and update modes. Sections 3 and 4 develop a
formalism for the modular study of BANs, justified by a first theorem showing
that any network can be created with modules and wirings. We also present an
application of our definitions to BAN simulation in Section 5, which leads to a
second theorem stating that composing local simulations is sufficient to simulate
a BAN.

2 Boolean automata networks

2.1 Preliminary notations

For the sake of clarity, let us first describe some of the notations used throughout
the paper. Let f : A → B be a mapping from set A to set B. For S ⊆ A we
denote f(S) = {b ∈ B | ∃a ∈ S, f(a) = b}. We denote f

∣

∣

S
the restriction of f to

the domain S, f
∣

∣

S
: S → B such that f

∣

∣

S
(a) = f(a). Let dom(f) be the domain

of f , and g ◦ f the composition of f then g. For f and g two functions with
disjoint domains of definition, we define f ⊔ g as the function defined such that :

f ⊔ g(x) =

{

f(x) if x ∈ dom(f)

g(x) if x ∈ dom(h)
.

We denote B = {0, 1} the set of Booleans. For K a sequence of m elements, the
sub-sequence from the i-th element to the j-th element is denoted K[i,j].

2.2 Definitions

A BAN is based upon a set of automata. Each automaton is defined as a Boolean
function, with arity the size of the network. Each variable of the function of
each automaton is meant to correspond to an automaton in the network. By
considering a configuration of Boolean values over this network, we can compute
the Boolean function of each automaton and obtain a Boolean value for each
automaton (i.e. a local state). Theses values can be used to update the global
state of the network, that we call a configuration. If we decide to update the
value of each automaton at once, the update mode parallel. Otherwise, if only
one automaton is updated at each time step, the update mode is sequential [8,13].

Definition 1. For S a set, a Boolean automata network (BAN) F is a function
from the set S to the set of all the functions of arity |S| from the set of all the
configurations over S to the set B.

For each s ∈ S, we denote fs = F (s) the local function of automaton s. A
configuration is itself a function as defined below.

Definition 2. A configuration on a set S is a function x : S → B.

For s ∈ S we denote xs = x(s). A function x is a configuration at a given
time over the network. Thus, we can define our function fs to be part of the set
(S → B) → B. This way, a BAN F can be defined as a function from the set S to
the set (S → B) → B. To go a step further, the set of all BANs over a given set S
is S → ((S → B) → B). For any BAN F and configuration x, we can define the
configuration which is computed by F from x. A naive way to do so would be to
define x′ = F (x) such that x′

s = fs(x) for every s; this definition however is very
limiting: it only allows parallel updates of our system. In a general definition
of BANs, a computation of a BAN should allow updates of only a subset of
the functions of the network. Slight changes to the update mode of a BAN can
deeply change its computational capabilities [3,9]. Most results that assume a
parallel update mode cannot be applied to a sequential network; the reciprocal
is also true. We set the following definition of an update over our BAN to be as
general as possible.

Definition 3. Any δ ⊆ S is an update over S.

One can apply multiple consecutive updates to a BAN to effectively execute
the BAN over an update mode. An update mode is simply a sequence of updates
that is denoted ∆, where ∆k is the kth update of the sequence. We define now
the union operator over such updates.

Definition 4. Let ∆, ∆′ be two update modes over a set S. The union of ∆
and ∆′ denoted ∆∪∆′ is the update mode defined as (∆∪∆′)k = ∆k ∪∆′

k. The
size of ∆ ∪∆′ is the maximum among the sizes of ∆ and ∆′.

We assume that ∆k = ∅ if k is greater than the size of ∆. Given an update δ,
we can define the endomorphism Fδ over the set of all configurations. For every
configuration x, we set Fδ(x)(s) = fs(x) if s ∈ δ, and Fδ(x)(s) = x(s) if s /∈ δ.
In other words, the value of s in the new configuration is set to fs(x) only if
s ∈ δ, otherwise the Boolean affectation of s remains xs. Now, we can define the
execution of F in a recursive way.

Definition 5. The execution of F over x, under the update mode ∆, is an
endomorphism over the set of all configurations, denoted F∆, and defined as
F∆[1,k](x) = F∆k

(F∆[1,k−1](x)), with F∆[1,1](x) = F∆1
(x).

3 Modules

Modules are BANs with external inputs. Such inputs can be added to any local
function of a module, and any local function of a module can have multiple
inputs. When a local function has n inputs, the arity of this function is increased

a b c

a1

a2
a3

b1 b2

c1

Fig. 1. Interaction graph of the module detailed in Example 1.

by n. These new parameters are referred to by elements in a new set E: the
elements of E describe the inputs of the module; those of S describe the internal
elements of the module. To declare which input e ∈ E is affected to each function
fs, we use function α.

Definition 6. Let S and E be two distinct sets. An input declaration over S
and E is a function α : S → P(E) such that {α(s) | s ∈ S} is a partition of E.

For each s, α(s) is the set of all external inputs of function fs. The partition
property makes all inputs linked to an automaton of S so that no input is
connected to two distinct automata. To simplify notations, we sometimes denote
Es = α(s). Now, let us explicit the concept of a module.

Definition 7. A module M over (S,E, α) is a function such that M(s) is a
function from the set of all configurations over S ∪ Es to the set B.

If M is a module defined over (S,∅, s 7→ ∅), M is also a BAN. To com-
pute anything over this new system, we need a configuration x : S → B and a
configuration over the elements of E.

Definition 8. An input configuration over E is a function i : E → B.

Let x be a configuration over S, and i an input configuration over E. As x
and i are defined over disjoint sets, we define x⊔ i as their union. Such an union,
coupled with an update over S, is enough information to perform a computation
over this new model.

Definition 9. Let x be a configuration over S and i an input over E. Let δ be
an update over S. The computation of M over x, i and δ, denoted Mδ(x ⊔ i),
is the configuration over S such that Mδ(x ⊔ i)(s) = fs(x ⊔ i

∣

∣

Es
) for each s ∈ δ,

and Mδ(x ⊔ i)(s) = x(s) for every s ∈ S \ δ.

In the following example, we assume a total order over S ∪E, allowing us to
intuitively write configurations as Boolean words. For example, x = 101 means
x(a) = 1, x(b) = 0 and x(c) = 1.

Example 1. S = {a, b, c}, and E = {a1, a2, a3, b1, b2, c1}. We define α such that
α(a) = {a1, a2, a3}, α(b) = {b1, b2} and α(c) = {c1}. Let M be a module over
(S,E, α), such that M(a) = xb ∨ a1 ∨ a2 ∨ a3, M(b) = ¬xb ∨ xc ∨ ¬b1 ∧ b2, and

M(c) = ¬c1. Let x = 101, i = 000010 and δ = {a, b}. We get that Mδ(x ⊔ i) =
M{a,b}(101⊔000010) is such that Mδ(x⊔i)(a) = fa(x⊔i

∣

∣

Ea
) = 0, Mδ(x⊔i)(b) =

fb(x ⊔ i
∣

∣

Eb
) = 1, and Mδ(x ⊔ i)(c) = x(c) = 1. Therefore Mδ(x ⊔ i) = 011. A

representation of this module is pictured in Figure 1.

Let us now define executions, while considering that the input configuration
can change over time.

Definition 10. Let t > 1. Let I = (i1, i2, . . . , it−1) be a sequence of input con-
figurations over E, X = (x1, x2, . . . , xt) a sequence of configurations over S,
and ∆ an update mode over S of size t. (X, I,∆) is an execution of M if for all
1 ≤ k < t, xk+1 = M∆k

(xk ∪ ik).

This definition can raise concerns about the computational power of modules
as models of computation. We can indeed force a trivial module to compute any
infinite Boolean sequence, even non-periodic ones, simply by encoding them in
the sequence of input configurations. For this reason, and because we do not
need such computational power to obtain the results presented thereafter, we
will limit the notion of an execution to constant input configurations over time.
Such a limitation is expressed by the following recursive definition.

Definition 11. Let i be an input configuration over E. The execution of M over
x∪ i with update mode ∆ is an endomorphism over the set of all configurations,
denoted M∆. It is defined as M∆[1,k](x ⊔ i) = M∆k

(M∆[1,k−1](x ⊔ i) ⊔ i), with
M∆[1,1](x ⊔ i) = M∆1

(x ⊔ i).

4 Wirings

The external inputs of a module can be used to encode any information. For
instance, we could encode any periodic (or non-periodic) sequence of Boolean
words into the inputs of a given module. We could also encode the output of a
given BAN or module, combining in some way the computational power of both
networks. Such a composition of modules is captured by our definition of wirings.
A wiring is an operation that links together different inputs and automata from
one more or modules, thus forming bigger and more complex modules.

We decompose this compositional process into two different families of op-
erators: the non-recursive and the recursive wirings. The first ones connect the
automata of one module to the inputs of another; the second ones connect the
automata of a module to its own inputs. A wiring, recursive or not, is defined by
a partial map β linking some inputs to automata. Let us first define non-recursive
wirings.

Definition 12. Let M , M ′ be modules defined over (S,E, α) and (S′, E′, α′)
respectively, such that S, S′ and E,E′ are two by two distinct. A non-recursive
wiring from M to M ′ is a partial map β from E′ to S.

The new module result of the non-recursive wiring β is denoted M ֌β M ′ and
is defined over (S∪S′, E∪E′ \dom(β), αβ). The input declaration of M ֌β M ′

is αβ(s) = α(s)\dom(β) (in particular, αβ(s) = α(s) if s ∈ S). Given s ∈ S∪S′,
the local function M ֌β M ′(s), denoted fβ

s , is defined as

fβ
s (x ⊔ i) =

{

fs(x
∣

∣

S
⊔i
∣

∣

Es
) if s ∈ S

f ′
s(x
∣

∣

S′⊔i
∣

∣

E′
s\dom(β)

⊔(x ◦ β
∣

∣

E′
s

)) if s ∈ S′
.

In this new module, some inputs of M ′ have been assigned to the values of some
elements of M . Such assignments are defined in the wiring β. For any s ∈ S∪S′,
the function M ֌β M ′(s) (denoted fβ

s) is defined over (S ∪S′ ∪αβ(s)) → B. In
the case s ∈ S′, the image of x ⊔ i is given by f ′

s which expects a configuration
on S′ ∪ E′

s: the configuration on S′ is provided by x, and the configuration on
E′ is partly provided by i (on E′

s \ dom(β)), and partly provided by (x ◦ β) (on
dom(β) ∩ E′

s).

Definition 13. Let M be a module over (S,E). A recursive wiring of M is a
partial map β from E to S.

With β defining now a recursive wiring over a module M , the result is similar
if not simpler than in the definition of non-recursive wirings. The new module
obtained from a recursive wiring β on M is denoted �β M and is defined over
(S,E \dom(β), αβ) with the input declaration defined as, for any s ∈ S, αβ(s) =
α(s) \ dom(β). Given s ∈ S, x and i, the local function �β M(s) is denoted fβ

s

and is evaluated to fβ
s (x ⊔ i) = fs(x ⊔ i

∣

∣

Es\dom(β)
⊔(x ◦ β

∣

∣

Es
)).

Recursive and non-recursive wirings can be seen as unary and binary opera-
tors respectively, over the set of all modules. For any β, we can define the oper-
ators ֌β and �β . For simplicity we define that M ֌β M ′ = ∅ and �β M = ∅

if the wiring β is not defined over the same sets as M or M ′. Notice that both
the recursive and non-recursive wirings defined by β = ∅ are well defined wiring.
They define two operators, �∅ and ֌∅, that will be useful later on.

Property 1. The following statements hold.

(i) ∀M, �∅ M = M .
(ii) ∀M,M ′, M ֌∅ M ′ = M ′ ֌∅ M .
(iii) ∀M,M ′,M ′′, M ֌∅ (M ′

֌∅ M ′′) = (M ֌∅ M ′) ֌∅ M ′′.

Proof.
(i) ∀M,M ′,M ֌∅ M ′ = M ′

֌∅ M .

By definition, M ֌∅ M ′ and M ′ ֌∅ M are both defined on (S ∪ S′, E ∪
E′, α ⊔ α′). For any s ∈ S, M ֌∅ M ′(s) = M ′ ֌∅ M(s) and for s′ ∈ S′,
M ֌∅ M ′(s′) = M ′ ֌∅ M(s′).

(ii) ∀M,�∅ M = M .

By a similar argument, �∅ M is by definition defined on (S,E, α) such that
�∅ M(s) = M(s) for any s ∈ S.

(iii) ∀M,M ′,M”,M ֌∅ (M ′
֌∅ M”) = (M ֌∅ M ′) ֌∅ M”.

a b

cd

a b

cd

S

Sr

Ss

St

Fig. 2. Interaction graphs related to Example 2. The interaction graph of the original
module is on the left and the interaction graphs of the partition of M are on the right.
Notice that we did not represent the input sets E, Qr, Qs and Qt.

By definition, the left side of this equation is defined over (S ∪S′ ∪S”, E ∪E′ ∪
E”, α ⊔ α′ ⊔ α”) as is the right side of this equation. The two modules defining
the same functions, we obtain the result. ⊓⊔

For simplicity of notations, we will denote the empty non-recursive wiring as
the union operator over modules: M ∪M ′ = M ֌∅ M ′.

We now express that recursive and non-recursive wirings are expressive enough
to construct any BAN or module, in Theorem 1. Our aim is to show that for
any division of a module into smaller parts (partitioning), there is a way to get
back to the initial module using only recursive and non-recursive wirings.

Definition 14. Let (S,E, α). Let P be a set such that |P | ≤ |S|, and let {Sp |
p ∈ P} be a partition of S. We define the corresponding partition of E as
{Ep =

⋃

s∈Sp
α(s) | p ∈ P}.

We can develop the corresponding partition of the input declaration.

Definition 15. For every p ∈ P , we define αp = α
∣

∣

Sp
over Sp and Ep.

Let us now define the partition of M itself.

Definition 16. For every p ∈ P , let Qp verify Qp ∩ S = ∅ and |Qp| = |S|,
and let τp : S → Qp be a bijection. For any p ∈ P , the sub-module Mp over
(Sp, Ep ∪ τp(S \ Sp), αp) is defined for s ∈ Sp as, ∀x : S → B and ∀i : E → B,

Mp(s)(x
∣

∣

Sp
⊔ip) = M(s)(x ⊔ i),

where ip(e) = i(e) if e ∈ Ep and ip(e) = x(τ−1
p (e)) if e ∈ τp(S \ Sp).

In the previous definition, the purpose of each Qp is to work as a representa-
tion of the set S for every sub-module Mp. Without it, every module Mp would
have used the set (S \ Sp) ∪ Ep as input set. However our definition of wiring
requires the input sets of the wired modules to be distinct from each other. The
sets Qp are a workaround to bypass this technical point.

Example 2. Let S = {a, b, c, d}, E = {e}, P = {r, s, t} and Sr = {a, d}, Ss = {b}
and St = {c}. For each p ∈ P , we define Qp = {ap, bp, cp, dp}. In the module
Mr, αr(a) = ∅ and αr(d) = {br, cr}. In the module Ms, αs(b) = {as}. In the
module Mt, αt(c) = {e}. The modules Mr,Ms and Mt are defined over distinct
sets and can be wired (see Figure 2 for an illustration).

As a reminder, the union operator over modules is defined to be the result
of an empty non-recursive wiring.

Theorem 1. Let M be a module and {Mp | p ∈ P} any partition of that module,

then there exists a recursive wiring β such that M = �β

(

⋃

p∈P Mp

)

.

Proof. By definition of the empty wiring, the module
⋃

p∈P Mp is defined over
(S,E ∪

⋃

p∈P τp(S \ Sp),
⊔

p∈P αp) and for all s ∈ S, x : S → B and i : E → B

verifies




⋃

p∈P

Mp



 (s)(x ⊔ i′) = M(s)(x ⊔ i). (1)

Knowing that i′(e) = i(e) for e ∈ Es, and i′(s) = x(τ−1
p (s)) for s ∈ Qp. Let β

be the recursive wiring over
⋃

p∈P Mp with domain
⋃

p∈P τp(S \ Sp) such that

β(q) = τ−1
p (q) given p such that q ∈ Qp.

By definition of the recursive wiring, the module �β (
⋃

p∈P Mp) is defined over
the set (S,E, α). For all s, x, i, we now have that

�β





⋃

p∈P

Mp



 (s)(x ⊔ i) =





⋃

p∈P

Mp



 (s)(x ⊔ i
∣

∣

Es
⊔(x ◦ β

∣

∣

τp(S\Sp)
)). (2)

By our definitions of β and i′, we have that i′ = i
∣

∣

Es
⊔(x◦β

∣

∣

τp(S\Sp)
). From that,

and Equations 1 and 2, we infer that for all s, x, i:

�β





⋃

p∈P

Mp



 (s)(x ⊔ i) = M(s)(x ⊔ i).

Therefore for any s:

�β





⋃

p∈P

Mp



 (s) = M(s),

which concludes the proof. ⊓⊔

Theorem 1 allows to say that our definition of wiring is complete: any BAN
or module can be assembled with wirings. It can be reworked more algebraically.
Let M denote the set of all modules (which includes ∅), and for any n ∈ N,
let Mn denote the set of all modules of size n (we have M =

⋃

n∈N
Mn). For

any subset A ⊆ M we denote A
β
the closure of A by the set of wiring operators

⋃

β{֌β ,�β}. The following result is a direct corollary of Theorem 1.

Corollary 1. The set of all modules is equal to the closure by any wiring of the
set of modules of size 1,

M = M1
β
.

Proof. Trivially, M
β

1 ⊆ M. For any M ∈ M of size n, we know by Theorem 1
that in particular the n-partition of M into sub-modules of size 1 can be wired

into the original module M . Therefore M = M
β

1 . ⊓⊔

In our opinion, this corollary is enough to demonstrate that our definition of
modules and wirings is sound.

5 Simulation

BANs are by nature complex systems and sometimes, we like to understand the
computational power of a subset of them by demonstrating that they are able
to simulate (or be simulated by) another subset of BANs. By simulation, we
generally mean that a BAN is able to reproduce, according to some encoding,
all the possible computations with another BAN.

Simulation is a powerful way to understand the limitations and possibilities
of BANs. It is still difficult to prove if any two BANs simulate each other. In the
present paper our aim is to prove that the property of simulating any BAN can be
reduced in some cases to the property of locally simulating any Boolean function.
Locally simulating a function means that a module reproduces any computation
of that function, given that the parameters of the function are encoded in the
module’s inputs. Our claim is that if we can locally simulate every function of a
BAN, in a way such that the simulating modules are able to communicate with
each other, then we can simulate the same BAN with a bigger module which is
obtained by a wiring over the locally simulating modules.

Let us go into further details. For F a BAN over the set S, our aim is to
simulate F . For this purpose, for each a ∈ S, we create Ma, a module which
is defined over some sets (Ta, Ea, αa) and locally simulates the function fa. To
assert this local simulation we need to define a Boolean encoding φa over the
configurations of Ma. We also need to define how these modules communicate
with each other, and in the end how they will be wired together. For any couple
a, b ∈ S such that a 6= b, we define the set Ua,b as a subset of Ta. This set
represents all the automata of Ma that are planned to be connected to inputs
of Mb. We can say that the elements of Ua,b are the only way for the module
Ma to send information to the module Mb. We define which information is sent
from Ma to Mb at any time with a Boolean encoding φa,b over the set Ua,b. By
definition we always have φa,b(x

∣

∣

Ua,b
) = φa(x

∣

∣

Ta
). This means that if a module

encodes an information, the same information is sent from that module to the
other modules.

Now that our modules are set to communicate with each other, we only need
to wire them to each other. The precise nature of this wiring is defined, for every
pair a, b ∈ S such that a 6= b, by the function Ia,b : Eb → Ua,b which we call
interface between a and b. By definition:

a b

cd

e f

gh

i

jk

l mn

S

Ta

Ua,b

Tb

Ub,c

Tc

Uc,d

Td

Ud,a, Ud,b

T

Fig. 3. Interaction graphs of the modules detailed in Example 3. The interaction graph
of the original BAN is on the left and the interaction graph of the simulating BAN is
on the right. The simulating BAN is decomposed into four sub-modules, one for each
node in S. Notice that we did not represent the input sets Ea, Eb, Ec and Ed. The
connections between the sets Ta, Tb, Tc and Td are based upon the interfaces defined
in the example.

– for every s ∈ Ua,b, there exists e ∈ Eb such that Ia,b(e) = s (surjectivity);

– for every b ∈ S,
⊔

a Ia,b is a total map from Eb to
⋃

a Ua,b.

With such an interface defined for every pair (a, b), the final wiring connecting
all modules together is decomposed in two steps. The first one empty-wires every
module together, the second one applies a recursive wiring which is defined as
the union of every interface Ia,b. The last condition that we have stated over the
definition of an interface lets us know that the obtained module has no remaining
inputs; it can be considered as a BAN, defined over T =

⋃

a∈S Ta. All these sets
are illustrated in Figure 3.

Example 3. Let S = {a, b, c, d}. Let Ta = {e, f, g, h}, Tb = {i, j, k}, Tc = {l,m}
and Td = {n}. Let T = Ta ∪ Tb ∪ Tc ∪ Td. Let Ea = {eg, eh}, Eb = {ei, ek, e

′
k},

Ec = {em} and Ed = {en}. Let Ua,b = {f, g}, Ub,c = {j}, Uc,d = {l}, Ud,a =
Ud,b = {n}, and any other U set empty. We will define interfaces as the following:
Ia,b(ei) = f , Ia,b(ek) = g, Ib,c(em) = j, Ic,d(en) = l, Id,a(eh) = n, Id,a(eg) = n
and Id,b(e

′
k) = n (see Figure 3).

Let us now give the definitions mentioned in the previous explanation.

Definition 17. Let A be a set. A Boolean encoding over A is a function φ :
(A → B) → ({0, 1, •}), such that there exists at least one x such that φ(x) = 0
and one x such that φ(x) = 1.

For x : A → B, φ(x) = 1 means that x encodes a 1, φ(x) = 0 means that x
encodes a 0, and φ(x) = • means that x does not encode any value. Each φa is
defined as an encoding over Ta, and each φa,b as an encoding over Ua,b.

Given a BAN on S and some a ∈ S, let us now define the local simulation of
function fa by a module Ma. We want to express that given any configuration
x : S → B, all the configurations x′ : Ta → B and input configurations i′ : Ea →
B such that x′, i′ encode the same information as x, the result of the dynamics
on x′, i′ in the simulating module must encode the result of the dynamics on x
in the simulated automaton. To express that x′ encodes the state of a in x is
easy: φa(x

′) = xa. To express that i′ encodes the state of all b 6= a in x requires
an additional notation. On the one hand we have φb,a : (Ub,a → B) → ({0, 1, •}),
and on the other hand we have i′ : Ea → B describing the input-configuration of
module Ma, and Ib,a : Ea → Ub,a describing the interface from b to a. To plug
these objects together, we put forward the hypothesis that if Ib,a(e) = Ib,a(e

′),
then i′(e) = i′(e′) for any e, e′ ∈ Ea. This hypothesis is justified by the fact that
the wiring applied by Ib,a enforces the value of two inputs connected to the same
element to be the same. Now, we define i′ ◦ I−1

b,a the configuration over Ub,a such

that i′ ◦ I−1
b,a (s) = i′(e) for any e such that Ib,a(e) = s. By our hypothesis this

configuration is well defined.

Definition 18. Let a ∈ S, fa be a Boolean function over S and Ma a module
over (Ta, Ea, αa), with φa (resp. φb,a) a Boolean encoding over Ta (resp. Ub,a).
Given a finite update mode ∆ over Ta, Ma locally simulates fa, denoted by
Ma ∼∆ fa, if for all x : S → B,

1. and for all x′ : Ta → B such that φa(x
′) = xa,

2. and for all i′ : Ea → B such that for all b 6= a we have φb,a(i
′ ◦ I−1

b,a) = xb,
3. we have:

φa(Ma∆(x
′ ⊔ i′)) = fa(x).

This local simulation can be defined on a wide range of update modes ∆.
To ensure that the simulation works as planned at the global scale, we restrict
the range of update modes ∆ used for the local simulations, to those where no
automata with input(s) are updated later than the first update.

Definition 19. An update mode ∆ over a module M is defined to be input-first
if for all k > 1 and all s ∈ ∆k, we have α(s) = ∅.

Definition 20. We define M able to input-first simulate f if there exists an
input-first ∆ such that M ∼∆ f .

Intuitively, such update modes let us make parallel the computation of mod-
ules; all information between modules is communicated simultaneously at the

first frame of computation (update), followed by isolated updates in each mod-
ule. To define global simulation, we introduce the global encoding Φ : (S →
B) → (S′ → B) ∪ {•} which always verifies that for all x′ : S′ → B, there exists
x : S → B such that Φ(x) = x′.

Definition 21. Let F and F ′ be two Boolean automata networks over S and S′

respectively. We define that F simulates F ′, denoted by F ∼ F ′, if there exists a
global encoding Φ such that for all x′, x such that Φ(x) = x′, and for all δ′ ⊆ S′,
there exists a finite update mode ∆ over S such that Φ(F∆(x)) = F ′

δ′(x
′).

Given the definitions of local and global simulation, for any BAN F over a
set S, we define each module Ma as earlier, each defined over (Ta, Ea, αa), along
side each set Ua,b, Ia,b and each encoding φa, φa,b.

Theorem 2. Let F be a BAN over S. For each a ∈ S, let Ma be a module
over (Ta, Ea, αa) that locally simulates F (a) in an input-first way. There exists
a recursive wiring β over T =

⋃

a∈S Ta such that

�β

(

⋃

a∈S

Ma

)

∼ F .

Proof. By definition of the empty wiring,
⋃

a∈S Ma is defined over (T,
⋃

a∈S Ea,
⊔

a∈S αa). Let β =
⋃

a,b∈S,a 6=b Ia,b. By definition of Ia,b, we can easily see that

the module M = �β

(
⋃

a∈S Ma

)

is defined over (T,∅, s 7→ ∅) and can be seen as
a Boolean automata network. Let us prove that, for all a ∈ S, for all input-first
simulating update mode ∆ for the module Ma, for any ∆′ update mode over
T \ Ta, and for any x : T → B, the following equation holds:

M∆∪∆′(x)
∣

∣

Ta
= Ma∆(x

∣

∣

Ta
⊔(x ◦

⊔

b

Ib,a)). (3)

At the first step of the execution, the wiring β implies that for any s ∈ Ta, for
any x, M(s)(x) =

(
⋃

a∈S Ma

)

(s)(x ⊔ (x ◦ β)). From the definition of the empty

wiring, we can deduce in particular that M(s)(x) = Ma(s)(x
∣

∣

Ta
⊔(x ◦ β

∣

∣

Ea
)).

By definition of the interfaces, this notation is equivalent to ∀s ∈ Ta,M(s)(x) =
Ma(s)(x

∣

∣

Ta
⊔(x ◦

⊔

b Ib,a)).

Let us define A = {s ∈ Ta | α(s) 6= ∅} and B = Ta \ A. By the definition of
∆, we know that s ∈ ∆k with k > 0 implies s ∈ B.

Let us look at the A part of this problem. Let δ = ∆0 and δ′ = ∆′
0. We can

trivially deduce from the previous statement that:

Mδ∪δ′(x)
∣

∣

A
= Maδ(x

∣

∣

Ta
⊔(x ◦

⊔

b

Ib,a))
∣

∣

A
.

Furthermore, there is no s ∈ A such that s ∈ ∆k for any k > 0. We can sim-
ply conclude since no update is made to any function of A in the rest of the

execution that Mδ∪δ′(x)
∣

∣

A
= M∆∪∆′(x)

∣

∣

A
, and that Maδ(x

∣

∣

Ta
⊔(x ◦

⊔

b Ib,a))
∣

∣

A
=

Ma∆(x
∣

∣

Ta
⊔(x◦

⊔

b Ib,a))
∣

∣

A
. In conclusion of this A part,M∆∪∆′(x)

∣

∣

A
= Ma∆(x

∣

∣

Ta

⊔(x ◦
⊔

b Ib,a))
∣

∣

A
.

Let us now consider the B part of the problem. For s ∈ B, we have M(s)(x) =
Ma(s)(x

∣

∣

Ta
⊔(x ◦ β

∣

∣

Es
)). By definition of B, s ∈ B implies Es = ∅. We can

conclude that ∀s ∈ B,M(s)(x) = Ma(s)(x
∣

∣

Ta
). We deduce, for any δ ⊆ Ta

and δ′ ⊆ T \ Ta, that Mδ∪δ′(x)
∣

∣

B
= Maδ(x

∣

∣

Ta
⊔i)
∣

∣

B
, for i any input configu-

ration over Ea. By a simple recursive demonstration, we can easily show that
M∆∪∆′(x)

∣

∣

B
= Ma∆(x

∣

∣

Ta
⊔i)
∣

∣

B
.

Reuniting the A and B parts of this demonstration, we obtain that M∆∪∆′(x)
= Ma∆(x

∣

∣

Ta
⊔(x ◦

⊔

b Ib,a))
∣

∣

A
∪Ma∆(x

∣

∣

Ta
⊔i)
∣

∣

B
. Assuming i = x ◦

⊔

b Ib,a, we ob-

tain M∆∪∆′(x) = Ma∆(x
∣

∣

Ta
⊔(x ◦

⊔

b Ib,a)), and prove the lemma described in
Equation 3.

Let us now define Φ : (T → B) → (S → B)∪{∅} such that, for any x : T → B,
Φ(x) = ∅ if there exists a ∈ S such that φa(x

∣

∣

Ta
) = ∅, and Φ(x)(a) = φa(x

∣

∣

Ta
)

otherwise. Let x and x′ such that Φ(x) = x′, and x′ 6= ∅. Let δ ⊆ S be an
update over F . Let us define, for any a ∈ δ, the update mode ∆a such that ∆a

is an input-first update mode upon which Ma simulates the function F (a) ; by
hypothesis such an update mode can always be found.

Let us define the update mode ∆ over T such that ∆ =
⋃

{∆a | a ∈ δ}. We
will now prove that Φ(M∆(x)) = Fδ(x

′). First, we can clearly see that M∆(x) =
⊔

{M∆(x)
∣

∣

Ta
| a ∈ S}, which can be developed into M∆(x) =

⊔

{M∆(x)
∣

∣

Ta
| a ∈

δ} ⊔
⊔

{x
∣

∣

Ta
| a ∈ S \ δ}, from which we infer:

M∆(x) =
⊔

{M∆a∪
⋃

b∈δ,b6=a ∆b
(x)
∣

∣

Ta
| a ∈ δ} ⊔

⊔

{x
∣

∣

Ta
| a ∈ S \ δ}.

Using the lemma formulated in Equation 3, this can be rewritten into:

M∆(x) =
⊔

a∈δ

Ma∆a
(x
∣

∣

Ta
⊔(x ◦

⊔

b

Ib,a)) ⊔
⊔

a∈S\δ

x
∣

∣

Ta
.

As the result of an execution of the module Ma is always defined as a configu-
ration over Ta, we can infer the following encoding of M∆(x) by Φ :

Φ(M∆(x))(a) =

{

φa(Ma∆a
(x
∣

∣

Ta
⊔(x ◦

⊔

b Ib,a))) if a ∈ δ

φa(x
∣

∣

Ta
) if a ∈ S \ δ

.

We know by definition of x and x′ that φa(x
∣

∣

Ta
) = x′

a and that φb,a(x ◦ Ib,a ◦

I−1
b,a) = φb,a(x

∣

∣

Ub,a
) = φb(x

∣

∣

Tb
) = x′

b by definition of φb,a. From this we can apply

the local simulation definition and obtain:

Φ(M∆(x))(a) =

{

fa(Φ(x)) if a ∈ δ
φa(x

∣

∣

Ta
) if a ∈ S \ δ

⇐⇒ Φ(M∆(x))(a) =

{

fa(Φ(x)) if a ∈ δ
Φ(x)(a) if a ∈ S \ δ.

.

In the other hand, by the definition of an update over F , we can write that:

Fδ(x
′)(a) =

{

fa(x
′) if a ∈ δ

x′(a) if a ∈ S \ δ
.

Finally, by definition of x′ = Φ(x):

Fδ(x
′)(a) =

{

fa(Φ(x)) if a ∈ δ
Φ(x)(a) if a ∈ S \ δ

,

which implies Φ(M∆(x)) = Fδ(x
′), and concludes the proof. ⊓⊔

This theorem can help us investigate if every BAN can be simulated by a
BAN with a given property. If every function f can be locally simulated by a
given module with a property P , and if property P is preserved over wirings, then
we know that any BAN can be simulated by another BAN with the property P .
This is observed for example when P corresponds to restricting each function to
be a disjunctive clause, or when it corresponds to the monotony of every function
in the module or BAN.

6 Conclusion

The two theorems formulated in this article tell us that seeing BANs as modular
entities is a way to discover useful results. With the simple addition of inputs
to BANs, we have expressed a general simulation structure that can be used to
understand the computational nature and limits of given properties over BANs.
Let us underline that all the definitions and results can be applied to BANs
and modules defined over countably infinite sets of automata and inputs. This
modular strategy of considering BANs is, in our opinion, a good way to under-
stand and characterise their dynamics. The dynamical complexity arises when
the network is too large, making the number of possible configurations imprac-
tical. Cutting the network into smaller pieces (partitioning) is a promising way
to understand it at a cheaper cost.

Alongside simulation, a number of different paths can be taken to develop
modules. We are now interested in characterising a module with a language, the
same way that the language of a finite automaton characterises it. For modules,
the considered language would be the set of all executions that can be obtained
given the set of all possible inputs and the set of all possible update modes on
that module. Understanding how the languages of two given modules unite when
they are wired together would be a strong tool to characterise the language of
any BAN, namely its dynamics.

References

1. A. Alcolei, K. Perrot, and S. Sené. On the flora of asynchronous locally non-
monotonic Boolean automata networks. In Proc. of SASB’15, volume 326 of
ENTCS, pages 3–25, 2016.

2. U. Alon. Biological networks: the tinkerer as an engineer. Science, 301:1866–1867,
2003.

3. J. Aracena, Luis Gómez, and L. Salinas. Limit cycles and update digraphs in
Boolean networks. Discrete Appl. Math., 161:1–12, 2013.

4. G. Bernot and F. Tahi. Behaviour preservation of a biological regulatory network
when embedded into a larger network. Fund. Inform., 91:463–485, 2009.

5. F. Delaplace, H. Klaudel, T. Melliti, and S. Sené. Analysis of modular organisation
of interaction networks based on asymptotic dynamics. In Proc. of CMSB’12,
volume 7605 of LNCS, pages 148–165, 2012.

6. J. Demongeot, E. Goles, M. Morvan, M. Noual, and S. Sené. Attraction basins as
gauges of robustness against boundary conditions in biological complex systems.
PLoS One, 5:e11793, 2010.

7. T. Feder. Stable networks and product graphs. PhD thesis, Stanford University,
1990.

8. F. Fogelman, E. Goles, and G. Weisbuch. Transient length in sequential iteration
of threshold functions. Discrete Appl. Math., 6:95–98, 1983.

9. E. Goles and L. Salinas. Comparison between parallel and serial dynamics of
Boolean networks. Theor. Comput. Sci., 396:247–253, 2008.

10. S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic
nets. Journal of Theoretical Biology, 22:437–467, 1969.

11. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Net-
work motifs: simple building blocks of complex networks. Science, 298:824–827,
2002.

12. M. Noual. Updating Automata Networks. PhD thesis, cole normale suprieure de
Lyon, 2012.

13. F. Robert. Discrete iterations: a metric study. Springer, 1986.
14. H. Siebert. Dynamical and structural modularity of discrete regulatory networks.

In Proc. of COMPMOD’09, volume 6 of EPTCS, pages 109–124, 2009.
15. R. Thomas. Boolean formalization of genetic control circuits. J. Theor. Biol.,

42:563–585, 1973.

	A framework for composing with Boolean automata networks

