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Abstract

In this paper we present a new complete detector-descriptor framework for local

features extraction from grayscale texture-plus-depth images. It is designed by

putting together a locally normalized binary descriptor and the popular AGAST

corner detector modified to incorporate the depth map into the keypoint detec-

tion process. With these new local features, we target image matching applica-

tions when significant out-of-plane rotations and viewpoint position changes are

present in the input data. Our approach is designed to perform on RGBD im-

ages acquired with low-cost sensors such as Kinect without any complex depth

map preprocessing such as denoising or inpainting. We show improved results

with respect to several other highly competitive local image features through

both a classic local feature evaluation procedure and an illustrative application

scenario. Moreover, the proposed method requires low computational effort.

Keywords: texture-plus-depth, RGBD, local feature, keypoint detector,

descriptor, viewpoint changes

1. Introduction

During the past decades, a large spectrum of vision problems has been

settled with local features, such as visual simultaneous localization and map-

ping (SLAM) [1], visual odometry [2], tracking by matching [3], etc. This has
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made the concept of local features one of the most valuable in vision. Nu-

merous comparative evaluations of competing local features have been pub-

lished [1, 4, 5, 6, 7, 8, 9, 10, 11]. Industrial demand for universally applicable

local image features has also stimulated MPEG standardization activities for

Compact Descriptors for Visual Search (CDVS) [12] and Compact Descriptors

for Visual Analysis (CDVA) [13].

Intensive development of local features in traditional imaging has nowa-

days arrived to the exploration of different visual content modalities, such as

range images, 3D meshes or plenoptic images. This is further stimulated by the

commercial diffusion of the corresponding acquisition devices, such as low-cost

RGB+depth sensors Microsoft Kinect, ASUS Xtion, Google Tango, Structure

Sensor for iPad, high quality laser scanners (LIDARs), lightfield cameras Lytro,

Raytrix, etc. In this work we consider the RGBD format, also known as “texture-

plus-depth”, in which a conventional 2D image (texture map) is complemented

by a range image (depth map) describing the distance of objects from the camera

plane1.

Recently, a good deal of attention has been devoted to designing novel local

features for RGBD content. In fact, differently from 3D meshes and point

clouds, this modality allows to employ and extend principles of local features

from traditional imaging. However, in spite of this growing interest, to the

best of our knowledge no complete feature extraction pipeline (containing both

detector and descriptor) has been proposed so far for (sparse) RGBD local

features. This has been partially due to the noisiness and incompleteness of

depth maps acquired by low-cost sensors such as the Kinect.

In this paper, we show that the geometrical information provided by depth,

if properly used, enables to improve the stability of local features harnessed

from texture images. Especially, feature invariance to rigid 3D transformations,

which is the most common class of visual deformations, may be significantly

1In this paper we do not deal with the color aspect, so in what follows by RGBD we mean

“grayscale-plus-depth”.
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increased. This is of high practical interest as out-of-plane rotations are known

failure cases for classic texture-only local features. In addition, we demonstrate

that the proposed features can be computed efficiently.

The contribution of this paper is a new local features extraction framework

for RGBD (texture-plus-depth) sparse image matching that consists of: i) a

salient visual point detector based on a corner detector, and ii) a binary local

feature descriptor. Differently to other state-of-the-art RGBD local features, in

our approach the depth map is involved in both stages. Moreover,

� the proposed feature is designed to be robust to viewpoint position changes,

whereas all the standard state-of-the-art feature invariance classes (trans-

lations, in-plane rotations, scale changes, simple illumination changes) are

preserved;

� our method is applicable to real RGBD data of Kinect quality taking into

account the major flaws of the D channel. We only assume that the depth

map is aligned with the texture map through a device-specific camera

calibration transformation, which is typically provided with the sensor;

� feature detection and description require a moderate computational effort

and are easily parallelizable. The resulting descriptors are binary, allowing

for extremely fast matching.

The rest of the paper is organized as follows. Section II presents related work

on local features and introduces the problem of out-of-plane rotations. Section

III describes the design of the proposed feature extraction pipeline. Section IV

presents in details the experimental validation and obtained results. Finally,

Section V concludes the paper.

2. Related Work

2.1. Conventional local features

The idea of content matching through local features has been progressively

evolving for a long time, but the concept of a robust universal local image
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feature, i.e., a feature designed regardless of a specific application, is relatively

modern. Sparse image matching through such features typically consists of three

steps:

� detection of repeatable salient visual points (keypoints) in the input im-

age,

� description: computation of a compact signature (descriptor) describing

locally the visual content at each keypoint detected on the previous stage,

� matching: for two given images each represented by a set of such de-

scriptors, establishing pairwise correspondences between the feature sets

revealing local visual similarities.

The number of the correspondences, their fidelity and the underlying geometry

are then analyzed by the application in order to decide on the similarity of the

input images in search tasks, or to figure out the geometrical relation between

two views in localization and registration tasks.

SIFT (Scale Invariant Feature Transform) [14] was the first complete and

universal framework to detect keypoints and extract corresponding local de-

scriptors that are scale and rotational invariant. SURF (Speeded Up Robust

Features) [15] was then proposed as a computationally efficient alternative to

SIFT. Both approaches use pyramidal image representations to detect scale in-

variant keypoints, and describe the surrounding patches by high-dimensional

histogram-based signatures. The matching of such descriptors relies on the Eu-

clidean distance.

More recently, a greater deal of attention has been devoted to binary local

features: they increase the computational efficiency of feature extraction and

matching, and together with learning-based approaches are currently an active

research field in the computer vision community [16, 17, 18, 19, 20, 21, 22].

One of the first proposed binary features, BRIEF (Binary Robust Independent

Elementary Feature) [23] extends the idea of local binary patterns [24], origi-

nally designed for texture analysis tasks, to describe interesting points. Since
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the extracted feature is a string of bits, the matching is done using Hamming

distance, which is more efficient to compute than the Euclidean one. This idea

is further elaborated in numerous works [25, 26, 27, 28, 29]. Notably, ORB

(Oriented FAST and Rotated BRIEF) [25] and BRISK (Binary Robust Invari-

ant Scalable Keypoints) [26] present complete extractors of scale and rotation

invariant binary features. They apply FAST [30] and AGAST [31] corner detec-

tors to scale space-like image pyramids to find the keypoints, estimate dominant

keypoint orientations, and then invoke the same principle of binary description.

The feature proposed in this work employs a similar binary pattern, but we

sample it in the scene surface rather than in the camera plane.

2.2. The problem of out-of-plane rotations

Existing 2D scale and rotational invariant features are not suited to deal

with considerable 3D distortions, even rigid, such as perspective deformations,

rotations out of the camera plane, or substantial camera position changes. As an

example, SIFT performance drops quickly when the scene undergoes an out-of-

plane rotation of more than 45° [32]. According to different evaluations [4, 6, 9],

this trend is common to most detectors and descriptors. For this reason, a set

of approaches dealing with such 3D distortions has been developed.

Affine invariant features address the problem assuming that perspective dis-

tortions are well approximated locally by in-plane affine transformations. Affine-

covariant detectors [33] estimate an elliptical frame per keypoint using the sur-

rounding image content. The local patch then undergoes a normalizing trans-

formation mapping each estimated ellipse to a circle. ASIFT (Affine-SIFT) [32]

is based on an alternative paradigm, i.e., it simulates a set of affinely trans-

formed versions of the input image in order to find the best matching features.

A similar simulation-based affine generalization of SURF is presented in [34].

Some approaches go beyond the rigid scene deformations, aiming at non-rigid

surfaces images matching, e.g., movement of textiles [35, 36].

An essential limitation of the affine invariance paradigm is that perspective

distortions are approximated by a class of transformations that is too general.
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This causes losses of relevant visual information. A typical example is that

affine-covariant features do not distinguish between a square and a rectangle, or

a circle and an ellipse [37]. As we showed in our previous work [38], this leads

to a loss of the descriptor discriminability.

While the invariance of conventional features, such as SIFT or BRISK, to

translations, scale changes and in-plane rotations is guaranteed by design, the

invariance to out-of-plane rotations of the listed approaches is rather heuris-

tic. This leads to limited feature stability when the observed scene under-

goes significant viewpoint position changes. Therefore, out-of-plane rotations

and viewpoint position changes still remain challenging. We consider these two

transformation classes as synonyms in the following, since combined with trans-

lations, scale changes and in-plane rotations they become equivalent to 3D rigid

scene deformations. The problem of feature invariance is thus the focus of this

paper: we believe that the main advantage of injecting complementary geomet-

rical information into the feature extraction process is the possibility to deal

with significant viewpoint position changes.

2.3. Texture+Depth (RGBD) content matching

A considerable amount of work has been done on the local features for range

images (depth maps) as well as RGBD images. Such methods may be split into

three groups.

Shape-only descriptors. Some local descriptors operate only with depth maps

or point clouds. These approaches are advantageous in applications where the

geometrical information is prevalent over the photometrical one. Absence of

texture in the feature computation process makes the features completely in-

sensible to any kind of illumination changes. However, in case of poorly detailed

geometry the performance of such approaches drops off. 2.5D SIFT [39] pro-

poses an extension of SIFT detector and descriptor to range images. NARF

(Normally Aligned Radial Feature) [40] is a rotational invariant feature de-

tector and descriptor for range image matching. SIPF (Scale Invariant Point
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Feature) [41] is a recent work on the detection and description of scale invariant

keypoints in point clouds. Other descriptors for shape matching are proposed

in [42, 43, 44, 45, 46, 47].

Joint shape-texture description. In the second case, shape and texture are de-

scribed jointly, i.e., a signature at each interest point describes both the lo-

cal geometrical and photometrical information simultaneously. Joining the two

modalities allows for improved robustness of detected features in static environ-

ments, e.g., for indoor localization. CSHOT (Color SHOT) [48] and BRAND

(Binary Robust Appearance and Normal Descriptor) [49] propose binary de-

scriptors obtained by properly combining two separate signatures extracted at

the same keypoint from the texture map and the depth map. None of these

methods, however, deals with significant viewpoint position changes.

Texture description using shape. In the third and last case, the geometry may

be used to provide a robust description of the texture, but is not explicitly

incorporated into the resulting descriptors. Differently to the previous case,

such techniques are based on texture characteristics that are invariant with re-

spect to the local shape. In this way a consistent deformation of the observed

scene that affects both texture and geometry does not impact the descriptor.

This reveals a particular interest for invariance to out-of-plane rotations. VIP

(Viewpoint Invariant Patches) [37], PIN (Perspectively Invariant Normal fea-

tures) [50], DAFT (Depth-Adaptive Feature Transform) [51] and our previous

work [38] present descriptor patch normalization techniques aimed at improved

stability under significant viewpoint position changes. The latter three perform

a local normalization approximating the scene geometry near each keypoint by

a plane, and then properly transforming the descriptor patch. VIP proceeds

in a more global way. It looks for several dominant planes in the scene, then

synthesizes corresponding frontal views and computes their SIFT descriptors.

In our preliminary work [38], we computed a simple least-square local planar

warping of the texture surface in order to deslant it before computing a blob

or corner descriptor. Differently to that work, here we directly sample the key-
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point and the descriptor patterns in the local axes in the camera plane, which

turns out to be computationally more efficient. Our recent work [52] presents

a technique allowing more repeatable and distinctive BRISK features from the

texture image by mapping the intensity sampling pattern onto the scene surface.

However, that approach has the main limitations of computational complex-

ity and sensitivity to noise, which has motivated us to turn towards a locally

planar and faster pattern-to-surface mapping algorithm in this paper. Some

approaches for mesh matching may be considered in the same context, such as

MeshDOG+MeshHOG (Difference of Gaussians + Histogram of Oriented Gra-

dients) [53]. However, they require additional preprocessing steps to render a

proper mesh from an RGBD image, whereas MeshDOG itself is already quite

computationally expensive.

RGBD scale-invariant keypoint detection. In [54, 55, 56] we focus on the prob-

lem of keypoint detection for RGBD. Specifically, we proposed a scale space

formulation for the texture image that exploits the surface metric given by the

depth map, by means of a Laplacian-like operator defining a non-uniform dif-

fusion process [54]. In a follow-up work [56] we have employed this operator

to conceive a complete multi-scale RGBD blob detector. While that work is

mathematically elegant, it has the disadvantage of being computationally com-

plex, as it entails performing an anisotropic diffusion process. In this work, we

consider instead highly performing binary features, for which we do not need to

compute derivatives explicitly.

3. TRISK: The Proposed Method

3.1. Overview

In this section we present the design of a keypoint detector and a feature

descriptor for RGBD image matching. Our final goal is to obtain reliable fea-

tures under significant viewpoint position changes, which are robust to depth

map imperfections and at the same time computationally efficient. As briefly

discussed in Section 2, visual features have been vastly studied for many years,
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leading to a number of tools that have been proven successful for image match-

ing. We build on this knowledge base and retain the best concepts formulated

so far, but we rethink and adapt them to introduce the geometric information

provided by RGBD content.

In particular, we consider as a starting point the popular BRISK features [26],

which provides state-of-the-art performance in both feature quality and compu-

tational speed amongst binary features [8]. However, our framework is rather

general in principle and could be equally applied to other binary features. To un-

derline the continuity with the visual feature literature and specifically BRISK,

we then call the proposed features TRISK, for “Tridimensional Rotational In-

variant Surface Keypoints”. The overall scheme of TRISK is shown in Fig. 1. In

the rest of this Section we describe in detail the building blocks of the proposed

detector/descriptor.

3.2. The Detector

The proposed feature extraction algorithm begins with the following steps.

3.2.1. Local surface axes computation

The goal of this work is to render the feature extraction process as indepen-

dent as possible of the camera position. One way to do this is to adapt all the

local processing to the surface geometry, considering the observed image as a

textured manifold. In TRISK, we follow this way by selecting a proper basis

at each image point, which we further refer to as adaptive local axes. They

are used to transfer the detection and the description from the camera plane

onto the scene surface, basing them on the surface metric, which is intrinsically

independent of the reciprocal camera-to-object position and orientation.

Deriving the adaptive local axes from the depth map is at the base of TRISK.

The following local operations will then be performed in the derived local axes:

AGAST corner score computation, Harris cornerness test, accurate keypoint

localization and descriptor sampling. We first explain the proposed technique
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D E S C R I P TO R  D E T EC TO R  

Local axes 
computation 

AGAST 

Initial scale selection 

Local maxima filtering 

Descriptor pattern 
sampling 

Accurate orientation 
and scale estimation 

Oriented descriptor 
pattern sampling 

Descriptor 
computation 

Texture 
map 

Depth 
map 

Accurate localization 

Figure 1: The architecture of the proposed TRISK pipeline. TRISK is a complete feature

extraction framework for RGBD content, composed by a keypoint detector and a descriptor.

Both leverage the geometric information provided by the depth map in order to sample the

texture considering a different local coordinate system for each point of an object surface.

The detector is based on the Adaptive Generic Accelerated Segment Test (AGAST) response,

computed in local coordinates. Depth is also used to find the approximate geometric scale

of a keypoint, which is further refined at the description stage together with orientation

normalization. The local maxima filtering and accurate localization stages enable to select

the most repeatable keypoints. In order to compute the descriptor, the texture is sampled

again in local coordinates. A multi-pass procedure is employed to accurately estimate the

orientation and scale of the sampling pattern. Finally, similarly to the BRISK descriptor,

pairwise comparison tests across the texture samples are carried out to produce a binary

descriptor string.

to compute the local axes and then present the details of their use in the feature

extraction.

Assuming that keypoint detection and description are rotationally invariant,

the local axes are given by any orthonormal basis of the tangent plane, projected

on the camera plane and normalized so that its largest vector has unit norm in

pixels. Examples are shown in Fig. 3. In the following we derive an analytic

expression of the local axes field, allowing to compute them efficiently at each

pixel location.

Let us consider a camera with the centered principal point. According to
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Figure 2: Local camera coordinates (x, y, z) and image plane coordinates (u, v).

the perspective projection model, the relation between a spatial point (x, y, z)

and its projection (u, v) = Proj (x, y, z) on the camera plane is then expressed

by the following formula (the corresponding coordinate systems are presented

in Fig. 2):

u =
x

z
, v =

y

z

Let A denote a scene point, ~A its coordinate vector in camera coordinates

and (u, v) = Proj
(
~A
)

. Let ~n = (nx, ny,−nz) be the surface normal of unit

norm at A (see Fig 3). With no loss of generality we assume 0 < nz < 1.

The following reasoning is based on the observation that the degree of per-

spective distortions along a contour on the scene surface passing through A

depends on its direction with respect to the camera plane. Specifically, a tan-

gent line L parallel to the camera plane is not affected by the perspective

distortions: there is no contraction along L when projecting it on the cam-

era plane. Nothing prevents to use this line as the first local axis. Thus, we

need to find a vector ~m1 = (mx,my,mz) such that it is: i) parallel to the

camera plane; and ii) belonging to the tangent plane at A. The first condi-

tion results in mz = 0. The second condition requires that ~n · ~m = 0. It is

straightforward to verify that ~m1 = (−ny, nx, 0) satisfies both conditions. Let

~q′1 = Proj
(
~A+ ~m1

)
− Proj

(
~A
)

be the projection of ~m1 onto the camera

plane. As there is no contraction along L, we normalize ~q′1 to have always unit
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Figure 3: Computation of local axes ~q1 and ~q2. On the left: ~q1 and ~q2 are obtained by

projecting ~m1 and ~m2 in the 3D space onto the camera plane. ~m1 is chosen to be always

parallel to the camera plane, and its projected local axis is normalized to unit length. The

projection of ~m2, i.e., ~q2 has a length reflecting the perspective distortion at A, which depends

on the angle ϑ between the viewpoint ~A and the normal at A. On the right: examples of local

axes fields computed on images from Arnold and Bricks sequences, with ~q1 shown in cyan

and ~q2 in yellow.

norm, i.e., ~q1 = ‖~q′1‖−1~q′1, obtaining the first local axis as:

~q1 =
1√

n2x + n2y

−ny
nx

 . (1)

The second required spatial vector ~m2 must be orthogonal to both ~n and ~m1,

as together with ~m1 it forms an orthogonal basis on the surface. This can be

found by the cross product: ~m2 = ~m1 × ~n. Along ~m2 distances are contracted

by a factor which depends on the cosine of the angle ϑ between the viewpoint

vector ~A and the normal ~n (see Figure 3): when ~A and ~n are aligned, then

the tangent plane is parallel to the camera plane and there is no contraction;

conversely, when ~A and ~n are orthogonal, the distortion is maximal. Let ~q′2 =

Proj
(
~A+ ~m2

)
− Proj

(
~A
)

be the projection of ~m2 onto the camera plane.
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The second local axis is thus given by:

~q2 =
~A · ~n
‖ ~A‖‖~n‖

·
~q′2

‖~q′2‖
=

nxu+ nyv − nz
‖~q′2‖

√
u2 + v2 + 1

~q′2, (2)

where

~q′2 =


nxnz − u
n2x + n2y − 1

− u
nynz − v
n2x + n2y − 1

− v

 . (3)

The derived expressions of ~q1 and ~q2 depend only on the surface normal

and the point position on the camera plane (u, v), but not on the depth map

values directly. To estimate the normal vector we use PCA-based normal esti-

mation [57]. Since the depth noise increases with the distance for many sensors,

including Kinect, we scale the support size with the depth. The scaling factor

κ is an input parameter, whose tuning is discussed below. Using this approach

the local axes field may be computed in O(N) operations for an input image of

N pixels. Moreover, it avoids explicit manipulations with differential character-

istics of the depth map, which are prone to noise.

The described technique allows to compute the adaptive local axes from the

depth map in a computationally efficient way and robustly to the noise. Under

the assumption of the rotationally invariant keypoint detection criteria, this

choice of basis vectors is not unique: a simple alternative is to choose the other

two vectors obtained by the PCA decomposition. This, however, takes more

computational time than the proposed technique (we discuss this option briefly

in the experimental part).

3.2.2. AGAST and scale selection

Adaptive Generic Accelerated Segment Test [31] is an approach for corner

detection in images. According to this test, a pixel is deemed to be a corner if

it is darker or brighter than at least N connected points on a circle surrounding

it. More specifically, a pixel in the circle is considered darker/brighter than the

center pixel if its intensity value is smaller/larger than the center intensity by

at least a value τ . Therefore, keypoint detection with AGAST depends on the

choice of τ and N . By increasing the value of τ , a smaller number of corners
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with progressively increasing contrast are selected. As suggested in [26], in

order to obtain a per pixel score and perform non-local maxima suppression

as, e.g., in SIFT [14], we define the score s(i) of pixel i as the maximum value

of the intensity difference threshold τ such that i passes the AGAST corner

test. Intuitively, pixels with higher scores correspond to higher contrast corners,

which are likely to be more repeatable. Pixels whose score reaches a local

maximum greater than a threshold t are taken as keypoint candidates.

This detection principle was successfully involved in scale-covariant keypoint

detection [25, 26]. Due to its isotropic (rotational invariant) and derivative-free

design, this detection principle demonstrates good stability to image noise and

moderate geometric deformation. In our case, the isotropic detection is required

for using local adaptive axes. Moreover, AGAST allows to save time by reducing

the number of intensity comparisons using a properly learned decision tree. This

also responds well to our needs, since the image interpolation in the local axes

is time consuming.

Specifically, inspired by BRISK detector [26], we apply AGAST to pick the

keypoint candidates as explained below.

AGAST in local axes. Aiming at improved stability to viewpoint position changes,

we apply AGAST9-16 in the local adaptive axes (“9-16” stands for at least 9

darker or brighter pixels on a circle of 16 pixels). The texture map is interpolated

using the local surface axes defined in Eq. 2. Let us consider a Bresenham circle,

i.e., a discrete approximation of a circle with N points (in our case, N = 16). Let

{(uk, vk)}16k=1 be the coordinates of the points of that circle, where the reference

system has origin in the center pixel. In order to transform the set of vectors

{(uk, vk)}16k=1 from this coordinate system into vectors {(xk, yk)}16k=1 expressed

in the local axes (~q1, ~q2), we need to perform a change of basis, i.e., write the

Bresenham circle as a linear combination of the basis (~q1, ~q2). In other words,

we sample the texture map at locations

(xk, yk) = (ukξ1 + vkξ2, ukη1 + vkη2), k = 1, ..., 16. (4)
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The corner test is then performed on the obtained samples. Some of these

samples might be unnecessary for the corner test: AGAST allows to reduce

such needless sampling operations and save time.

The idea of performing AGAST in local axes is illustrated in Fig. 4. Non-

local maxima suppression is then applied on the generated score map in order

to select the keypoint candidates.

Multiscale detection. For improved stability to significant scale changes we run

AGAST test on each level of a multiscale image pyramid. The pyramid consists

of the original image and its subsampled versions (octaves); each next level is

halfsampled with respect to the previous level. After the keypoint is detected on

a given level, it is kept only if its AGAST score is greater than AGAST scores

in the same position in an adjacent level. Differently to the original BRISK, the

pyramid we use is sparse, i.e., there is only one level per octave. This is mainly

motivated by the fact that we do not use the pyramid to derive the keypoint

scale, but need it only to avoid missing keypoints when the image scale changes

significantly.

Keypoint scale selection. To derive the keypoint scale we exploit the depth map

similarly to [49]. A typical corner revealed by AGAST is an intersection of two

straight contours or a point-like structure. We believe that the characteristic

size of such a structure (its visual scale) is difficult to define properly: local

patches of slightly different sizes centered around such a corner are visually

similar, contrarily, for example, to a blob-like structure which exhibits more

clearly such a characteristic size. However, scale estimation accuracy has a

major impact on repeatability. For this reason, we use AGAST response only

to derive the keypoint position but not its scale, since in case of RGBD images a

better clue of scale is available in the depth map. To achieve scale invariance, we

employ the geometrical scale. Namely, we get the keypoint scale from the depth

map assuming that the underlying visual detail is of a fixed spatial size σ0. As

observed also in [49], the geometric scale is inversely proportional to depth, i.e.,

keypoints farther from the camera have smaller spatial support in pixel units,
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Figure 4: Illustration of application of Accelerated Segment Test (AST) in standard image

axis versus local axes derived from the depth map. A corner viewed under a large angle

projects itself at a nearly straight contour on the camera plane, so that the corner test in

standard image axes fails causing a repeatability loss.

due to perspective distortion. σ0 is the coefficient of this inverse proportionality

relation. It defines a sort of “anchor” size to which objects (in spatial units

measured in the camera plane) are scaled based on their depth. Intuitively,

σ0 is related to the characteristic size of repeatable landmarks, which depends

on the content and viewing conditions. The optimal value of σ0 is found by

grid search as explained in Section 4.4. Hence, the resulting scale is simply

equal to σ =
σ0
z

, where z is the average depth of the keypoint. This gives a

rough initial scale estimation which is then refined on the descriptor stage: to

avoid scale estimation errors for keypoints situated near depth boundaries, we

estimate z iteratively, at the same time when the keypoint dominant orientation

is selected. This is explained further in Section 3.3. The keypoint area is finally

described by an ellipse spanning the scaled local axes σ~q1 and σ~q2. Thus, TRISK

keypoints are not circular as those of SIFT or BRISK, but elliptical similarly to

the keypoints produced by affine-covariant detectors [33].

3.2.3. Local maxima filtering

The initial keypoint candidates given by local maxima of AGAST score are

then analyzed subject to their stability. A well-known supplementary criterion
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to filter out unstable keypoint candidates is based on Harris cornerness mea-

sure [58]. It was first used in SIFT and then reemployed in other detectors, e.g.

ORB [25]. Some keypoints reported by a corner detector may actually be sit-

uated on straight edges, for example due to aliasing artifacts. These keypoints

are prone to localization errors. In order to filter them out, the eigenvalue ratio

of Hessian matrix H is thresholded [14]:

H =

Ixx Ixy

Ixy Iyy

 . (5)

Here I denotes the smoothed texture image.

In our approach, differently to the presented classic technique, we replace

the standard derivatives of I by the directional derivatives computed in the

adaptive local axes ~q1 and ~q2, i.e. we deal with the eigenvalues of

Hq =

I~q1~q1 I~q1~q2

I~q1~q2 I~q2~q2

 . (6)

The reason is always the same: changing the axes allows to reduce the impact of

perspective distortions when dealing with the texture curvature. We compute

the eigenvalue ratio in the same way as in SIFT, and use the same threshold

value: a keypoint is rejected if the ratio is greater that 10 [14].

3.2.4. Accurate localization

On the last stage of the detection process, we perform an accurate localiza-

tion of the remaining keypoint candidates. This allows to localize accurately the

keypoints detected on subsampled versions of the input image and also serves

as an additional criterion of keypoint stability: not all the keypoint candidates

may be precisely localized, and the ones that reveal unstable behavior during

the accurate localization are rejected.

We reemploy the interpolation technique used in SIFT and SURF and ini-

tially presented in [59], based on the Taylor expansion of the score function up

to the quadratic terms. We apply it to the AGAST score reducing the number
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of dimensions from three to two, as no scale dimension is considered in our case,

and in the adaptive local axes instead of the standard ones.

More precisely, let S be the AGAST score, (x, y) a candidate point, (x∗, y∗)

an accurately localized local maximum, and Q = (~q1 ~q2) the coordinate trans-

formation. We first express S in the local coordinates:

S̃(ξ, η) = S

Q
ξ
η

−
x
y

 . (7)

We develop the Taylor expansion of S̃(ξ∗, η∗) where (ξ∗ η∗)T = ~δ = Q−1

x∗ − x
y∗ − y


with respect to the local coordinate center:

S̃(ξ∗, η∗) ≈ S̃ +
(
S̃ξ S̃η

)
~δ +

1

2
~δT

S̃ξξ S̃ξη
S̃ξη S̃ηη

~δ. (8)

S̃ and its derivatives on the right side of the equation above are taken at point

(0, 0). Deriving this and using the fact that (ξ∗, η∗) is a local maximum, i.e.,

S̃ξ

∣∣∣
ξ∗,η∗

= S̃η

∣∣∣
ξ∗,η∗

= 0, we obtain:

~δ = −

S̃ξ
S̃η

S̃ξξ S̃ξη

S̃ξη S̃ηη

−1 . (9)

The displacement in standard image axes is equal to Q(~δ).

Similarly to the SIFT implementation [60] we apply this process iteratively,

cumulating the offset and reinterpolating the derivatives of S̃. For a better

selection of stable keypoints, we reject a keypoint during the iterations if the

Hessian of S̃ is rank-deficient. Following [60], in our implementation we perform

at most 5 iterations.

3.3. The Descriptor

Once the set of interesting point positions and scales is provided, a compact

description is computed for each point.

In our previous work [52], we studied how binary features may be used to

extract a surface-intrinsic information from RGBD images in order to provide a
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description robust to rigid 3D deformations. A descriptor sampling pattern was

projected on the scene surface, providing a depth-based descriptor normalization

procedure aimed at producing invariant features. However, such a projection

is (1) very sensitive to depth map noise and (2) requires a high computational

effort. To be robust to the viewpoint position changes on the descriptor level,

in this work we propose a simpler approach based on a similar concept: the

descriptor normalization is performed according to the local tangent plane ap-

proximating the scene geometry nearby the keypoint, computed directly in the

camera coordinates using the definition of local axes in Section 3.2.1.

Non-binary local planar normalization-based descriptors are studied in the

literature [37, 38, 50, 51]. In this work we apply this principle to produce a

binary descriptor. Precisely, we reuse the BRISK descriptor sampling pattern,

applying it to the image in adaptive local axes computed at the keypoint that

immediately gives us the approximating local plane. The pattern used in the

original BRISK implementation and an example of how it is mapped onto the

scene using local axes at a given corner point is shown in Fig. 5. We notice that

our design is not restricted to the BRISK sampling pattern; another manually

designed or appropriately learned pattern, e.g. [27] or [25], might be used with

no additional cost.

In TRISK we proceed as follows. Let {(υk, νk)}Mk=1 represent the Cartesian

coordinate pairs of the descriptor sampling pattern points. In case of BRISK,

M = 60. As discussed in [52], (υk, νk) values may be easily derived analytically

thanks to the radially regular disposition of the pattern points.

For a given keypoint position (X,Y ) and scale σ, we reuse the local axes ~q1

and ~q2 in order to map the pattern points to the image plane, similarly to the

detector pattern sampling in Eq. (4):xk
yk

 = συk~q1 + σνk~q2 +

X
Y

 (10)

Notice that, differently from (4), here we use a different pattern, indicated by

{(υk, νk)}Mk=1, which is scaled by σ, while in (4) the spatial extent of the pattern
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was fixed. The original BRISK uses a two-pass scheme that consists in sampling

the pattern, computing its dominant orientation from obtained samples and

sampling the oriented version of the pattern (by a “pass” we mean sampling

the pattern). In TRISK we proceed similarly. However, the descriptor pattern

in our case is more sensitive to keypoint parameter estimation errors due to (a)

perspective warping introduced by the local axes, (b) depth map imperfections

and (c) scale errors for keypoints situated near object boundaries, where the

depth varies abruptly. The latter is crucial since we average depth to derive

the geometric keypoint scale as explained above. For this reason, we propose

the following three-pass scheme that estimates accurately both the dominant

orientation and scale.

We begin with the geometric scale σ = σ0

z , where z is an average depth value

in the keypoint center. This provides a rough initial estimate of the scale which

is further refined.

1. The pattern is sampled in locations (xk, yk): averaged image intensity

is computed at each point. The neighborhood radius per point is taken

as shown in Fig. 5 and scaled by σ. The pattern is sampled both from

texture and depth maps, producing two sets of smoothed intensity and

depth values PI and PD, respectively.

2. The descriptor dominant orientation Θ is computed using the BRISK

methodology from PI ; the depth value z used in the initial estimate of

the scale is recomputed as average of all the values of PD.

3. The unmapped pattern (υk, νk) is reoriented according to Θ: each point is

simply turned around the pattern center by −Θ radians. The new oriented

pattern (υ′k, ν
′
k) is used, together with the updated value of σ, to sample

the texture by applying Eq. (4).

4. Dominant orientation Θ and scale σ are re-estimated once again in the

same way as in step 2, producing final values Θ∗ and σ∗.
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Figure 5: BRISK descriptor sampling pattern from the original implementation (left) and its

mapping to the surface through local planar normalization (right).

5. The pattern is sampled again according to Θ∗ and σ∗, giving final PI and

PD sets.

6. Control scale value σc is computed as before; the keypoint is kept only if

σc differs from σ∗ by no more than 1% of the latter, i.e., if the scale error

is negligible.

7. Finally sampled PI values undergo pairwise intensity comparison tests to

produce a binary string forming the descriptor.

The descriptor interoperability between cameras with different intrinsic pa-

rameters is achieved by a proper choice of σ0. If σ∗0 is a reference value for

Kinect expressed in the same units as the depth (e.g., the one we obtain in

Section 4.4), W ∗ and ω∗ are its image width in pixels and its horizontal angle

of view, respectively, the interoperability with another sensor having intrinsic

parameters (W,ω) is ensured if

σ0 =
W

W ∗
tan ω∗

2

tan ω
2

σ∗0 . (11)

This is derived using the pinhole camera model and assuming that σ0 corre-

sponds to a fixed spatial size [52].

3.4. Implementation details

TRISK has several parameters that control different stages of the feature

extraction process. For most of them we use the same values as in the original
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BRISK or SIFT papers or their implementations [14, 26, 60]. Other parame-

ters, such as the 1%-error threshold in the scale estimation, are derived from

experiments and do not impact significantly the performance. All these values

are mentioned in the text. The remaining parameters are: (1) neighborhood

size factor κ for PCA-based normal estimation used when computing the adap-

tive local axes, (2) AGAST score threshold t and (3) basic scale σ0 used in the

scale selection. A discussion of their appropriate values based on the matching

performance is given in Section 4.4.

For all the texture smoothing and interpolation operations we use the image

filter presented in [61].

The depth map values are used for normal estimation and scale selection.

In both cases, they are not used directly, but a neighborhood of each pixel is

considered. This allows to cope with the noise and small “holes” (areas with

no depth). Larger “holes” are simply skipped (i.e., no keypoint detection is

performed in these areas).

4. Experiments

In this section, we evaluate the proposed method compared to several well-

known local visual features in two scenarios:

� a mid-level feature evaluation in terms of matching score and receiver

operating characteristics (ROC) similarly to [6, 38, 52, 54, 56] performed

on synthetic RGBD data and RGBD images from the Freiburg dataset [62]

acquired with a Microsoft Kinect sensor;

� a visual odometry experiment on three sequences of the Freiburg dataset.

In the following, we provide a detailed description of the experiments and

discuss the results.

4.1. Compared methods

The following local feature extraction methods are used in the experiments.
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� The baseline is given by the BRISK features [26], computed on the RGB

channels only (ignoring depth). The publicly available original implemen-

tation is used.

� BRAND descriptor [49] is a recent approach for RGBD content matching.

We use it in conjunction with STAR detector as proposed in the original

paper. This method is referred to as star-brand. STAR is an OpenCV

implementation of the Center Surround Extrema (CenSurE ) [63]. The

original implementation of the descriptor is used.

� VIP [37] is based on SIFT descriptors computed on RGBD images and

aimed at improved viewpoint invariance. We use publicly available authors

implementation.

� As we deal with out-of-plane rotations, we compare the proposed method

to an affine-covariant detector [33] initialized with SIFT keypoints and

referred to as affine. VLFeat [60] implementation is used.

� For completeness, standard SIFT features [14] computed on RGB channels

only are also involved in the evaluation (VLFeat implementation is used).

We hence have six approaches being compared. Table 1 summarizes some

characteristics of the compared methods.

4.2. Datasets

We measure the performance of TRISK on several synthetic RGBD se-

quences 2 we used in our previous works [52, 54, 56] and three RGBD sequences

from Freiburg dataset [62]. The images are obtained using static 3D scenes,

rendered from different viewpoints. The scene content is mainly composed of

several publicly available textured 3D models3 with various texture and geom-

2The dataset is available for download at the address http://webpages.l2s.

centralesupelec.fr/perso/giuseppe.valenzise/download.htm
33D model courtesy of http://archive3d.net and http://www.turbosquid.com, accessed

in Oct.-Nov. 2013
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Method Keypoint Descriptor Depth map

type type and size use

trisk Corner Binary 512 bit detector and descriptor

brisk Corner Binary 512 bit no

star-brand Blob Binary 512 bit descriptor

vip Blob Numeric 128 dim. preprocessing

affine Blob Numeric 128 dim. no

sift Blob Numeric 128 dim. no

Table 1: Summary of compared methods.

etry characteristics. The Graffiti sequence is synthesized from the frontal view

of the original Graffiti sequence [6]. Being synthetically generated, this dataset

provides a highly accurate ground truth for the mid-level feature evaluation.

As we are mainly interested to the invariance to viewpoint position changes,

all the sequences contain significant changes in camera position between views

(examples of images are shown in Fig. 6):

� Bricks: 20 images with large out-of-plane rotations (up to 90°) and vertical

camera displacements,

� Graffiti : 25 images with yet larger out-of-plane rotations (up to 120°); this

RGBD sequence is resynthesized from the frontal image of the original

Graffiti sequence [6],

� House: 25 images captured with a camera flying back, giving significant

scale changes and limited out-of plane rotations (up to 25°).

The Freiburg dataset [62] consists of several indoor RGBD image sequences

of 640×480 pixels acquired with Microsoft Kinect and ASUS Xtion sensors.

Ground truth sensor position and orientation is tracked using a motion-capture

system, making this dataset suitable for SLAM and visual odometry experi-

ments. The depth maps are of a standard Kinect quality (may contain regions
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Figure 6: Texture maps of first and last view of Bricks, Graffiti and House RGBD sequences

(from left to right) used in the matching score and ROC tests.

with undefined depth). Freiburg sequences contain more complex camera posi-

tion changes. The sequences desk (we used 40 frames with 10 frames skipping)

and structure texture far (59 frames with 5 frames skipping) represent out-of-

plane rotations, whereas in the floor sequence (19 frames with 5 frames skipping)

the camera moves arbitrarily within the scene.

4.3. Matching score and ROC

We first test the matching capabilities and the discriminability of the pro-

posed features following the protocol initially established by Mikolajczyk et al.

in [5, 6]. In different variants, this kind of evaluation frequently appears in the

literature (e.g. [4, 7, 8, 9, 11]), and has become classic for mid-level evaluation

of local image features.

In this section, we first revisit the evaluation framework taking into account

the extended modality (presence of “D” in “RGBD”). The test setting is re-

sumed in the following steps.

I. A set of RGBD image sequences is taken with each sequence representing

a certain class of visual distortions.

II. In each sequence, its first image is taken as the reference and matched

against each remaining image. The reference descriptors are further referred to

as matchees, whereas the test descriptors are called matchers. The matching

consists in finding the closest matcher to each matchee. The inter-descriptor

similarity measure (score) depends on the descriptors type. Hamming distance,

i.e., number of bit positions where matcher and matchee take different values,

is used for all the binary descriptors. As explained in [14], the ratio ρ1/2 of

Euclidean distances “matchee – closest matcher” and “matchee – 2nd closest

matcher” is used for SIFT-based descriptors; this similarity measure gives a
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Figure 7: SIFT descriptor matching using different inter-descriptor similarity measures. Sim-

ple distance-based matching is compared to ρ1/2 ratio-based matching [14] for standard (blue)

and affine normalized (red) SIFT descriptors. To plot ROC, 20K true positive and 20K false

positive matches were collected by matching the test sequences in Fig. 6. Normal SIFT de-

scriptors are more distinctive when being matched using ratio-based score, whereas affine

invariant features perform much better with simple Euclidean distance. The best performing

scores are used in further tests in this paper.

significant discriminability gain with respect to the simple Euclidean distance

between the descriptors. However, we employ the simple Euclidean distance for

SIFT descriptors issued from affine covariant keypoints as, in this case, the above

mentioned ratio causes the losses of distinctiveness, as we discovered previously

in [38]. This choice of scores is also validated experimentally on the data we use

as presented in Fig. 7.

III. The set of matching feature pairs between the two given images (puta-

tive matches) is split into correct (true positive) and incorrect (false positive)

matches using ground truth. Two keypoints coming from different images but

occupying the same area of the scene are called repeated keypoints; they produce

a correct match if the descriptors corresponding to these keypoints are matched.

The keypoint area overlap is controlled by means of the overlap error :

ε(A,B) = 1− A ∩B
A ∪B

. (12)

A positive match is then labeled as “true” if ε(A,B) < ε0, where ε0 is typically

equal to 0.5. Originally, A and B were representing the elliptical keypoint

regions projected on the same camera plane (for example, the reference one) [6].

Thus, ε represented the degree of overlapping of two “spots” each highlighting a

keypoint. However, if the observed scene is not entirely planar, the reprojected
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“spots” are not elliptical and may take arbitrary not even connected shapes.

Their overlap then can not be computed analytically. For this reason, here we

follow our previous works [52, 54, 55, 56] and consider the overlap of 3D spheres

centered at keypoint positions projected on the scene surface. The radius is

selected in such a way that the keypoint ellipse may be backprojected from

the camera plane onto a 3D circle that fits the sphere boundary. As the camera

positions and orientation matrices are provided, the necessary pixel-level ground

truth is derived by depth maps backprojections. In our tests, each matchee

may match at most one true positive matcher (we take the one that minimizes

ε(A,B)).

IV. The ratio between the number of correct matches and the maximum

possible number of matches is reported as matching score per image pair.

V. A putative match is found if the matching distance between two descrip-

tors is below a certain threshold. By varying the value of this threshold, one

can compute the true and false positive rates and trace the ROC curve. The

ROC curves are balanced, i.e., an equal number of matching pairs of each class

(true and false) is randomly selected among all the matches issued from each

scene.

Matching score allows to judge on the ability of the detector to produce

repeatable keypoints as well as on the matching capability of the entire pipeline,

whereas ROC shows how the descriptors are discriminative, e.g., their ability

of distinguishing salient visual information in presence of deformations. Put

together, these characteristics trace the two main axes of the local visual features

mid-level evaluation: repeatability and distinctiveness.

The resulting matching score and ROC curves obtained on the test sequences

are presented in Fig. 8 and 9. The number of features detected by each method

is reported in Table 2. It can be seen from the results that in all the test

sequences TRISK demonstrates improved overall matching score. In some cases

(Graffiti, House, Floor) TRISK also shows the slowest decay, which indicates

improved feature stability under viewpoint position changes. The second best

matching score on synthetic sequences (top row in Fig. 8) is arguably achieved
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by VIP. Based on a planar normalization technique, VIP performs well in case

of simple geometry, i.e., when the scene surface is mostly planar or very smooth,

otherwise it may even be unable to detect any features. TRISK also exploits the

principle of planar normalization, but in a much more local way, which allows it

to perform well in scenes with more complex geometry, such as desk and House.

As for the descriptor discriminability examined with ROC curves (bottom

rows in Fig. 8 and 9), the best performance is shared among TRISK, VIP and

sometimes SIFT. TRISK outperforms the other approaches on sequences with

simple geometry and detailed texture (Graffiti and structure texture far), but

in other cases turns out to be comparable to or moderately less distinctive than

non-binary descriptors, notably SIFT and VIP. This result deserves a more

elaborated discussion.

First, the non-binary descriptors in our tests are represented by 128-dimensional

numeric vectors. They are naturally more distinctive than the 512-bit binary

descriptors since they carry more information. This is coherent to other evalu-

ations in the literature [8, 26, 9]. It is also worth noticing that the other binary

competitors are mostly always singificantly outperformed by TRISK.

Second, the observed moderate ROC gains of non-binary features over TRISK

is arguably meaningful. In the House sequence VIP demonstrates the best

discriminability but low matching scores: only the first 8 views are reliably

matched against the reference. Consequently, the majority of the true positive

matches comes from these views. However, the first views have less perspective

distortions compared to the reference than the others, and thus the matched

descriptors from the first views are less deformed, and their corresponding true

and false positives are easier to distinguish by the inter-descriptor difference.

This leads to a gain in terms of ROC, whereas the most challenging part of the

sequence remains mostly unmatched. Hence, ROC is comparable only if the

matching score is reasonably high over the whole deformation spectrum. Even

though to a lesser extent, the other sequences exhibit a similar phenomenon.
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Figure 8: Matching score and receiver operating characteristics demonstrating repeatability

and distinctiveness of the compared detectors and descriptors, mainly under out-of-plane

rotations (Bricks and Floor sequences) and scale changes (House sequence). Computed on

synthetic RGB data. At least 4800 true positive and 4800 false positive matches were selected

to plot each ROC curve.

4.4. Parameter values estimation

The matching score and ROC are also used to find empirically optimal val-

ues for TRISK parameters. To do this, we collected 500 image pairs from

large with loop and long office household Freiburg sequences, respectively. These

two sequences represent different kinds of viewpoint position changes (from out-

of-plane rotations in long office household to scale changes and 3D translations

in large with loop). We consider the following space for the grid search: we take

6 values of support size factor κ used in the normal estimation, 6 values of basic

scale σ0 and 5 values of AGAST score threshold t. This gives in total 6×6×5

triples (κi, σ0i, ti), that cover a spectrum of reasonable values for the input pa-

rameters. We matched then all the selected image pairs using each parameter

triple. This provided us with about 20 millions matching pairs of features in

total. As a function F to maximize, we choose the product of averaged match-

ing score over all the image pairs and area under ROC curve, which seems a
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Figure 9: Matching score and receiver operating characteristics demonstrating repeatabil-

ity and distinctiveness of the compared detectors and descriptors under viewpoint position

changes of different kind. Computed on three sequences of Freiburg dataset [62], acquired

with Kinect. In some images in desk sequence and in the whole floor sequence VIP turns

unable to detect any feature.

reasonable joint performance index of detector and descriptor.

We notice that the AGAST score threshold t in TRISK plays the same role as

in BRISK, and has a major impact on the number of detected features. However,

when it varies in a reasonable range, it does not produce a significant impact

on the performance index: when averaging F over ti, the standard deviation in

the (κ, σ0) plane does not exceed 0.014 when F varies in the range 0.12 to 0.22.

Based on this, we averaged F over 5 parameters of t, reducing the search space

to two dimensions (κ, σ0), where F exhibits a distinctive maximum near point

(κ∗, σ∗0) = (25,14.27). The contour plot of F in Fig. 10 allows further analysis:

when σ0 is large enough, (i) the performance depends mainly on κ, (ii) it does not

vary significantly after κ becomes reasonably high. This result is coherent, since

κ is introduced to cope with the depth map noise, and is rather a depth sensor

characteristic, while σ0 may be content-dependent, as it reflects a characteristic

size of repeatable landmarks observed in the training data. Consequently, we
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Sequence trisk brisk brand sift affine vip

Bricks

MIN 493 766 1072 1638 2194 3346

AVG 1329 915 1188 1841 2482 4293

MAX 1840 1163 1330 2047 2714 5458

Graffiti

MIN 994 855 595 782 1079 1603

AVG 1518 1041 809 1305 1764 2280

MAX 1804 1151 917 1615 2171 3029

House

MIN 393 164 462 1924 2445 237

AVG 879 231 889 2235 3056 1831

MAX 1302 276 1240 2637 3609 3503

desk

MIN 111 194 433 898 1115 0

AVG 214 421 524 1036 1343 113

MAX 296 689 611 1213 1597 420

floor

MIN 311 32 431 1049 1328 0

AVG 578 172 700 1257 1634 2

MAX 777 357 1045 1460 1895 59

structure texture far

MIN 579 156 509 1060 1461 672

AVG 913 471 692 1154 1615 976

MAX 1210 732 838 1298 1820 1220

Table 2: Minimal, average and maximal number of features extracted from each scene. Mini-

mum and maximum values per row are highlighted in green and yellow.

recommend the found values (κ∗, σ∗0) as default for Kinect depth maps given

in meters, and use in all the experiments in this paper, except the ones on

the synthetic dataset (Fig. 8). In this case, the depth maps are quasi-perfect

(contain no noise), thus a small value of κ is more appropriate (we used κ = 5).

As for σ0, even if it requires a proper tuning, as the observed content might be

rather different from the Kinect one, we simply rescaled the depth values to fit

Kinect statistics and use the same value of σ0 = σ∗0 .

4.5. Visual odometry

In addition to the mid-level evaluation, we assess TRISK performance in

a visual odometry scenario using two Kinect and Asus Xtion image sequences

from Freiburg dataset [62]. The goal consists in retrieving camera pose evolu-

31



Normals support factor, κ
B

as
ic

 d
es

cr
ip

to
r 

sc
al

e,
 σ

0

Contour plot of F in the parameter search space

5 10 15 20 25

10

20

30

40

50

(κ*, σ
0
* )

Figure 10: Contour plot of the performance index F in the plane (κ, σ0).

tion relatively to an initial pose using only the acquired images. The ground

truth pose is recorded with a motion capture system and is provided within

the dataset. We follow the setting of [49]: to compute the camera transfor-

mation (translation and rotation) between two frames, we match them, apply

RANSAC to filter putative matches and, finally, run the Iterative Closest Point

algorithm [64] retrieving the relative translation vector and rotation matrix. The

resulting pose is recovered by cumulating deduced translations and rotations.

In this experiment we limit the number of keypoints extracted from each image

by each detector, keeping at most 1000 keypoints with the highest response. In

case of TRISK, the detector response is the interpolated AGAST score.

Two types of errors are used in the evaluation:

� translation error : the distance between estimated and ground truth posi-

tions,

� rotation error : ε = arccos
tr(R−1Rgt)−1

2 , where R is the estimated camera

orientation matrix with respect to the initial pose, and Rgt is the ground

truth one.

Typically, each registered frame is matched against the next one, providing

a “delta-pose” that is added to the current position. In our experiment, we

proceed differently: we skip more than one frame, i.e., we look for the trans-

formation relating frame 0 to frame K > 1, then frame K to frame 2K, etc.

This technique has a twofold effect. On one hand, it allows to compensate the

visual drift being cumulated with each new “delta”, as well as to reduce the
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Figure 11: Visual odometry with 10 frames skipping on freiburg2 desk sequence (first 500

frames): translation (top) and rotation (bottom) errors. VIP fails on this sequence, thus it is

not reported.
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Figure 12: Visual odometry with 5 frames skipping on freiburg1 floor sequence (first 500

frames): translation (top) and rotation (bottom) errors. VIP fails on this sequence, thus it is

not reported.

computational time. On the other hand, the resulting errors depend strongly

on the features quality (matching capabilities and localization accuracy), as the

visual difference between frames n and n+K is typically more significant than

the one between n and n + 1. This setting is thus a good scenario to evaluate

the features.

Translation and rotation errors evolution on different sequences is presented

in Fig. 11, 12 and 13. To compensate for the randomness induced by RANSAC,

we run the experiment 10 times on each sequence and then averaged the results.

All the methods have similar error values in the first frames. However, as

the scene evolves, the drift cumulates differently for different features. It can

be observed that TRISK generally achieves smaller errors. An exception is the

floor sequence (Fig. 12), where all the methods achieve small errors compared to

other sequences (less than 12 cm and 5°), but AGAST-based features turn out to

be slightly less precise in rotations. The possible reason is that in this sequence

the camera moves quickly (for this reason we set K = 5 for this sequence and
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Figure 13: Visual odometry with 10 frames skipping on freiburg3 structure texture far se-

quence (first 500 frames): translation (top) and rotation (bottom) errors.
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Figure 14: Feature extraction time averaged over images from matching score test (Fig. 9).

Smoothing filter initialization, local axes computation, AGAST over 3 octaves, keypoint can-

didates processing (“CP”) over 3 octaves (includes accurate localization, Harris corner test

and descriptor computation) and remaining processing times and their standard deviations

are displayed.

not 10 as for the others). This causes a noticeable directional blur in texture

maps, which interferes with corner detection but is manageable by blob detec-

tors. A drastic difference in the odometry precision is revealed on desk sequence

(Fig. 11), where mostly all the other approaches, notably BRISK, experience

severe errors in matching consecutive frames. TRISK is the only approach pro-

viding precision within 10 cm and 4°. Finally, on structure texture far sequence

(Fig. 13), TRISK is mainly competing with VIP, which also performs well thanks

to the locally planar geometry. It is worth noticing that on the other two se-

quences VIP proves unable to provide enough matches for continuous trajectory

estimation.

4.6. Note on computational efficiency

We ran our tests on a 64-bit Windows machine with a 3.5 GHz 6-physical

core CPU and 16 Gb of RAM. Figure 14 reports the time spent on each stage

of feature extraction from real RGBD images in the Freiburg dataset. Being

invoked from MATLAB environment through MATLAB MEX interface, our
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C++ TRISK implementation takes 306 ms per VGA image (average over about

150 images, with 21.2 ms standard deviation). This corresponds to about 540 µs

per feature. The most time consuming steps are the local axes computation and

AGAST on the first octave. The description time is included in the keypoint

candidates processing on each octave, and thus is much lower than the detection

time.

Compared to other conventional RGB binary features, TRISK entails a

higher computational cost: it is about 8 times slower than FREAK [27] and

more than 20 times slower than BRISK [26] and ORB [25]. This overhead is

certainly due to the fact that TRISK processes also the geometric information,

in particular, by computing per pixel local axes, as well as to the fact that our

implementation might be further optimized. As we noticed before, the local

adaptive axes might be computed differently, e.g., PCA-based normal estima-

tion technique [57] may also provide two orthogonal vectors to the normal that

might be used as the local axes. This, however, requires the complete PCA

decomposition of the point cloud covariance matrix at each pixel. We tested

this approach and obtained very similar performance, but the average local axes

computation time increased by 60 ms.

TRISK can be speeded up considerably by using multiple threads. The

adaptive local axes computation, AGAST and local maxima suppression are

purely local, and all the keypoint candidates are processed independently start-

ing from the accurate localization to the descriptor computation. This makes

TRISK easily parallelizable, allowing for distributed and GPU-based implemen-

tations.

5. Conclusion and future work

In this paper we presented a complete pipeline of local feature extraction

for texture-plus-depth image matching. The proposed TRISK features target

application scenarios where significant viewpoint position changes are present

in the input data. The experiments showed that TRISK improves consistently
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both feature stability and distinctiveness, which allows for better performance

on the application level. TRISK can be applied on real RGBD images ac-

quired with low-cost RGB-depth camera pair, such as Microsoft Kinect or Asus

Xtion, without any complex preprocessing of the depth map. The computa-

tional effort required to process an image is sufficiently low, so that it is able to

perform at near-realtime rates. A publicly available implementation of TRISK

can be downloaded at the address http://webpages.l2s.centralesupelec.

fr/perso/giuseppe.valenzise/download.htm.

Clearly, TRISK could be improved, notably in its ability to deal with com-

plex, highly detailed geometry, currently limited by the local planar approxi-

mation used to compute the descriptor. A more complex way to render the

descriptor stable and invariant to viewpoint position changes, such as [52], is

more computationally expensive and sensible to the depth map imperfections.

Rendering the descriptor robust to geometrically complex scenes is one of the

main objectives for our future work. Along with this, a learning-based descrip-

tor design [25, 29] seems promising from the discriminability boosting point of

view.
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