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In this paper we present a new complete detector-descriptor framework for local features extraction from grayscale texture-plus-depth images. It is designed by putting together a locally normalized binary descriptor and the popular AGAST corner detector modified to incorporate the depth map into the keypoint detection process. With these new local features, we target image matching applications when significant out-of-plane rotations and viewpoint position changes are present in the input data. Our approach is designed to perform on RGBD images acquired with low-cost sensors such as Kinect without any complex depth map preprocessing such as denoising or inpainting. We show improved results with respect to several other highly competitive local image features through both a classic local feature evaluation procedure and an illustrative application scenario. Moreover, the proposed method requires low computational effort.

Introduction

During the past decades, a large spectrum of vision problems has been settled with local features, such as visual simultaneous localization and mapping (SLAM) [1], visual odometry [2], tracking by matching [3], etc. This has made the concept of local features one of the most valuable in vision. Numerous comparative evaluations of competing local features have been published [1,4,[START_REF] Mikolajczyk | A performance evaluation of local descriptors[END_REF][START_REF] Mikolajczyk | A comparison of affine region detectors[END_REF][START_REF] Moreels | Evaluation of features detectors and descriptors based on 3D objects[END_REF][START_REF] Heinly | Comparative evaluation of binary features[END_REF][START_REF] Canclini | Evaluation of low-complexity visual feature detectors and descriptors[END_REF][START_REF] Guo | A comprehensive performance evaluation of 3d local feature descriptors[END_REF][START_REF] Mukherjee | A comparative experimental study of image feature detectors and descriptors[END_REF]. Industrial demand for universally applicable local image features has also stimulated MPEG standardization activities for Compact Descriptors for Visual Search (CDVS) [START_REF]WG 11, ISO/IEC CD 15938-13 compact descriptors for visual search[END_REF] and Compact Descriptors for Visual Analysis (CDVA) [START_REF]ISO/IEC JTC 1/SC 29/ WG 11, CDVA: Requirements, MPEG document N14509[END_REF].

Intensive development of local features in traditional imaging has nowadays arrived to the exploration of different visual content modalities, such as range images, 3D meshes or plenoptic images. This is further stimulated by the commercial diffusion of the corresponding acquisition devices, such as low-cost RGB+depth sensors Microsoft Kinect, ASUS Xtion, Google Tango, Structure Sensor for iPad, high quality laser scanners (LIDARs), lightfield cameras Lytro, Raytrix, etc. In this work we consider the RGBD format, also known as "textureplus-depth", in which a conventional 2D image (texture map) is complemented by a range image (depth map) describing the distance of objects from the camera plane1 .

Recently, a good deal of attention has been devoted to designing novel local features for RGBD content. In fact, differently from 3D meshes and point clouds, this modality allows to employ and extend principles of local features from traditional imaging. However, in spite of this growing interest, to the best of our knowledge no complete feature extraction pipeline (containing both detector and descriptor ) has been proposed so far for (sparse) RGBD local features. This has been partially due to the noisiness and incompleteness of depth maps acquired by low-cost sensors such as the Kinect.

In this paper, we show that the geometrical information provided by depth, if properly used, enables to improve the stability of local features harnessed from texture images. Especially, feature invariance to rigid 3D transformations, which is the most common class of visual deformations, may be significantly increased. This is of high practical interest as out-of-plane rotations are known failure cases for classic texture-only local features. In addition, we demonstrate that the proposed features can be computed efficiently.

The contribution of this paper is a new local features extraction framework

for RGBD (texture-plus-depth) sparse image matching that consists of: i) a salient visual point detector based on a corner detector, and ii) a binary local feature descriptor. Differently to other state-of-the-art RGBD local features, in our approach the depth map is involved in both stages. Moreover, the proposed feature is designed to be robust to viewpoint position changes, whereas all the standard state-of-the-art feature invariance classes (translations, in-plane rotations, scale changes, simple illumination changes) are preserved; our method is applicable to real RGBD data of Kinect quality taking into account the major flaws of the D channel. We only assume that the depth map is aligned with the texture map through a device-specific camera calibration transformation, which is typically provided with the sensor; feature detection and description require a moderate computational effort and are easily parallelizable. The resulting descriptors are binary, allowing for extremely fast matching.

The rest of the paper is organized as follows. Section II presents related work on local features and introduces the problem of out-of-plane rotations. Section III describes the design of the proposed feature extraction pipeline. Section IV presents in details the experimental validation and obtained results. Finally, Section V concludes the paper.

Related Work

Conventional local features

The idea of content matching through local features has been progressively evolving for a long time, but the concept of a robust universal local image feature, i.e., a feature designed regardless of a specific application, is relatively modern. Sparse image matching through such features typically consists of three steps: detection of repeatable salient visual points (keypoints) in the input image, description: computation of a compact signature (descriptor ) describing locally the visual content at each keypoint detected on the previous stage, matching: for two given images each represented by a set of such descriptors, establishing pairwise correspondences between the feature sets revealing local visual similarities.

The number of the correspondences, their fidelity and the underlying geometry are then analyzed by the application in order to decide on the similarity of the input images in search tasks, or to figure out the geometrical relation between two views in localization and registration tasks.

SIFT (Scale Invariant Feature Transform) [START_REF] Lowe | Distinctive image features from scale-invariant keypoints, Intern[END_REF] was the first complete and universal framework to detect keypoints and extract corresponding local descriptors that are scale and rotational invariant. SURF (Speeded Up Robust Features) [START_REF] Bay | Speeded-up robust features (SURF)[END_REF] was then proposed as a computationally efficient alternative to SIFT. Both approaches use pyramidal image representations to detect scale invariant keypoints, and describe the surrounding patches by high-dimensional histogram-based signatures. The matching of such descriptors relies on the Euclidean distance.

More recently, a greater deal of attention has been devoted to binary local features: they increase the computational efficiency of feature extraction and matching, and together with learning-based approaches are currently an active research field in the computer vision community [START_REF] Balntas | Binary online learned descriptors[END_REF][START_REF] Duan | Context-aware local binary feature learning for face recognition[END_REF][START_REF] Guan | Brisks: Binary features for spherical images on a geodesic grid[END_REF][START_REF] Liu | Learning multifunctional binary codes for both category and attribute oriented retrieval tasks[END_REF][START_REF] Duan | Learning deep binary descriptor with multi-quantization[END_REF][START_REF] Jain | Subic: A supervised, structured binary code for image search[END_REF][START_REF] Shen | Deep binaries: Encoding semanticrich cues for efficient textual-visual cross retrieval[END_REF].

One of the first proposed binary features, BRIEF (Binary Robust Independent Elementary Feature) [START_REF] Calonder | BRIEF: Binary robust independent elementary features[END_REF] extends the idea of local binary patterns [START_REF] Ojala | A comparative study of texture measures with classification based on featured distributions[END_REF], originally designed for texture analysis tasks, to describe interesting points. Since the extracted feature is a string of bits, the matching is done using Hamming distance, which is more efficient to compute than the Euclidean one. This idea is further elaborated in numerous works [START_REF] Rublee | ORB: an efficient alternative to SIFT or SURF[END_REF][START_REF] Leutenegger | BRISK: Binary robust invariant scalable keypoints[END_REF][START_REF] Alahi | FREAK: Fast retina keypoint[END_REF][START_REF] Baroffio | Briskola: BRISK optimized for low-power ARM architectures[END_REF][START_REF] Trzcinski | Boosting binary keypoint descriptors[END_REF]. Notably, ORB (Oriented FAST and Rotated BRIEF) [START_REF] Rublee | ORB: an efficient alternative to SIFT or SURF[END_REF] and BRISK (Binary Robust Invariant Scalable Keypoints) [START_REF] Leutenegger | BRISK: Binary robust invariant scalable keypoints[END_REF] present complete extractors of scale and rotation invariant binary features. They apply FAST [START_REF] Rosten | Fusing points and lines for high performance tracking[END_REF] and AGAST [START_REF] Mair | Adaptive and generic corner detection based on the accelerated segment test[END_REF] corner detectors to scale space-like image pyramids to find the keypoints, estimate dominant keypoint orientations, and then invoke the same principle of binary description.

The feature proposed in this work employs a similar binary pattern, but we sample it in the scene surface rather than in the camera plane.

The problem of out-of-plane rotations

Existing 2D scale and rotational invariant features are not suited to deal with considerable 3D distortions, even rigid, such as perspective deformations, rotations out of the camera plane, or substantial camera position changes. As an example, SIFT performance drops quickly when the scene undergoes an out-ofplane rotation of more than 45° [START_REF] Morel | ASIFT: A new framework for fully affine invariant image comparison[END_REF]. According to different evaluations [4,[START_REF] Mikolajczyk | A comparison of affine region detectors[END_REF][START_REF] Canclini | Evaluation of low-complexity visual feature detectors and descriptors[END_REF], this trend is common to most detectors and descriptors. For this reason, a set of approaches dealing with such 3D distortions has been developed.

Affine invariant features address the problem assuming that perspective distortions are well approximated locally by in-plane affine transformations. Affinecovariant detectors [START_REF] Mikolajczyk | Scale & affine invariant interest point detectors[END_REF] estimate an elliptical frame per keypoint using the surrounding image content. The local patch then undergoes a normalizing transformation mapping each estimated ellipse to a circle. ASIFT (Affine-SIFT) [START_REF] Morel | ASIFT: A new framework for fully affine invariant image comparison[END_REF] is based on an alternative paradigm, i.e., it simulates a set of affinely transformed versions of the input image in order to find the best matching features.

A similar simulation-based affine generalization of SURF is presented in [START_REF] Pang | Fully affine invariant SURF for image matching[END_REF]. Some approaches go beyond the rigid scene deformations, aiming at non-rigid surfaces images matching, e.g., movement of textiles [START_REF] Ling | Deformation invariant image matching[END_REF][START_REF] Moreno-Noguer | Deformation and illumination invariant feature point descriptor[END_REF].

An essential limitation of the affine invariance paradigm is that perspective distortions are approximated by a class of transformations that is too general. This causes losses of relevant visual information. A typical example is that affine-covariant features do not distinguish between a square and a rectangle, or a circle and an ellipse [START_REF] Wu | 3D model matching with viewpoint-invariant patches (VIP)[END_REF]. As we showed in our previous work [START_REF] Karpushin | Local visual features extraction from texture+depth content based on depth image analysis[END_REF], this leads to a loss of the descriptor discriminability.

While the invariance of conventional features, such as SIFT or BRISK, to translations, scale changes and in-plane rotations is guaranteed by design, the invariance to out-of-plane rotations of the listed approaches is rather heuristic. This leads to limited feature stability when the observed scene undergoes significant viewpoint position changes. Therefore, out-of-plane rotations and viewpoint position changes still remain challenging. We consider these two transformation classes as synonyms in the following, since combined with translations, scale changes and in-plane rotations they become equivalent to 3D rigid scene deformations. The problem of feature invariance is thus the focus of this paper: we believe that the main advantage of injecting complementary geometrical information into the feature extraction process is the possibility to deal with significant viewpoint position changes.

Texture+Depth (RGBD) content matching

A considerable amount of work has been done on the local features for range images (depth maps) as well as RGBD images. Such methods may be split into three groups.

Shape-only descriptors. Some local descriptors operate only with depth maps or point clouds. These approaches are advantageous in applications where the geometrical information is prevalent over the photometrical one. Absence of texture in the feature computation process makes the features completely insensible to any kind of illumination changes. However, in case of poorly detailed geometry the performance of such approaches drops off. 2.5D SIFT [START_REF] Lo | Local feature extraction and matching on range images: 2.5D SIFT[END_REF] proposes an extension of SIFT detector and descriptor to range images. NARF (Normally Aligned Radial Feature) [START_REF] Steder | Point feature extraction on 3D range scans taking into accountobject boundaries[END_REF] is a rotational invariant feature detector and descriptor for range image matching. SIPF (Scale Invariant Point Feature) [START_REF] Lin | SIPF: Scale invariant point feature for 3D point clouds[END_REF] is a recent work on the detection and description of scale invariant keypoints in point clouds. Other descriptors for shape matching are proposed in [START_REF] Tombari | Unique signatures of histograms for local surface description[END_REF][START_REF] Rusu | Fast point feature histograms (FPFH) for 3D registration[END_REF][START_REF] Ramisa | FINDDD: A fast 3D descriptor to characterize textiles for robot manipulation[END_REF][START_REF] Rusu | Fast point feature histograms (FPFH) for 3d registration[END_REF][START_REF] Johnson | Using spin images for efficient object recognition in cluttered 3D scenes[END_REF][START_REF] Zeng | 3DMatch: Learning local geometric descriptors from RGB-D reconstructions[END_REF].

Joint shape-texture description. In the second case, shape and texture are described jointly, i.e., a signature at each interest point describes both the local geometrical and photometrical information simultaneously. Joining the two modalities allows for improved robustness of detected features in static environments, e.g., for indoor localization. CSHOT (Color SHOT) [START_REF] Tombari | A combined texture-shape descriptor for enhanced 3D feature matching[END_REF] and BRAND (Binary Robust Appearance and Normal Descriptor) [START_REF] Do Nascimento | On the development of a robust, fast and lightweight keypoint descriptor[END_REF] propose binary descriptors obtained by properly combining two separate signatures extracted at the same keypoint from the texture map and the depth map. None of these methods, however, deals with significant viewpoint position changes.

Texture description using shape. In the third and last case, the geometry may be used to provide a robust description of the texture, but is not explicitly incorporated into the resulting descriptors. Differently to the previous case, such techniques are based on texture characteristics that are invariant with respect to the local shape. In this way a consistent deformation of the observed scene that affects both texture and geometry does not impact the descriptor. This reveals a particular interest for invariance to out-of-plane rotations. VIP (Viewpoint Invariant Patches) [START_REF] Wu | 3D model matching with viewpoint-invariant patches (VIP)[END_REF], PIN (Perspectively Invariant Normal features) [START_REF] Koser | Perspectively invariant normal features[END_REF], DAFT (Depth-Adaptive Feature Transform) [START_REF] Gossow | Distinctive texture features from perspective-invariant keypoints[END_REF] and our previous work [START_REF] Karpushin | Local visual features extraction from texture+depth content based on depth image analysis[END_REF] present descriptor patch normalization techniques aimed at improved stability under significant viewpoint position changes. The latter three perform a local normalization approximating the scene geometry near each keypoint by a plane, and then properly transforming the descriptor patch. VIP proceeds in a more global way. It looks for several dominant planes in the scene, then synthesizes corresponding frontal views and computes their SIFT descriptors.

In our preliminary work [START_REF] Karpushin | Local visual features extraction from texture+depth content based on depth image analysis[END_REF], we computed a simple least-square local planar warping of the texture surface in order to deslant it before computing a blob or corner descriptor. Differently to that work, here we directly sample the key-point and the descriptor patterns in the local axes in the camera plane, which turns out to be computationally more efficient. Our recent work [START_REF] Karpushin | Improving distinctiveness of BRISK features using depth maps[END_REF] presents a technique allowing more repeatable and distinctive BRISK features from the texture image by mapping the intensity sampling pattern onto the scene surface.

However, that approach has the main limitations of computational complexity and sensitivity to noise, which has motivated us to turn towards a locally planar and faster pattern-to-surface mapping algorithm in this paper. Some approaches for mesh matching may be considered in the same context, such as MeshDOG+MeshHOG (Difference of Gaussians + Histogram of Oriented Gradients) [START_REF] Zaharescu | Surface feature detection and description with applications to mesh matching[END_REF]. However, they require additional preprocessing steps to render a proper mesh from an RGBD image, whereas MeshDOG itself is already quite computationally expensive.

RGBD scale-invariant keypoint detection. In [START_REF] Karpushin | A scale space for texture+depth images based on a discrete Laplacian operator[END_REF][START_REF] Karpushin | Keypoint detection in RGBD images based on an efficient viewpoint-covariant multiscale representation[END_REF][START_REF] Karpushin | Keypoint detection in RGBD images based on an anisotropic scale space[END_REF] we focus on the problem of keypoint detection for RGBD. Specifically, we proposed a scale space formulation for the texture image that exploits the surface metric given by the depth map, by means of a Laplacian-like operator defining a non-uniform diffusion process [START_REF] Karpushin | A scale space for texture+depth images based on a discrete Laplacian operator[END_REF]. In a follow-up work [START_REF] Karpushin | Keypoint detection in RGBD images based on an anisotropic scale space[END_REF] we have employed this operator to conceive a complete multi-scale RGBD blob detector. While that work is mathematically elegant, it has the disadvantage of being computationally complex, as it entails performing an anisotropic diffusion process. In this work, we consider instead highly performing binary features, for which we do not need to compute derivatives explicitly.

TRISK: The Proposed Method

Overview

In this section we present the design of a keypoint detector and a feature descriptor for RGBD image matching. Our final goal is to obtain reliable features under significant viewpoint position changes, which are robust to depth map imperfections and at the same time computationally efficient. As briefly discussed in Section 2, visual features have been vastly studied for many years, leading to a number of tools that have been proven successful for image matching. We build on this knowledge base and retain the best concepts formulated so far, but we rethink and adapt them to introduce the geometric information provided by RGBD content.

In particular, we consider as a starting point the popular BRISK features [START_REF] Leutenegger | BRISK: Binary robust invariant scalable keypoints[END_REF], which provides state-of-the-art performance in both feature quality and computational speed amongst binary features [START_REF] Heinly | Comparative evaluation of binary features[END_REF]. However, our framework is rather general in principle and could be equally applied to other binary features. To underline the continuity with the visual feature literature and specifically BRISK, we then call the proposed features TRISK, for "Tridimensional Rotational Invariant Surface Keypoints". The overall scheme of TRISK is shown in Fig. 1. In the rest of this Section we describe in detail the building blocks of the proposed detector/descriptor.

The Detector

The proposed feature extraction algorithm begins with the following steps.

Local surface axes computation

The goal of this work is to render the feature extraction process as independent as possible of the camera position. One way to do this is to adapt all the local processing to the surface geometry, considering the observed image as a textured manifold. In TRISK, we follow this way by selecting a proper basis at each image point, which we further refer to as adaptive local axes. They are used to transfer the detection and the description from the camera plane onto the scene surface, basing them on the surface metric, which is intrinsically independent of the reciprocal camera-to-object position and orientation.

Deriving the adaptive local axes from the depth map is at the base of TRISK.

The following local operations will then be performed in the derived local axes: Let us consider a camera with the centered principal point. According to the perspective projection model, the relation between a spatial point (x, y, z)

and its projection (u, v) = Proj (x, y, z) on the camera plane is then expressed by the following formula (the corresponding coordinate systems are presented in Fig. 2):

u = x z , v = y z
Let A denote a scene point, A its coordinate vector in camera coordinates and (u, v) = Proj A . Let n = (n x , n y , -n z ) be the surface normal of unit norm at A (see Fig 3). With no loss of generality we assume 0 < n z < 1.

The following reasoning is based on the observation that the degree of perspective distortions along a contour on the scene surface passing through A depends on its direction with respect to the camera plane. Specifically, a tangent line L parallel to the camera plane is not affected by the perspective distortions: there is no contraction along L when projecting it on the camera plane. Nothing prevents to use this line as the first local axis. Thus, we need to find a vector m 1 = (m x , m y , m z ) such that it is: i) parallel to the camera plane; and ii) belonging to the tangent plane at A. The first condition results in m z = 0. The second condition requires that n • m = 0. It is straightforward to verify that m 1 = (-n y , n x , 0) satisfies both conditions. Let

q 1 = Proj A + m 1 -Proj A be the projection of m 1 onto the camera plane.
As there is no contraction along L, we normalize q 1 to have always unit
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: Computation of local axes q 1 and q 2 . On the left: q 1 and q 2 are obtained by projecting m 1 and m 2 in the 3D space onto the camera plane. m 1 is chosen to be always parallel to the camera plane, and its projected local axis is normalized to unit length. The projection of m 2 , i.e., q 2 has a length reflecting the perspective distortion at A, which depends on the angle ϑ between the viewpoint A and the normal at A. On the right: examples of local axes fields computed on images from Arnold and Bricks sequences, with q 1 shown in cyan and q 2 in yellow.

norm, i.e., q 1 = q 1 -1 q 1 , obtaining the first local axis as:

q 1 = 1 n 2 x + n 2 y   -n y n x   . (1) 
The second required spatial vector m 2 must be orthogonal to both n and m 1 , as together with m 1 it forms an orthogonal basis on the surface. This can be found by the cross product:

m 2 = m 1 × n. Along m 2 distances are contracted
by a factor which depends on the cosine of the angle ϑ between the viewpoint vector A and the normal n (see Figure 3): when A and n are aligned, then the tangent plane is parallel to the camera plane and there is no contraction; conversely, when A and n are orthogonal, the distortion is maximal. Let q 2 = Proj A + m 2 -Proj A be the projection of m 2 onto the camera plane.

The second local axis is thus given by:

q 2 = A • n A n • q 2 q 2 = n x u + n y v -n z q 2 √ u 2 + v 2 + 1 q 2 , (2) 
where

q 2 =    n x n z -u n 2 x + n 2 y -1 -u n y n z -v n 2 x + n 2 y -1 -v    . (3) 
The derived expressions of q 1 and q 2 depend only on the surface normal and the point position on the camera plane (u, v), but not on the depth map values directly. To estimate the normal vector we use PCA-based normal estimation [START_REF] Rusu | 3D is here: Point cloud library (PCL)[END_REF]. Since the depth noise increases with the distance for many sensors, including Kinect, we scale the support size with the depth. The scaling factor κ is an input parameter, whose tuning is discussed below. Using this approach the local axes field may be computed in O(N ) operations for an input image of N pixels. Moreover, it avoids explicit manipulations with differential characteristics of the depth map, which are prone to noise.

The described technique allows to compute the adaptive local axes from the depth map in a computationally efficient way and robustly to the noise. Under the assumption of the rotationally invariant keypoint detection criteria, this choice of basis vectors is not unique: a simple alternative is to choose the other two vectors obtained by the PCA decomposition. This, however, takes more computational time than the proposed technique (we discuss this option briefly in the experimental part).

AGAST and scale selection

Adaptive Generic Accelerated Segment Test [START_REF] Mair | Adaptive and generic corner detection based on the accelerated segment test[END_REF] is an approach for corner detection in images. According to this test, a pixel is deemed to be a corner if it is darker or brighter than at least N connected points on a circle surrounding it. More specifically, a pixel in the circle is considered darker/brighter than the center pixel if its intensity value is smaller/larger than the center intensity by at least a value τ . Therefore, keypoint detection with AGAST depends on the choice of τ and N . By increasing the value of τ , a smaller number of corners with progressively increasing contrast are selected. As suggested in [START_REF] Leutenegger | BRISK: Binary robust invariant scalable keypoints[END_REF], in order to obtain a per pixel score and perform non-local maxima suppression as, e.g., in SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints, Intern[END_REF], we define the score s(i) of pixel i as the maximum value of the intensity difference threshold τ such that i passes the AGAST corner test. Intuitively, pixels with higher scores correspond to higher contrast corners, which are likely to be more repeatable. Pixels whose score reaches a local maximum greater than a threshold t are taken as keypoint candidates.

This detection principle was successfully involved in scale-covariant keypoint detection [START_REF] Rublee | ORB: an efficient alternative to SIFT or SURF[END_REF][START_REF] Leutenegger | BRISK: Binary robust invariant scalable keypoints[END_REF]. Due to its isotropic (rotational invariant) and derivative-free design, this detection principle demonstrates good stability to image noise and moderate geometric deformation. In our case, the isotropic detection is required for using local adaptive axes. Moreover, AGAST allows to save time by reducing the number of intensity comparisons using a properly learned decision tree. This also responds well to our needs, since the image interpolation in the local axes is time consuming.

Specifically, inspired by BRISK detector [START_REF] Leutenegger | BRISK: Binary robust invariant scalable keypoints[END_REF], we apply AGAST to pick the keypoint candidates as explained below.

AGAST in local axes. Aiming at improved stability to viewpoint position changes, we apply AGAST9-16 in the local adaptive axes ("9-16" stands for at least 9 darker or brighter pixels on a circle of 16 pixels). The texture map is interpolated using the local surface axes defined in Eq. 2. Let us consider a Bresenham circle, i.e., a discrete approximation of a circle with N points (in our case, N = 16). Let

{(u k , v k )} 16 
k=1 be the coordinates of the points of that circle, where the reference system has origin in the center pixel. In order to transform the set of vectors

{(u k , v k )} 16 k=1 from this coordinate system into vectors {(x k , y k )} 16
k=1 expressed in the local axes ( q 1 , q 2 ), we need to perform a change of basis, i.e., write the Bresenham circle as a linear combination of the basis ( q 1 , q 2 ). In other words, we sample the texture map at locations

(x k , y k ) = (u k ξ 1 + v k ξ 2 , u k η 1 + v k η 2 ), k = 1, ..., 16.
(4)

The corner test is then performed on the obtained samples. Some of these samples might be unnecessary for the corner test: AGAST allows to reduce such needless sampling operations and save time.

The idea of performing AGAST in local axes is illustrated in Fig. 4. Nonlocal maxima suppression is then applied on the generated score map in order to select the keypoint candidates.

Multiscale detection. For improved stability to significant scale changes we run AGAST test on each level of a multiscale image pyramid. The pyramid consists of the original image and its subsampled versions (octaves); each next level is halfsampled with respect to the previous level. After the keypoint is detected on a given level, it is kept only if its AGAST score is greater than AGAST scores in the same position in an adjacent level. Differently to the original BRISK, the pyramid we use is sparse, i.e., there is only one level per octave. This is mainly motivated by the fact that we do not use the pyramid to derive the keypoint scale, but need it only to avoid missing keypoints when the image scale changes significantly.

Keypoint scale selection. To derive the keypoint scale we exploit the depth map similarly to [START_REF] Do Nascimento | On the development of a robust, fast and lightweight keypoint descriptor[END_REF]. A typical corner revealed by AGAST is an intersection of two straight contours or a point-like structure. We believe that the characteristic size of such a structure (its visual scale) is difficult to define properly: local patches of slightly different sizes centered around such a corner are visually similar, contrarily, for example, to a blob-like structure which exhibits more clearly such a characteristic size. However, scale estimation accuracy has a major impact on repeatability. For this reason, we use AGAST response only to derive the keypoint position but not its scale, since in case of RGBD images a better clue of scale is available in the depth map. To achieve scale invariance, we employ the geometrical scale. Namely, we get the keypoint scale from the depth map assuming that the underlying visual detail is of a fixed spatial size σ 0 . As observed also in [START_REF] Do Nascimento | On the development of a robust, fast and lightweight keypoint descriptor[END_REF], the geometric scale is inversely proportional to depth, i.e., keypoints farther from the camera have smaller spatial support in pixel units, due to perspective distortion. σ 0 is the coefficient of this inverse proportionality relation. It defines a sort of "anchor" size to which objects (in spatial units measured in the camera plane) are scaled based on their depth. Intuitively, σ 0 is related to the characteristic size of repeatable landmarks, which depends on the content and viewing conditions. The optimal value of σ 0 is found by grid search as explained in Section 4.4. Hence, the resulting scale is simply equal to σ = σ 0 z , where z is the average depth of the keypoint. This gives a rough initial scale estimation which is then refined on the descriptor stage: to avoid scale estimation errors for keypoints situated near depth boundaries, we estimate z iteratively, at the same time when the keypoint dominant orientation is selected. This is explained further in Section 3.3. The keypoint area is finally described by an ellipse spanning the scaled local axes σ q 1 and σ q 2 . Thus, TRISK keypoints are not circular as those of SIFT or BRISK, but elliptical similarly to the keypoints produced by affine-covariant detectors [START_REF] Mikolajczyk | Scale & affine invariant interest point detectors[END_REF].

Local maxima filtering

The initial keypoint candidates given by local maxima of AGAST score are then analyzed subject to their stability. A well-known supplementary criterion to filter out unstable keypoint candidates is based on Harris cornerness measure [START_REF] Harris | A combined corner and edge detector[END_REF]. It was first used in SIFT and then reemployed in other detectors, e.g.

ORB [START_REF] Rublee | ORB: an efficient alternative to SIFT or SURF[END_REF]. Some keypoints reported by a corner detector may actually be situated on straight edges, for example due to aliasing artifacts. These keypoints are prone to localization errors. In order to filter them out, the eigenvalue ratio of Hessian matrix H is thresholded [START_REF] Lowe | Distinctive image features from scale-invariant keypoints, Intern[END_REF]:

H =   I xx I xy I xy I yy   . (5) 
Here I denotes the smoothed texture image.

In our approach, differently to the presented classic technique, we replace the standard derivatives of I by the directional derivatives computed in the adaptive local axes q 1 and q 2 , i.e. we deal with the eigenvalues of

H q =   I q1 q1 I q1 q2 I q1 q2 I q2 q2   . (6) 
The reason is always the same: changing the axes allows to reduce the impact of perspective distortions when dealing with the texture curvature. We compute the eigenvalue ratio in the same way as in SIFT, and use the same threshold value: a keypoint is rejected if the ratio is greater that 10 [14].

Accurate localization

On the last stage of the detection process, we perform an accurate localization of the remaining keypoint candidates. This allows to localize accurately the keypoints detected on subsampled versions of the input image and also serves as an additional criterion of keypoint stability: not all the keypoint candidates may be precisely localized, and the ones that reveal unstable behavior during the accurate localization are rejected.

We reemploy the interpolation technique used in SIFT and SURF and initially presented in [START_REF] Brown | Invariant features from interest point groups[END_REF], based on the Taylor expansion of the score function up to the quadratic terms. We apply it to the AGAST score reducing the number of dimensions from three to two, as no scale dimension is considered in our case, and in the adaptive local axes instead of the standard ones.

More precisely, let S be the AGAST score, (x, y) a candidate point, (x * , y * ) an accurately localized local maximum, and Q = ( q 1 q 2 ) the coordinate transformation. We first express S in the local coordinates:

S(ξ, η) = S   Q   ξ η   -   x y     . (7) 
We develop the Taylor expansion of S(ξ * , η * ) where (ξ

* η * ) T = δ = Q -1   x * -x y * -y  
with respect to the local coordinate center:

S(ξ * , η * ) ≈ S + Sξ Sη δ + 1 2 δ T   Sξξ Sξη Sξη Sηη   δ. (8) 
S and its derivatives on the right side of the equation above are taken at point (0, 0). Deriving this and using the fact that (ξ * , η * ) is a local maximum, i.e., Sξ ξ * ,η * = Sη ξ * ,η * = 0, we obtain:

δ = -   Sξ Sη     Sξξ Sξη Sξη Sηη   -1 . (9) 
The displacement in standard image axes is equal to Q( δ).

Similarly to the SIFT implementation [START_REF] Vedaldi | VLFeat: An open and portable library of computer vision algorithms[END_REF] we apply this process iteratively, cumulating the offset and reinterpolating the derivatives of S. For a better selection of stable keypoints, we reject a keypoint during the iterations if the Hessian of S is rank-deficient. Following [START_REF] Vedaldi | VLFeat: An open and portable library of computer vision algorithms[END_REF], in our implementation we perform at most 5 iterations.

The Descriptor

Once the set of interesting point positions and scales is provided, a compact description is computed for each point.

In our previous work [START_REF] Karpushin | Improving distinctiveness of BRISK features using depth maps[END_REF], we studied how binary features may be used to extract a surface-intrinsic information from RGBD images in order to provide a description robust to rigid 3D deformations. A descriptor sampling pattern was projected on the scene surface, providing a depth-based descriptor normalization procedure aimed at producing invariant features. However, such a projection is (1) very sensitive to depth map noise and (2) requires a high computational effort. To be robust to the viewpoint position changes on the descriptor level, in this work we propose a simpler approach based on a similar concept: the descriptor normalization is performed according to the local tangent plane approximating the scene geometry nearby the keypoint, computed directly in the camera coordinates using the definition of local axes in Section 3.2.1.

Non-binary local planar normalization-based descriptors are studied in the literature [START_REF] Wu | 3D model matching with viewpoint-invariant patches (VIP)[END_REF][START_REF] Karpushin | Local visual features extraction from texture+depth content based on depth image analysis[END_REF][START_REF] Koser | Perspectively invariant normal features[END_REF][START_REF] Gossow | Distinctive texture features from perspective-invariant keypoints[END_REF]. In this work we apply this principle to produce a binary descriptor. Precisely, we reuse the BRISK descriptor sampling pattern, applying it to the image in adaptive local axes computed at the keypoint that immediately gives us the approximating local plane. The pattern used in the original BRISK implementation and an example of how it is mapped onto the scene using local axes at a given corner point is shown in Fig. 5. We notice that our design is not restricted to the BRISK sampling pattern; another manually designed or appropriately learned pattern, e.g. [START_REF] Alahi | FREAK: Fast retina keypoint[END_REF] or [START_REF] Rublee | ORB: an efficient alternative to SIFT or SURF[END_REF], might be used with no additional cost.

In TRISK we proceed as follows. Let {(υ k , ν k )} M k=1 represent the Cartesian coordinate pairs of the descriptor sampling pattern points. In case of BRISK, M = 60. As discussed in [START_REF] Karpushin | Improving distinctiveness of BRISK features using depth maps[END_REF], (υ k , ν k ) values may be easily derived analytically thanks to the radially regular disposition of the pattern points.

For a given keypoint position (X, Y ) and scale σ, we reuse the local axes q 1 and q 2 in order to map the pattern points to the image plane, similarly to the detector pattern sampling in Eq. (4):

  x k y k   = συ k q 1 + σν k q 2 +   X Y   (10) 
Notice that, differently from (4), here we use a different pattern, indicated by

{(υ k , ν k )} M k=1
, which is scaled by σ, while in (4) the spatial extent of the pattern was fixed. The original BRISK uses a two-pass scheme that consists in sampling the pattern, computing its dominant orientation from obtained samples and sampling the oriented version of the pattern (by a "pass" we mean sampling the pattern). In TRISK we proceed similarly. However, the descriptor pattern in our case is more sensitive to keypoint parameter estimation errors due to (a)

perspective warping introduced by the local axes, (b) depth map imperfections and (c) scale errors for keypoints situated near object boundaries, where the depth varies abruptly. The latter is crucial since we average depth to derive the geometric keypoint scale as explained above. For this reason, we propose the following three-pass scheme that estimates accurately both the dominant orientation and scale.

We begin with the geometric scale σ = σ0 z , where z is an average depth value in the keypoint center. This provides a rough initial estimate of the scale which is further refined.

1. The pattern is sampled in locations (x k , y k ): averaged image intensity is computed at each point. The neighborhood radius per point is taken as shown in Fig. 5 and scaled by σ. The pattern is sampled both from texture and depth maps, producing two sets of smoothed intensity and depth values P I and P D , respectively.

2. The descriptor dominant orientation Θ is computed using the BRISK methodology from P I ; the depth value z used in the initial estimate of the scale is recomputed as average of all the values of P D .

3. The unmapped pattern (υ k , ν k ) is reoriented according to Θ: each point is simply turned around the pattern center by -Θ radians. The new oriented pattern (υ k , ν k ) is used, together with the updated value of σ, to sample the texture by applying Eq. (4). The descriptor interoperability between cameras with different intrinsic parameters is achieved by a proper choice of σ 0 . If σ * 0 is a reference value for Kinect expressed in the same units as the depth (e.g., the one we obtain in Section 4.4), W * and ω * are its image width in pixels and its horizontal angle of view, respectively, the interoperability with another sensor having intrinsic parameters (W, ω) is ensured if

σ 0 = W W * tan ω * 2 tan ω 2 σ * 0 . ( 11 
)
This is derived using the pinhole camera model and assuming that σ 0 corresponds to a fixed spatial size [START_REF] Karpushin | Improving distinctiveness of BRISK features using depth maps[END_REF]. For all the texture smoothing and interpolation operations we use the image filter presented in [START_REF] Karpushin | An image smoothing operator for fast and accurate scale space approximation[END_REF].

The depth map values are used for normal estimation and scale selection.

In both cases, they are not used directly, but a neighborhood of each pixel is considered. This allows to cope with the noise and small "holes" (areas with no depth). Larger "holes" are simply skipped (i.e., no keypoint detection is performed in these areas).

Experiments

In this section, we evaluate the proposed method compared to several wellknown local visual features in two scenarios: a mid-level feature evaluation in terms of matching score and receiver operating characteristics (ROC) similarly to [START_REF] Mikolajczyk | A comparison of affine region detectors[END_REF][START_REF] Karpushin | Local visual features extraction from texture+depth content based on depth image analysis[END_REF][START_REF] Karpushin | Improving distinctiveness of BRISK features using depth maps[END_REF][START_REF] Karpushin | A scale space for texture+depth images based on a discrete Laplacian operator[END_REF][START_REF] Karpushin | Keypoint detection in RGBD images based on an anisotropic scale space[END_REF] performed on synthetic RGBD data and RGBD images from the Freiburg dataset [START_REF] Sturm | A benchmark for the evaluation of RGB-D SLAM systems[END_REF] acquired with a Microsoft Kinect sensor; a visual odometry experiment on three sequences of the Freiburg dataset.

In the following, we provide a detailed description of the experiments and discuss the results.

Compared methods

The following local feature extraction methods are used in the experiments.

The baseline is given by the BRISK features [START_REF] Leutenegger | BRISK: Binary robust invariant scalable keypoints[END_REF], computed on the RGB channels only (ignoring depth). The publicly available original implementation is used.

BRAND descriptor [START_REF] Do Nascimento | On the development of a robust, fast and lightweight keypoint descriptor[END_REF] is a recent approach for RGBD content matching.

We use it in conjunction with STAR detector as proposed in the original paper. This method is referred to as star-brand. STAR is an OpenCV implementation of the Center Surround Extrema (CenSurE ) [START_REF] Agrawal | Censure: Center surround extremas for realtime feature detection and matching[END_REF]. The original implementation of the descriptor is used.

VIP [START_REF] Wu | 3D model matching with viewpoint-invariant patches (VIP)[END_REF] is based on SIFT descriptors computed on RGBD images and aimed at improved viewpoint invariance. We use publicly available authors implementation.

As we deal with out-of-plane rotations, we compare the proposed method to an affine-covariant detector [START_REF] Mikolajczyk | Scale & affine invariant interest point detectors[END_REF] initialized with SIFT keypoints and referred to as affine. VLFeat [START_REF] Vedaldi | VLFeat: An open and portable library of computer vision algorithms[END_REF] implementation is used.

For completeness, standard SIFT features [START_REF] Lowe | Distinctive image features from scale-invariant keypoints, Intern[END_REF] computed on RGB channels only are also involved in the evaluation (VLFeat implementation is used).

We hence have six approaches being compared. Table 1 summarizes some characteristics of the compared methods.

Datasets

We measure the performance of TRISK on several synthetic RGBD sequences2 we used in our previous works [START_REF] Karpushin | Improving distinctiveness of BRISK features using depth maps[END_REF][START_REF] Karpushin | A scale space for texture+depth images based on a discrete Laplacian operator[END_REF][START_REF] Karpushin | Keypoint detection in RGBD images based on an anisotropic scale space[END_REF] etry characteristics. The Graffiti sequence is synthesized from the frontal view of the original Graffiti sequence [START_REF] Mikolajczyk | A comparison of affine region detectors[END_REF]. Being synthetically generated, this dataset provides a highly accurate ground truth for the mid-level feature evaluation.

As we are mainly interested to the invariance to viewpoint position changes, all the sequences contain significant changes in camera position between views (examples of images are shown in Fig. 6):

Bricks: 20 images with large out-of-plane rotations (up to 90°) and vertical camera displacements, Graffiti : 25 images with yet larger out-of-plane rotations (up to 120°); this RGBD sequence is resynthesized from the frontal image of the original

Graffiti sequence [START_REF] Mikolajczyk | A comparison of affine region detectors[END_REF],

House: 25 images captured with a camera flying back, giving significant scale changes and limited out-of plane rotations (up to 25°).

The Freiburg dataset [START_REF] Sturm | A benchmark for the evaluation of RGB-D SLAM systems[END_REF] consists of several indoor RGBD image sequences of 640×480 pixels acquired with Microsoft Kinect and ASUS Xtion sensors.

Ground truth sensor position and orientation is tracked using a motion-capture system, making this dataset suitable for SLAM and visual odometry experiments. The depth maps are of a standard Kinect quality (may contain regions the camera moves arbitrarily within the scene.

Matching score and ROC

We first test the matching capabilities and the discriminability of the proposed features following the protocol initially established by Mikolajczyk et al.

in [START_REF] Mikolajczyk | A performance evaluation of local descriptors[END_REF][START_REF] Mikolajczyk | A comparison of affine region detectors[END_REF]. In different variants, this kind of evaluation frequently appears in the literature (e.g. [4, [START_REF] Moreels | Evaluation of features detectors and descriptors based on 3D objects[END_REF][START_REF] Heinly | Comparative evaluation of binary features[END_REF][START_REF] Canclini | Evaluation of low-complexity visual feature detectors and descriptors[END_REF][START_REF] Mukherjee | A comparative experimental study of image feature detectors and descriptors[END_REF]), and has become classic for mid-level evaluation of local image features.

In this section, we first revisit the evaluation framework taking into account the extended modality (presence of "D" in "RGBD"). The test setting is resumed in the following steps.

I.

A set of RGBD image sequences is taken with each sequence representing a certain class of visual distortions.

II.

In each sequence, its first image is taken as the reference and matched against each remaining image. The reference descriptors are further referred to as matchees, whereas the test descriptors are called matchers. The matching consists in finding the closest matcher to each matchee. The inter-descriptor similarity measure (score) depends on the descriptors type. Hamming distance, i.e., number of bit positions where matcher and matchee take different values, is used for all the binary descriptors. As explained in [START_REF] Lowe | Distinctive image features from scale-invariant keypoints, Intern[END_REF], the ratio ρ 1/2 of Euclidean distances "matchee -closest matcher" and "matchee -2nd closest matcher" is used for SIFT-based descriptors; this similarity measure gives a significant discriminability gain with respect to the simple Euclidean distance between the descriptors. However, we employ the simple Euclidean distance for SIFT descriptors issued from affine covariant keypoints as, in this case, the above mentioned ratio causes the losses of distinctiveness, as we discovered previously in [START_REF] Karpushin | Local visual features extraction from texture+depth content based on depth image analysis[END_REF]. This choice of scores is also validated experimentally on the data we use as presented in Fig. 7.

III. The set of matching feature pairs between the two given images (putative matches) is split into correct (true positive) and incorrect (false positive) matches using ground truth. Two keypoints coming from different images but occupying the same area of the scene are called repeated keypoints; they produce a correct match if the descriptors corresponding to these keypoints are matched.

The keypoint area overlap is controlled by means of the overlap error :

(A, B) = 1 - A ∩ B A ∪ B . (12) 
A positive match is then labeled as "true" if (A, B) < 0 , where 0 is typically equal to 0.5. Originally, A and B were representing the elliptical keypoint regions projected on the same camera plane (for example, the reference one) [START_REF] Mikolajczyk | A comparison of affine region detectors[END_REF].

Thus, represented the degree of overlapping of two "spots" each highlighting a keypoint. However, if the observed scene is not entirely planar, the reprojected "spots" are not elliptical and may take arbitrary not even connected shapes.

Their overlap then can not be computed analytically. For this reason, here we follow our previous works [START_REF] Karpushin | Improving distinctiveness of BRISK features using depth maps[END_REF][START_REF] Karpushin | A scale space for texture+depth images based on a discrete Laplacian operator[END_REF][START_REF] Karpushin | Keypoint detection in RGBD images based on an efficient viewpoint-covariant multiscale representation[END_REF][START_REF] Karpushin | Keypoint detection in RGBD images based on an anisotropic scale space[END_REF] and consider the overlap of 3D spheres centered at keypoint positions projected on the scene surface. The radius is selected in such a way that the keypoint ellipse may be backprojected from the camera plane onto a 3D circle that fits the sphere boundary. As the camera positions and orientation matrices are provided, the necessary pixel-level ground truth is derived by depth maps backprojections. In our tests, each matchee may match at most one true positive matcher (we take the one that minimizes (A, B)).

IV.

The ratio between the number of correct matches and the maximum possible number of matches is reported as matching score per image pair.

V. A putative match is found if the matching distance between two descriptors is below a certain threshold. By varying the value of this threshold, one can compute the true and false positive rates and trace the ROC curve. The ROC curves are balanced, i.e., an equal number of matching pairs of each class (true and false) is randomly selected among all the matches issued from each scene.

Matching score allows to judge on the ability of the detector to produce repeatable keypoints as well as on the matching capability of the entire pipeline, whereas ROC shows how the descriptors are discriminative, e.g., their ability of distinguishing salient visual information in presence of deformations. Put together, these characteristics trace the two main axes of the local visual features mid-level evaluation: repeatability and distinctiveness.

The resulting matching score and ROC curves obtained on the test sequences are presented in Fig. 8 and9. The number of features detected by each method is reported in Table 2. It can be seen from the results that in all the test sequences TRISK demonstrates improved overall matching score. In some cases (Graffiti, House, Floor ) TRISK also shows the slowest decay, which indicates improved feature stability under viewpoint position changes. The second best matching score on synthetic sequences (top row in Fig. 8) is arguably achieved by VIP. Based on a planar normalization technique, VIP performs well in case of simple geometry, i.e., when the scene surface is mostly planar or very smooth, otherwise it may even be unable to detect any features. TRISK also exploits the principle of planar normalization, but in a much more local way, which allows it to perform well in scenes with more complex geometry, such as desk and House.

As for the descriptor discriminability examined with ROC curves (bottom rows in Fig. 8 and9), the best performance is shared among TRISK, VIP and sometimes SIFT. TRISK outperforms the other approaches on sequences with simple geometry and detailed texture (Graffiti and structure texture far ), but in other cases turns out to be comparable to or moderately less distinctive than non-binary descriptors, notably SIFT and VIP. This result deserves a more elaborated discussion.

First, the non-binary descriptors in our tests are represented by 128-dimensional numeric vectors. They are naturally more distinctive than the 512-bit binary descriptors since they carry more information. This is coherent to other evaluations in the literature [START_REF] Heinly | Comparative evaluation of binary features[END_REF][START_REF] Leutenegger | BRISK: Binary robust invariant scalable keypoints[END_REF][START_REF] Canclini | Evaluation of low-complexity visual feature detectors and descriptors[END_REF]. It is also worth noticing that the other binary competitors are mostly always singificantly outperformed by TRISK.

Second, the observed moderate ROC gains of non-binary features over TRISK is arguably meaningful. In the House sequence VIP demonstrates the best discriminability but low matching scores: only the first 8 views are reliably matched against the reference. Consequently, the majority of the true positive matches comes from these views. However, the first views have less perspective distortions compared to the reference than the others, and thus the matched descriptors from the first views are less deformed, and their corresponding true and false positives are easier to distinguish by the inter-descriptor difference.

This leads to a gain in terms of ROC, whereas the most challenging part of the sequence remains mostly unmatched. Hence, ROC is comparable only if the matching score is reasonably high over the whole deformation spectrum. Even though to a lesser extent, the other sequences exhibit a similar phenomenon. 

Parameter values estimation

The matching score and ROC are also used to find empirically optimal values for TRISK parameters. To do this, we collected 500 image pairs from large with loop and long office household Freiburg sequences, respectively. These two sequences represent different kinds of viewpoint position changes (from outof-plane rotations in long office household to scale changes and 3D translations in large with loop). We consider the following space for the grid search: we take recommend the found values (κ * , σ * 0 ) as default for Kinect depth maps given in meters, and use in all the experiments in this paper, except the ones on the synthetic dataset (Fig. 8). In this case, the depth maps are quasi-perfect (contain no noise), thus a small value of κ is more appropriate (we used κ = 5).

As for σ 0 , even if it requires a proper tuning, as the observed content might be rather different from the Kinect one, we simply rescaled the depth values to fit Kinect statistics and use the same value of σ 0 = σ * 0 .

Visual odometry

In addition to the mid-level evaluation, we assess TRISK performance in tion relatively to an initial pose using only the acquired images. The ground truth pose is recorded with a motion capture system and is provided within the dataset. We follow the setting of [START_REF] Do Nascimento | On the development of a robust, fast and lightweight keypoint descriptor[END_REF]: to compute the camera transformation (translation and rotation) between two frames, we match them, apply RANSAC to filter putative matches and, finally, run the Iterative Closest Point algorithm [START_REF] Besl | Method for registration of 3-D shapes[END_REF] retrieving the relative translation vector and rotation matrix. The resulting pose is recovered by cumulating deduced translations and rotations.

In this experiment we limit the number of keypoints extracted from each image by each detector, keeping at most 1000 keypoints with the highest response. In case of TRISK, the detector response is the interpolated AGAST score.

Two types of errors are used in the evaluation:

translation error : the distance between estimated and ground truth positions,

rotation error : ε = arccos tr(R -1 Rgt)-1 2 
, where R is the estimated camera orientation matrix with respect to the initial pose, and R gt is the ground truth one.

Typically, each registered frame is matched against the next one, providing a "delta-pose" that is added to the current position. In our experiment, we proceed differently: we skip more than one frame, i.e., we look for the transformation relating frame 0 to frame K > 1, then frame K to frame 2K, etc.

This technique has a twofold effect. On one hand, it allows to compensate the visual drift being cumulated with each new "delta", as well as to reduce the computational time. On the other hand, the resulting errors depend strongly on the features quality (matching capabilities and localization accuracy), as the visual difference between frames n and n + K is typically more significant than the one between n and n + 1. This setting is thus a good scenario to evaluate the features.

Translation and rotation errors evolution on different sequences is presented in Fig. 11, 12 and 13. To compensate for the randomness induced by RANSAC, we run the experiment 10 times on each sequence and then averaged the results.

All the methods have similar error values in the first frames. However, as the scene evolves, the drift cumulates differently for different features. It can be observed that TRISK generally achieves smaller errors. An exception is the floor sequence (Fig. 12), where all the methods achieve small errors compared to other sequences (less than 12 cm and 5°), but AGAST-based features turn out to be slightly less precise in rotations. The possible reason is that in this sequence the camera moves quickly (for this reason we set K = 5 for this sequence and not 10 as for the others). This causes a noticeable directional blur in texture maps, which interferes with corner detection but is manageable by blob detectors. A drastic difference in the odometry precision is revealed on desk sequence (Fig. 11), where mostly all the other approaches, notably BRISK, experience severe errors in matching consecutive frames. TRISK is the only approach providing precision within 10 cm and 4°. Finally, on structure texture far sequence (Fig. 13), TRISK is mainly competing with VIP, which also performs well thanks to the locally planar geometry. It is worth noticing that on the other two sequences VIP proves unable to provide enough matches for continuous trajectory estimation.

Note on computational efficiency

We ran our tests on a 64-bit Windows machine with a 3.5 GHz 6-physical core CPU and 16 Gb of RAM. Compared to other conventional RGB binary features, TRISK entails a higher computational cost: it is about 8 times slower than FREAK [START_REF] Alahi | FREAK: Fast retina keypoint[END_REF] and more than 20 times slower than BRISK [START_REF] Leutenegger | BRISK: Binary robust invariant scalable keypoints[END_REF] and ORB [START_REF] Rublee | ORB: an efficient alternative to SIFT or SURF[END_REF]. This overhead is certainly due to the fact that TRISK processes also the geometric information, in particular, by computing per pixel local axes, as well as to the fact that our implementation might be further optimized. As we noticed before, the local adaptive axes might be computed differently, e.g., PCA-based normal estimation technique [START_REF] Rusu | 3D is here: Point cloud library (PCL)[END_REF] may also provide two orthogonal vectors to the normal that might be used as the local axes. This, however, requires the complete PCA decomposition of the point cloud covariance matrix at each pixel. We tested this approach and obtained very similar performance, but the average local axes computation time increased by 60 ms.

TRISK can be speeded up considerably by using multiple threads. The adaptive local axes computation, AGAST and local maxima suppression are purely local, and all the keypoint candidates are processed independently starting from the accurate localization to the descriptor computation. This makes TRISK easily parallelizable, allowing for distributed and GPU-based implementations.

Conclusion and future work

In this paper we presented a complete pipeline of local feature extraction for texture-plus-depth image matching. The proposed TRISK features target application scenarios where significant viewpoint position changes are present in the input data. The experiments showed that TRISK improves consistently

Figure 1 :

 1 Figure 1: The architecture of the proposed TRISK pipeline. TRISK is a complete feature extraction framework for RGBD content, composed by a keypoint detector and a descriptor. Both leverage the geometric information provided by the depth map in order to sample the texture considering a different local coordinate system for each point of an object surface. The detector is based on the Adaptive Generic Accelerated Segment Test (AGAST) response, computed in local coordinates. Depth is also used to find the approximate geometric scale of a keypoint, which is further refined at the description stage together with orientation normalization. The local maxima filtering and accurate localization stages enable to select the most repeatable keypoints. In order to compute the descriptor, the texture is sampled again in local coordinates. A multi-pass procedure is employed to accurately estimate the orientation and scale of the sampling pattern. Finally, similarly to the BRISK descriptor, pairwise comparison tests across the texture samples are carried out to produce a binary descriptor string.

Figure 2 :

 2 Figure 2: Local camera coordinates (x, y, z) and image plane coordinates (u, v).

Figure 4 :

 4 Figure 4: Illustration of application of Accelerated Segment Test (AST) in standard image axis versus local axes derived from the depth map. A corner viewed under a large angle projects itself at a nearly straight contour on the camera plane, so that the corner test in standard image axes fails causing a repeatability loss.

4.

  Dominant orientation Θ and scale σ are re-estimated once again in the same way as in step 2, producing final values Θ * and σ * .

Figure 5 :

 5 Figure 5: BRISK descriptor sampling pattern from the original implementation (left) and its mapping to the surface through local planar normalization (right).
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 567 The pattern is sampled again according to Θ * and σ * , giving final P I and P D sets. Control scale value σ c is computed as before; the keypoint is kept only if σ c differs from σ * by no more than 1% of the latter, i.e., if the scale error is negligible. Finally sampled P I values undergo pairwise intensity comparison tests to produce a binary string forming the descriptor.

3. 4 .

 4 Implementation details TRISK has several parameters that control different stages of the feature extraction process. For most of them we use the same values as in the original BRISK or SIFT papers or their implementations [14, 26, 60]. Other parameters, such as the 1%-error threshold in the scale estimation, are derived from experiments and do not impact significantly the performance. All these values are mentioned in the text. The remaining parameters are: (1) neighborhood size factor κ for PCA-based normal estimation used when computing the adaptive local axes, (2) AGAST score threshold t and (3) basic scale σ 0 used in the scale selection. A discussion of their appropriate values based on the matching performance is given in Section 4.4.

Figure 6 :

 6 Figure 6: Texture maps of first and last view of Bricks, Graffiti and House RGBD sequences (from left to right) used in the matching score and ROC tests.

Figure 7 :

 7 Figure7: SIFT descriptor matching using different inter-descriptor similarity measures. Simple distance-based matching is compared to ρ 1/2 ratio-based matching[START_REF] Lowe | Distinctive image features from scale-invariant keypoints, Intern[END_REF] for standard (blue) and affine normalized (red) SIFT descriptors. To plot ROC, 20K true positive and 20K false positive matches were collected by matching the test sequences in Fig.6. Normal SIFT descriptors are more distinctive when being matched using ratio-based score, whereas affine invariant features perform much better with simple Euclidean distance. The best performing scores are used in further tests in this paper.

Figure 8 :

 8 Figure 8: Matching score and receiver operating characteristics demonstrating repeatability and distinctiveness of the compared detectors and descriptors, mainly under out-of-plane rotations (Bricks and Floor sequences) and scale changes (House sequence). Computed on synthetic RGB data. At least 4800 true positive and 4800 false positive matches were selected to plot each ROC curve.

aFigure 10 :

 10 Figure 10: Contour plot of the performance index F in the plane (κ, σ 0 ).

Figure 11 :Figure 12 :

 1112 Figure 11: Visual odometry with 10 frames skipping on freiburg2 desk sequence (first 500 frames): translation (top) and rotation (bottom) errors. VIP fails on this sequence, thus it is not reported.

Figure 13 :

 13 Figure 13: Visual odometry with 10 frames skipping on freiburg3 structure texture far sequence (first 500 frames): translation (top) and rotation (bottom) errors.

Figure 14 :

 14 Figure 14: Feature extraction time averaged over images from matching score test (Fig. 9). Smoothing filter initialization, local axes computation, AGAST over 3 octaves, keypoint candidates processing ("CP") over 3 octaves (includes accurate localization, Harris corner test and descriptor computation) and remaining processing times and their standard deviations are displayed.

Figure 14

 14 reports the time spent on each stage of feature extraction from real RGBD images in the Freiburg dataset. Being invoked from MATLAB environment through MATLAB MEX interface, our C++ TRISK implementation takes 306 ms per VGA image (average over about 150 images, with 21.2 ms standard deviation). This corresponds to about 540 µs per feature. The most time consuming steps are the local axes computation and AGAST on the first octave. The description time is included in the keypoint candidates processing on each octave, and thus is much lower than the detection time.

Table 1 :

 1 Summary of compared methods.

	and three RGBD sequences

Table 2 :

 2 6 values of support size factor κ used in the normal estimation, 6 values of basic scale σ 0 and 5 values of AGAST score threshold t. This gives in total 6×6×5 triples (κ i , σ 0i , t i ), that cover a spectrum of reasonable values for the input parameters. We matched then all the selected image pairs using each parameter triple. This provided us with about 20 millions matching pairs of features in total. As a function F to maximize, we choose the product of averaged matching score over all the image pairs and area under ROC curve, which seems a Minimal, average and maximal number of features extracted from each scene. Minimum and maximum values per row are highlighted in green and yellow.

	Sequence		trisk brisk brand sift affine vip
		MIN	493	766	1072 1638 2194 3346
	Bricks	AVG 1329 915	1188 1841 2482 4293
		MAX 1840 1163	1330 2047 2714 5458
		MIN	994	855	595	782 1079 1603
	Graffiti	AVG 1518 1041 809	1305 1764 2280
		MAX 1804 1151 917	1615 2171 3029
		MIN	393	164	462 1924 2445 237
	House	AVG	879	231	889 2235 3056 1831
		MAX 1302 276	1240 2637 3609 3503
		MIN	111	194	433	898 1115	0
	desk	AVG	214	421	524 1036 1343 113
		MAX	296	689	611 1213 1597 420
		MIN	311	32	431 1049 1328	0
	floor	AVG	578	172	700 1257 1634	2
		MAX	777	357	1045 1460 1895	59
		MIN	579	156	509 1060 1461 672
	structure texture far	AVG	913	471	692 1154 1615 976
		MAX 1210 732	838 1298 1820 1220

In this paper we do not deal with the color aspect, so in what follows by RGBD we mean "grayscale-plus-depth".

The dataset is available for download at the address http://webpages.l2s. centralesupelec.fr/perso/giuseppe.valenzise/download.htm

3D model courtesy of http://archive3d.net and http://www.turbosquid.com, accessed in Oct.-Nov. 2013

reasonable joint performance index of detector and descriptor.

We notice that the AGAST score threshold t in TRISK plays the same role as in BRISK, and has a major impact on the number of detected features. However, when it varies in a reasonable range, it does not produce a significant impact on the performance index: when averaging F over t i , the standard deviation in the (κ, σ 0 ) plane does not exceed 0.014 when F varies in the range 0.12 to 0.22.

Based on this, we averaged F over 5 parameters of t, reducing the search space to two dimensions (κ, σ 0 ), where F exhibits a distinctive maximum near point (κ * , σ * 0 ) = (25, 14.27). The contour plot of F in Fig. 10 allows further analysis: when σ 0 is large enough, (i) the performance depends mainly on κ, (ii) it does not vary significantly after κ becomes reasonably high. This result is coherent, since κ is introduced to cope with the depth map noise, and is rather a depth sensor characteristic, while σ 0 may be content-dependent, as it reflects a characteristic size of repeatable landmarks observed in the training data. Consequently, we both feature stability and distinctiveness, which allows for better performance on the application level. TRISK can be applied on real RGBD images acquired with low-cost RGB-depth camera pair, such as Microsoft Kinect or Asus Xtion, without any complex preprocessing of the depth map. The computational effort required to process an image is sufficiently low, so that it is able to perform at near-realtime rates. A publicly available implementation of TRISK can be downloaded at the address http://webpages.l2s.centralesupelec. fr/perso/giuseppe.valenzise/download.htm.

Clearly, TRISK could be improved, notably in its ability to deal with complex, highly detailed geometry, currently limited by the local planar approximation used to compute the descriptor. A more complex way to render the descriptor stable and invariant to viewpoint position changes, such as [START_REF] Karpushin | Improving distinctiveness of BRISK features using depth maps[END_REF], is more computationally expensive and sensible to the depth map imperfections.

Rendering the descriptor robust to geometrically complex scenes is one of the main objectives for our future work. Along with this, a learning-based descriptor design [START_REF] Rublee | ORB: an efficient alternative to SIFT or SURF[END_REF][START_REF] Trzcinski | Boosting binary keypoint descriptors[END_REF] seems promising from the discriminability boosting point of view.