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Functionals (i.e., functions of functions) are widely used in quantum field theory
and solid-state physics. In this paper, functionals are given a rigorous mathematical
framework and their main properties are described. The choice of the proper space of
test functions (smooth functions) and of the relevant concept of differential (Bastiani
differential) are discussed. The relation between the multiple derivatives of a func-
tional and the corresponding distributions is described in detail. It is proved that, in a
neighborhood of every test function, the support of a smooth functional is uniformly
compactly supported and the order of the corresponding distribution is uniformly
bounded. Relying on a recent work by Dabrowski, several spaces of functionals are
furnished with a complete and nuclear topology. In view of physical applications, it is
shown that most formal manipulations can be given a rigorous meaning. A new con-
cept of local functionals is proposed and two characterizations of them are given: the
first one uses the additivity (or Hammerstein) property, the second one is a variant of
Peetre’s theorem. Finally, the first step of a cohomological approach to quantum field
theory is carried out by proving a global Poincaré lemma and defining multi-vector
fields and graded functionals within our framework. Published by AIP Publishing.
https://doi.org/10.1063/1.4998323

I. MOTIVATION

Functionals (i.e., functions of functions) are mathematical objects successfully applied in many
areas of physics. Since Schwinger’s ground-breaking papers,1,2 Green functions of quantum field
theory are obtained as functional derivatives of the generating functional Z(j) with respect to the
functions j (external sources). In solid-state and molecular physics, the exchange and correlation
potential of density functional theory is computed from the functional derivative of the total energy
E(ρ) with respect to the electron density ρ.3,4 In perturbative algebraic quantum field theory (pAQFT),
the observables are functionals F(ϕ) of the classical field ϕ.5 This formulation was possible due to
the crucial result6 that allowed us to realize abstract quantum fields as concrete functionals on the
space of classical configurations. This viewpoint is not only simplifying computations but also allows
us to construct new perturbative and exact models of QFT’s.7,8 It is, therefore, crucial to understand
the functional analytic properties of classical functionals to be able to use these in quantization and
obtain even more models. The importance of this endeavour is justified by the fact that presently we
do not know any exact interacting QFT models in 4 spacetime dimensions.
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Functionals are also used in pure mathematics, for example, loop space cohomology9 and infinite
dimensional integrable systems: the hierarchy of commuting Hamiltonians for the Korteweg–de Vries
equation is, for instance, made of functionals.10

In all these fields, the concept of locality is fundamental: the Lagrangian of quantum field theory
is local and the counterterms of the renormalization process have to be local, the approximations of
E(ρ) used in practice are local, and it is an open question whether the true density functional E(ρ)
is local or not. Therefore, it is crucial to determine precisely what is meant by a local functional.
According to the standard definition,11–14 if ϕ is a classical field (i.e., a smooth section of a vector
bundle over M and we momentarily consider M =Rd for notational convenience), then a functional
F(ϕ) is local if it is of the form

F(ϕ)=
∫
Rd

dxf
(
x, ϕ(x), ∂µϕ(x), . . . , ∂µ1...µkϕ(x)

)
, (1)

where f is a smooth compactly supported function with a finite number of arguments.
However, this definition of local functionals is not very handy in practice because it is global and

sometimes too restrictive. For example, general relativity has no local gauge-invariant observables
in the sense of Eq. (1), whereas it has local gauge-invariant observables when the concept of locality
is slightly generalized, as discussed in Ref. 7 (see also the parallel work15). Note that the concept of
locality presented in the present paper gives a proper topological framework for local functionals as
understood by Refs. 16–18.

The present paper puts forth the following formulation of the concept of locality:

Definition I.1. Let M be a manifold.19 Let U be an open subset of C∞(M). A smooth functional
F : U→K (where K=R or C) is said to be local if, for every ϕ ∈ U, there is a neighborhood V of ϕ,
an integer k, an open subset V ⊂ JkM, and a smooth function f ∈C∞(V) such that x ∈M 7→ f (jk

xψ) is
supported in a compact subset K ⊂ M and

F(ϕ + ψ)=F(ϕ) +
∫

M
f (jk

xψ)dx,

whenever ϕ + ψ ∈ V and where jk
xψ denotes the k-jet of ψ at x.

In other words, we require F to be local in the sense of Eq. (1), but only around each ϕ ∈
U because the integer k and the function f can depend on the neighborhood V. In short, our local
functionals are local in the “traditional sense,” but only locally in the configuration space (i.e., in a
neighborhood of each ϕ). We do not need global locality to apply variational methods and derive
Euler-Lagrange equations. We will show by exhibiting an example that this concept of locality is
strictly more general than the traditional one. Our first main result is a simple characterization of
local functionals in the sense of Definition 1.1:

Theorem I.2. Let U be an open subset of C∞(M). A smooth functional F : U→K (where K=R
or C) is local if and only if we have the following:

1. F is additive [i.e., it satisfies F(ϕ1 + ϕ2 + ϕ3) = F(ϕ1 + ϕ2) + F(ϕ2 + ϕ3) � F(ϕ2) whenever
supp ϕ1 ∩ supp ϕ3 = ∅].

2. For every ϕ ∈ U, the differential DFϕ of F at ϕ is a distribution with empty wave front set. Thus,
it can be represented by a function ∇Fϕ ∈D(M) [with D(M) the space of compactly supported
smooth functions on M, i.e., “test functions”].

3. The map U→D(M) defined by ϕ 7→ ∇Fϕ is smooth (in the sense of Bastiani).

Our characterization of locality is inspired by the microlocal functionals proposed by Brunetti,
Fredenhagen, and Ribeiro.20 However, the proof of their Proposition 2.3.12 is not complete because
the application of the Fubini theorem and the second use of the fundamental theorem of calculus are
not justified. Our condition 3 solves that problem. On the other hand, we do not need their assumption
that F is compactly supported.

Let us stress that the notion of locality is quite subtle and depends strongly on the func-
tional analytic setting. A functional characterization of a notion of local functionals on measurable
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functions might not be valid anymore when applied to smooth functions as is shown by the simple
counterexample of Sec. V B. We also make a conjecture as to how to generalize our main result to
multi-vector fields and graded functionals, which is required for a rigorous version of the Batalin-
Vilkovisky approach to gauge field theory and quantum gravity. The second main result is a proof of
the global Poincaré lemma (in our context), which is crucial to set up the BRST (Becchi, Rouet, Stora,
Tyutin) and variational complexes. The last one is another characterization of local (and multilocal)
functionals in the form of a Peetre’s theorem.

Along the way to these results, we prove interesting properties of general functionals that we
briefly describe now. In Sec. II, we explain why we choose test functions that are only smooth instead
of smooth and compactly supported, we describe the topology of the space of test functions, and we
present the concept of Bastiani differentiability and its main properties. In Sec. III, we show that a
smooth functional is locally compactly supported (i.e., in a neighborhood of every test function) and
we prove that the kth derivative of a functional defines a continuous family of distributions whose
order is locally bounded. Section IV, which relies heavily on Dabrowski’s work,21,22 describes in
detail a nuclear and complete topology on several spaces of functionals used in quantum field theory.
Section V discusses the concept of additivity that characterizes local functionals. Sections VI and
VII prove the main results discussed above. Note that the present paper has a somewhat foundational
character, in as much as the choice of test-functions, additivity property, and differential are carefully
justified from the physical and mathematical points of view. It contributes to the formulation of a
mathematically rigorous basis on which the quantum field theory of gauge fields and gravitation can
be built.

Note also that this paper aims at both functional analysts and theoretical physicists. Because of
this dual readership, the proofs are often more detailed than what would be required for experts in
functional analysis.

II. FUNCTIONALS AND THEIR DERIVATIVES

To set up a mathematical definition of functionals, we need to determine precisely which space
of test functions (i.e., classical fields and sources) we consider and what we mean by a functional
derivative.

A. The space of classical fields

Propagators and Green functions of quantum fields in flat spacetimes are tempered distribu-
tions23,24 and the corresponding test functions are rapidly decreasing. Tempered distributions are
computationally convenient because they have Fourier transforms. However, tempered distributions
cannot be canonically extended to curved spacetimes (i.e., smooth Lorentzian manifolds) because
the rapid decrease of test functions at infinity is controlled by some Euclidian distance which is not
canonically defined on general spacetime manifolds (Ref. 25, p. 339).

The most natural spaces of test functions on a general spacetime M are the space C∞(M) of real
valued smooth functions on M and its subspace D(M) of compactly supported functions. These two
spaces are identical when M is compact, but physically relevant spacetimes are not compact because
they are globally hyperbolic, and a choice must be made.

In this paper, we choose C∞(M) [or the set Γ(M, B) of smooth sections of a vector bundle B].
There is a strong physical reason for this:26 in the quantization process, we must be able to deal with
on-shell fields ϕ that are smooth solutions to normally hyperbolic equations and as such cannot be
compactly supported. Therefore, the domain of the functionals can be C∞(M) but not D(M). There
are also good mathematical arguments for this choice: Indeed, C∞(M) is a Fréchet space and its
pointwise multiplication is continuous (Ref. 27, p. 119). Moreover, the Fréchet property of C∞(M)
saves us the trouble of distinguishing Bastiani from convenient differentiability which is treated in
Ref. 28.

The choice of C∞(M) has, however, several drawbacks: (i) Since smooth functions are generally
not integrable over M, the Lagrangian density L(ϕ) must be multiplied by a smooth compactly
supported function g so that L(ϕ)g is integrable over M.29 As a result, long-range interactions are
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suppressed and infrared convergence is enforced. This simplifies the problem but makes it difficult to
deal with the physics of infrared divergence. (ii) The function g breaks the diffeomorphism invariance
of the Einstein-Hilbert action. (iii) The effect of a perturbation ϕ + εψ is easier to deal with when ψ is
compactly supported because it avoids the presence of boundary terms. This problem can be solved
by considering C∞(M) as a manifold modeled on D(M),5,20 but this is an additional complication.

B. Locally convex spaces

The spaces of test functions and functionals considered in the paper are all locally convex. The
most pedagogical introduction to locally convex spaces is probably Horvath’s book,30 so we refer the
reader to it for more details.

We describe now the topology of the spaces of test functions that we use. For the space of smooth
test functions C∞(Rd), the topology is defined by the seminorms

πm,K (f )= sup
x∈K

sup
|α | ≤m

|∂αf (x)|, (2)

where f ∈C∞(Rd), m is an integer, K is a compact subset of Rd , α = (α1, . . ., αd) is a d-tuple of non-
negative integers, with |α| = α1 +· · · + αd and ∂α = ∂α1

1 . . . ∂αd
d , with ∂i = ∂/∂xi being the derivative

with respect to the ith coordinate of x (Ref. 27, p. 88).
If U is open in Rd , we denote by C∞(U) the space of all functions defined on U which pos-

sess continuous partial derivatives of all orders. We equip C∞(U) with the topology defined by the
seminorms πm ,K where K runs now over the compact subsets of U (Ref. 30, p. 89). For every open
set U ⊂Rd , the space C∞(U) is Fréchet, reflexive, Montel, barrelled (Ref. 30, p. 239), bornological
(Ref. 30, p. 222), and nuclear (Ref. 31, p. 530).

We define now C∞(M), where M is a d-dimensional manifold (tacitly smooth, Hausdorff, para-
compact, and orientable) described by charts (Uα, ψα). If for every Uα ⊂ M we are given a smooth
function gα ∈ C∞(ψα(Uα)) such that gβ = gα ◦ ψα ◦ ψ−1

β on ψβ(Uα ∩ Uβ), we call the system gα
a smooth function g on M. The space of smooth functions on M is denoted by C∞(M) (Ref. 32, p.
143). This definition is simple, but to describe the topological properties of C∞(M), the following
more conceptual definition is useful.

Let M be a manifold and B→M be a smooth vector bundle of rank r over M with projection π.
Let E = Γ(M, B) be the space of smooth sections of B equipped with the following topology:28

Definition II.1. The topology on Γ(M, B) is defined as follows. Choose a chart (Uα,ψα)α and
a trivialization map Φα : π−1(Uα)→Ω × Rr , where Ω is a fixed open set in Rd . Then the map Φα
allows us to identify Γ(Uα, B) with C∞(Ω,Rr) by Φα : π−1Uα→Ω × Rd such that

Φα(x, s(x))= (ψα(x), Kα(s)(ψα(x))),

where

Kα : s ∈ Γ(Uα, B) 7→Kα(s) ∈C∞(Ω,Rr).

The topology on Γ(M, B) is the weakest topology making all the maps Kα continuous.

This topology does not depend on the choice of charts or trivialization maps (Ref. 28, p. 294). To
interpret this topology, denote by ρα : s ∈ Γ(M, B) 7→ s|Uα ∈ Γ(Uα, B) the restriction map of sections
on open sets of our open cover (Uα)α∈I of M. The space Γ(M, B) fits into the following complex of
vector spaces:

0→ Γ(M, B)
(ρα )α∈I
−→

∏
α∈I

Γ(Uα, B)'
∏
α∈I

C∞(Ω,Rr)
(ρα−ρβ )α,β
−→

∏
(α,β)∈I2

Γ(Uα ∩ Uβ , B). (3)

The topology on Γ(Uα, B) is given by the isomorphism Γ(Uα, B)'C∞(Ω,Rr), hence it is nuclear
Fréchet. The countable products

∏
α ∈IΓ(Uα, B) and

∏
(α,β)∈I2 Γ(Uα ∩ Uβ , B) are therefore nuclear
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Fréchet. For every pair (α, β) of distinct elements of I, the difference of restriction maps ρα � ρβ
is continuous and the topology on Γ(M, B) is the weakest topology which makes the above complex
topological, which implies that it is nuclear Fréchet as the kernel of

∏
α,β ρα � ρβ .

Locally convex spaces are very versatile and they are the proper framework to define spaces of
smooth functionals, i.e., smooth functions on a space of functions (or sections of a bundle). The first
step towards this goal is to provide a rigorous definition of functional derivatives.

C. Functional derivatives

To define the space of functionals, we consider the main examples Z(j) and F(ϕ). These two
functionals send smooth classical fields toK, whereK=R orK=C. Moreover, the functional deriva-
tives of Z and F of all orders are required to obtain the Green functions from Z(j) and to quantize the
product F(ϕ)G(ϕ). Therefore, we must define the derivative of a function f : E→K, where E is the
space of classical fields.

It will be useful to generalize the problem to functions f between arbitrary locally convex spaces
E and F. To define such a derivative, we start from

Definition II.2. Let U be an open subset of a Hausdorff locally convex space E and let f be a
map from U to a Hausdorff locally convex space F. Then f is said to have a derivative at x ∈ U in the
direction of v ∈ E if the following limit exists:33

Dfx(v)B lim
t→0

f (x + tv) − f (x)
t

.

One can also consider the same definition restricted to t > 0.34 A function f is said to have a
Gâteaux differential35,36 (or a Gâteaux variation37) at x if Df x(v) exists for every v ∈ E. However, this
definition is far too weak for our purpose because Df x(v) is generally neither linear nor continuous
in v and it can be linear without being continuous and continuous without being linear (Ref. 38,
p. 7). Therefore, we will use a stronger definition, namely, Bastiani differentiability,39 which is the
fundamental concept of differentiability used throughout the paper:

Definition II.3. Let U be an open subset of a Hausdorff locally convex space E and let f be a
map from U to a Hausdorff locally convex space F. Then f is Bastiani differentiable on U [denoted
by f ∈ C1(U)] if f has a Gâteaux differential at every x ∈ U and the map Df : U × E → F defined by
Df (x, v) = Df x(v) is continuous on U × E.

With this definition, most of the properties used in physics textbooks (e.g., chain rule, Leibniz
rule, and linearity) are mathematically valid.

1. Examples

We shall consider several examples of functions from C∞(M) to R or C, where M =Rd ,

F(ϕ)=
∫

M
f (x)ϕn(x)dx,

G(ϕ)=
∫

Mn
g(x1, . . . , xn)ϕ(x1) . . . ϕ(xn)dx1 . . . dxn,

H(ϕ)=
∑
µν

∫
M

gµν(x)h(x)∂µϕ(x)∂νϕ(x)dx,

I(ϕ)=
∫

M
f (x)eϕ(x)dx,

J(ϕ)= e∫M f (x)ϕ(x)dx,

K(ϕ)=
∫

M
f (x) sin

(
ϕ(x)

)
dx,
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where f, g, and h are smooth compactly supported functions and where g is a symmetric func-
tion of its arguments. Further examples can be found in Refs. 17 and 40. It is immediate to check
that

DFϕ(v)= n
∫

M
g(x)ϕn−1(x)v(x)dx,

DGϕ(v)= n
∫

Mn
g(x1, . . . , xn)ϕ(x1) . . . ϕ(xn−1)v(xn)dx1 . . . dxn,

DHϕ(v)= 2
∑
µν

∫
M

gµν(x)h(x)∂µϕ(x)∂νv(x)dx,

DIϕ(v)=
∫

M
f (x)eϕ(x)v(x)dx,

DJϕ(v)= e∫M f (x)ϕ(x)dx
∫

M
f (x)v(x)dx,

DKϕ(v)=
∫

M
f (x) cos

(
ϕ(x)

)
v(x)dx.

2. Historical remarks

Definition II.3 is due to Bastiani39,41 and looks quite natural. In fact, it is not so. For a long time,
many different approaches were tried. For any reasonable definition of differentiability, the map Df x:
E→ F is linear and continuous so that Df x ∈ L(E, F). If E and F are Banach spaces, then a map f : E
→ F is defined to be continuously (Fréchet) differentiable if the map x→Df x is continuous from U to
Lc(E, F), where Lc(E, F) is the set of continuous maps from E to F equipped with the operator norm
topology. But Fréchet differentiability is strictly stronger than Bastiani’s differentiability specialized
to Banach spaces.42 This is why Bastiani’s definition was often dismissed in the literature43 and, for
locally convex spaces that are not Banach, the map Df was generally required to be continuous from U
to L(E, F) equipped with some well-chosen topology. However, when E is not normable, no topology
on L(E, F) provides the nice properties of Bastiani’s definition (Ref. 44, p. 6) [Hamilton (Ref. 40, p.
70) gives a simple example of a map which is continuous U × E→ E but such that the corresponding
map U → L(E, E) is not continuous]. Thus, L(E, F) was equipped with various non-topological
convergence structures (Ref. 44, p. 23). The result is an impressive zoology of differentiabilities.
Twenty-five of them were reviewed and classified by Averbukh and Smolyanov.45 Still more can be
found in the extensive lists given by Gähler46 and Ver Eecke47 covering the period up to 1983 (see
also Refs. 38, 44, and 48).

Nowadays, essentially two concepts of differentiability survive: Bastiani’s and the so-called
convenient approach developed by Kriegl–Michor in the reference monograph,28 which is weaker
than Bastiani’s for general Hausdorff locally convex spaces. In particular, on any locally convex space
that is not bornological, there is a conveniently smooth map that is not continuous (Ref. 41, p. 19).
However, a nice feature of both approaches is that for a Fréchet space E, a function f : E→K is
smooth in the sense of Bastiani if and only if it is smooth in the sense of the convenient calculus.49

Bastiani differentiability became widespread after it was used by Michor,50 Hamilton40 (for Fréchet
spaces), and Milnor51 and it is now vigorously developed by Glöckner and Neeb (see also Ref. 52).

To complete this section, we would like to mention that the Bastiani differential is sometimes
called the Michal-Bastiani differential53–55 (or even Michel-Bastiani differential54). This is not cor-
rect. The confusion comes from the fact that Bastiani defines her differentiability in several steps.
She starts from the Gâteaux derivability and then she says that a map f : U → F is differentiable at x
(see Ref. 41, p. 18 and Ref. 39, p. 18) if (i) Df x is linear and continuous from E to F and (ii) the map
mx :R × E→F defined by

mx(t, v)=
f (x + tv) − f (x)

t
− Dfx(v),
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for x + tv ∈U, is continuous at (0, v) for all v ∈ E. This differentiability at x is indeed equiva-
lent to the differentiability defined by Michal56 in 1938, as proved in Refs. 45 and 57, Ref. 44,
p. 72, and Ref. 47, p. 202. What we call Bastiani differentiability is called differentiability on an
open set by Bastiani (see Ref. 41, p. 25 and Ref. 39, p. 44) and is strictly stronger than Michal
differentiability.

The same distinction between Michal-Bastiani differentiability and Bastiani differentiability is
made by Keller (Ref. 44, p. 72) in his thorough review. Bastiani’s differentiability is denoted by C1

c
by Keller,44 who also attributes the definition equivalent to C1

c to Bastiani alone (Ref. 44, p. 11).
In her Ph.D. thesis, Andrée Bastiani developed her concept of differentiability to define distribu-

tions on a locally convex space E with values in a locally convex space F. She started from Schwartz’
remark that a distribution is, locally, the derivative of a continuous function. She used her differential
D to define F-valued distributions over E.58 A drawback of Bastiani’s framework with respect to the
convenient framework is that her category is not Cartesian closed for locally convex spaces that are
not Fréchet.

D. Properties of the differential

We review now some of the basic properties of functional derivatives which will be used
in the sequel. We strongly recommend Hamilton’s paper,40 adapted to locally convex spaces by
Neeb.42

1. Continuity

We characterize continuous (nonlinear) maps between two locally convex spaces.

Lemma II.4. Let E and F be locally convex spaces whose topology is defined by the families of
seminorms (pi)i∈I and (qj)j∈J , respectively. Then f is continuous at x if and only if, for every seminorm
qj of F and every ε > 0, there is a finite number {pi1 , . . . , pik } of seminorms of E and k strictly positive
numbers η1, . . ., ηk such that pi1 (x − y)< η1, . . . , pik (x − y)< ηk imply qj

(
f (y) − f (x)

)
< ε .

Proof. This is just the translation in terms of seminorms of the fact that f is continuous at x if,
for every open set V containing f (x), there is an open set U containing x such that f (U) ⊂ V (Ref. 59,
p. 86). □

When the seminorms of E are saturated (Ref. 30, p. 96), as the seminorms πm ,K of C∞(Rd), the
condition becomes simpler: a map f : C∞(Rd)→K is continuous at x if and only if, for every ε > 0,
there is a seminorm πm ,K and an η > 0 such that πm ,K (x � y) < η implies |f (y) � f (x)| < ε . Since
Fréchet spaces are metrizable, we can also use the following characterization of continuity (Ref. 60,
p. 154):

Proposition II.5. Let E be a metrizable topological space and F be a topological space. Then, a
map f : E → F is continuous at a point x if and only if, whenever a sequence (xn)n∈N converges to x
in E, the sequence f (xn)n∈N converges to f (x) in F.

Another useful theorem is (Ref. 61, p. III.30)

Proposition II.6. Let E and F be two Fréchet spaces and G be a locally convex space. Every
separately continuous bilinear mapping from E × F to G is continuous.

This result extends to multilinear mappings from a product E1 ×· · · × En of Fréchet spaces to a
locally convex space.62,63

2. The fundamental theorem of calculus

The fundamental theorem of calculus for functionals reads
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Theorem II.7. Let f be a Bastiani differentiable map between two Hausdorff locally convex
spaces E and F. Let U be an open set in E, x in U, and v in E such that (x + tv) ∈ U for every t in an
open neighborhood I of [0, 1] so that g: t 7→ f (x + tv) is a map from I to F. Then,

f (x + v)= f (x) +
∫ 1

0
g′(t)dt = f (x) +

∫ 1

0
Dfx+tv(v)dt. (4)

To give a meaning to Eq. (4), we need to define an integral of a function taking its values in a
locally convex space. To cut a long story short:64,65

Definition II.8. Let X be a locally compact space (for example, Rd or some finite dimensional
manifold), µ be a measure on X, and F be a Hausdorff locally convex space. Let f be a compactly
supported continuous function from X to F. Let F ′ be the topological dual of F (i.e., the space of
continuous linear maps from F to K). If there is an element y ∈ F such that

〈α, y〉=
∫

X
〈α, f 〉dµ,

for every α ∈ F ′, where 〈·, ·〉 denotes the duality pairing, then we say that f has a weak integral and
we denote y by ∫ X fdµ.

The uniqueness of the weak integral follows from the fact that F is Hausdorff. In general, the
existence of a weak integral requires some completeness property for F (Ref. 64, p. 79). However,
this is not the case for the fundamental theorem of calculus (Ref. 41, p. 27). This point was stressed
by Glöckner.66

3. Additional properties

For maps between locally convex spaces, the linearity of the differential is not completely
trivial.40

Proposition II.9. Let E and F be locally convex spaces and f be a Bastiani differentiable map
from an open subset U of E to F. Then, for every x ∈ U, the differential Df x: E → F is a linear map.

The chain rule for Bastiani-differentiable functions was first proved by Bastiani herself41,39 (see
also Ref. 53).

Proposition II.10. Assume that E, F, G are locally convex spaces, U ⊂ E and V ⊂ F are open
subsets, and f : V → G and g: U → V are two Bastiani-differentiable maps. Then, the composite map
f ◦ g: U → G is Bastiani differentiable and D(f ◦ g)x = Df g(x ) ◦ Dgx.

By using these properties, the reader can prove that our examples are all Bastiani differentiable.

E. Smooth functionals

To define smooth functionals, we first define multiple derivatives.

Definition II.11. Let U be an open subset of a locally convex space E and f be a map from U to a
locally convex space F. We say that f is k-times Bastiani differentiable on U if we have the following:

• The k-th Gâteaux differential

Dk fx(v1, . . . , vk)=
∂k f (x + t1v1 + · · · + tkvk)

∂t1 . . . ∂tk
���t=0

,

where t = (t1, . . ., tk), exists for every x ∈ U and every v1, . . ., vk ∈ E.
• The map Dk f: U × Ek → F is continuous.
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Notice that for a function f assumed to be k-times Bastiani differentiable, the restriction
to any finite dimensional affine subspace is not only k-times differentiable (in the usual sense)
but indeed of class Ck . The set of k-times Bastiani differentiable functions on U is denoted
by Ck(U) or Ck(U, F) when the target space F has to be specified. Bastiani gives an equiva-
lent definition, called k-times differentiability on U (Ref. 41, p. 40), which is denoted by Ck

c by
Keller.44

Definition II.12. Let U be an open subset of a locally convex space E and f be a map from U to
a locally convex space F. We say that f is smooth on U if f ∈ Ck(U, F) for every integer k.

We now list a number of useful properties of the kth Bastiani differential:

Proposition II.13. Let U be an open subset of a locally convex space E and f ∈ Ck(U, F), where
F is a locally convex space, then we have the following:

1. Dk f x(v1, . . ., vk) is a k-linear symmetric function of v1, . . ., vk (Ref. 40, p. 84).
2. The function f is of class Cm for all 0 ≤ m ≤ k (Ref. 41, p. 40). In particular, f is continuous.
3. The compositions of two functions in Ck is in Ck and the chain rule holds (Ref. 41, p. 51 and

Ref. 40, p. 84).
4. The map Dmf is in Ck�m(U, L(Em, F)) (Ref. 41, p. 40) where L(Em, F) is the space of jointly

continuous m-linear maps from E to F, equipped with the locally convex topology of uniform
convergence on the compact sets of E, i.e., the topology generated by the seminorms

pC,j(α)= sup
(h1,...,hm)∈C

qj
(
α(h1, . . . , hm)

)
,

where C = C1 ×· · · ×Cm, Ci runs over the compact sets of E and (qj)j∈J is a family of seminorms
defining the topology of F.

5. If E is metrizable, then f ∈ Ck(U, F) if and only if f belongs to Ck�1(U, F) and Dk�1f : U →
L(Ek�1, F) is Bastiani differentiable (Ref. 41, p. 43). Here the metrizability hypothesis is used
to obtain a canonical injection from C(U × E, L(Ek�1, F)) to C(U × Ek , F).

We refer the reader to Refs. 40 and 42 and Bastiani’s cited studies for the proofs. Other results on
Ck(U) functions can be found in Keller’s book.44 All the statements of Proposition II.13 are valid for
k =∞, i.e., smooth functions. Bastiani also defines jets of smooth functions between locally convex
spaces (Ref. 41, p. 52 and Ref. 39, p. 75).

Note that Neeb67 and Glöckner68 agree with Bastiani for the definition of the first derivative but
they use an apparently simpler definition of higher derivatives by saying that f is Ck if and only if f
is Ck�1 and dk�1f is C1. However, this definition is less natural because, for example, f ∈ C2 if df :
U × E → F is C1. In the definition of the first derivative, U is now replaced by U × E and E by E ×
E. In other words, d2 is a continuous map from U × E3 to F. More generally dk is a continuous map
from U × E2k−1 to F (Ref. 68, p. 20). Moreover, according to Proposition 1.3.13 (Ref. 68, p. 23), a
map f belongs to Ck if and only if it belongs to Ck(U) is the sense of Bastiani, and Bastiani’s Dk f is
denoted by d(k )f by Glöckner (Ref. 68, p. 23) and called the kth differential of f. The kth derivatives
dk f and d(k )f = Dk f are not trivially related. For example (Ref. 68, p. 24), d2f (x, h1, h2, h3) = D2f (x,
h1, h2) + Df (x, h3).

The Taylor formula with remainder for a function in Cn+1(U) reads (Ref. 41, p. 44)

f (x + th)= f (x) +
n∑

k=1

tk

k!
Dk fx(hk) +

∫ t

0

(t − τ)n

n!
Dn+1fx+τh(hn+1)dτ (5)

= f (x) +
n∑

k=1

tk

k!
Dk fx(hk) +

∫ t

0

(t − τ)n−1

(n − 1)!
(
Dnfx+τh(hn) − Dnfx(hn)

)
dτ.
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Taylor’s formula with remainder is a very important tool to deal with smooth functions on locally
convex spaces.

The reader can check that all our examples are smooth functionals in the sense of Bastiani,

DkFϕ(v1, . . . , vk)=
n!

(n − k)!

∫
M

f (x)ϕn−k(x)v1(x) . . . vk(x)dx,

for k ≤ n and DkFϕ = 0 for k > n, and

DkGϕ(v1, . . . , vk)=
n!

(n − k)!

∫
Mn

g(x1, . . . , xn)v1(x1) . . . vk(xk)ϕ(xk+1) . . . ϕ(xn)dx1 . . . dxn,

for k ≤ n and DkGϕ = 0 for k > n. Recall that g is a symmetric, smooth compactly supported function
of its arguments. The functional H has only two non-zero derivatives and

D2Hϕ(v1, v2)= 2
∑
µν

∫
M

gµν(x)h(x)∂µv1(x)∂νv2(x)dx.

The example I has an infinite number of nonzero derivatives,

DkIϕ(v1, . . . , vk)=
∫

M
f (x)eϕ(x)v1(x) . . . vk(x)dx.

Finally

DkJϕ(v1, . . . , vk)= e∫M f (x)ϕ(x)dx
∫

Mk
f (x1) . . . f (xk)v1(x1) . . . vk(xk)dx1 . . . dxk .

The functionals F, G, and H are polynomials in the sense of Bastiani (Ref. 41, p. 53):

Definition II.14. Let E and F be locally convex spaces. A polynomial of degree n on E is a smooth
function f: E→ F such that Dk f = 0 for all k > n.

Let u be a distribution in D′(Mk), then the functional f :D(M)→K defined by f (ϕ) = u(ϕ⊗k) is
polynomial in the sense of Bastiani and its k-derivative is

Dk fϕ(v1, . . . , vk)=
∑
σ

u(vσ(1) ⊗ · · · ⊗ vσ(k)),

where σ runs over the permutations of {1, . . ., k} and the canonical inclusion D(M)⊗k ⊂D(Mk) was
used.

If F and G are smooth maps from E to K, we can compose the smooth map ϕ 7→
(
F(ϕ), G(ϕ)

)
and the multiplication in K to show that

Proposition II.15. Let E be a locally convex space and U be an open set in E. Then the space of
smooth functionals from U to K is a sub-algebra of the algebra of real valued functions.

III. PROPERTIES OF FUNCTIONALS

We now prove important properties of smooth functionals. We first investigate the support of a
functional. The fact that DFϕ is continuous from C∞(M) to K exactly means that DFϕ is a compactly
supported distribution for every ϕ. The support of F is then essentially the union over ϕ of the supports
of DFϕ . We prove that, for any smooth functional and any ϕ ∈ C∞(M), there is a neighborhood V of
ϕ such that F |V is compactly supported.
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The second property that we investigate is required to establish a link with quantum field theory.
In this paper, we deal with functionals that are smooth functions F on an open subset U of E = Γ(M,
B), where Γ(M, B) is the space of smooth sections of some finite rank vector bundle B on the manifold
M. There is a discrepancy between DkFϕ , which is a continuous multilinear map from Ek to K, and
the quantum field amplitudes (e.g., represented pictorially by Feynman diagrams) that are continuous
linear maps from E ⊗̂π k = Γ(Mk , B�k) to K, i.e., elements of the space Γ′(Mk , (B∗)�k) of compactly
supported distributions with values in the kth external tensor power of the dual bundle B∗. It is easy to
see that there is a canonical correspondence between DkFϕ and its associated distribution on E ⊗̂π k ,
which we denote by F(k)

ϕ . However, the equivalence between the continuity of DkF on U × Ek and
the continuity of F(k ) on U × E ⊗̂π k requires a proof.

Finally, we show that the order of F(k ) is locally bounded.

A. Support of a functional

Brunetti, Dütsch, and Fredenhagen proposed to define the support of a functional F by the
property that if the support of the smooth function ψ does not meet the support of F, then F(ϕ + ψ)
= F(ϕ) for all ϕ. More precisely,17

Definition III.1. Let F : U→K be a Bastiani smooth function, with U being a subset of C∞(M).
The support of F is the set of points x ∈ M such that, for every open set Ux containing x, there is a ϕ
∈ U and a ψ in C∞(M) with ϕ + ψ ∈ U such that suppψ ⊂ Ux and F(ϕ + ψ) , F(ϕ).

We want to relate this definition of the support of F with the support of DϕF, which is compactly
supported as every distribution over C∞(M).32 To do so, we need a technical lemma about connected
open subsets in locally convex spaces.

Lemma III.2. Let U be a connected open set in a locally convex space E, then any pair (x, y) ∈
U2 can be connected by a piecewise affine path.

Proof. Define the equivalence relation ∼ in E as follows: two elements (x, y) are equivalent if
and only if they are connected by a piecewise affine path. Let us prove that this equivalence relation
is both open and closed, hence any non-empty equivalence class for ∼ is both open and closed in U
and hence is equal to U.

Let x ∈ U, then there exists a convex neighborhood V of x in U which means that every element
in V lies in the class of x, and the relation is open. Conversely let y be in the closure of the equivalence
class of x, then any neighborhood V of y contains an element equivalent to x. Choose some convex
neighborhood V, then we find z ∈ V such that z ∼ x, but z ∼ y hence x ∼ z ∼ y and we just proved that
the equivalence class of x was closed. □

We can now prove an alternative formula due to Brunetti, Fredenhagen, and Ribeiro.20

Lemma III.3. For every Bastiani smooth function F : U→K, with U being a connected open
subset of C∞(M),

supp (F)=
⋃
ϕ∈U

supp DFϕ . (6)

Proof. Using the result of Lemma III.2, we may reduce to the case where U is an open convex
set. We prove that both sets

⋃
ϕ supp DFϕ and supp F as defined in Definition III.1 have identical

complements. Indeed, for every point x ∈M, x < supp F means by definition of the support that there
exists an open neighborhood Ω of x such that ∀(ψ, ϕ) ∈D(Ω) × C∞(M), F(ϕ + ψ) = F(ϕ). It follows
that for all ψ ∈D(Ω), there exists ε > 0 such that |t | 6 ε =⇒ ϕ + tψ ∈U and t ∈ [�ε, ε] 7→ F(ϕ + tψ)
is a constant function of t; therefore, dF(ϕ+tψ)

dt |t=0 =DFϕ(ψ)= 0. This means that for all ϕ ∈ U, the
support of DFϕ ∈ E′(M) does not meet Ω since Ω lies in the complement of ∪ϕ ∈Usupp (DFϕ) and
therefore x ∈ Ω does not meet the closure ∪ϕ∈Usupp (DFϕ).
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Conversely if x does not meet the closure ∪ϕ∈Usupp (DFϕ), then there is some neighborhood Ω
of x which does not meet ∪ϕ ∈Usupp (DFϕ); therefore, for all (ϕ,ψ) ∈U × D(Ω) such that ϕ + ψ ∈
U, the whole straight path [ϕ, ϕ + ψ] lies in U (by convexity of U) and hence

∀t ∈ [0, 1], DFϕ+tψ(ψ)= 0 =⇒
∫ 1

0
dtDFϕ+tψ(ψ)= 0,

and by the fundamental theorem of calculus, F(ϕ + ψ) = F(ϕ). □

Now we show that any smooth functional is locally compactly supported.

Proposition III.4. Let F : U 7→K be a Bastiani smooth function, where U is an open connected
subset of E = C∞(M). For every ϕ ∈ U, there is a neighborhood V of ϕ in U and a compact subset K
⊂ M such that the support of F restricted to V is contained in K. Moreover for all integers n and all
ϕ ∈ U, the distributional support supp

(
DnFϕ

)
is contained in Kn ⊂ Mn.

Proof. By definition of the support of a functional, it is enough to show that, for every ϕ ∈ V,
supp DFϕ ⊂ K. If F is smooth, then DF : U × E→K is continuous. Thus, it is continuous in the
neighborhood of (ϕ0, 0) for every ϕ0 ∈U. In other words, for every ε > 0, there is a neighborhood V of
ϕ0, a seminorm πm ,K , and an η > 0 such that |DFϕ(χ)| < ε for every ϕ ∈ V and every χ ∈ E such that
πm ,K (χ) < η. Now, for every ψ ∈ E such that πm ,K (ψ) , 0, we see that χ = ψη/(2πm ,K (ψ)) satisfies
πm ,K (χ) < η. Thus, |DFϕ(χ)| < ε for every ϕ ∈ V and, by linearity, |DFϕ(ψ)| < (2ε /η)πm ,K (ψ). On
the other hand, if πm ,K (ψ) = 0, then for any µ > 0 ψm ,K (µψ) = 0 < η so that |DFϕ(µψ)| < ε . By
linearity, |DFϕ(ψ)| < ε /µ for any µ > 0 and we conclude that |DFϕ(ψ)| = 0. Thus, for every ϕ ∈ V
and every ψ ∈ E,

|DFϕ(ψ)| ≤ 2
ε

η
πm,K (ψ).

Of course, this inequality implies that DFϕ(ψ) = 0 when ψ is identically zero on the compact
subset K.

Let us show that this implies that the support of DFϕ is contained in K. To avoid possible problems
at the boundary, take any compact neighborhood K ′ of K. Now, take an open set Ω in M such that
Ω ∩ K ′ = ∅. Then, for every smooth function ψ supported in Ω, we have πm ,K (ψ) = 0 because the
seminorm πm ,K takes only into account the points of K. As a consequence, the restriction of DFϕ
to Ω is zero, which means that Ω is outside the support of DFϕ for every ϕ ∈ V. Thus, supp F |V ⊂
K because, for every ϕ ∈ V, the support of DFϕ is included in every compact neighborhood of K.
Finally we show that if F is compactly supported, then all DnFϕ are compactly supported with supp
DnFϕ ⊂ (supp F)×n. This is easily seen by the following cutoff function argument: if F is compactly
supported, then for every cutoff function χ equal to 1 on an arbitrary compact neighborhood of supp
F, we have F(ϕ) = F(χϕ), ∀ϕ ∈ E. Then it is immediate by definition of DnFϕ that

DnFϕ(ψ1, . . . ,ψn)=
dnF(χ(ϕ + t1ψ1 + · · · + tnψn))

dt1 . . . dtn
|t=0

=DnFχϕ(χψ1, . . . , χψn),

thus supp DnFϕ ⊂ supp χ×n for all test function χ such that χ|suppF = 1 and therefore supp DnFϕ ⊂
(supp F)×n since

⋂
χ |supp F=1

supp χ = supp F. □

B. A multilinear kernel theorem with parameters

We work with M a smooth manifold and B→ M a smooth vector bundle of finite rank over M.
Let E = Γ(M, B) be its space of smooth sections and U be an open subset of E. We consider smooth
maps F : E 7→K where K is the field R or C. In this section, we relate the Bastiani derivatives DkF,
which are k-linear on Γ(M, B) to the distributions used in quantum field theory, which are linear on
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Γ(Mk , B�k). Since the kth derivative DkF of a smooth map is multilinear and continuous in the last
k variables, we can use the following result (Ref. 69, p. 471 and Ref. 70, p. 259):

Lemma III.5. Let E be a Hausdorff locally convex space. There is a canonical isomorphism
between any k-linear map f : Ek→K and the map f : E⊗k→K, where ⊗ is the algebraic tensor
product, which is linear and defined as follows: if χ =

∑
j χ

j
1 ⊗ · · · ⊗ χ

j
k is a finite sum of tensor

products, then

f̄ (χ)=
∑

j

f (χj
1, . . . , χj

k). (7)

Let us give a topological version of this lemma, using the projective topology. We recall the
definition of a family of seminorms defining the projective topology on tensor powers of locally
convex spaces following (Ref. 71, p. 23). For arbitrary seminorms p1, . . ., pk on E, there exists a
seminorm p1 ⊗· · · ⊗ pk on E⊗k defined for every ψ ∈ E⊗k by

p1 ⊗ · · · ⊗ pk(ψ)= inf
∑

n

p1(e1,n) . . . pk(ek,n),

where the infimum is taken over the representations of ψ as finite sums: ψ =
∑

ne1,n ⊗· · · ⊗ ek ,n.
Following Köthe (Ref. 72, p. 178), one can prove that p1 ⊗· · · ⊗ pk is the largest seminorm on E⊗k

such that

p(x1 ⊗ · · · ⊗ xk)= p1(x1) . . . pk(xk), (8)

for all x1, . . ., xk in E. More precisely, if p is a seminorm on E⊗k satisfying Eq. (8), then p(X) 6 (p1

⊗· · · ⊗ pk)(X) for every X ∈ E⊗k .
The projective topology on E⊗k is defined by the family of seminorms p1 ⊗· · · ⊗ pk where each

pi runs over a family of seminorms defining the topology of E (Ref. 71, p. 24).
When E is Fréchet, its topology is defined by a countable family of seminorms and it follows

that the family of seminorms p1 ⊗· · · ⊗ pk on E⊗k is countable. Hence they can be used to construct
a metric on E⊗k which defines the same topology as the projective topology and E ⊗̂π k is defined as
the completion of E⊗k relative to this metric or equivalently with respect to the projective topology.
A fundamental property of the projective topology is that f : Ek→K is (jointly) continuous if and
only if f̄ : E⊗k→K and still defined by Eq. (7) is continuous with respect to the projective topology
(Ref. 73, p. I-50). Then f̄ extends uniquely to a continuous map (still denoted by f̄ ) on the completed
tensor product E ⊗̂π k (Ref. 61, p. III.15).

If E = C∞(M), then E ⊗̂π k =C∞(Mk) (Ref. 31, p. 530), and f̄ becomes a compactly supported
distribution on Mk . More generally, if E = Γ(M, B), then E is Fréchet nuclear and E ⊗̂π k = Γ(Mk , E�k)
(Ref. 74, p. 72). Thus, f̄ becomes a compactly supported distributional section on Mk . If f = DkFϕ ,
we denote f̄ by F(k)

ϕ .
Recall that if U is an open subset of a Hausdorff locally convex space E, a map F : U→K

is smooth if and only if every DkF is continuous from U × Ek to K. According to the previous
discussion, continuity on Ek is equivalent to continuity on E ⊗̂π k . Therefore, it is natural to wonder
when joint continuity on U × Ek is equivalent to joint continuity on U × E ⊗̂π k . This is the subject of
the next paragraphs.

We now prove an equicontinuity lemma.

Lemma III.6. Let E be a Fréchet space, U be open in E, and F : U × Ek 7→K be a continuous
map, multilinear in the last k variables. Then for every ϕ0 ∈ U, there exist a neighborhood V of ϕ0,
a seminorm q of E ⊗̂π k , and a constant C > 0 such that

∀ϕ ∈ V ,∀ψ ∈ E ⊗̂π k , |F(ϕ,ψ) − F(ϕ0,ψ)| 6C q(ψ).

Proof. By continuity of F : U × Ek 7→K, for every ε > 0, there exist a neighborhood V of ϕ0

and neighborhoods U1, . . ., Uk of zero such that ϕ ∈ V and ei ∈ U i for i = 1, . . ., k imply |F(ϕ, e1,
. . ., ek)| ≤ ε . Since E is locally convex, there are continuous seminorms p1, . . ., pk on E and strictly
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positive numbers η1, . . ., ηk such that ei ∈ U i if pi(ei) ≤ ηi. Consider now arbitrary elements e1, . . .,
ek of E such that pi(ei) , 0. Then, if f i = eiηi/pi(ei), we have pi(f i) ≤ ηi. Thus, |F(ϕ, f 1, . . ., f k)| < ε
and, by multilinearity, |F(ϕ, e1, . . ., ek)| < Mp1(e1). . .pk(ek) where M = ε /(η1, . . ., ηk). The argument
in the proof of Proposition III.4 shows that |F(ϕ, e1, . . ., ek)| = 0 if pi(ei) = 0. Therefore, for every ϕ
∈ V and every e1, . . ., ek in E, |F(ϕ, e1, . . ., ek)| ≤ Mp1(e1). . .pk(ek). By defining C = 2 M, we obtain
for every ϕ ∈ V and every (e1, . . ., ek) ∈ Ek

|F(ϕ, e1, . . . , ek) − F(ϕ0, e1, . . . , ek)| 6Cp1(e1) . . . pk(ek). (9)

By definition of F, for all (ϕ, ψ) ∈ V × E⊗k ,

|F(ϕ,ψ) − F(ϕ0,ψ)| 6
∑

n

|F(ϕ, e1,n, . . . , ek,n)

−F(ϕ0, e1,n, . . . , ek,n)|

6C
∑

n

p1(e1,n) . . . pk(ek,n),

for all representations of ψ as finite sum ψ =
∑

ne1,n ⊗· · · ⊗ ek ,n. Taking the infimum over such
representations yields the estimate

∀(ϕ,ψ) ∈ V × E⊗k , |F(ϕ,ψ) − F(ϕ0,ψ)| 6Cq(ψ), (10)

for the seminorm q = p1 ⊗· · · ⊗ pk on E⊗π k and the above inequality extends to anyψ of E ⊗̂π k since, in
a Fréchet space, ψ can be approximated by a convergent sequence of elements in E⊗k by the density
of E⊗k in E ⊗̂π k and by the continuity of the seminorm p1 ⊗· · · ⊗ pk for the topology of E ⊗̂π k . □

Another way to state the previous result is to say that the family of linear maps {F(ϕ, ·), ϕ ∈ V},
is equicontinuous (Ref. 61, p. II.6).

1. Proof of the main result

We are now ready to prove

Proposition III.7. Let E be a Fréchet space and U ⊂ E be an open subset. Then F : U ×Ek 7→K,
multilinear in the last k variables, is jointly continuous if and only if the corresponding map F :
U × E ⊗̂π k→K is jointly continuous.

Proof. One direction of this theorem is straightforward and holds if E is any locally convex space.
Indeed, by definition of the projective tensor product, the canonical multilinear mapping Ek→E ⊗̂k

is continuous (Ref. 73, p. I-50). Therefore, if F is continuous on U ×E ⊗̂k , then, by composition with
the canonical multilinear mapping, F is continuous on U × Ek .

Let us prove that the continuity of F implies the continuity of F. According to Lemma II.4,
we have to show that, for every ϕ0 ∈ U and every ε > 0, there exist a finite number of continuous
seminorms qi on E ⊗̂π k , a neighborhood V of ϕ0, and ηi > 0 such that if ϕ belongs to V and ψ ∈ E ⊗̂π k

satisfies qi(ψ − ψ0) 6 ηi, then |F(ϕ,ψ) − F(ϕ0,ψ0)| 6 ε.
In order to bound F(ϕ,ψ) − F(ϕ0,ψ0), we cut it into three parts:

F(ϕ,ψ) − F(ϕ0,ψ0)=F(ϕ,ψk) − F(ϕ0,ψk)

+ F(ϕ,ψ − ψk) − F(ϕ0,ψ − ψk)

+ F(ϕ0,ψ) − F(ϕ0,ψ0), (11)

whereψk is some element of the algebraic tensor product E⊗k close enough toψ0 that we choose now.
The equicontinuity lemma III.6 yields a neighborhood V2 of ϕ0, a constant C > 0, and a continuous
seminorm q2 on E ⊗̂π k so that

∀ϕ ∈ V2,∀ψ ∈ E ⊗̂π k , |F(ϕ,ψ) − F(ϕ0,ψ)| 6Cq2(ψ).
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Now we use the fact that the algebraic tensor product E⊗k is everywhere dense in E ⊗̂π k , hence there
is some element ψk in the algebraic tensor product E⊗k such that q2(ψ0 − ψk) 6 η2 with η2 B

ε
6C .

Now that ψk is chosen, we can bound the second term of the sum (11), namely, F(ϕ,ψ − ψk) −
F(ϕ0,ψ − ψk). From the previous relation, for every ϕ ∈ V2 and every ψ such that q2(ψ � ψ0) ≤ η2,
the triangle inequality for q2(ψ � ψk) gives us

|F(ϕ,ψ − ψk) − F(ϕ0,ψ − ψk)| 6C
(
q2(ψ − ψ0) + q2(ψ0 − ψk)

)
6
ε

3
.

We continue by bounding the last term F(ϕ0,ψ)−F(ϕ0,ψ0) in the sum (11). Since ϕ0 is fixed, the
map ψ 7→F(ϕ0,ψ) is continuous in ψ because, since F(ϕ0, ·) is continuous on E⊗π k , its extension to
the completion E ⊗̂π k , also denoted by F(ϕ0, ·), is continuous. It follows that there is some seminorm
q1 of E ⊗̂π k and a number η1 > 0 such that if ψ ∈ U satisfies q1 (ψ − ψ0) 6 η1, then

|F(ϕ0,ψ) − F(ϕ0,ψ0)| 6
ε

3
.

To bound the first term F(ϕ,ψk)−F(ϕ0,ψk) in the sum (11), we use the fact that ψk ∈ E⊗k . Thus,
ψk =

∑p
j=1(e1,j ⊗ · · · ⊗ ek,j) for some (e1,j, . . ., ek ,j) ∈ Ek . By definition of F,

F(ϕ,ψk) − F(ϕ0,ψk)=
p∑

j=1

F(ϕ, e1,j, . . . , ek,j) − F(ϕ0, e1,j, . . . , ek,j).

By continuity of F in the first factor, the finite sum
∑p

j=1 F(ϕ, e1,j, . . . , ek,j) is continuous in ϕ and
there is some neighborhood V3 of ϕ0 such that for all ϕ ∈ V3 the following bound

|

p∑
j=1

F(ϕ, e1,j, . . . , ek,j) − F(ϕ0, e1,j, . . . , ek,j)| 6
ε

3

holds true.
Finally we found some neighborhood V = V2 ∩ V3 of ϕ0, two seminorms q1 and q2 of

E ⊗̂π k , and two numbers η1 > 0 and η2 = ε /6C such that q1(ψ � ψ0) < η1 and q2(ψ � ψ0) < η2

imply

|F(ϕ,ψ) − F(ϕ0,ψ0)| 6 ε.

The proposition is proved. □

Now we can specialize our result to the space of smooth sections of vector bundles. We recall a
fundamental result on the projective tensor product of sections (Ref. 74, p. 72):

Proposition III.8. Let Γ(M, B) be the space of smooth sections of some smooth finite rank vector
bundle B→ M on a manifold M. Then Γ(M, B)⊗̂π k = Γ(Mk , B�k).

Note that we could remove the index π in ⊗̂π because we saw that Γ(M, B) is nuclear.
If we specialize Proposition III.7 to sections of vector bundles (which is a Fréchet space), we
obtain

Theorem III.9. Let E = Γ(M, B) be the space of smooth sections of some smooth finite rank
vector bundle B→ M. Then F : U × Ek→K multilinear in the last k variables is jointly continuous
if and only if the corresponding map F : U × Γ(Mk , B�k)→K is jointly continuous.

Proof. The proof is an immediate consequence of the fact that E ⊗̂π k = Γ(Mk , B�k) and Proposition
III.7. □

The definition of a Bastiani smooth functional implies the following corollary:
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Theorem III.10. Let E = Γ(M, B) be the space of smooth sections of some smooth finite rank
vector bundle B→ M. A map F : U→K, where U is open in E, is Bastiani smooth if and only if the
maps F(k) : U × Γ(Mk , B�k)→K are (jointly) continuous for every k ≥ 1.

To interpret Theorem III.7 in terms of distributional kernels, let B→M denote a smooth vector
bundle of finite rank over a manifold M equipped with a fixed density |dx| and B∗→M denote the corre-
sponding dual bundle. Recall that Γ(M, B)′ ' Γ(M, B∗)⊗C∞(M)E′(M),75 where Γ(M, B∗)⊗C∞(M)E′(M)
denotes the compactly supported distributional sections of the dual bundle B∗. In global analysis,
to every continuous linear map L: Γ(M, B) → Γ(M, B)′, we associate the continuous bilinear map
B : (ϕ1, ϕ2) ∈ Γ(M, B)2 7→ 〈ϕ1, Lϕ2〉 ∈Kwhere the pairing is understood as a pairing between a smooth
function and a distribution once the smooth density on M is fixed.

The usual kernel theorem of the theory of distributions states that a bilinear map can be represented
by a distribution KL ∈ E′(M ×M)⊗C∞(M2) Γ(M2, B∗ �B∗) living on configuration space M2 such that,
for every (ϕ1, ϕ2) ∈ Γ(M, B)2,

〈KL, ϕ1 � ϕ2〉Γ′2,Γ2 = 〈ϕ1, Lϕ2〉Γ(M,B),Γ(M,B)′ ,

where Γ2 = Γ(M2, B � B). Theorem III.7 generalizes the kernel theorem by using multilinear maps
instead of the bilinear ones and by considering that these multilinear maps depend continuously and
non-linearly on a parameter ϕ.

C. Order of distributions

If F is a Bastiani smooth map from an open subset U of E = C∞(M) to K, then, for every ϕ ∈
U, DkFϕ is a compactly supported distribution. Therefore, the order of F(k)

ϕ is finite (Ref. 27, p. 88).

For some applications, for example, to local functionals, it is important to require the order of F(k)
ϕ to

be locally bounded.

Proposition III.11. Let E = C∞(M) and F : E→K be a smooth functional on an open subset U
of E. Then, for every ϕ0 ∈ U and every integer k, there is a neighborhood V of ϕ0, an integer m, and a
compact K ⊂ Mk such that, for every ϕ ∈ V, the order of F(k)

ϕ is smaller than m and F(k)
ϕ is supported

in K.

Proof. According to Lemma III.6, for every ϕ0 in U, there is a neighborhood V of ϕ0, a constant
C, and a seminorm πn,K of C∞(M) such that

|F(k)
ϕ (ψ) − F(k)

ϕ0 (ψ)| 6C πn,K (ψ).

This means that the order of F(k)
ϕ −F(k)

ϕ0 is bounded by n (Ref. 27, p. 64), and the order of F(k)
ϕ is bounded

by n plus the order of F(k)
ϕ0 . Moreover, if supp ψ ∩ K = ∅, then πn,K (ψ) = 0 and F(k)

ϕ (ψ)− F(k)
ϕ0 (ψ)= 0.

This means that the support of F(k)
ϕ − F(k)

ϕ0 is contained in K and the support of F(k)
ϕ (ψ) is contained

in the compact K ∪ supp F(k)
ϕ0 . □

Note also that, in general, the order of the distributions is not bounded on U.

Lemma III.12. Let g ∈D(R) and (χn)n∈Z be a sequence of functions such that χn ∈D([n−1, n +
1]) and

∑
n∈Z χn = 1. Then, the functional

F(ϕ)=
∞∑

n=−∞

∫
R
χn(ϕ(x))

d |n |ϕ

dx |n |
(x)g(x)dx

is Bastiani smooth on C∞(R) but the order of F(k) is not bounded on C∞(R).

Proof. The functional F is smooth because, for every ϕ0 ∈C∞(R), we can define a neighborhood
of ϕ0 by V = {ϕ; π0,K (ϕ � ϕ0) < ε}, where K is a compact neighborhood of the support of g. Let N
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be the smallest integer strictly greater than π0,K (ϕ0) + ε . Then, � N < ϕ(x) < N for every ϕ ∈ V and
every x ∈ K and

F(ϕ)=
N+1∑

n=−N−1

∫
χn(ϕ(x))ϕ( |n |)(x)g(x)dx

is a finite sum of smooth functionals.
However, the order of

F(1)
ϕ (ψ)=

∞∑
n=−∞

∫ (
χn(ϕ(x))ψ( |n |)(x) + χ′n(ϕ(x))ψ(1)(x)ϕ( |n |)(x)

)
g(x)dx

is not bounded on C∞(R). Indeed, for any positive integer n, we can find a smooth function ϕ such
that χn

(
ϕ(x)

)
g(x), 0 for some x ∈ supp g. Since F(1)

ϕ (ψ) contains a factor ψ(n)(x), it is at least of
order n. □

D. Derivatives as smooth functionals

In Sec. IV, we equip several spaces of functionals with a topology. As a warm-up exercise, we
show here that the maps F(k ) are smooth functionals from C∞(M) to E′(Mk).

We adapt to the case of functionals the general result given in item 4 of Proposition II.13 stating
that if F is a smooth functional on U, then DkF is a Bastiani smooth map from U to L(Ek ,K). We need
to identify the topology of L(Ek ,K) used by Bastiani. Let us start with L(E,K). Bastiani furnishes
E with the topology of convergence on all compact sets of E. In other words, the seminorms that
define the topology of L(E,K) are pC(u)= supf ∈C |〈u, f 〉|, where C runs over the compact subsets
of C∞(M). Since C∞(M) is a Montel space (Ref. 30, p. 239), the topology of uniform convergence
on compact sets is the same as the strong topology (Ref. 30, p. 235). This means that L(E,K) is the
space E′(M) of compactly supported distributions with its usual topology. Similarly, L(Ek ,K) can be
identified to a subset of E′(Mk) with its usual topology. We just obtained the following result:

Proposition III.13. Let U be an open subset of C∞(M) and F : U→K be a Bastiani smooth
functional. Then, for every integer k, the map F(k) : U→ E′(Mk) is smooth in the sense of Bastiani.

IV. TOPOLOGIES ON SPACES OF FUNCTIONALS

We need to define a topology on the various spaces of functionals used in quantum field theory.
The general idea is to define seminorms on F and its derivatives F(k ). The topology proposed by
Brunetti, Dütsch, and Fredenhagen17 is the initial topology of all the maps F→F(k)

ϕ , where each

F(k)
ϕ belongs to a nuclear space determined by a wavefront set condition. This topology is nuclear,

but the absence of a control of the dependence on ϕ makes it generally not complete. We then
describe Bastiani’s topology, which is complete but has two drawbacks: it does not take wavefront
set conditions into account and it is generally not nuclear. Finally we shall describe the family of
topologies proposed by Dabrowski21 which are both nuclear and complete.

A. Bastiani’s topology

Bastiani defines several topologies on the space of Bastiani smooth maps between two locally
convex spaces (Ref. 41, p. 65). For the case of functionals, we consider the topology defined by the
following seminorms:

pC0 (F)= sup
ϕ∈C0

|F(ϕ)|,

pC0,C(F)= sup
(ϕ,h1,...,hk )∈C0×C

|DkFϕ(h1, . . . , hk)|,

where C = C1 ×· · · × Ck and Ci runs over the compact sets of Γ(M, B). By using Bastiani’s results
(Ref. 41, p. 66), we obtain
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Proposition IV.1. Let B
π
→M be a finite rank vector bundle over the manifold M and Γ(M, B)

be the space of smooth sections of B. Then, with the seminorms defined above, the space of smooth
functionals on Γ(M, B) is a complete locally convex space.

A similar topology was used by Glöckner (Ref. 76, p. 367) and Wockel (Ref. 77, p. 29 and
Ref. 78, p. 12).

B. Nuclear and complete topologies

Quantum field theory uses different spaces of functionals defined by conditions on the wave
front set of F(k)

ϕ . Recall that the wave front set describes the points and the directions of singularity
of a distribution.79 Dabrowski21 recently described nuclear and complete topologies for spaces of
functionals with wave front set conditions. We present some of his topologies for several common
spaces of functionals.

Dabrowski’s definition differs from Bastiani in two respects. To describe the first difference,
recall that, according to Proposition III.13, if F : U→R is a smooth functional, then the derivatives
F(k) : U→ E′(Mk) are smooth functionals. To add the wave front set conditions, Dabrowski requires
F(k ) to be smooth from U to E′

Γk
(Mk), which is the space of compactly supported distributions whose

wave front sets are included in Γk , a cone in T ∗Mk . In fact, Dabrowski supplements this definition
with a more refined wave front set (the dual wave front set) which enables him to equip E′

Γk
(Mk) with

a Montel, complete, ultrabornological, and nuclear topology. He also considers support conditions
which are different from compact.

To describe the second difference, recall that Bastiani’s topology gives a locally convex space
that is complete. However it is generally not nuclear. This is due to a theorem by Colombeau and
Meise80 which says, broadly speaking, that a function space over a Fréchet space cannot be nuclear
for the topology of convergence over some balanced, convex, compact sets of infinite dimension.
To avoid that problem, the variable ϕ is made to run over finite dimensional compact sets. More
precisely, Dabrowski considers compact sets in Rm for any finite value of m and smooth maps f from
Rm to an open subset of C∞(M). He defines two families of seminorms:

pf ,K (F)= sup
ϕ∈f (K)

|F(ϕ)|, (12)

pn,f ,K ,C(F)= sup
ϕ∈f (K)

sup
v∈C
|〈F(n)

ϕ , v〉|, (13)

where K is a compact subset of Rm for some m and C is an equicontinuous subset of the dual of the
space of distributions to which F(n)

ϕ belong. Dabrowski proved that, with this family of seminorms,
the space of functionals F is a complete locally convex nuclear space.22

We describe now several types of functionals that have been used in the literature and we specify
more precisely their topologies.

C. The regular functionals

A polynomial functional of the form

F(ϕ)=
∑

n

∫
Mn

dx1 . . . dxnfn(x1, . . . , xn)ϕ(x1) . . . ϕ(xn),

where the sum over n is finite and fn ∈D(Mn), is called a regular functional81 because all its
derivatives are smooth functions,82 i.e., the wave front set of F(k)

ϕ is empty. More generally, we
define the space Freg(M) of regular functionals to be the set of Bastiani smooth functionals F
such that WF(F(n)) = ∅ for every n > 0. Thus, F(n) ∈ E′

∅
(Mn)=D(Mn) and the sets C in Eq. (13)

are the equicontinuous sets of D′(Mn). By a general theorem (Ref. 30, p. 200), the topology of
uniform convergence on the equicontinuous sets of D′(Mn) is equivalent to the topology given
by the seminorms of its dual D(Mn). In other words, the topology of Freg(M) is defined by the
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seminorms22

pf ,K (F)= sup
ϕ∈f (K)

|F(ϕ)|, (14)

pn,f ,K ,α(F)= sup
ϕ∈f (K)

pα,n
(
F(n)
ϕ

)
, (15)

where pα ,n runs over a defining family of seminorms of D(Mn).83 With this topology, Freg(M) is
nuclear and complete.

Note that the tensor product of elements of D(Mm) with elements of D(Mn) is not continuous in
D(Mm+n).84 Thus, the product in Freg(M) is hypocontinuous but not continuous.

D. The microcausal functionals

It is possible to describe quantum field theory (up to renormalization) as the deformation quantiza-
tion of classical field theory.26 For the deformation quantization of the product FG of two functionals
to first order in ~, we need to evaluate 〈DFϕ ⊗ DGϕ , ∆+〉, where ∆+ is a singular distribution (the
Wightman propagator) and 〈·, ·〉 is an extension of the duality pairing between distributions and test
functions.85 For this pairing to be meaningful to all orders in ~, the wave front set of ∆+ imposes that
the wave front set of D(k)

ϕ must not meet the cone Γk defined as follows.26

Let M be a Lorentzian manifold with pseudo-metric g. Let V+
x (respectively, V−x ) be the set of

(x; ξ) ∈ T ∗x M such that gµν(x)ξµξν ≥ 0 and ξ0 ≥ 0 (respectively, ξ0 ≤ 0), where we assume that g00

> 0. We define the closed cone

Γn =
{
(x1, . . . , xn; ξ1, . . . , ξn) ∈ Ṫ ∗Mn ; (ξ1, . . . , ξn) ∈

(V+
x1
× · · · × V+

xn
) ∪ (V−x1

× · · · × V−xn
)
}
,

where Ṫ ∗Mn is the cotangent bundle T ∗Mn without its zero section. The space Fmc of microcausal
functionals was originally defined as the set of Bastiani smooth functionals such that F(n)

ϕ ∈ E′Ξn
(Mn)

for every ϕ, where Ξn = Ṫ ∗MnrΓn is an open cone.16,17,20,26,81,86,87

However, the space E′
Ξn

(Mn) being not even sequentially complete,85 it is not suitable to define a
complete space of functionals. Therefore, Dabrowski defines the space Fmc of microcausal functionals
to be the set of Bastiani smooth functionals such that F(n)

ϕ ∈ E′
Ξn,Ξn

(Mn), which is the completion of

E′
Ξn

(Mn). Dabrowski proved that E′
Ξn,Ξn

(Mn) is the set of compactly supported distributions u ∈ E′(Mn)

such that the dual wavefront set of u is in Ξn and the wavefront set of u is in its closure Ξn (see Ref. 21
for a precise definition of these concepts and of the topology). This completion is not only complete
but even Montel and nuclear.21 According to the general results of Ref. 21, the sets C are now
equicontinuous sets of the bornologification of the normal topology of D′

Γn
. However, it was shown21

that these equicontinuous sets are the same as the bounded sets of D′
Γn

with its normal topology.
Therefore, the sets C are the well-known bounded sets of D′

Γn
.85

With this topology, the space Fmc is a complete nuclear algebra with hypocontinuous
product.

E. Local functionals

As discussed in the Introduction, local functionals are the basic building block (Lagrangian) of
quantum field theory. We shall see that local functionals are a closed subset of the set of smooth
functionals such that F(1)

ϕ can be identified with an element of D(M) that we denote by ∇Fϕ and the

wave front set of F(k)
ϕ is included in the conormal Ck of Dk = {(x1, . . ., xk) ∈Mk ; x1 =· · · = xk}. Recall

that the conormal of Dk is the set of (x1, . . ., xk ; ξ1, . . ., ξk) ∈ T ∗Mk such that x1 =· · · = xk and ξ1

+· · · + ξk = 0.
Since the additivity property (defined in Sec. V C) of local functionals complicates the matter,

we follow Dabrowski21 and, for any open set Ω ⊂ M, we first define FC(Ω) to be the set of smooth
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maps such that ϕ 7→ ∇Fϕ is Bastiani smooth from C∞(Ω) to D(M) and, for every integer k, ϕ 7→F(k)
ϕ

is Bastiani smooth from C∞(Ω) to E′Ck
(Mk) [we do not need to index E′(Mk) with two cones because

Ck is closed21]. The set Floc(Ω) of local functionals is then the subset of FC(Ω) satisfying the addivity
condition.

The topology of FC is induced by the family of seminorms given by Eq. (15) that depend on
the equicontinuous sets of the dual D′

Λk ,Λk
(Mk) of D′Ck

(Mk), where Λk = Ṫ ∗MkrCk . They were

determined by Dabrowski (Ref. 21, Lemma 28).

Proposition IV.2. A subset B of D′
Λk

(Mk) is equicontinuous if and only if there is a closed cone

Γ ⊂ Λk such that WF(u) ⊂ Γ for every u ∈ B and B is bounded in D′
Γ
(Mk).

The bounded sets of D′
Γ
(Mk) are characterized in detail in Ref. 85. The topology of D′

Λk
(Mk),

where Λk is open, can be described as a non-countable inductive limit as follows. Write the comple-
ment Λc

k =∪Γn, where each Γn is a compactly supported closed set. We write the open set Γc
n as a

countable union of closed sets Γc
n =∪mΛn,m so that Γn =∩mΛ

c
n,m and Λc

k =∪n ∩m Λ
c
n,m is a countable

union of countable intersections of open sets. We obtainΛk =∩n ∪mΛn,m. We define for a sequence α
the closed set Πα = ∩nΛn,α(n) such that α ≤ β implies Πα ⊂ Πβ . ThenΛ = ∪αΠα is a non-countable
inductive limit of closed cones from which we can define the topology ofD′

Λk
(Mk) as a non-countable

inductive limit of D′
Πα

(Mk).
The space FC furnished with the topology induced by the seminorms defined by Eqs. (12) and

(13) is complete and nuclear. The space Floc of local functionals is the closed subset of FC defined
by the additivity condition defined in Sec. V. As a closed subspace of a nuclear complete space, the
space of local functionals is nuclear and complete.

Further examples of spaces of functionals are given by Dabrowski.22

V. ADDITIVITY

The characterization of local functionals is a long-standing mathematical problem. According
to Rao,88 the first criterium was proposed by Pinsker in 1938 and called partial additivity.89 This
criterium is also used in physics, but we shall see that it is not what we need by exhibiting a partially
additive functional which is not local. Then, we shall discuss a more stringent criterium that is exactly
what we need.

A. Partial additivity

When looking for an equation to characterize functionals having the form of Eq. (1), one can
make the following observation. Let ϕ1 and ϕ2 be two smooth functions with disjoint supports K1

and K2 and assume that f (x, ϕ(x), . . .) = 0 if ϕ = 0 on a neighborhood of x89 so that F(0) = 0. Then,
since the support of ϕ1 + ϕ2 is included in K1 ∪ K2,

F(ϕ1 + ϕ2)=
∫

K1

dxf (x, ϕ1(x) + ϕ2(x), . . . ) +
∫

K2

dxf (x, ϕ1(x) + ϕ2(x), . . . )

=

∫
K1

dxf (x, ϕ1(x), . . . ) +
∫

K2

dxf (x, ϕ2(x), . . . )=F(ϕ1) + F(ϕ2).

Therefore, it is tempting to use the condition of locality,

F(ϕ1 + ϕ2)=F(ϕ1) + F(ϕ2), (16)

for ϕ1 and ϕ2 with disjoint support and functionals F such that F(0) = 0. And indeed, many authors
since 1938, including Gelfand and Vilenkin (Ref. 90, p. 275), used condition (16), but with disjoint
support replaced by ϕ1ϕ2 = 0 and smooth functions by measurable functions (see Ref. 88 for a review).
In perturbative quantum field theory, partial additivity in our sense is also used when the function f
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in Eq. (1) is polynomial17,91,92 because, in that case, partial additivity is equivalent to locality in the
sense of Eq. (1).17

However, this definition of locality does not suit our purpose, essentially because the set of
functions ϕ that can be written as ϕ = ϕ1 + ϕ2 (with supp ϕ ∩ supp ϕ2 = ∅) is not dense in the space
of smooth functions. We show this now and we construct a partially additive functional which is not
local.

B. A non-local partially additive functional

We work in the space C∞(S1) of smooth functions on the unit circle. We denote by I the subset
of functions f = ϕ1 + ϕ2 which are sums of the two elements of C∞(S1) whose supports are disjoint.
It is not a vector subspace of C∞(S1).

The idea of the construction is the following. In the metric space C∞(S1), we will show that the
subset I is bounded away from the constant function f = 1. This means that the functional equation
(16) only concerns the restriction F |I to a subset which is bounded away from 1. Therefore there is
some open neighborhood of f = 1 which does not meet I. Then we use Sobolev norms to build some
cutoff function χ to glue a local functional near I with a nonlocal functional near f = 1.

Lemma V.1. The constant function f = 1 is bounded away from I in C∞(S1): if f ∈ I, then
| |f − 1| |C0 = supx∈S1 |f (x) − 1| ≥ 1.

Proof. Let us denote by ‖.‖C0 the norm ‖f ‖C0 = supx∈S1 |f (x)|. It is a continuous norm for the
Fréchet topology of C∞(S1) because | |f | |C0 = π0,S1 (f ). Then, if supp ϕ1 ∩ supp ϕ2 = ∅, we have
‖ϕ1 + ϕ2 − 1‖C0 > 1. Indeed, the supports of ϕ1 and ϕ2 being compact, the fact that they do not meet
implies that they are at a finite distance. Thus, there is a point x ∈ S1 such that ϕ1(x) = ϕ2(x) = 0.
Hence, |ϕ1(x) + ϕ2(x) � 1| = 1 and supx∈S1 |ϕ1(x) + ϕ2(x) − 1| ≥ 1. □

The second step is to build a smooth function χ such that χ(1) = 1 and χ |I = 0.

Lemma V.2. There is a smooth function χ : C∞(S1)→R such that χ = 1 on a neighborhood of
f = 1 and χ(f ) = 0 if | |f − 1| |C0 ≥ 1. In particular, χ |I = 0.

Proof. First recall that the Sobolev norm H2k on S1 is defined as

‖f ‖H2k =

√∫
S1

(
(1 − ∆)k f (x)

)2 dx = 2π *
,

∑
n∈Z

(1 + n2)2k |̂f (n)|2+
-

1
2

, (17)

where the last representation uses the Fourier series f (x)=
∑

n f̂ (n)einx. By the Sobolev injections,
H2(S1) injects continuously in C0(S1). In other words, there is a constant C > 0 such that ‖f ‖C0 6
C‖f ‖H2 for every f ∈C∞(S1).

Now we take a function g ∈C∞(R) such that g(t) = 1 when t ≤ 1/3C2 and g(t) = 0 when t ≥
1/2C2 and we define χ :C∞(S1)→R by composing g with the square of the Sobolev norm,

χ(f )= g
(
| |1 − f | |2H2

)
.

If ‖1 − f ‖C0 > 1 (in particular, if f ∈ I by Lemma V.1), the Sobolev injection leads to

1 6 ‖1 − f ‖C0 6C‖1 − f ‖H2 =⇒ ‖1 − f ‖2H2 >
1

C2
,

hence g
(
‖1 − f ‖2

H2

)
= 0 by definition of g.
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On the other hand, ‖1 − f ‖H2 ) 6
1√
3C

means that f belongs to the neighborhood of the constant

function f = 1 defined by V = {f ; ‖1− f ‖H2 6 1/
√

3C}. On this neighborhood, g
(
‖1 − f ‖2

H2

)
= 1. The

smoothness of χ is an immediate consequence of the chain rule, the smoothness of g and of the
squared Sobolev norm ‖.‖2

H2(S1)
. □

We are now ready to define our counterexample:

Theorem V.3. The functional Fnl on C∞(S1) defined for any integer N > 1 by

Fnl(f )=
(
1 − χ(f )

) ∫
S1

f (x)dx + χ(f )

(∫
S1

f (x)dx

)N

(18)

is partially additive but not local.

Proof. For every (ϕ1, ϕ2) ∈C∞(S1)2 whose supports are disjoint, f = ϕ1 + ϕ2 ∈ I, hence χ(f )
= 0 by Lemma V.2. Moreover, we saw that if supp ϕ1 ∩ supp ϕ2 = ∅, then there is a point x ∈ S1 such
that ϕ1(x) = ϕ2(x) = 0. Thus, | |1 − ϕ1 | |C0 ≥ 1 and | |1 − ϕ2 | |C0 ≥ 1. As a consequence, χ(ϕ1) = χ(ϕ2)
= 0 by Lemma V.2 and Fnl(ϕ1 + ϕ2)= ∫S1 (ϕ1(x) + ϕ2(x))dx =Fnl(ϕ1) + Fnl(ϕ2).

On the other hand, in the neighborhood V of f = 1 given by Lemma V.2, χ(f ) = 1

hence Fnl(f )=
(
∫S1 f (x)dx

)N
which is not local. It is even a typical example of a multilocal

functional.16 □

Since partial additivity is equivalent to locality for polynomial functions, the non-locality of Fnl

can be considered to be non-perturbative. Moreover, the fact that the derivatives DnFnl calculated at
f = 0 are supported in the thin diagonal of (S1)n, although Fnl is not local, means that locality cannot
be controlled by the support of differentials taken at a single function f. We come now to the property
that is relevant for quantum field theory.

C. Additive functionals

In 1965, Chacon and Friedman93 introduced a more stringent concept of additivity that meets
our needs.

Definition V.4. We say that a Bastiani smooth map F : C∞(M)→K is additive if, for every triple
(ϕ1, ϕ2, ϕ2) of smooth functions on M, the property supp ϕ1 ∩ supp ϕ3 = ∅ implies the property

F(ϕ1 + ϕ2 + ϕ3)=F(ϕ1 + ϕ2) + F(ϕ2 + ϕ3) − F(ϕ2). (19)

In the literature, the additivity equation (19) is also called the Hammerstein property.94–99 The
additivity property is equivalent to the fact that the functional derivatives are supported on the thin
diagonal Dn = {(x1, . . ., xn) ∈ Mn; x1 =· · · = xn}.17,92

Proposition V.5. A smooth functional F on C∞(M) is additive if and only if supp F(2)
ϕ ⊂D2 for

every ϕ ∈ C∞(M), where D2 = {(x, y) ∈M2; x = y}. If F is an additive functional, then supp F(n)
ϕ ⊂Dn

for every ϕ ∈ C∞(M), where Dn = {(x1, . . ., xn) ∈ Mn; x1 =· · · = xn}.

Proof. We first prove that the second derivative of an additive functional is localized on the
diagonal.17 If we use the additivity property with ϕ1 = λψ, ϕ3 = µχ and supp ψ ∩ supp χ = ∅, then

F(λψ + ϕ2 + µχ)=F(λψ + ϕ2) + F(ϕ2 + µχ) − F(ϕ2).

Since no term on the right-hand side of this equation depends on both λ and µ, we have

∂2F(λψ + ϕ2 + µχ)
∂λ∂µ

=D2Fλψ+ϕ2+µχ(ψ, χ)=F(2)
λψ+ϕ2+µχ(ψ ⊗ χ)= 0.
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This equation, being true for every ϕ2, can be written as F(2)
ϕ (ψ ⊗ χ)= 0 for every ϕ and every pair

(ψ, χ) with disjoint supports. Now for every point (x, y) ∈ M2 such that x , y, there are two open
sets Ux containing x and Uy containing y such that Ux ∩ Uy = ∅. Then, any pair of functions ψ
and χ supported in Ux and Uy satisfies F(2)

ϕ (ψ ⊗ χ)= 0. Since the functions ψ ⊗ χ are dense in

D(M2), this implies that every test functions f ∈D(M2) supported in Ux × Uy satisfies F(2)
ϕ (f )= 0.

Thus (x, y) < supp F(2)
ϕ and supp F(2)

ϕ ⊂D2. To determine the support of F(n)
ϕ , consider a point (x1, . . .,

xn) which is not in Dn. Then, there are two indices i and j such that xi , xj. Denote by Ux an open
neighborhood of xi and by Uy an open neighborhood of xj and repeat the previous proof to obtain
F(2)
ϕ (ψ ⊗ χ)= 0 for every ϕ and every pair (ψ, χ) with supports in Ux and Uy. Now, rewrite ϕ = ϕ0

+
∑
λkψk , where ψk(xk) , 0 and the sum is over all integers from 1 to n except i and j. Then, the

derivatives with respect to λk are all zero and we find again with the same argument that (x1, . . ., xn)
is not in the support of F(n)

ϕ for every ϕ.

Conversely,20,92 assume that supp F(2)
ϕ ⊂D2 for every ϕ. As we have seen in the first part of the

proof, this means that if ψ and χ have disjoint support, then D2Fϕ(ψ, χ)=F(2)
ϕ (ψ ⊗ χ)= 0. By the

fundamental theorem of calculus,

F(ϕ + ψ + χ)=F(ϕ + ψ) +
∫ 1

0
dµ

d
dµ

F(ϕ + ψ + µχ),

F(ϕ + ψ + µχ)=F(ϕ + µχ) +
∫ 1

0
dλ

d
dλ

F(ϕ + λψ + µχ).

Thus,

F(ϕ + ψ + χ)=F(ϕ + ψ) +
∫ 1

0
dµ

d
dµ

F(ϕ + µχ) +
∫ 1

0
dλ

∫ 1

0
dµ

∂2

∂λ∂µ
F(ϕ + λψ + µχ).

The last term is zero because D2Fϕ(ψ, χ) = 0 and the second term is F(ϕ + χ) � F(ϕ). We recover
the additivity condition. □

Finally, additivity is stronger than partial additivity because the latter corresponds to the case ϕ2

= 0 and F(0) = 0. It is strictly stronger because Fnl is not additive.

VI. CHARACTERIZATION OF SMOOTH LOCAL FUNCTIONALS

In this section, we give a characterization of local functionals inspired by the topology described
in Sec. IV E. In the sequel, we shall deal with compactly supported distributions u with empty
wavefront sets. We repeat the definition of local functionals in terms of jets.

Definition VI.1. Let U be an open subset of C∞(M). A Bastiani smooth functional F : U→K
is said to be local if, for every ϕ ∈ U, there is a neighborhood V of ϕ, an integer k, an open subset
V ⊂ JkM, and a smooth function f ∈C∞(V) such that x ∈M 7→ f (jk

xψ) is supported in a compact subset
K ⊂ M and

F(ϕ + ψ)=F(ϕ) +
∫

M
f (jk

xψ)dx,

whenever ϕ + ψ ∈ V and where jk
xψ denotes the k-jet of ψ at x.

We invite the reader not familiarized with jet bundles to have a look at Sec. VI A, where these
objects are carefully defined. Note that the representation of F by f is not unique: adding the total
derivative of a function does not change the result. We shall see that f belongs to a unique cohomology
class for some specific cohomology theory on the space of local functionals.
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Before we state the main theorem of this section, let us start by some useful definition—lemma:

Lemma VI.2. Let U be an open subset of C∞(M) and F : U→K be Bastiani smooth. For every
ϕ such that the distribution DFϕ ∈ E′(M) has an empty wave front set, there exists a unique function
∇Fϕ ∈D(M) such that

DFϕ[h]=
∫

M
∇Fϕ(x)h(x)dx. (20)

Proof. Once a density dx is fixed on M, functions in L1
loc(M) [in particular in C∞(M)] can be

identified with distributions by the map

f ∈ L1
loc(M) 7→

(
φ 7→

∫
M

f φdx

)
and Ref. 32, Theorem 1.2.4, shows that the distribution is uniquely defined when f is continuous
hence when f is smooth.

Since WF(DFϕ) = ∅, there exists a unique C∞ function ∇Fϕ which represents the distribution
DFϕ ∈ E′(M) by integration on M against dx. □

The main theorem of this section is

Theorem VI.3. Let U be an open subset of C∞(M) and F : U→K be Bastiani smooth. Then, F
is local if and only if the following two conditions are satisfied:

1. F is additive.
2. For every ϕ ∈ U, the differential DFϕ =F(1)

ϕ of F at ϕ has an empty wave front set and the map
ϕ 7→ ∇Fϕ is Bastiani smooth from U to D(M).

Note that our definition of locality is strictly more general than the usual one because the coun-
terexample described in Lemma III.12 is local in our sense but not in the sense of Eq. (1) since its
order is infinite.

The proof is delayed to Sec. VI C. Since this theorem deals with jets, we start with a short
presentation of the jet bundle. Our point of view on jets is based on the concept of infinites-
imal neighborhoods due to Grothendieck and is closely related to several expositions in the
literature.100–102

A. The manifold of jets of functions on a manifold

Let M be a manifold. For every smooth real-valued function ϕ on M, we call k-jet of ϕ at a point
x ∈ M the class jk

x (ϕ) of ϕ in the quotient C∞(M)/Ik+1
x , with the understanding that Ik+1

x stands for
the (k + 1)-th power of the ideal Ix of smooth functions on M vanishing at x ∈ M. Recall that Ik+1

x
coincides with the ideal of smooth functions on M whose k + 1 first derivatives vanish at the point x.

For all x ∈M, the space Jk
x (M) of all k-jets of functions on M at x coincides with C∞(M)/Ik+1

x and
is called the space of k-jets at x. It is clearly a vector space. The disjoint union Jk(M)B

∐
x∈M Jk

x (M)
is a smooth vector bundle over M called the bundle of kth jets. Consider the map

J∆ : C∞(M ×M)→ Γ(Jk(M))
ψ 7→ x 7→ jk

x (i∗xψ),

where ix : M→M × M is the map y 7→ (x, y). It is known that J∆ is surjective onto the space of
smooth sections of Jk(M) and its kernel is the (k + 1)-th power of the ideal I∆ of functions on M ×
M vanishing on the diagonal.

Last, the projection p1: M × M → M onto the first component dualizes in an algebra morphism
ϕ 7→ p∗1ϕ from C∞(M) to C∞(M × M) which endows C∞(M × M) with a C∞(M)-module structure.
The space of sections of Jk(M) is also a C∞(M)-module, and it is routine to check that J∆ is a
morphism of C∞(M)-modules. Therefore, the space of sections of Jk(M) is, as a C∞(M)-module,
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isomorphic to the quotient C∞(M ×M)/Ik+1
∆

and Γ(Jk(M)) fits into the following exact sequence of
C∞(M)-modules:

0→ Ik+1
∆
→C∞(M ×M)→ Γ(Jk(M))'C∞(M ×M)/Ik+1

∆
→ 0.

And the map that to f associates its k-jet reads

f ∈C∞(M) 7→ [(p∗1f )] ∈C∞(M ×M)/Ik+1
∆

.

The purpose of the rest of this section is to prove the technical proposition VI.4, the statement
of which we now explain. For all integers k ∈N, there is a natural vector bundle morphism Jk from
the trivial bundle over M with typical fiber E = C∞(M) to the bundle Jk(M) → M of k-jets. This
morphism simply consists in assigning to a pair (f, x) in E ×M →M the k-jet of f at x. In equation,

Jk : E ×M 7→ jk(M),
(f , x)→ jk

x (f ).
(21)

The result goes as follows.

Proposition VI.4. Let E = C∞(M), V ⊂ E be an open subset, and k ∈N be an integer.

1. The subset Jk(V ×M) is an open subset of jk(M).
2. Let c be a smooth K-valued function on V ×M, with V ⊂ E being an open subset. Assume that

c(f, x) depends only on the k-jet of the function f at the point x. Then there exists a unique smooth
K-valued function c̃ on the open subset Jk(V ×M) ⊂ jk(M) that makes the following diagram
commutative:

(22)

i.e., such that the relation c(f , x)= c̃(jk
x (f )) holds for all f ∈ V and x ∈ M.

When V = E, Proposition VI.4 specializes to the following easier statement:

Corollary VI.5. Let c be a smooth function from E ×M to K. Assume that there exists an integer
k such that c(f, x) depends only on the k-jet of the function f at the point x. Then there exists a unique
smooth K-valued function c̃ on jk(M) such that the following diagram commutes:

(23)

i.e., such that the relation c(f , x)= c̃(jk
x (f )) holds for all f ∈ E and x ∈ M.

Before establishing these results, we shall need several lemmas.

Lemma VI.6. The vector bundle morphismJk described in (21) is surjective and admits a smooth
section sk .

Proof. The section sk , when it exists, is by construction a right inverse of Jk , the latter is
surjective. It suffices therefore to prove the existence of sk .

We first prove that the lemma holds true for M an open subset V of Rd . In that case, the bundle
of k-jets jk

x (V ) is isomorphic to the trivial bundle over V with a typical fiber, the space of polynomials
of degree less or equal to k. There is an obvious candidate for the section of Jk : it consists in mapping
αx ∈ jk

x (V ) to the unique polynomial of degree k whose k-jet at x ∈ V is α. The henceforth obtained
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assignment, which we denote by sk
V , is a smooth vector bundle morphism from jk(V ) → V to the

trivial bundle C∞(V ) × V → V. It is by construction a section of Jk .
We now go back to the general case of an arbitrary manifold M. For every point x ∈ M, choose

V x a coordinate neighborhood and let χ be a smooth function with compact support on V x which is
identically equal to 1 in a neighborhood V ′x ⊂ Vx of x. Since V x is a coordinate neighborhood, it can
be identified with an open subset of Rd , which allows us to consider

s
k
Vx

: jk(Vx) 7→C∞(Vx) × Vx

as in the previous paragraph. We can then consider the composition of vector bundle morphisms over
V x,

jk(M)|Vx ' jk(Vx)
sk

Vx
−→C∞(Vx) × Vx

mχ×id
−→ E × Vx,

where jk(M)���Vx
' jk(Vx) is the obvious identification of the k-jet bundle of V x to the restriction to V x

of the k-jet bundle on M and where mχ is the smooth linear map from C∞(V x) to E = C∞(M) defined
by mχ(f ) = fχ. Since χ is identically equal to 1 on V ′x , the restriction to V ′x of this vector bundle
morphism is by construction a section of the restriction of Jk to V ′x .

Since the manifold M is paracompact,103 the latter point implies that the manifold M can be
covered by open subsets (Ui)i∈I such that the restriction of Jk to U i admits a section sk

i . Without any
loss of generality, we can assume the existence of a smooth partition of unity (χi)i∈I relative to this
open cover. A global smooth section of Jk is then given by the explicit formula sk =

∑
i∈I χi s

k
i , as

follows from the obvious computation:

J
k ◦ sk =

∑
i∈I

χi J
k ◦ sk

i =
∑
i∈I

χi idjk (M) = idjk (M),

where we used the fact that jk commutes with multiplications by χi since jk : E×M 7→ JkM is a vector
bundle morphism. This completes the proof. □

Since c : V ×M→K is only defined on the open subset V ×M of E ×M, we need the following
refinement of Lemma VI.6 where the local sections tkx of Jk are valued in V × M:

Lemma VI.7. For every (f, x) ∈ E ×M, the vector bundle morphism Jk described in (21) admits
a smooth section tk through104 (f, x).

Proof. Notice that Lemma VI.7 can be derived from Lemma VI.6 for any vector bundle morphism
over the identity of M. A careful check shows that the arguments below are absolutely general and
indeed show that for any two vector bundles E1, E2 over M, any vector bundle morphism E1 7→ E2

over M that admits a section is a submersion and admits a section through every point of E1.
We prefer to do it, however, in our particular setting—since one of the bundles is infinite

dimensional and requires careful attention.
Let sk be a section of Jk as in Lemma VI.6. Consider the smooth map defined at all points y ∈

M by

tky : jk
y (M)→ (E ×M)y 'E,

β 7→ sk
y (β) + (f − sk

y ◦ jk
y (f )).

This map is smooth by construction. It is again a sectionJk , as follows from the following computation,
valid for all y ∈M, β ∈ jk

y (M):

J
k
y ◦ t

k
y (β)=Jk

y
(
s

k
y (β) + (f − sk

y ◦ jk
y (f ))

)
=Jk

y ◦ s
k
y (β) + Jk

y (f ) − Jk
y ◦ s

k
y ◦ jk

y (f )

= β + Jk
y (f ) − Jk

y (f )= β.
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Then the section tk above satisfies by construction

t
k
x ◦ J

k
x (f )= sk

x ◦ jk
x (f ) + f − sk

x ◦ jk
x (f )= f .

This completes the proof. □

Lemma VI.7 has the following immediate consequence.

Lemma VI.8. The vector bundle morphism Jk described in (21) is a submersion.

Proof. For every (f, x) in E ×M, let us choose tk to be a section through (f, x) as in Lemma VI.7.
By construction, the differential of Jk at (f, x) admits the differential of tk at Jk(f , x) as right inverse,
so it is surjective. □

We can now prove Proposition VI.4.

Proof. Since the vector bundle morphism Jk described in (21) is a submersion by Lemma VI.8
and since V ×M is open in E ×M, the subset Jk(V ×M) is an open subset of jk(M). This proves the
first item in Proposition VI.4.

Let us now prove the second item. Assume that we are given a function c : V ×M 7→K such that
the value c(f, x) at an arbitrary f ∈ E and x ∈ M depends only the k-jet of f at x. The existence of
an unique function c̃ from jk(M) to K making the diagram (22) commute is simply a set-theoretic
property: the difficulty is to show that this function c̃ is smooth.

When V = E (i.e., under the assumptions of Corollary VI.5), the smoothness of c̃ follows directly
from Lemma VI.6, which implies that the commutative diagram (23) can be completed to

which amounts to say that the following relation holds:

c̃= c ◦ sk . (24)

The latter formula and the smoothness of sk implies that when c is assumed to be a smooth function,
so is the function c̃ by composition. This proves Corollary VI.5.

For the general case, we have to choose, for all α ∈ Jk(V × M), a section tk of Jk such that
tk(α) ∈ V × M. Such a section tk always exists by Lemma VI.7. Since tk is smooth, there exists a
neighborhood Wα of α in Jk(V ×M) on which tk takes values in the domain of definition V ×M of
c, which implies that the commutative diagram (22) can be completed to

In turn, the commutativity of this diagram gives the explicit description of c̃ through the following
formula, valid on Wα:

c̃= c ◦ tk . (25)

Formula (25) and the smoothness of tk imply that when c is assumed to be a smooth function, so is, by
composition, the restriction to Wα of the function c̃. Since every α ∈ Jk(V×M) admits a neighborhood
on which the restriction of c̃ is smooth, the function c̃ is a smooth function. This completes the
proof. □
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B. Properties of F (2)
φ

We first show that the two assumptions of our theorem are equivalent to some strong assumptions
on the second derivative of F:

Lemma VI.9. Let U be an open subset of C∞(M) and F : U→K be Bastiani smooth. Assume
that for every ϕ ∈ U, the differential DFϕ =F(1)

ϕ of F at ϕ has no wave front set, i.e., WF(F(1)
ϕ )= ∅.

Then the two following properties are equivalent:

1. F is additive and the map ϕ 7→ ∇Fϕ is Bastiani smooth from U to D(M).
2. For every ϕ0 ∈ U, there is a neighborhood V of ϕ0, a compact K ⊂ M, and a finite family of

Bastiani smooth maps fα : V→D(K) with |α | 6 k such that in any system of local coordinates
(x, y) on M2,

F(2)
ϕ (x, y)=

∑
|α |6k

fα(ϕ)(x)∂αy δ(x − y), (26)

for every ϕ ∈ V.

In particular, both conditions imply that D2Fϕ is represented by a distribution F(2)
ϕ whose wave

front set is the conormal bundle of the diagonal in M2 (Ref. 105, p. 32).
In the sequel, we shall often use the following simple lemma:

Lemma VI.10. Let E, F, and G be locally convex spaces. If f : E → F is Bastiani smooth and `:
F → G is linear and continuous, then ` ◦ f : E → G is Bastiani smooth and Dk(` ◦ f ) = ` ◦ Dk f.

Proof. This is a consequence of three facts: the map ` is Bastiani smooth because it is linear and
continuous, ` ◦ f is Bastiani smooth because it is the composition of two Bastiani smooth maps, and
the chain rule. □

We also need the following lemma in the proof of Lemma VI.9:

Lemma VI.11. Let U be a convex open subset of E = C∞(M) containing the origin and F: U →
E be a Bastiani smooth map. Then, G: U → E defined by G(ϕ)= ∫

1
0 F(sϕ)ds is Bastiani smooth.

Proof. The first step is to define a candidate for the Bastiani differential DkG by determining
DkG(x) pointwise in x ∈ M. For every (t1, . . ., tk , x) ∈ [0, 1]k ×M and (ϕ, ψ1, . . ., ψk) ∈ U × Ek , the
function (t1, . . . , tk , x) 7→ ∫

1
0 dsF(s(ϕ + t1ψ1 + · · · + tkψk))(x) is smooth in (t1, . . ., tk , x) by dominated

convergence theorem since x can always be restricted to some compact subset K ⊂M to obtain uniform
bounds. We can differentiate in (t1, . . ., tk) outside and inside the integral and both differentials
coincide. Therefore, for every x ∈ M, the Bastiani kth-differential DkG(x) of G(x)= ∫

1
0 dsF(sϕ(x))

exists and satisfies the relation DkGϕ(ψ1, . . . ,ψk)(x)= ∫
1

0 dsskDkFsϕ(ψ1, . . . ,ψk)(x). Let us show that
DkG: U × Ek 7→ E is jointly continuous in (ϕ, ψ1, . . ., ψk).

We know that the map χ: (s, ϕ, ψ1, . . ., ψk) ∈ [0, 1] × U × Ek 7→ skDkFsϕ(ψ1, . . ., ψk) ∈ E is
continuous by joint continuity of DkF: U × Ek 7→ E and composition of the continuous maps

(s, ϕ,ψ) 7→ (sϕ,ψ) 7→ skDkFsϕ(ψ),

where ψ = (ψ1, . . ., ψk). Then by Ref. 40, Theorem 2.1.5, p. 72, applied to the function χ, the
integrated map (ϕ,ψ1, . . . ,ψk) 7→ ∫

1
0 dsskDkFsϕ(ψ1, . . . ,ψk) is continuous and the proof is complete

because continuity holds true for every k. □

Let us now prove Lemma VI.9.

Proof. First of all, by Proposition V.5, F is additive if and only if its second derivative is repre-
sented by a distribution supported in the diagonal. We start by proving the direct sense assuming that
ϕ ∈ U 7→ ∇Fϕ ∈ C∞(M) is Bastiani smooth.
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We first show that item 1 implies item 2 in Lemma VI.9. Since F is Bastiani smooth for any ϕ0 ∈

U, we already know by Proposition III.4 that there is some neighborhood V of ϕ0 on which F |V has
fixed compact support that we denote by K. Therefore, ∇Fϕ belongs to D(K) for every ϕ ∈ V and
F(2)
ϕ is supported in K × K. Since F(2)

ϕ is also supported in the diagonal of M2 by Proposition V.5, the

support of F(2)
ϕ is contained in the diagonal of K × K which can be identified with K itself.

Since DFϕ has an empty wavefront set by assumption, its singular support is empty and it can
be represented by a unique smooth compactly supported function ∇Fϕ (Ref. 32, p. 37) such that

d
dt

F(ϕ + th)|t=0 =DFϕ(h)=
∫

M
∇Fϕ(x)h(x)dx. (27)

The main step is to represent F(2)
ϕ as the Bastiani differential of ∇Fϕ by calculating the second

derivatives in two different ways. The Bastiani smoothness of F yields

D2Fϕ(g, h)=
d2

dt1dt2
F(ϕ + t1h + t2g)|t1=t2=0

=
d

dt2

(
d

dt1
F(ϕ + t1h + t2g)|t1=0

)
|t2=0

=
d

dt2

(∫
M
∇Fϕ+t2g(x)h(x)dx

)
|t2=0,

where we used the Schwarz lemma and Eq. (27). To justify switching d
dt2

and integration over M,

observe that the map ϕ ∈U 7→∇Fϕ ∈D(M) is Bastiani smooth, hence C1. It follows by the chain rule
that t 7→ d

dt∇Fϕ+tg is a C0 map valued in D(M). Since ∇Fϕ is actually in D(K) for every ϕ ∈ V and the
topology induced by D(M) on D(K) is the usual Fréchet topology of D(K), the map ∇F is smooth
from V to the Fréchet space D(K).

Since D(K) injects continuously in (C0(K), π0,K ), this implies that (t, x) ∈ [−1, 1] × K 7→
d
dt∇Fϕ+tg(x) ∈C0([−1, 1] × K). Hence the integrand d

dt2
∇Fϕ+t2g(x)h(x) is in C0([�1, 1] × K) and

is bounded on the integration domain. A continuous map u: t ∈ [�1, 1] 7→ u(t, .) ∈ (C0(K), π0,K )
corresponds to a map also denoted by u ∈ C0([�1, 1] × K). Indeed for every convergent sequence
(tn, xn) →

n→∞
(t, x) in [�1, 1] × K, the simple estimate |u(t, x)− u(tn, xn)| 6 |u(t, x)− u(t, xn)| + |u(t, xn)−

u(tn, xn)| 6 |u(t, x) − u(t, xn)| + π0,K (u(tn, .) − u(t, .)) shows that u(tn, xn) →
n→∞

u(t, x).

By the dominated convergence theorem, we can differentiate under the integral sign,

D2Fϕ(g, h)=
d

dt2

(∫
M
∇Fϕ+t2g(x)h(x)dx

)
|t2=0 =

∫
M

(
d

dt2
∇Fϕ+t2g(x)|t2=0

)
h(x)dx.

By definition d
dt2
∇Fϕ+t2g |t2=0 is only the Bastiani derivative

D∇F : (ϕ, g) ∈ V × C∞(M) 7→D∇Fϕ[g] ∈D(K), (28)

where D∇F is a Bastiani smooth map since ∇F is Bastiani smooth.
Note also that by Theorem III.9, the second derivative D2Fϕ(g, h) can be represented by a map

ϕ ∈U 7→F(2)
ϕ ∈ E′(M2) such that ∀(ϕ, g, h) ∈U × C∞(M)2, D2Fϕ(g, h)=

〈
F(2)
ϕ , g ⊗ h

〉
, which means

that F(2)
ϕ is the distributional kernel of the second derivative D2Fϕ . We now arrive at the following

equality that identifies two different representations of the second derivative. For every (ϕ, g, h) ∈ U
× C∞(M)2, 〈

F(2)
ϕ , g ⊗ h

〉
=

∫
M

D∇Fϕ[g](y)h(y)dy. (29)

By the same theorem III.9 and the chain rule, D∇Fϕ[g](y) = evyD∇Fϕ[g] is linear continuous in g
∈ C∞(M), hence there is a distribution, denoted by D∇Fϕ(x, y), such that ∫ MD∇Fϕ(x, y)g(x)dx =
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D∇Fϕ[g](y) and ∫ MD∇Fϕ(x, y)g(x)dx is in D(K) by Eq. (28). Since the above identity holds for
all (g, h) ∈ C∞(M)2, we have in the sense of distributions that F(2)

ϕ (x, y)=D∇Fϕ(x, y) where the
map

(ϕ, g) ∈ V × C∞(M) 7→
∫

M
F(2)
ϕ (x, ·)g(x)dx ∈D(K) (30)

is Bastiani smooth.
It suffices to do the last part of the proof, which is local in nature, on M =Rd . We now represent

F(2)
ϕ (x, y) as a C∞(M)-linear combination of derivatives of Dirac distributions concentrated on the

diagonal. By Proposition V.5, the additive property satisfied by F implies that the distribution F(2)

associated with the second derivative D2F is supported in the diagonal D2 ⊂ M × M. By Propo-
sition III.11, the kernel F(2)

ϕ (x, y) ∈ E′(M × M) has bounded distributional order uniformly in ϕ ∈
V. Schwartz’ theorem on distributions supported on a submanifold (Ref. 27, p. 101) states that in
local coordinates, there exists a finite sequence of distributions (ϕ ∈ V 7→ fα(ϕ, .) ∈D(K)) |α |6k such

that F(2)
ϕ =

∑
|α |6k fα(ϕ, x)∂αy δ(x − y). We denote the distributions f α(ϕ) by f α(ϕ, x) because we shall

show that ϕ 7→ f α(ϕ) is Bastiani smooth from V to D(K).
By Eq. (30), we know that for every (ϕ, g) ∈ V × C∞(M) the map from V × C∞(M) to D(K)

defined by

(ϕ, g) 7→
∫

M
F(2)
ϕ (x, ·)g(x)dx =

∑
|α |6k

(−1) |α |fα(ϕ, .)∂αg(.)

is smooth. Choosing g to be equal to the Fourier oscillatory function e�i〈ξ .x〉, we obtain by the chain
rule the maps that send (ϕ, ξ) to∫

M
F(2)
ϕ (x, y)e−i〈ξ .x〉dy=

∫
M

∑
|α |6k

(−1) |α |fα(ϕ, y)δ(x − y)∂αy e−i〈ξ .x〉dy=
∑
|α |6k

(−1) |α |fα(ϕ, x)(−iξ)α

is Bastiani smooth. Moreover, since the image of the map in Eq. (30) is inD(K) for every smooth g, we
obtain that

∑
|α |6k(−1) |α |fα(ϕ, ·)(−iξ)α is in D(K) for every ξ. This is only possible if fα(ϕ) ∈D(K)

for every |α | 6 k. Therefore ϕ 7→ fα(ϕ)= (i d
dξ )α ∫M F(2)

ϕ (., y)e−i〈ξ .y〉dy|ξ=0 is Bastiani smooth from V
to D(K) and the proof of the direct sense is complete.

Conversely, we want to prove that if there is a neighborhood V of ϕ0, a compact K ⊂ M, and a
finite family of smooth maps ϕ 7→ fα(ϕ) ∈D(K), |α | 6 k, such that in any system of local coordinates
(x, y) on M2,

F(2)
ϕ (x, y)=

∑
|α |6k

fα(ϕ)(x)∂αy δ(x − y),

then ϕ 7→∇Fϕ ∈D(M) is Bastiani smooth. Without loss of generality, we assume that V is convex.
By the Taylor formula with remainder for Bastiani smooth functions, for every (ϕ, ψ1, ψ2) ∈ V ×
C∞(M)2,

D2Fϕ+s1ψ1+s2ψ2 (ψ1,ψ2)= ∂s1∂s2 F(ϕ + s1ψ1 + s2ψ2)

= ∂s2 DFϕ+s1ψ1+s2ψ2 (ψ1),

for s1 and s2 small enough. It follows by the fundamental theorem of calculus and by evaluating at
s1 = 0 the previous relation that

DFϕ+tψ2 (ψ1)=DFϕ(ψ1) +
∫ t

0
∂s2 DFϕ+s2ψ2 (ψ1)ds2

=DFϕ(ψ1) +
∫ t

0
D2Fϕ+sψ2 (ψ1,ψ2)ds,
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where by assumption DFϕ(ψ1) is represented by integration against a smooth function

DFϕ(ψ1)=
∫

M
∇Fϕ(x)ψ1(x)dx,

D2Fϕ+sψ2 (ψ1,ψ2)=
∫

M×M
F(2)
ϕ+sψ2

(x, y)ψ1(x)ψ2(y)dxdy,

and F(2)
ϕ+sψ is supported on a subset of the diagonal D2 ⊂M ×M that can be identified with K. Hence,

for ψ ∈ C∞(M) such that ϕ + ψ ∈ V,

∇Fϕ+ψ(x)=∇Fϕ(x) +
∫ 1

0

(∫
M

F(2)
ϕ+sψ(x, y)ψ(y)dy

)
ds

=∇Fϕ(x) +
∑
|α |6k

(−1) |α |∂αψ(x)
∫ 1

0
fα(ϕ + sψ)(x)ds.

To show that the map χ : V→D(K) defined by χ(ψ) = ∇Fϕ+ψ is smooth, we notice that, according
to the last equation, ∇Fϕ+ψ is the sum of the constant (i.e. independent of ψ) ∇Fϕ and a finite linear
combination of products of ψ 7→ ∂αψ by an integral over s. The integrand f α(ϕ + sψ) is smooth by
assumption. Therefore, the map

ψ ∈ (V − ϕ) 7→
∫ 1

0
fα(ϕ + sψ)(x)ds ∈D(K)

is smooth by Lemma VI.11 and the fact that the topology induced on D(K) by the topology of C∞(M)
is the standard topology of D(K). The map ψ 7→ ∂αψ is smooth because it is linear and continuous.
Finally, the product of the integral by ∂αψ is smooth by a trivial extension of Lemma VI.15. This
completes the proof of Lemma VI.9. □

We are now ready to prove Theorem VI.3 characterizing local functionals.

C. Proof of Theorem VI.3

Let us start by proving the converse where we assume that F is the integral of some local function
on jet space. Let ϕ ∈ U and V be some neighborhood of ϕ such that F(ϕ + ψ)= ∫M f (x, jk

xψ)dx for
every ψ ∈ V where jk

xψ is the k-jet of ψ at x and where f is smooth and compactly supported in the
variable x in some fixed compact K ⊂ M. Without loss of generality, we can restrict the support K of
f by a smooth partition of unity and assuming that K is contained in some open chart of M, we may
reduce to the same problem for f ∈ C∞(Ω) where Ω is some open set in Rd and K ⊂ Ω.

We choose a smooth compactly supported function χ ∈D(Ω) such that χ = 1 on a compact
neighborhood of K with supp χ ⊂ Ω and we observe that

Ψ :ψ ∈C∞(Ω) 7−→ (∂αψ) |α |6k χ ∈D(supp(χ))
(d+k)!

d!

is linear continuous hence Bastiani smooth. We need a simple

Lemma VI.12. Let Ω be an open set in Rd then the map

Φ : ϕ ∈C∞(Ω,Rr) 7→ {x 7→ (x, ϕ(x))} ∈C∞(Ω,Rd × Rr)

is Bastiani smooth.

Proof. The first Bastiani differential DΦϕ(h) can be identified with the smooth function x 7→ (0,
h(x)), which is linear continuous in h and does not depend on ϕ. It is thus smooth and so is Φ. □
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Therefore, the composition

Φ ◦ Ψ : C∞(Ω)→C∞(Ω,Rd × R
(d+k)!

d! )

defined by
Φ ◦ Ψ(ψ) : x 7→

(
x, χ∂αψ(x) |α |6k

)
is Bastiani smooth and finally

ψ ∈C∞(M) 7→ f (., jk
xψ(.)) ∈D(K) 7→

∫
Ω

f (x, jk
xψ)dx

is Bastiani smooth by the chain rule, and since the last integration map is linear continuous thus
Bastiani smooth.

Now let us prove the direct sense of Theorem VI.3, where we start from a functional character-
ization of F and end up with a representation as a function F(ϕ + ψ)= ∫M f (x, jk

xψ)dx on jet space,
for ϕ + ψ in a neighborhood V of ϕ, that we assume convex. We start by deriving a candidate for the
function f. According to the fundamental theorem of calculus,

F(ϕ + ψ)=F(ϕ) +
∫ 1

0
dtDFϕ+tψ(ψ). (31)

As discussed at the beginning of this section, since we assume that WF(F(1)
ϕ )= ∅ for every ϕ ∈ U,

there exists a unique smooth compactly supported function x 7→ ∇Fϕ(x) such that

F(1)
ϕ (ψ)=

∫
M

dx∇Fϕ(x)ψ(x). (32)

Therefore Eq. (31) reads

F(ϕ + ψ)=F(ϕ) +
∫ 1

0
dt
∫

M
∇Fϕ+tψ(x)ψ(x)dx. (33)

We show that Fubini’s theorem can be applied to the function χ: (x, t) 7→ ∇ϕ+tψF(x)ψ(x). By Propo-
sition III.4, F(1) is locally compactly supported so that there is a convex neighborhood V of ϕ and a
compact subset K ofΩ such that F(1)

ϕ+ψ is supported in K for every ϕ +ψ ∈ V. The function χ is defined
on [0, 1]×K and supported on K for fixed t ∈ [0, 1]. Moreover, by imposing the additional assumption
carried by item 2 in Theorem VI.3, namely, that ϕ 7→ ∇Fϕ be Bastiani smooth from U to D(M), the
support property of F implies that the image of ∇Fϕ+tψ is actually in D(K) and ∇F is smooth from V
to D(K) because the topology induced on D(K) by D(M) is the Fréchet topology of D(K) determined
by the seminorms πm ,K (Ref. 30, p. 172). Since D(K) injects continuously in (C0(K), π0,K ), ϕ 7→
DϕF is a continuous (C0(K), π0,K )-valued map. This implies that (t, x) 7→ ∇Fϕ+tψ(x) is continuous
as a K-valued function on [0, 1] × K. Hence so is the integrand of (33), and the Fubini theorem holds
and we obtain

Lemma VI.13. Let U be an open subset of E = C∞(M) and F : E→K be Bastiani smooth. Assume
that for every ϕ ∈ U, WF(F(1)

ϕ )= ∅ and F(1) : U→D(M) is Bastiani smooth, then, for every ϕ ∈ U,
there is a convex neighborhood V of ϕ such that if ϕ + ψ ∈ V, then

F(ϕ + ψ)=F(ϕ) +
∫

M
dx

∫ 1

0
∇Fϕ+tψ(x)ψ(x)dt. (34)

From now on, we consider ϕ ∈ U to be fixed. Our candidate for f (jk
xψ) is

cψ(x)=
∫ 1

0
∇Fϕ+tψ(x)dt ψ(x). (35)

By definition and Lemma VI.13, for all ψ such that ϕ + ψ ∈ V,

F(ϕ + ψ)=F(ϕ) +
∫

M
cψ(x)dx.

To show that cψ(x) is the right candidate, we first need
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Proposition VI.14. The function cψ depends only on a finite jet of ψ. More precisely, for every ϕ
∈ U, if there is a convex neighborhood V of ϕ and an integer k ≥ 0 such that, for all x ∈ M, for every
ψ1 and ψ2 such that ϕ + ψ1 and ϕ + ψ2 are in V and jk

xψ1 = jk
xψ2, then cψ1 (x)= cψ2 (x).

The beginning of the proof is inspired by Ref. 20. For fixed ϕ ∈ U, by Proposition III.11, there
exist an integer k, a compact K, and a convex neighborhood V of ϕ such that the order of F(2)

ϕ+ψ is
smaller than k and the support of DFϕ+ψ is in K if ϕ + ψ ∈ V.

Let us choose some point x0 ∈ M. Consider a pair ψ1, ψ2 of smooth functions such that ψ1(x0)
= ψ2(x0). Then,

cψ1 (x0) − cψ2 (x0)=
∫ 1

0
dt

(
∇Fϕ+tψ2 (x0)ψ2(x0) − ∇Fϕ+tψ1 (x0)ψ1(x0)

)
=ψ1(x0)

∫ 1

0
dt

(
∇Fϕ+tψ2 (x0) − ∇Fϕ+tψ1 (x0)

)
.

We use the fundamental theorem of analysis again for DFϕ(h) = ∫ Mdx∇Fϕ(x)h(x) for an arbitrary
h ∈ C∞(M) to get

DFϕ+tψ2 (h) − DFϕ+tψ1 (h)= t
∫ 1

0
ds

〈
F(2)
ϕ+tψ1+st(ψ2−ψ1), (ψ2 − ψ1) ⊗ h

〉
.

Now we take a sequence of smooth functions (hn)n∈N which converges to δx0 in D′(M) when n
goes to infinity and show that both the left- and right-hand sides have limits. For the left-hand side,
the distribution DFϕ+tψi being smooth, it defines the continuous form u 7→DFϕ+tψi (u) on D′(M) by
duality pairing. By continuity, DFϕ+tψi (hn)→DFϕ+tψi (δx0 ) and Eq. (32) yields

h=DFϕ+tψ2 (δx0 ) − DFϕ+tψ1 (δx0 )

=

∫
M

dx
(
∇Fϕ+tψ2 (x) − ∇F(1)

ϕ+tψ1
(x)

)
δ(x − x0)

=∇Fϕ+tψ2 (x0) − ∇Fϕ+tψ1 (x0).

For the right-hand side, we know by Lemma VI.9 that for every s ∈ [0, 1], the wave front set of
the distribution F(2)

ϕ+tψ1+st(ψ2−ψ1) is in the conormal C2 and the sequence (ψ2 � ψ1) ⊗ hn converges to
(ψ2 − ψ1) ⊗ δx0 in D′N∗(M×{x0 })

, where N∗ (M × {x0}) is the conormal of the submanifold M × {x0}⊂
M ×M in T ∗ (M ×M). Therefore, by transversality of the wave front sets and hypocontinuity of the
duality pairings,106 the following limit exists:

lim
n
〈F(2)
ϕ+tψ1+st(ψ2−ψ1), (ψ2 − ψ1) ⊗ hn〉.

Moreover, still by Lemma VI.9, we have for ϕ + ψ ∈ V,

〈F(2)
ϕ+ψ , g ⊗ h〉=

∑
|α | ≤k

(−1) |α |
∫

M
dxθαψ(x)g(x)∂αh(x),

for every (g, h) ∈ C∞(M)2 and all θαψ belong to D(K). An integration by parts yields

〈F(2)
ϕ+ψ , g ⊗ h〉=

∑
|α | ≤k

∫
M

dxf αψ (x)h(x)∂αg(x),

where f αψ =
∑
β

(
β
α

)
∂β−αθ

β
ψ and the sum is over the multi-indices such that β ≥ α and | β | 6 k.
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As a consequence, for ϕ + ψ1 + ψ2 in the convex neighborhood V,

X = 〈F(2)
ϕ+tψ1+st(ψ2−ψ1), (ψ2 − ψ1) ⊗ δx0〉=

∑
|α | ≤k

f αtψ1+st(ψ2−ψ1)(x0)∂α(ψ2 − ψ1)(x0).

If, at the point x0, jk
x0
ψ1 = jk

x0
ψ2, then

cψ1 (x0) − cψ2 (x0)=ψ1(x0)
∑
|α | ≤k

∫ 1

0
tdt

∫ 1

0
ds f αtψ1+st(ψ2−ψ1)(x0)

(
∂αψ2(x0) − ∂αψ1(x0)

)
= 0.

We showed that cψ depends only on the k-jet of ψ at x0. Moreover, the number k depends only on V
and not on x0 so that cψ depends on the k-jet for every x ∈ M. In other words, there is an integer k
and a function f such that cψ(x) = f (x, ψ(x), . . ., ∂αψ(x)) for every x ∈ M, where 1 ≤ |α| ≤ k.

We want to show that f is smooth in its arguments, hence we now investigate in which manner
cψ depends on ψ. This suggests to study the regularity of the D(K)-valued function ψ 7→ ∇Fϕ+tψψ.
More precisely, we need to show that the map ψ 7→ ∇Fϕ+tψψ is Bastiani smooth from U to D(K).
This is not completely trivial because the map x 7→ ∇Fϕ+tψ(x) is in D(K) and ψ is in C∞(M) and we
must check that the product of a function in D(K) by a function in C∞(M) is continuous (Ref. 27,
p. 119).

Lemma VI.15. If U is an open set in C∞(M) and F : U→D(K) is a compactly supported Bastiani-
smooth map, then the function G : U→D(M) defined by G(ϕ) = F(ϕ)ϕ is compactly supported
Bastiani-smooth with the same support as F.

Proof. Dabrowski pointed out to us the following fact. For any compact subset K ofΩ, bothD(Ω)
and C∞(Ω) induce on D(K) the usual Fréchet topology of D(K) (Ref. 30, p. 172). Thus to establish
the smoothness of G, it suffices to show that the multiplication (u, v) ∈D(K) × C∞(M) 7→D(K) is
continuous and then it would be Bastiani smooth, and by the chain rule it follows that ϕ 7→ (F(ϕ), ϕ) 7→
F(ϕ)ϕ is smooth. Since both D(K) and C∞(M) are Fréchet, the product D(K)×C∞(M) endowed with
the product topology is metrizable and it is enough to prove that the product is sequentially continuous.
Indeed, let (un, vn)→ (u, v) in D(K)×C∞(M), we can find some cutoff function χ ∈D(M) such that
χ = 1 on the support of all un, and for all m, by (Ref. 85, p. 1351)

πm,K (uv − unvn) 6 πm,K ((u − un)vχ) + πm,K (un χ(v − vn))

6 2m (
πm,K (u − un)πm,K (χv) + πm,K (un)πm,K ((v − vn)χ)

)
→ 0.

Hence G is smooth. □

This implies thatψ 7→ cψ = ∫
1

0 ∇Fϕ+tψψdt is smooth since the above lemma shows the smoothness
of a(t, ψ) 7→ ∇Fϕ+tψψ and integration over t conserves smoothness by Lemma VI.11. At this point,
Theorem VI.3 follows directly from Proposition VI.4.

D. Representation theory of local functionals

In this section, we discuss the issue of representation of our local functionals and the rela-
tions between the functionals (cψ ,∇F, f (jk

xψ)) which are defined or constructed in the course of our
proof of Theorem VI.3. In the sequel, we assume that our manifold M is connected, oriented with-
out boundary, hence we can fix a density dx on M which is also a differential form on M of top
degree.

In the sequel, we shall work out all explicit formulas in local charts which means without loss
of generality that we work on Rd , and the reference density dx is chosen to be the standard Lebesgue
measure. We will denote by (x, u, uα) |α |6k where α are multi-indices, some local coordinates on the
jet bundle Jk(Rd). Introduce the vertical Euler vector field ρ=

∑
u(α) ∂

∂u(α) on the bundle Jk(Rd). In the
manifold case if we work on Jk(M), this vector field is intrinsic since it generates scaling in the fibers of
Jk(M). For all multi-index (α) = (α1. . .αp), αi ∈ {1, . . ., d}, introduce the operators ∂(α) = ∂α1 . . . ∂αp

where ∂i = ∂
∂xi +

∑
α u(αi) ∂

∂u(α) and the Euler–Lagrange operator EL = u ∂
∂u +

∑
α(−1) |α |∂(α)u(α) ∂

∂u(α) .
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Let us discuss the nature of the objects involved, ρ is a vertical vector field and acts on C∞(JkM) as
a C∞(M) linear map, for χ ∈C∞(Rd), f ∈C∞(JkRd), ρ(χf ) = χ(ρf ). For every i ∈{1, . . ., d}, ∂i is
a vector field on JkRd but it has a horizontal component; therefore, it is not C∞(Rd) linear and the
Euler–Lagrange operator is not C∞(Rd) linear either.

What follows is a definition—proposition—where we give an intrinsic and global definition of
the Euler–Lagrange operator in terms of the operator ∇F associated with a functional.

Proposition VI.16 (Euler-Lagrange operator is intrinsic). Let U be an open subset of C∞(M)
and F : U→K be a Bastiani smooth local functional. For ϕ ∈ U, if there is an integer k, a neighbor-
hood V of ϕ, an open subset V of JkM, and f ∈C∞(V) such that x 7→ f (jk

xψ) is compactly supported
and

F(ϕ + ψ)=F(ϕ) +
∫

M
f (jk

xψ)dx

whenever ϕ + ψ ∈ V, then in every local chart

∇Fϕ =EL(f )(jkψ), (36)

where EL(f )(ψ)=
∑
|α |6k(−1) |α |

(
∂(α)

(
∂f
∂u(α)

))
(jk

xψ) and EL(f )(ψ) is uniquely determined by F.

The above proposition means that EL(f ) does not depend on the choice of representative f and
is intrinsic (i.e., it does not depend on the choice of a local chart).

Proof. Indeed, assume that we make a small perturbation ϕ + ψ of the background field ϕ by ψ
which is compactly supported in some open chart U of M. Then a local calculation yields

DFϕ(ψ)=
∑
α

∫
M

∂f

∂u(α)(x)
ψ(α)(x)dx

=
∑
|α | ≤k

(−1) |α |
∫

M
ψ(x)

(
∂(α)

(
∂f

∂u(α)

))
dx,

where we used an integration by parts to recover the Euler-Lagrange operator and all boundary terms
vanish since f is compactly supported in x and ψ ∈D(U). We have just proved that for all open charts
U ⊂ M, ∇Fϕ |U = EL(f )|U . But ∇Fϕ is intrinsically defined on M therefore so is EL(f ) and we have
the equality ∇F = EL(f ). The unique determination of ∇Fϕ follows from Lemma VI.2. □

Theorem VI.17 [Global Poincaré]. Assume that M is a smooth, connected, oriented manifold
without boundary. Let U be an open subset of C∞(M) and F : U→K be a Bastiani smooth local
functional. Then the following statements are equivalent:

• Two functions, (f1, f2) ∈C∞(V) for V an open subset of the jet space JkM, are two
representations of F in a neighborhood V of ϕ ∈ U,

F(ϕ + ψ)=F(ϕ) +
∫

M
f1(jk

xψ)dx =F(ϕ) +
∫

M
f2(jk

xψ)dx,

whenever ϕ + ψ ∈ V.
• For all ψ ∈ V � ϕ,

f1(jk
xψ)dx − f2(jk

xψ)dx = d β(j2k
x ψ), (37)

where β(j2k
x ψ) ∈Ωd−1

c (M) is a differential form of degree d � 1 whose value at a point x depends
only on the 2k-jet of ψ at x.
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Let us stress that we do not need to constraint the topology of M in the above theorem and only
the compactness of the support of fi(jk

xψ)dx, i ∈ {1, 2} really matters.

Proof. One sense of the equivalence is trivial since the integral of a compactly supported exact
form on M always vanishes. By Proposition VI.4, we know that the map ψ ∈ V � ϕ 7→ jkψ has an
open image in Jk(M) denoted V and we only need (f 1, f 2) to be defined on V. Recall we denote
by (x, u, uα) |α |6k where α are multi-indices, some local coordinates on the jet bundle Jk(Rd). We
use the vertical Euler vector field ρ=

∑
u(α) ∂

∂u(α) on the bundle Jk(Rd). For every multi-index

(α) = (α1. . .αp), αi ∈ {1, . . ., d}, introduce the operators ∂(α) = ∂α1 . . . ∂αp where ∂i = ∂
∂xi +∑

α u(αi) ∂
∂u(α) and the Euler–Lagrange operator reads EL = u ∂

∂u +
∑
α(−1) |α |∂(α)u(α) ∂

∂u(α) .
We shall prove two related identities, in local chart,

(ρf ) (jkψ)dx = (uEL(f ))(jkψ)dx + d *.
,

d∑
µ=1

jµ(j2kψ)
∂

∂xµ
ydx+/

-
, (38)

f (jk(ψ1 + ψ2))dx = f (jkψ1)dx +
∫ 1

0
dtψ2EL(f )(jk(ψ1 + tψ2))dx + d

(∫ 1

0

dt
t

jµ(j2k(ψ1 + tψ2))∂xµ ydx

)
.

(39)

For all (f , g) ∈C∞(JkRd)2 and all multi-indices α, the generalized Leibniz-like identity holds
true,

(∂α1 . . . ∂αp f )g= (−1)pf (∂αp . . . ∂α1 g) +
p∑

i=1

(−1)i+1∂αi
(
(∂αi+1 . . . ∂αp f )∂αi−1 . . . ∂α1 g

)
,

where the second term is a sum of total derivatives. Using this, we derive the following key identity
which is valid on jet spaces. For all fdx ∈C∞(JkRd) ⊗ Ωd(Rd),

(ρf ) dx =
∑

u(α) ∂f

∂u(α)
dx = u

∂f
∂u

+
∑
|α |>1

u(α) ∂f

∂u(α)
dx

= uEL(f )dx +
d∑
µ=1

∂µjµ(j2kψ)dx

= uEL(f )dx + d *.
,

d∑
µ=1

jµ(j2kψ)
∂

∂xµ
ydx+/

-
,

where jµ ∈C∞(J2kRd) is a local functional.
To prove the second identity, we shall use the fundamental theorem of calculus and the first

identity,

f (jk(ψ1 + ψ2))dx = f (jkψ1)dx +
∫ 1

0

dt
t

(ρf ) (jk(ψ1 + tψ2))dx

= f (jkψ1)dx +
∫ 1

0
dtψ2EL(f )(jk(ψ1 + tψ2))dx + d

(∫ 1

0

dt
t

jµ(j2k(ψ1 + tψ2))∂xµ ydx

)
.

To prove the claim of the lemma is equivalent to show the following statement: if a local functional
F is locally constant, i.e., F(ϕ + ψ) = F(ϕ) whenever ϕ + ψ ∈ V, then F(ϕ +ψ)=F(ϕ) + ∫M d β(j2k

x ψ)
and β(j2k

x ψ) ∈Ωn−1
c (M) is a compactly supported n � 1 form. For all ψ in V � ϕ,

F(ϕ + tψ)=F(ϕ) =⇒
∫
Rd

∫ 1

0

dt
t

(ρf )(jk
x (tψ))dx = 0, =⇒

∫
Rd

∫ 1

0
dt

(
ψEL(f )(jk

x (tψ))dx
)
= 0.



023508-37 Brouder et al. J. Math. Phys. 59, 023508 (2018)

This means that EL(f ) = 0 and therefore on any open chart U (U is contractible), Eq. (39) yields

f (jp
x (ψ))= f (0) + d

∫ 1

0
dt *.

,

∑
µ

jµ(j2p
x (tψ))∂xµ ydx+/

-
.

We want to prove that EL(f )= 0 =⇒ f (jk
x (ψ))dx−f (0)dx |Mp+1 = d β(j2kψ), where β ∈C∞(J2p(M))

knowing that this holds true on any local chart and that EL(f ) = 0 is equivalent to assuming that F(ϕ+
ψ)B ∫M f (jk

xψ)dx is locally constant. We cover M by some countable union ∪i∈NUi of contractible
open charts such that every element x ∈ M belongs to a finite number of charts U i, set Mp =(
U1 ∪ · · · ∪ Up

)
, and arrange the cover in such a way that Mp ∩ Up+1 , ∅ for all p which is always

possible. Assume by induction on p that EL(f ) = 0 and supp (f ) ⊂ Mp implies

f (jk
x (ψ))dx − f (0)dx |Mp = d β(j2kψ),

where β ∈C∞(J2p(M)) ⊗ Ωd−1
c (Mp).

We want to prove that EL(f )= 0, supp (f ) ⊂Mp+1 =⇒ f (jk
x (ψ))dx−f (0)dx |Mp+1 = d β(j2kψ), where

β ∈C∞(J2p(M)) ⊗ Ωd−1
c (Mp+1). Choosing a partition of unity (χ, 1 � χ) subordinated to Mp ∪

Up+1, the key idea is to decompose the variation ψ of the background field ϕ as the sum of two
components χψ + (1 � χ)ψ where χψ (respectively, (1 � χ)ψ) vanishes outside Up (resp Up+1) which
yields

f (jkψ)= f (jk(χψ + (1 − χ)ψ)) − f (jk((1 − χ)ψ)) + f (jk((1 − χ)ψ)) − f (0) + f (0).

The second idea is to note that for every fixed ψ, the new functional

φ 7→ f̃ (jkφ)= f (jk(χφ + (1 − χ)ψ)) − f (jk((1 − χ)ψ))

has the trivial Euler–Lagrange equation EL(f̃ )(jkφ)=EL(f )(jk(χφ + (1 − χ)ψ))= 0 since EL(f ) = 0
and its support is contained in Mp. Therefore,

f (jkψ)= f̃ (jkψ) + f (jk((1 − χ)ψ)) − f (0) + f (0)

= d β̃(j2kψ) + f (jk((1 − χ)ψ)) − f (0)︸                      ︷︷                      ︸ +f (0)

by the inductive assumption. To treat the term under brace, define a new functional

ψ 7→ g(jkψ)= f (jk((1 − χ)ψ)) − f (0),

whose support is contained in Up+1 and whose Euler-Lagrange equation vanishes, EL(g) = 0 again
by the fact that EL(f ) = 0. Since Up+1 is contractible, we know that f (jk((1 � χ)ψ)) � f (0) = dα(j2kψ)
where α ∈C∞(J2kM) ⊗ Ωd−1

c (Up+1) and therefore we found that

f (jkψ)dx = d β(j2kψ) + f (0)dx,

where β ∈C∞(J2kM) ⊗ Ωd−1
c (Mp+1). Therefore for all ψ ∈ V � ϕ, f (jk

x (ψ))dx = d β(j2kψ) + f (0)dx.
Now we conclude by using the fact that F is a constant functional, thus 0=F(ϕ + ψ) − F(ϕ)=

∫M

(
f (0)dx + d β(j2kψ)

)
= ∫M f (0)dx. But f (0)dx is a top form in Ωd

c (M) which does not depend on ψ

and whose integral over M vanishes, hence f (0)dx = dk for some k ∈Ωd−1
c (M) since Hd

c (M,R)'R
for the top de Rham cohomology with compact support when M is connected (Ref. 107, Theorem
17.30, p. 454). □

The next theorem summarizes the above results.
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Theorem VI.18. Let U be an open subset of C∞(M) and F : U→K be a Bastiani smooth local
functional. For ϕ ∈ U, if there is an integer k, a neighborhood V of ϕ, an open subset V of JkM, and
f ∈C∞(V) such that x 7→ f (jkψx) is compactly supported and

F(ϕ + ψ)=F(ϕ) +
∫

M
f (jk

xψ)dx

whenever ϕ + ψ ∈ V, then in every local chart

∇Fϕ =EL(f )(jkψ), (40)

where EL(f )(ψ)=
∑
|α |6k(−1) |α |

(
∂(α)

(
∂f
∂u(α)

))
(jk

xψ) is the Euler–Lagrange operator and EL(f )(ψ)
is uniquely determined by F.

Furthermore, we find that

F(ϕ + ψ)=F(ϕ) +
∫

M
f (jk

xψ)dx

=F(ϕ) +
∫

M

(∫ 1

0
dtψEL(f )(tψ)ψ

)
dx.

Moreover f (jk
xψ) −

(∫ 1

0
dtψEL(f )(tψ)ψ

)
dx = d β(j2k

x ψ) where β(j2k
x ψ) ∈Ωd−1

c (M) is a compactly

supported d � 1 form.

1. Explicit forms

In this section, we derive the explicit expression of ∇Fϕ and F(α)(ϕ) in terms of f when
M =Rd . Since the general expression is not very illuminating, let us start with the following simple
example:

F(ϕ)=
∫

M
h(x)ϕ4(x) + gµν(x)∂µϕ(x)∂νϕ(x)dx,

where h and gµν are smooth and compactly supported and gµν is symmetric. We compute

DFϕ(u)= 2
∫

M
dx2h(x)ϕ3(x)u(x) + gµν(x)∂µϕ(x)∂νu(x)

= 2
∫

M
dx

(
2h(x)ϕ3(x) − ∂ν

(
gµν(x)∂µϕ(x)

))
u(x),

where we used integration by parts. Thus,

∇Fϕ(x)= 4h(x)ϕ3(x) − 2∂ν
(
gµν(x)∂µϕ(x)

)
.

Moreover,

D2Fϕ(u, v)= 2
∫

M
dxu(x)

(
6h(x)ϕ2(x)v(x)

−∂ν
(
gµν(x)∂µv(x)

))
.

To write this as a distribution, we need to integrate over two variables:

D2Fϕ(u, v)= 2
∫

M2
dxdyu(x)δ(x − y)

(
6h(y)ϕ2(y)v(y)

−∂ν
(
gµν(y)∂µv(y)

))
.

Now we can use integration by parts over y to recover v(y),

D2Fϕ(u, v)=
∑
α

∫
M2

dxdyu(x)v(y)f α(ϕ)(y)∂αy δ(x − y),

where the non-zero f α(ϕ) are
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f 0(ϕ)(y)= 12ϕ2(y),

f µ(ϕ)(y)=−∂νgµν(y),

f µν(ϕ)(y)=−gµν(y).

More generally,

Proposition VI.19. If

F(ϕ)=
∫

M
f (ϕ(α)(x))dx,

then

Fα(ϕ)(x)=
∑
β≤γ

(−1) |β |
(
β

γ

)
∂yβ−γ

∂2f

∂ϕ(α−γ)(x)∂ϕ(β)(x)
.

Proof. The proof is a straightforward generalization of the example. Indeed,

DFϕ(u)=
∑
α

∫
M

∂f

∂ϕ(α)(x)
u(α)(x)dx

=
∑
α

(−1) |α |
∫

M
u(x)

∂ |α |

∂xα
∂f

∂ϕ(α)(x)
dx,

where we used an integration by parts to recover the Euler–Lagrange operator. The second derivative
is

D2Fϕ(u, v)=
∑
αβ

(−1) |α |
∫

M
u(x)

∂ |α |

∂xα
( ∂f 2

∂ϕ(α)(x)∂ϕ(β)(x)
v (β)(x)

)
dx.

We write this as a double integral

D2Fϕ(u, v)=
∑
αβ

(−1) |α |
∫

M2
u(x)δ(x − y)∂yα

( ∂f 2

∂ϕ(α)(y)∂ϕ(β)(y)
v (β)(y)

)
dxdy.

A first integration by parts gives us

D2Fϕ(u, v)=
∑
αβ

∫
M2

u(x)
( ∂f 2

∂ϕ(α)(y)∂ϕ(β)(y)
v (β)(y)

)
∂yα δ(x − y)dxdy.

A second integration by parts isolates v(y),

D2Fϕ(u, v)=
∑
αβ

(−1) |β |
∑
γ≤β

(
β

γ

) ∫
M2

dxdyu(x)v(y)
(
∂yβ−γ

∂f 2

∂ϕ(α)(y)∂ϕ(β)(y)

)
∂yα+γ δ(x − y).

□

If we calculate higher differentials DkFϕ(u1, . . ., uk), we see that we always obtain products of
smooth functions by derivatives of products of delta functions. This shows that the wavefront set of
F(k)
ϕ is in the conormal Ck .

VII. PEETRE THEOREM FOR LOCAL AND MULTILOCAL FUNCTIONALS

In this section, we propose an alternative characterization of local functionals in terms of a
nonlinear Peetre theorem. We do not characterize the locality of the action F but the locality of
the Lagrangian density, which we denoted ∇F in Sec. IV D. We first state our theorems for local
functionals and then we prove them for the case of multilocal functionals, which are a natural gen-
eralization of local functionals in quantum field theory. Our proof is inspired by recent studies on
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the Peetre theorem;108,109 however, it is formulated in the language of Bastiani smoothness and uses
simpler assumptions than Slovák’s paper.110

A. Peetre theorem for local functionals

Let Ω be some open set in a manifold M. We first begin with an alternative definition of a local
map from C∞(Ω) to itself, which we call Peetre local.

Definition VII.1. A map F: C∞(Ω)→ C∞(Ω) is Peetre local for every x ∈ Ω; if ϕ1 = ϕ2 on some
neighborhood of x, then F(ϕ1)(x) = F(ϕ2)(x).

The relation with the additivity condition is given by

Proposition VII.2. Let F: C∞(Ω)→ C∞(Ω) be Peetre local. For every (ϕ1, ϕ2) ∈ C∞(Ω)2 if supp
ϕ1 and supp ϕ2 do not meet, then for every x ∈ Ω and for all ϕ,

F(ϕ1 + ϕ2 + ϕ)(x)=F(ϕ1 + ϕ)(x) + F(ϕ2 + ϕ)(x) − F(ϕ)(x). (41)

Proof. If x < (supp ϕ1 ∪ supp ϕ2), then ϕ1 = ϕ2 = 0 in some neighborhood of x it follows that
F(ϕ1 + ϕ2 + ϕ)(x) = F(0 + 0 + ϕ)(x) = F(ϕ)(x) and F(ϕ1 + ϕ)(x) + F(ϕ2 + ϕ)(x) � F(ϕ)(x) = 2F(ϕ)(x)
� F(ϕ)(x) = F(ϕ)(x) and hence Eq. (41) holds true.

If x ∈ supp ϕ1, then necessarily there is some neighborhood U of x on which ϕ2|U = 0 and hence
ϕ1 + ϕ2 + ϕ|U = ϕ1 + ϕ|U and F(ϕ1 + ϕ2 + ϕ)(x) = F(ϕ1 + ϕ)(x). Also F(ϕ1 + ϕ)(x) + F(ϕ2 + ϕ)(x)
� F(ϕ)(x) = F(ϕ1 + ϕ)(x) + F(ϕ)(x) � F(ϕ)(x) = F(ϕ1 + ϕ)(x), hence again Eq. (41) holds true. The
case where x ∈ supp ϕ2 can be treated by similar methods which yields the final result. □

The Peetre theorem for local functionals is

Theorem VII.3. Let F: C∞(Ω) → C∞(Ω) be a Bastiani smooth Peetre local map. Then, for
every ϕ ∈ C∞(Ω), there is a neighborhood V of ϕ in C∞(Ω) and an integer k such that for all ψ such
that ϕ + ψ ∈ V, F(ϕ + ψ)(x) = c(jkψx) for some smooth function c on JkΩ.

In other words, if F is a Bastiani smooth Peetre local map, then, for every g ∈D(M), ∫ MF(ϕ)g
is a Bastiani smooth local map in the sense of the rest of the paper. This relation between a priori
different concepts of locality strongly supports the idea that our definition is a natural one.

If F is only assumed to be a continuous local map, then a similar theorem exists for which the
function c is not necessarily smooth. These theorems are proved in the Sec. VII B for the more general
case of multilocal functionals.

B. Multilocal functionals and first Peetre theorem

By generalizing Definition VII.1 of local maps, we can define multilocal maps. These maps appear
naturally in quantum field theory as the product of several Lagrangian densities L(x1) . . .L(xk).

Definition VII.4. Let k be an integer. A map F: C∞(Ω)→ C∞(Ωk) is k-local for every (x1, . . .,
xk) ∈ Ωk; if ϕ1 = ϕ2 on some neighborhood of {x1, . . ., xk}⊂ Ω, then F(ϕ1)(x1, . . ., xk) = F(ϕ2)(x1,
. . ., xk).

The multilocal maps are the maps that are k-local for some k. We emphasize that Peetre local
maps in the sense of Definition VII.1 correspond with 1-local maps in the above sense. For M a
smooth manifold, we denote by JpM�k the bundle over Mk whose fiber over a k-tuple of points (x1,
. . ., xk) ∈ Mk is JpMx1 × · · · × JpMxk .

Theorem VII.5. Let F: C∞(Ω) → C∞(Ωk) be a continuous k-local map. Then, for every ϕ ∈
C∞(Ω), there is a neighborhood V of ϕ in C∞(Ω), p ∈N, such that for all ψ such that ϕ + ψ ∈ V,

F(ϕ + ψ)(x1, . . . , xk)= c(jpψx1 , . . . , jpψxk )
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for some function c : JpM�k |(Mk\Dk )→Mk , where MkrDk denotes the configuration space Mk minus
all diagonals.

Proof. Fix a k-tuple of points (x1, . . ., xk) ∈ Ωk and some compact neighborhood K of (x1, . . .,
xk) in Ωk . Continuity of F implies that for all ε > 0, there exists η > 0 and a seminorm πm,K′ of
C∞(Ω) such that πm,K′(ϕ1 − ϕ2) 6 η implies

sup
(y1,...,yk )∈K

|F(ϕ1)(y1, . . . , yk) − F(ϕ2)(y1, . . . , yk)| 6 ε.

Assume that (ϕ1, ϕ2) have the same (m + 1)-jets at {x1, . . ., xk}. Let (χλ)λ be the family of
compactly supported cutoff functions equal to 1 in some neighborhood of X = {x1, . . ., xk} defined in
Lemma VII.6. It follows that ϕ1,λ = ϕ1 χλ (respectively, ϕ2,λ = ϕ2 χλ) coincides with ϕ1 (respectively,
ϕ2) near {x1, . . ., xk}. Hence, for all λ > 0, F(ϕ1,λ)(x1, . . ., xk) = F(ϕ1)(x1, . . ., xk) and F(ϕ2,λ)(x1,
. . ., xk) = F(ϕ2)(x1, . . ., xk). Set εn =

1
2n , then there exists ηn such that πm,K′(ψ1 − ψ2) 6 ηn implies

sup
(y1,...,yk )∈K

|F(ψ1)(y1, . . . , yk) − F(ψ2)(y1, . . . , yk)| 6
1
2n .

Therefore it suffices to find some sequence λn→ 0 such that πm,K′(ϕ1,λn − ϕ2,λn ) 6 ηn. Since ϕ1 � ϕ2

vanishes at order m + 1 on the set X = {x1, . . ., xk}, Lemma VII.6 yields the estimate

|πm,K′(ϕ1,λ − ϕ2,λ)| 6 C̃λπm+1,K (ϕ1 − ϕ2) ,

which implies that

lim
λ→0

πm,K′(ϕ1,λ − ϕ2,λ)= lim
λ→0

πm,K′((ϕ1 − ϕ2)χλ)= 0.

Finally, we obtain that if ϕ1, ϕ2 have the same (m + 1)-jet at X = {x1, . . ., xk}, then for all n > 0,

|F(ϕ1)(x1, . . . , xk) − F(ϕ2)(x1, . . . , xk)| = |F(ϕ1,λn )(x1, . . . , xk) − F(ϕ2,λn )(x1, . . . , xk)| 6
1
2n ,

which implies F(ϕ1)(x1, . . ., xk) = F(ϕ2)(x1, . . ., xk). □

Lemma VII.6. Let X be any closed subset of Rd . Let Im+1(X,Rd) denote the closed ideal of
functions of regularity Cm+1 which vanish at order m + 1 on X. Then there is a function χλ ∈C∞(Rd)
parametrized by λ ∈ (0, 1] such that χλ = 1 (respectively, χλ = 0) when d(x, X) 6 λ

8 [respectively,
d(x, X) > λ] such that for all compact subset K ⊂Rd , there is a constant C̃ such that for every λ ∈
(0, 1] and every ϕ ∈ Im+1(X,Rd),

πm,K (χλϕ) 6 C̃λπm+1,K∩{d(x,X)6λ} (ϕ) . (42)

Proof. Choose φ > 0 such that ∫Rd φ(x)ddx = 1 and φ = 0 if |x | > 3
8 . Set φλ = λ�dφ(λ�1.), and set

αλ to be the characteristic function of the set {x s.t. d(x, X) 6 λ
2 }, then the convolution product χλ =

φλ ∗ αλ satisfies χλ(x) = 1 if d(x, X) 6 λ
8 and χλ(x) = 0 if d(x, X) > λ. Since by the Leibniz rule one

has

∂α(χλϕ)(x)=
∑
|k |6 |α |

(
α
k

)
∂k χλ∂

α−kϕ(x),

it suffices to estimate each term ∂k χλ∂
α�kϕ(x) of the above sum. For every multi-index k, there is

some constant Ck such that ∀x ∈Rd \ X, |∂k
x χλ | 6

Ck

λ|k |
and supp ∂k

x χλ ⊂ {d(x, X) 6 λ}. Therefore for

all ϕ ∈ Im+1(X ,Rd), for all x ∈ supp ∂k
x χλ∂

α−kϕ, and for y ∈ X such that d(x, X) = |x � y|, we find
that ∂α�kϕ vanishes at y at order |k| + 1. Indeed ϕ vanishes at order m + 1, hence ∂α�kϕ vanishes at
order m + 1 − |α | + k > k + 1 since |α | 6m. Therefore,

∂α−k
x ϕ(x)=

∑
|β |= |k |+1

(x − y)βRβ(x),
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where the right-hand side is just the integral remainder in Taylor’s expansion of ∂α�kϕ around y.
Hence,

|∂k χλ∂
α−kϕ(x)| 6

Ck

λ |k |

∑
|β |= |k |+1

|(x − y)βRβ(x)|.

It is easy to see that Rβ only depends on the jets of ϕ of order 6m + 1. Hence

|∂k χλ∂
α−kϕ(x)| 6Ckλ sup

x∈K ,d(x,X)6λ

∑
|β |= |k |+1

|Rβ(x)|

and the conclusion follows easily. □

C. The second Peetre theorem

Theorem VII.7. Let F: C∞(Ω)→ C∞(Ωk) be a Bastiani smooth k-local map. Then, for every
ϕ ∈ C∞(Ω), there is a neighborhood V of ϕ in C∞(Ω), p ∈N, such that for all ψ such that ϕ + ψ ∈ V,

F(ϕ + ψ)(x1, . . . , xk)= c(jpψx1 , . . . , jpψxk )

for some smooth function c on JpM�k |(Mk\Dk ) where MkrDk denotes the configuration space Mk

minus all diagonals.

Proof. Without loss of generality, we may assume that M =Rd , and to go back to arbitrary
manifolds, we use partitions of unity as in the proof of Lemma VI.6. The coordinates on the jet space
Jp(Rd) are denoted by (x, pα) |α |6p. Let (U1, . . ., Uk) be two by two disjoint open subsets of Rd , then
U1 ×· · · ×Uk is an open subset of (Rd)k \Dk . We define the smooth mapΦ : (x1, . . . , xk ; p1, . . . , pk) ∈
Jp(Rd)�k |U1×···×Uk 7→ (

∑
16i6k

pi,α
α! (. − xi)α χi(. − xi)) ∈C∞(Rd), where the functions χi ∈C∞c (Rd) are

cutoff functions equal to 1 near 0 and such that for all (x1, . . ., xk) ∈ U1 ×· · · × Uk , the support of
the functions χi(. � xi) are disjoint on Rd . Then the map sending (x1, . . ., xk ; p1, . . ., pk), (y1, . . .,
yk) to F(ϕ + Φ(x1, . . ., xk ; p1, . . ., pk))(y1, . . ., yk) is smooth by smoothness of F and Φ. Hence, its
pull-back on the diagonal x1 = y1, . . ., xk = yk is also smooth and reads

F(ϕ + Φ(x1, . . . , xk ; p1, . . . , pk))(x1, . . . , xk)= c(x1, . . . , xk ; p1, . . . , pk)

as the composition of smooth functions and it follows that c is smooth on JpM�k |U1×···×Uk . □

VIII. MULTI-VECTOR FIELDS AND GRADED FUNCTIONALS

In the quantum theory of gauge fields, especially in the Batalin-Vilkovisky approach, it is nec-
essary to deal not only with functionals as discussed above but also with multi-vector fields on the
configuration space E (assumed to be the space of sections of some vector bundle B).16 Such multi-
vector fields can be seen as functionals on the graded space T ∗[1]E � E ⊕ E∗[1], where E∗ � Γ(M, B∗)
is the space of smooth sections. To make this notion precise, we use the ideas presented in Ref. 111
and characterize the “odd” space E∗[1] through the space of functions on it, understood as multilinear
smooth, totally antisymmetric, functionals. Then we shall make a conjectural claim on the meaning
of locality in that context.

A. Locality of functionals on graded space

We consider a graded space E0 ⊕ E1[1], where E0 = Γ(M, B0) and E1 = Γ(M, B1) are spaces of
smooth sections of finite rank vector bundles B0 and B1 over M, respectively. Before giving formal
definitions, let us explain the idea of our construction. We will first define the space O(E0 ⊕ E1[1])
to be space of maps from E0 to A, where

A �
∞∏

k=0

Ak �
∞∏

k=0

Γ
′
a(Mk , B�k

1 ) ,
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satisfying an appropriate smoothness condition. Let us clarify the notation Γ′a. We first define the
iterated wedge product of k elements u1,. . .,uk of the space of distributional sections Γ′(M, B1) by

〈u1 ∧ · · · ∧ uk , h1 ⊗ · · · ⊗ hk〉=
∑
σ

(−1)σ〈u1, hσ(1)〉 . . . 〈uk , hσ(k)〉,

where h1,. . .,hk are sections in Γ(M, B1) and σ runs over the permutations of {1, . . ., k}. Then, the
kth exterior power ΛkΓ′(M, B1) is the vector space of finite sums of such iterated wedge products
and Γ′a(Mk , B�k

1 ) is the completion of ΛkΓ′(M, B1) with respect to the topology of Γ′(M, B1)⊗̂π k �

Γ′(Mk , B�k
1 ) where all the duals are strong. The subscript “a” stands for antisymmetry.

In the case of multilinear symmetric functions, we can identify a k-linear map f (h1, . . ., hk) of k
variables with a polynomial map of one variable f (h, . . ., h) by using the polarization identity. There
is no polarization identity in the antisymmetric case and we must consider a function F : E0→Ak as
a function of one variable ϕ0 in E0 and k variables (h1, . . ., hk) in E1 (or a variable in H ∈ E ⊗̂π k

1 ).

Then, we can identify a function F : E0→Ak and the function F̃ : E0 × E ⊗̂π k
1 →K defined by

F̃(ϕ0; h1 ⊗ · · · ⊗ hk)=F(ϕ0)(h1 ⊗ · · · ⊗ hk).

This motivates the following:

Definition VIII.1. Let M be a smooth manifold, (B0, B1) are smooth vector bundles on M, and
E0 = Γ(M, B0), E1 = Γ(M, B1) are spaces of smooth sections of the respective bundles. We say that
a function F from E0 to Ak is an element of Ok(E0 ⊕ E1[1]) if there exists a Bastiani smooth map
F̃ : E0 × E ⊗̂π k

1 →K which is linear in E ⊗̂π k
1 and antisymmetric with respect to the natural action of

permutations on E ⊗̂π k
1 such that

F̃(ϕ0; h1 ⊗ · · · ⊗ hk)=F(ϕ0)(h1 ⊗ · · · ⊗ hk). (43)

We denote by O(E0 ⊕ E1[1]) the direct product of all Ok(E0 ⊕ E1[1]), over k ∈N0 and set O0(E0 ⊕

E1[1])≡K.
Let us now discuss the notion of derivative for the type of functionals introduced above. Clearly,

if F belongs to O(E0 ⊕ E1[1]), there are two natural ways to differentiate it. In the first instance, we
can differentiate F̃ in the sense of Bastiani in the first variable (ϕ ∈ E0) and we denote this derivative
as

D0F(ϕ;u)(g) �DF̃(ϕ,u)(g, 0) ,

where u ∈ E ⊗̂π k
1 →K, g ∈ E0, or δ

δϕ0
F.

B. The contraction operation

Let us now consider contraction of the graded part with some h ∈ E1, sometimes referred to as
derivations with respect to odd variables. This concept is needed in order to define the Koszul complex
and the Chevalley-Eilenberg complex in the Batalin–Vilkovisky formalism in infinite dimension. The
definition is spelled out below.

Definition VIII.2. Let F ∈Ok(E0 ⊕E1[1]), h ∈ E1. The contraction of F by h is defined, for every
integer k > 0 and u ∈ E⊗k−1

1 , by

〈ιhF, u〉= F̃(h ⊗ u)

and ιhF = 0 if F ∈A0 .

In particular, ιhF =
〈
F̃, h

〉
if F ∈A1. We extend this definition to A by linearity.

In view of (43) and the definition of Ok(E0 ⊕ E1[1]), it is clear that ιhF ∈Ok−1(E0 ⊕ E1[1]) for
all F ∈Ok(E0 ⊕ E1[1]). Equation (43) allows us also to make sense of a second important operation
on O(E0 ⊕ E1[1]).



023508-44 Brouder et al. J. Math. Phys. 59, 023508 (2018)

Definition VIII.3. The wedge product ∧ :Ok(E0 ⊕E1[1])×Ok′(E0 ⊕E1[1])→Ok+k′(E0 ⊕E1[1])
is defined by(JF ∧ G

)
(u1, . . . , uk+k′)=

∑
σ

sgn(σ)F̃(uσ(1), . . . , uσ(k))G̃(uσ(k+1), . . . , uσ(k+k′)

(where the sum runs over k � k ′ shuffles) and extended by linearity on O(E0 ⊕E1[1])×O(E0 ⊕E1[1]).

Again, in view of (43) and the definition of O(E0 ⊕ E1[1]), it is clear that the wedge product of
an element in Ok(E0 ⊕ E1[1]) with an element in Ok′(E0 ⊕ E1[1]) is an element in Ok+k′(E0 ⊕ E1[1]).
The contraction and wedge product satisfy the following relation on O(E0 ⊕ E1[1]):

Lemma VIII.4. The contraction satisfies the graded Leibniz rule if F ∈Ok(E0 ⊕ E1[1]), G ∈
O(E0 ⊕ E1[1]) and h ∈ E1, then

ιh(F ∧ G)= (ιhF) ∧ G + (−1)kF ∧ ιhG.

Let us now discuss the notion of support which is the appropriate generalization of the notion of
support for graded functionals, generalizing the definitions in Sec. III A.

Definition VIII.5. Let F ∈Ok(U ⊕ E1[1]) be a graded functional, with U being an open subset
of E0. The support of F is defined by supp F =A ∪ B, where

A=
⋃

(h1,...,hk )∈Ek
1

supp
(
ϕ 7→

(
ιh1 . . . ιhk F

)
(ϕ)

)
,

B=
⋃

ϕ∈U,(h1,...,hk−1)∈Ek−1
1

supp
(
h 7→

(
ιh1 . . . ιhk−1 F(ϕ, h)

))
.

C. Some conjectures on local graded functionals

Let F ∈Ok(E0 ⊕ E1[1]) be such that the WF set of both
(
ιh1 . . . ιhk F

) (1)
ϕ and ιh1 . . . ιhk−1 F(ϕ, .)

is empty for all ϕ ∈ U and (h1, . . . , hk) ∈ Ek
1 . We conjecture that some version of Lemmas VI.2 and

VI.9 should hold in the graded case. The “standard” characterization of locality for a functional
F ∈Ok(E0 ⊕ E1[1]) is the requirement that F is compactly supported, and for each (ϕ; u1, . . . , uk) ∈
E0 × Ek

1 , there exists i0, . . . , ik ∈N such that

F(ϕ; u1, . . . , uk)=
∫

M
α(ji0

x (ϕ), ji1
x (u1), . . . , jik

x (uk)) , (44)

where α is a density-valued function on the jet bundle. To conclude, we conjecture some graded
analog of Theorem VI.3 whose formulation would be as follows: Let U be an open subset of E0 and
F ∈Ok(U ⊕ E1[1]) be a graded functional. Assume that we have the following:

1. F is additive in some suitable sense, still to be written with care (conceivably this would be
additivity of F̃ as a function of several variables).

2.
(
ιh1 . . . ιhk F

) (1)
ϕ and ιh1 . . . ιhk−1 F(ϕ, .) have an empty wave front set for all ϕ ∈ U and

(h1, . . . , hk) ∈ Ek
1 , and the maps (ϕ, u) 7→

(
ιh1 . . . ιhk F

) (1)
ϕ , ιh1 . . . ιhk−1 F(ϕ, .) are Bastiani smooth

from U ×
⊕

k∈N E ⊗̂π k
1 to Γc(M, B∗0) and Γc(M, B∗1), respectively. Here B∗0 and B∗1 denote dual

bundles.

Then, for every ϕ ∈ U, u ∈
⊕

k∈N E ⊗̂π k
1 , there is a neighborhood V of the origin in E0, an integer N,

and a smooth K-valued function f on the N-jet bundle such that

F(ϕ + ψ; v1 ⊗ · · · ⊗ vk)=
∫

M
α(ji0

x (ψ), ji1
x (v1), . . . , jik

x (vk)) , (45)

for every ψ ∈ V and some i0, . . ., ik < N.
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106 C. Brouder, N. V. Dang, and F. Hélein, Stud. Math. 232, 201 (2016); e-print arXiv:1409.7662.
107 J. M. Lee, Introduction to Smooth Manifolds (Springer, New York, 2003).
108 J. Navarro and J. B. Sancho, e-print arXiv:1411.7499 (2014).
109 J.-P. Brasselet and M. J. Pflaum, Ann. Math. 167, 1 (2008).
110 J. Slovák, Ann. Global Anal. Geom. 6, 273 (1988).
111 K. Rejzner, Rev. Math. Phys. 23, 1009 (2011).

http://arxiv.org/abs/0706.4281
https://doi.org/10.1017/s0305004100073199
http://arxiv.org/abs/math/0405563
https://doi.org/10.24033/msmf.236
https://doi.org/10.1007/s00023-015-0419-8
https://doi.org/10.4064/sm8316-3-2016
http://arxiv.org/abs/1409.7662
http://arxiv.org/abs/1411.7499
https://doi.org/10.4007/annals.2008.167.1
https://doi.org/10.1007/bf00054575
https://doi.org/10.1142/s0129055x11004503

