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Functionals (i.e. functions of functions) are widely used in quantum field theory and solid-state physics. In
this paper, functionals are given a rigorous mathematical framework and their main properties are described.
The choice of the proper space of test functions (smooth functions) and of the relevant concept of differential
(Bastiani differential) are discussed.

The relation between the multiple derivatives of a functional and the corresponding distributions is described
in detail. It is proved that, in a neighborhood of every test function, the support of a smooth functional is
uniformly compactly supported and the order of the corresponding distribution is uniformly bounded. Relying
on a recent work by Yoann Dabrowski, several spaces of functionals are furnished with a complete and nuclear
topology. In view of physical applications, it is shown that most formal manipulations can be given a rigorous
meaning.

A new concept of local functionals is proposed and two characterizations of them are given: the first one
uses the additivity (or Hammerstein) property, the second one is a variant of Peetre’s theorem. Finally, the
first step of a cohomological approach to quantum field theory is carried out by proving a global Poincaré
lemma and defining multi-vector fields and graded functionals within our framework.
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I. MOTIVATION

Functionals (i.e. functions of functions) are mathe-
matical objects successfully applied in many areas of
physics. Since Schwinger’s ground-breaking papers >,
Green functions of quantum field theory are obtained as
functional derivatives of the generating functional Z(j)
with respect to the functions j (external sources). In
solid-state and molecular physics, the exchange and cor-
relation potential of density functional theory is com-
puted from the functional derivative of the total energy
E(p) with respect to the electron density p**. In per-
turbative algebraic quantum field theory (pAQFT), the
observables are functionals F(¢) of the classical field °.
This formulation was possible due to the crucial result
that allowed to realize abstract quantum fields as con-
crete functionals on the space of classical configurations.
This viewpoint is not only simplifying computations, but
also allows to construct new perturbative and exact mod-
els of QFT’s">®. It is, therefore, crucial to understand
functional analytic properties of classical functionals to
be able to use these in quantization and obtain even more
models. The importance of this endeavour is justified by
the fact that presently we do not know any exact inter-
acting QFT models in 4 spacetime dimensions.

Functionals are also used in pure mathematics, for ex-
ample loop space cohomology”’ and infinite dimensional
integrable systems: the hierarchy of commuting Hamil-
tonians for the Korteweg de Vries equation is for instance
all made of functionals

In all these fields, the concept of locality is crucial: the
Lagrangian of quantum field theory is local and the coun-
terterms of the renormalization process have to be local,
the approximations of E(p) used in practice are local and
it is an open question whether the true density functional
E(p) is local or not. Therefore, it is crucial to determine
precisely what is meant by a local functional. According
to the standard definition , if ¢ is a classical field (i.e.
a smooth section of a vector bundle over M and we mo-
mentarily consider M = R? for notational convenience),
then a functional F(¢p) is local if it is of the form

F(o) = [ | dof(o.0(@). 0,000, O pup(@)-()

where f is a smooth compactly supported function with
a finite number of arguments.

However, this definition of local functionals is not very
handy in practice because it is global and sometimes too
restrictive. For example, general relativity has no lo-
cal gauge-invariant observables in the sense of Eq. (1),
whereas it has local gauge-invariant observables when the
concept of locality is slightly generalized, as discussed

in’ (see also the parallel work'”). Note that the concept
of locality presented in the present paper gives a proper
topological framework for local functionals as understood
by "7'°.

The present paper puts forth the following formulation
of the concept of locality:

Definition I.1. Let M be a manifold Let U be an
open subset of C°(M). A smooth functional F : U —
K is said to be local if, for every ¢ € U, there is a
neighborhood V' of v, an integer k, an open subset V C
JEM and a smooth function f € C>®(V) such that x €
M — f(]glv€ ) is supported in a compact subset K C M
and

Flp+1) = F(p) + /M FR)de,

whenever ¢ +1 € V and where jk denotes the k-jet of
Y at x.

In other words, we require F' to be local in the sense of
Eq. (1), but only around each ¢ € U because the integer
k and the function f can depend on the neighborhood
V. In short, our local functionals are local in the “tradi-
tional sense”, but only locally in the configuration space
(i.e. in a neighborhood of each ). We do not need
global locality to apply variational methods and derive
Euler-Lagrange equations. We will show by exhibiting
an example that this concept of locality is strictly more
general than the traditional one. Our first main result is
a simple characterization of local functionals in the sense
of Def. 1.1:

Theorem 1.2. Let U be an open subset of C°(M). A
smooth functional F : U — K (where K = R or C) is
local if and only if

1. F is additive (i.e. it satisfies F(p1 + p2 + p3) =
F(p14p2)+F(pa+ps)—F(p2) whenever supp ¢1N
supp @3 =10)

2. For every ¢ € U, the differential DF, of F' at ¢ is a
distribution with empty wave front set. Thus, it can
be represented by a function VF, € D(M) (with
D(M) the space of compactly supported smooth
functions on M, i.e. “test functions”).

3. The map U — D(M) defined by ¢ — VF, is

smooth (in the sense of Bastiani).

Our characterization of locality is inspired by the mi-
crolocal functionals proposed by Brunetti, Fredenhagen
and Ribeiro However, the proof of their Proposi-
tion 2.3.12 is not complete because the application of
the Fubini theorem and the second use of the fundamen-
tal theorem of calculus are not justified. Our condition 3
solves that problem. On the other hand, we do not need
their assumption that F' is compactly supported.

Let us stress that the notion of locality is quite sub-
tle and depends strongly on the functional analytic set-
ting. A functional characterization of a notion of lo-
cal functionals on measurable functions might not be



valid anymore when applied to smooth functions as
is shown by the simple counterexample of Section V B.
We also make a conjecture as to how to generalize our
main result to multi-vector fields and graded functionals,
which is crucial for a rigorous version of the Batalin-
Vilkovisky approach to gauge field theory and quantum
gravity. The second main result is a proof of the global
Poincaré lemma (in our context), which is crucial to set
up the BRST and variational complexes. The last one is
another characterization of local (and multilocal) func-
tionals in the form of a Peetre’s theorem.

Along the way to these results, we prove interesting
properties of general functionals that we briefly describe
now. In section 2, we explain why we choose test func-
tions that are only smooth instead of smooth and com-
pactly supported, we describe the topology of the space
of test functions and we present the concept of Bastiani
differentiability and its main properties. In section 3,
we show that a smooth functional is locally compactly
supported (i.e. in a neighborhood of every test func-
tion), we prove that the kth derivative of a functional
defines a continuous family of distributions whose order
is locally bounded. Section 4, which relies heavily on
Dabrowski’s work”"»“~, describes in detail a nuclear and
complete topology on several spaces of functionals used
in quantum field theory. Section 5 discusses the con-
cept of additivity which characterizes local functionals.
Sections 6 and 7 prove the main results discussed above.
Note that the present paper has a somewhat foundational
character, in as much as the choice of test-functions, ad-
ditivity property and differential are carefully justified
from the physical and mathematical points of view. It
contributes to the formulation of a mathematically rig-
orous basis on which the quantum field theory of gauge
fields and gravitation can be built.

Note also that this paper aims at both functional an-
alysts and theoretical physicists. Because of this dual
readership, the proofs are often more detailed than what
would be required for experts in functional analysis.

Il. FUNCTIONALS AND THEIR DERIVATIVES

To set up a mathematical definition of functionals, we
need to determine precisely which space of test functions
(i.e. classical fields and sources) we consider and what
we mean by a functional derivative.

A. The space of classical fields

Propagators and Green functions of quantum fields
in flat spacetimes are tempered distributions® " and
the corresponding test functions are rapidly decreasing.
Tempered distributions are computationaly convenient
because they have Fourier transforms. However, tem-
pered distributions cannot be canonically extended to
curved spacetimes (i.e. Lorentzian smooth manifolds)

because the rapid decrease of test functions at infinity is
controlled by some Euclidian distance which is not canon-
ically defined on general spacetime manifolds [25, p. 339].

The most natural spaces of test functions on a general
spacetime M are the space C°° (M) of real valued smooth
functions on M and its subspace D(M) of compactly sup-
ported functions. These two spaces are identical when
M is compact, but physically relevant spacetimes are
not compact because they are globally hyperbolic, and
a choice must be made.

In this paper, we choose C*° (M) (or the set T'(M, B)
of smooth sections of a vector bundle B). There is a
strong physical reason for this*": in the quantization pro-
cess we must be able to deal with on-shell fields ¢, that
are smooth solutions to normally hyperbolic equations
and as such cannot be compactly supported. Therefore,
the domain of the functionals can be C°°(M) but not
D(M). There are also good mathematical arguments
for this choice: In particular, C*°(M) is a Fréchet space
and its pointwise multiplication is continuous [27, p. 119].
Moreover, the Fréchet property of C°°(M) saves us the
trouble of distinguishing Bastiani from convenient differ-
entiability which is treated in Ref.

The choice of C°° (M) has, however, several drawbacks:
(i) Since smooth functions are generally not integrable
over M, the Lagrangian density L£(yp) must be multi-
plied by a smooth compactly supported function g so that
L(p)g is integrable over M~". As a result, long-range in-
teractions are suppressed and infrared convergence is en-
forced. This simplifies the problem but makes it difficult
to deal with the physics of infrared divergence. (ii) The
function g breaks the diffeomorphism invariance of the
Einstein-Hilbert action. (iii) The effect of a perturbation
@ + € is easier to deal with when v is compactly sup-
ported because it avoids the presence of boundary terms.
This problem can be solved by considering C*°(M) as a
manifold modeled on D(M)”*" but this is an additional
complication.

B. Locally convex spaces

The spaces of test functions and functionals consid-
ered in the paper are all locally convex. The most peda-
gogical introduction to locally convex spaces is probably
Horvath’s book”’, so we refer the reader to it for more
details.

We describe now the topology of the spaces of test
functions that we use. For the space of smooth test func-
tions C*°(R?), the topology is defined by the seminorms

T,k (f) = sup sup |9°f(x)], (2)

z€K |a|<m

where f € C(R%), m is an integer, K is a compact
subset of R%, a = (avy, . . ., aq) is a d-tuple of nonnegative
integers, with |a| = a1 +--- 4+ g and 0% = 07" ... 95",
with 9; = 0/0xz" the derivative with respect to the i-th
coordinate of = [27, p. 88].



If U is open in R%, we denote by C°°(U) the space
of all functions defined on U which possess continuous
partial derivatives of all orders. We equip C*°(U) with
the topology defined by the seminorms 7, x where K
runs now over the compact subsets of U [30, p. 89]. For
every open set U C RY, the space C>®(U) is Fréchet,
reflexive, Montel, barrelled [30, p. 239], bornological [30,
p. 222] and nuclear [31, p. 530].

We define now C*°(M), where M is a d-dimensional
manifold (tacitly smooth, Hausdorff, paracompact and
orientable) described by charts (Uy, ). If for ev-
ery U, C M we are given a smooth function g, €
C*(¢o(Uy)) such that gg = gaowaowgl on Yg(UaNUpg),
we call the system g, a smooth function g on M.
The space of smooth functions on M is denoted by
C>(M) [32, p. 143]. This definition is simple but to de-
scribe the topological properties of C*° (M) the following
more conceptual definition is useful.

Let M be a manifold and B — M a smooth vector
bundle of rank r over M with projection 7. Let F =
T'(M, B) be the space of smooth sections of B equipped
with the following topology

Definition II.1. The topology on T'(M, B) is defined as
follows. Choose a chart (Uy,%a)a and a trivialization
map @, 1 7 HUy) — Q x R, where Q is a fived open
set in R Then the map @, allows to identify T(Uy, B)
with C®(,R") by @, : 771U, — Q x R? such that

Po(z,8(2)) = (Ya(x), Ka(s)(¥a())),
where
K, :s €T (Uy, B) — Ky(s) € C(2,R").

The topology on T'(M, B) is the weakest topology making
all the maps K, continuous.

This topology does not depend on the choice of charts
or trivialization maps [28, p. 294]. To interpret this topol-
ogy, denote by po : s € I'(M, B) — s|y, € I'(Uy, B) the
restriction map of sections on open sets of our open cover
(Ua)acr of M. The space I'(M, B) fits into the following
complex of vector spaces

0 - I(M, B) "2 T[ '(Ua, B) ~ [[ (. R")
acl acl

Il rwWw.nuvs,B). (3)
(a£B)el?

(chfpi)a B
oot

The topology on I'(U,, B) is given by the isomorphism
I'(Uy, B) ~ C*(Q,R") hence it is nuclear Fréchet. The
countable products [[,.; I'(Us, B) and H(Q’B)elg L(UsN
Ug, B) are therefore nuclear Fréchet. For every pair
(o, B) of distinct elements of I, the difference of re-
striction maps p, — pg is continuous and the topology
on I'(M, B) is the weakest topology which makes the
above complex topological, which implies that it is nu-
clear Fréchet as the kernel of [[,_.5 pa — pp-

Locally convex spaces are very versatile and they are
the proper framework to define spaces of smooth func-
tionals, i.e. smooth functions on a space of functions (or
sections of a bundle). The first step towards this goal is
to provide a rigorous definition of functional derivatives.

C. Functional derivatives

To define the space of functionals, we consider the main
examples Z(j) and F(yp). These two functionals send
smooth classical fields to K, where K = R or K = C.
Moreover, functional derivatives of Z and F of all orders
are required to obtain the Green functions from Z(j) and
to quantize the product F(¢)G(p). Therefore, we must
define the derivative of a function f : £ — K, where FE
is the space of classical fields.

It will be useful to generalize the problem to functions
f between arbitrary locally convex spaces E and F. To
define such a derivative we start from

Definition I1.2. Let U be an open subset of a Hausdorff
locally convex space E and let f be a map from U to a
Hausdorff locally convex space F. Then f is said to have
a derivative at x € U in the direction of v € E if the
following limit exists

One can also consider the same definition restricted
tot > 0°". A function f is said to have a Gateauz dif-
ferential (or a Gdteaux variation”") at x if Df,(v)
exists for every v € E. However, this definition is far
too weak for our purpose because Df,(v) is generally
neither linear nor continuous in v and it can be linear
without being continuous and continuous without being
linear [38, p. 7]. Therefore, we will use a stronger def-
inition, namely Bastiani differentiability””, which is the
fundamental concept of differentiability used throughout
the paper:

Definition I1.3. Let U be an open subset of a Hausdorff
locally convex space E and let f be a map from U to a
Hausdorff locally convexr space F. Then f is Bastiani
differentiable on U (denoted by f € CY(U)) if f has a
Gateauz differential at every x € U and the map Df :
U x E — F defined by Df(xz,v) = Df,(v) is continuous
onU x E.

With this definition, most of the properties used in
physics textbooks (e.g. chain rule, Leibniz rule, linearity)
are mathematically valid.



1. Examples

We shall consider several examples of functions from
C>(M) to R or C, where M = R%:

Flo) = | fz)¢"(x)dz,

M

G = [ gl an)plar) . plaa)den . da,

Hp) =3 / ()00 o)

M
J(p) = — eJu f(ﬂc)so(ﬂﬂ)ﬂlﬂJ

o) = [ r@)sin(e(w)is

where f, g, and h are smooth compactly supported func-
tions and where ¢ is a symmetric function of its argu-

ments. Further examples can be found in' """, It is im-
mediate to check that
DF,w) =n [ ga)e" @)ola)da,
M
DGov)=n [ gloree ol pln)

v(zp)dxy ... day,,

_22/

= / f(@)e? Dy (z)dx
M

f(z)v(x)dx

M

z))v(z)dz.

2)0up(x)9,v(x)de,

DJ,(v) = efu F@)p(x)da

- /Mf(x) cos (i

2. Historical remarks

Definition II.3 is due to Bastiani®”"" and looks quite
natural. In fact, it is not so. For a long time, many differ-
ent approaches were tried. For any reasonable definition
of differentiability, the map Df, : E — F' is linear and
continuous, so that Df, € L(E, F). If E and F are Ba-
nach spaces, then a map f: F — F is defined to be con-
tinuously (Fréchet) differentiable if the map © — Df, is
continuous from U to L.(E, F'), where L.(E, F') is the set
of continuous maps from F to F' equipped with the opera-
tor norm topology. But Fréchet differentiability is strictly
stronger than Bastiani’s differentiability specialized to
Banach spaces™”. This is why Bastiani’s definition was
often dismissed in the literature ” and, for locally convex
spaces that are not Banach, the map D f was generally
required to be continuous from U to L(E, F') equipped
with some well-chosen topology. However, when F is

not normable, no topology on L(E, F) provides the nice
properties of Bastiani’s definition [44, p. 6] (Hamilton [40,
p. 70] gives a simple example of a map which is contin-
uous U x E — F but such that the corresponding map
U — L(E,FE) is not continuous). Thus, L(E, F) was
equipped with various non-topological convergence struc-
tures [44, p. 23]. The result is an impressive zoology of
differentiabilities. Twenty-five of them were reviewed and
classified by Averbukh and Smolyanov™’. Still more can
be found in the extensive lists given by Gahler™” and Ver
Eecke"" covering the period up to 1983 (see also”®***%).

Nowadays, essentially two concepts of differentiabil-
ity survive, Bastiani’s and the so-called convenient ap-
proach developed by Kriegl-Michor in the reference
monograph”®, which is weaker than Bastiani’s for gen-
eral Hausdorff locally convex spaces. In particular, on
any locally convex space which is not bornological, there
is a conveniently smooth map which is not continuous [41,
p. 19]. However, a nice feature of both approaches is that
for a Fréchet space E, a function f : £ — K is smooth in
the sense of Bastiani iff it is smooth in the sense of the
convenient calculus™’. Bastiani differentiability became
widespread after it was used by Michor”’, Hamilton
(for Fréchet spaces) and Milnor’' and it is now vigor-
ously developed by Glockner and Neeb (see also”).

To complete this section, we would like to mention that
the Bastiani differential is sometimes called the Michal-
Bastiani differential’*™” (or even Michel-Bastiani differ-
ential”"). This is not correct. The confusion comes from
the fact that Bastiani defines her differentiability in sev-
eral steps. She starts from the Gateaux derivability, then
she says that a map f : U — F is differentiable at x
(see [41, p. 18] and [39, p. 18]) if: i) Df, is linear and
continuous from E to F and ii) the map m, : Rx E — F
defined by

fla+tv) - f(z)
t

mg(t,v) = — Dfr(v),

for x + tv € U, is continuous at (0,v) for all v € E.
This differentiability at = is indeed equivalent to the dif-
ferentiability defined by Michal® in 1938, as proved in
Refs. 45 and 57, [44, p. 72] and [47, p. 202]. What we
call Bastiani differentiability is called differentiability on
an open set by Bastiani (see [11, p. 25] and [39, p. 44])
and is strictly stronger than Michal differentiability.

The same distinction between Michal-Bastiani dif-
ferentiability and Bastiani differentiability is made by
Keller [44, p. 72] in his thorough review. Bastiani’s dif-
ferentiability is denoted by C! by Keller'', who also
attributes the definition equivalent to C} to Bastiani
alone [44, p. 11].

In her PhD thesis, Andrée Bastiani developed her con-
cept of differentiability to define distributions on a locally
convex space E with values in a locally convex space F'.
She started from Schwartz’ remark that a distribution is,
locally, the derivative of a continuous function. She used
her differential D to define F-valued distributions over
E°°. A drawback of Bastiani’s framework with respect



to the convenient framework is that her category is not
Cartesian closed for locally convex spaces that are not
Fréchet.

D. Properties of the differential

We review now some of the basic properties of func-
tional derivatives which will be used in the sequel. We
strongly recommend Hamilton’s paper'”’, adapted to lo-
cally convex spaces by Neeb

1. Continuity

We characterize continuous (nonlinear) maps between
two locally convex spaces.

Lemma 11.4. Let E and F be locally convexr spaces
whose topology is defined by the families of seminorms
(pi)ier and (q;)jeq, respectively. Then f is continu-
ous at x iff, for every seminorm q; of F and every
e > 0, there is a finite number {pi,,...,pi,} of semi-
norms of E and k strictly positive numbers ny, ..., 0
such that pi,(x —y) < nu,...,pi.(@ —y) < np imply
i (f(y) = f(z)) <e.

Proof. This is just the translation in terms of seminorms
of the fact that f is continuous at x if, for every open set
V' containing f(z) , there is an open set U containing x
such that f(U) C V [59, p. 86]. O

When the seminorms of FE are saturated [30, p. 96], as
the seminorms 7,  of C>°(R%), the condition becomes
simpler: a map f : C°(R?) — K is continuous at x if and
only if, for every € > 0, there is a seminorm 7, x and an
1 > 0 such that 7, x(x—y) < nimplies | f(y)—f(z)| <.
Since Fréchet spaces are metrizable, we can also use the
following characterization of continuity [60, p. 154]:

Proposition I1.5. Let E be a metrizable topological
space and F a topological space. Then, a map f: E —
F is continuous at a point x iff, whenever a sequence
(Tn)nen converges to x in E, the sequence f(xn)nen con-
verges to f(x) in F.

Another useful theorem is [61, p. II1.30]:

Proposition I1.6. Let E and F be two Fréchet spaces
and G a locally convex space. Every separately continu-
ous bilinear mapping from E X F to G is continuous.

This result extends to multilinear mappings from a
product Ey X---x E,, of Fréchet spaces to a locally convex
space

2. The fundamental theorem of calculus

The fundamental theorem of calculus for functionals
reads

Theorem I1.7. Let f be a Bastiani differentiable map
between two Hausdorff locally conver spaces E and F.
Let U be an open set in E, x in U and v in E such that
(x + tv) € U for every t in an open neighborhood I of
[0,1], so that g : t — f(a + tv) is a map from I to F.
Then,

1
fla+v) = f(2)+ / (1)t

g
— f@)+ / Dfurn)dt.  (4)

To give a meaning to Eq. (4), we need to define an
integral of a function taking its values in a locally convex
space. To cut a long story short"™

Definition II.8. Let X be a locally compact space (for
example R™ or some finite dimensional manifold), p a
measure on X and F a Hausdorff locally convex space.
Let f be a compactly supported continuous function from
X to F. Let F' be the topological dual of F (i.e. the
space of continuous linear maps from F to K). If there
is an element y € F' such that

(@) = [ (o an

for every « € F', where (-,-) denotes the duality pairing,
then we say that f has a weak integral and we denote y

by [y fdp.

The uniqueness of the weak integral follows from the
fact that F' is Hausdorff. In general, the existence of
a weak integral requires some completeness property for
F [64, p. 79]. However, this is not the case for the fun-
damental theorem of calculus [41, p. 27]. This point was
stressed by Glockner

3. Additional properties

For maps between locally convex spaces, the linearity
of the differential is not completely trivial

Proposition 11.9. Let E and F' be locally convex spaces
and f be a Bastiani differentiable map from an open sub-
set U of E to F'. Then, for every x € U, the differential
Df, : E— F is a linear map.

The chain rule for Bastiani-differentiable functions was
first proved by Bastiani herself (see also””).

Proposition I1.10. Assume that E, F, G are locally con-
vexr spaces, U C E and V C F are open subsets and
f:V—=Gandg:U — V are two Bastiani-differentiable
maps. Then, the composite map fog : U — G is Bastiani
differentiable and D(f o g)x = D fy(z) © Dge-

By using these properties, the reader can prove that
our examples are all Bastiani differentiable.



E. Smooth functionals

To define smooth functionals we first define multiple
derivatives.

Definition I1.11. Let U be an open subset of a locally
convez space E and f a map from U to a locally convex
space F'. We say that f is k-times Bastiani differentiable
on U if:

e The kth Gdteaux differential

% f(z+tivr 4 -+ tug)
N Oty ...0t t=0’

D*fo(vr,. o)

where t = (t1,...,tx), exists for every x € U and
every vi,...,v, € E.

e The map DFf : U x E¥ — F is continuous.

Notice that for a function f assumed to be k-times
Bastiani differentiable, the restriction to any finite di-
mensional affine subspace is not only k-times differen-
tiable (in the usual sense) but indeed of class C*. The
set of k-times Bastiani differentiable functions on U is
denoted by C*(U), or C*(U, F) when the target space
F has to be specified. Bastiani gives an equivalent def-
inition, called k-times differentiability on U [11, p. 40],
which is denoted by C* by Keller

Definition I1.12. Let U be an open subset of a locally
convez space E and f a map from U to a locally convex
space F. We say that f is smooth on U if f € C*(U, F)
for every integer k.

We now list a number of useful properties of the k-th
Bastiani differential:

Proposition I1.13. Let U be an open subset of a locally
convex space E and f € C*(U,F), where F is a locally
convex space, then

1. D¥fo(v1,...,vx) is a k-linear symmetric function
ofvl,...,vk[ , D- 84]

2. The function f is of class C™ for all0 < m < k [/ 1,
p. 40]. In particular, [ is continuous.

3. The compositions of two functions in C* is in C*
and the chain rule holds [/ 1, p. 51] and [,0, p. 84].

4. The map D™ f is in C*~™(U, L(E™, F)) [/1, p. 40]
where L(E™, F) is the space of jointly continuous
m-linear maps from E to F, equipped with the lo-
cally convex topology of uniform convergence on the
compact sets of E: i.e. the topology generated by
the seminorms

q; (Ol(hh N

pc,jla) = sup shin)),s

(R, hm)EC

where C = Cy X --- x Cp,, C; runs over the com-
pact sets of E and (g;) et is a family of seminorms
defining the topology of F.

5. If E is metrizable, then f € CF(U, F) iff f belongs
to C*=Y(U,F) and D*='f : U — L(E*1 F) is
Bastiani differentiable [/ 1, p. 43]. Here the metriz-

ability hypothesis is used to obtain a canonical in-
jection from C(Ux E, L(E*~1, F)) to C(Ux E*, F).

We refer the reader to'”"* and Bastiani’s cited works
for the proofs. Other results on C*(U) functions can be
found in Keller’s book™". All the statements of Propo-
sition II.13 are valid for £ = oo, i.e. smooth functions.
Bastiani also defines jets of smooth functions between
locally convex spaces [41, p. 52] and [39, p. 75].

Note that Neeb”" and Glockner"® agree with Bastiani
for the definition of the first derivative but they use an ap-
parently simpler definition of higher derivatives by saying
that f is C* iff df is C*¥=1 iff d*~1 f is C'. However, this
definition is less natural because, for example, f € C? if
df : UxE — Fis C'. In the definition of the first deriva-
tive, U is now replaced by U x E and FE by Ex E. In other
words, d? is a continuous map from U x E3 to F. More
generally dF is a continuous map from U x E2* =1 to F [65,
p. 20]. Moreover, according to Proposition 1.3.13 [68,
p. 23], a map f belongs to C* if and only if it belongs
to C*(U) is the sense of Bastiani, and Bastiani’s D* f
is denoted by d®) f by Glockner [68, p. 23] and called
the k-th differential of f. The k-th derivatives d* f and
d®) f = DFf are not trivially related. For example [68,
p. 24} de(J)7 h17 hg, h3) = 1)2']0(1'7 hl, hz) + l)f(l‘7 hg)

The Taylor formula with remainder for a function in
C"1(U) reads [11, p. 44]:

" 4k
P+ th) = f(z)+ 32 DR ()
k=1

tp— oy
R A A U IO

= f(@)+ ’; D Fa(h)
+ /0 %(D"f$+7h(h”) — D" f,(h"))dr.

Taylor’s formula with remainder is a very important tool
to deal with smooth functions on locally convex spaces.

The reader can check that all our examples are smooth
functionals in the sense of Bastiani.

DkFLp(Uly . 7Uk) = (ni'k-)l /M f(m)@nik(x)
vi(z)...

forkSnandeF¢:Ofork;>n.

vg(z)dz,

n!
Dka(vl,...,vk) = 7(71_@' / ’ g(xy, ..., xy)

v (1) .. vk (k) o(Tkt1) - o(@n)
dxy...dz,,

for k < n and D*¥G, = 0 for k > n. Recall that g is
a symmetric, smooth compactly supported function of



its arguments. The functional H has only two non-zero
derivatives and

D?Hy(vy,v9) =2 /M g" () h(x)D,01 ()0, va (z)da.

The example I has an infinite number of nonzero deriva-
tives:

DRI, (v, .. vp) = /M f(@)e? Doy (). .. vp(x)de.

Finally

Dng,(vl, ) = eJu F@)p(@)de f(x1) ... f(or)

MF
vi(z1) ... vg(xg)day ... dag.

The functionals ', G and H are polynomials in the
sense of Bastiani [11, p. 53]:

Definition I1.14. Let E and F be locally convex spaces.
A polynomial of degree n on E is a smooth function f :
E — F such that D*f =0 for all k > n.

Let u be a distribution in D’(M*), then the functional
f:D(M) — K defined by f(¢) = u(¢®*) is polynomial
in the sense of Bastiani and its k-derivative is:

Dkfy,(vl, . ,Uk) = Zu(va(l) (ORI ’U[,(k)),

o

where o runs over the permutations of {1,...,k} and the
canonical inclusion D(M)®* C D(M*) was used.

If FF and G are smooth maps from F to K, we can
compose the smooth map ¢ — (F(¢),G(¢)) and the
multiplication in K to show that:

Proposition 11.15. Let E be a locally convex space, and
U an open set in E. Then the space of smooth functionals
from U to K is a sub-algebra of the algebra of real valued
functions.

I1l. PROPERTIES OF FUNCTIONALS

We now prove important properties of smooth func-
tionals. We first investigate the support of a functional.
The fact that DF, is continuous from C*°(M) to K ex-
actly means that DF, is a compactly supported distri-
bution for every . The support of F'is then essentially
the union over ¢ of the supports of DF,,. We prove that,
for any smooth functional and any ¢ € C*°(M), there
is a neighborhood V' of ¢ such that F|y is compactly
supported.

The second property that we investigate is required to
establish a link with quantum field theory. In this paper,
we deal with functionals that are smooth functions F' on
an open subset U of E = I'(M, B), where I'(M, B) is
the space of smooth sections of some finite rank vector
bundle B on the manifold M. There is a discrepancy
between DkFW which is a continuous multilinear map

from E* to K, and the quantum field amplitudes (e.g.
represented pictorially by Feynman diagrams) that are
continuous linear maps from E®~F = éMk, B&k) to K,
i.e. elements of the space IV(M* (B*)¥¥) of compactly
supported distributions with values in the k-th external
tensor power of the dual bundle B*. It is easy to see that
there is a canonical correspondence between Dka and

its associated distribution on E®~* , that we denote by
Fék). However, the equivalence between the continuity of
DFF on U x E* and the continuity of F*) on U x E®*
requires a proof.

Finally, we show that the order of F(*) is locally
bounded.

A. Support of a functional

Brunetti, Diitsch and Fredenhagen proposed to define
the support of a functional F' by the property that, if
the support of the smooth function ¢ does not meet the
support of F, then F(p 4+ ¢) = F(p) for all . More
precisely

Definition III.1. Let F : U — K be a Bastiani smooth
function, with U a subset of C°(M). The support of F
is the set of points x € M such that, for every open set U,
containing x, there is a ¢ € U and a v in C°(M) with
@+ € U such that suppp C U, and F(p+1) # F(p).

We want to relate this definition of the support of F
with the support of D, F, which is compactly supported
as every distribution over C°°(M)””. To do so, we need a
technical lemma about connected open subsets in locally
COnVex Spaces.

Lemma III.2. Let U be a connected open set in a lo-
cally convex space E then any pair (x,y) € U? can be
connected by a piecewise affine path.

Proof. Define the equivalence relation ~ in E as follows,
two elements (z,y) are equivalent iff they are connected
by a piecewise affine path. Let us prove that this equiv-
alence relation is both open and closed hence any non
empty equivalence class for ~ is both open and closed in
U hence equal to U.

Let x € U then there exists a convex neighborhood
V of z in U which means that every element in V lies
in the class of z, the relation is open. Conversely let y
be in the closure of the equivalence class of x, then any
neighborhood V' of y contains an element equivalent to x.
Choose some convex neighborhood V' then we find z € V
s.t. z ~ x, but z ~ y hence x ~ z ~ y and we just proved
that the equivalence class of x was closed. O

We can now prove an alternative formula, due to
Brunetti, Fredenhagen and Ribeiro



Lemma II1.3. For every Bastiani smooth function F :
U = K, with U a connected open subset of C*°(M):

supp (F) = U supp DF,,. (6)
pelU

Proof. Using the result of Lemma II1.2, we may reduce
to the case where U is an open convex set. We prove
that both sets J, supp DF,, and supp F' as defined in
Def. III.1 have identical complements. Indeed, for every
point * € M, x ¢ supp F means by definition of the
support that there exists an open neighborhood €2 of z
such that ¥(¢, ) € D(Q) x C®(M), F(p + 1) = F(p).
It follows that for all ¢ € D(Q), there exists € > 0 such
that [t| <e = p+tp e U andt € [—e,e] = Flo+
t1)) is a constant function of ¢ therefore Whﬂ)
DF,(¢)) = 0. This means that for all ¢ € U, the support
of DF, € &'(M) does not meet  hence € lies in the

complement of Ug,cpsupp (DF,) and therefore z €

does not meet the closure U,crrsupp (DF,).

Conversely if x does not meet the closure
Upeusupp (DF,), then there is some neighborhood
Q2 of z which does not meet Ug,cpsupp (DF,) therefore
for all (p,9) € U x D(Q) s.t. ¢+ € U, the whole
straight path [y, ¢ + ¢] lies in U (by convexity of U)
hence

1
Vt S [O, 1]’DFW+t1/1(¢) - 0 — / dtDF<p+tw(¢) - O7
0

and by the fundamental theorem of calculus F(¢ + ) =
F(p). O

Now we show that any smooth functional is locally
compactly supported:

Proposition I11.4. Let F' : U — K be a Bastiani smooth
function, where U is an open connected subset of E =
C>™(M). For every ¢ € U, there is a neighborhood V
of ¢ in U and a compact subset K C M such that the
support of F restricted to V' is contained in K. Moreover
for all integers n and all ¢ € U, the distributional support
supp (D"F,) is contained in K™ C M".

Proof. By definition of the support of a functional, it is
enough to show that, for every ¢ € V, supp DF,, C K.
If F is smooth, then DF : U x E — K is continuous.
Thus, it is continuous in the neighborhood of (g, 0) for
every o € U. In other words, for every ¢ > 0, there
is a neighborhood V' of ¢g, a seminorm m,, x and an
1 > 0 such that |DF,(x)| < € for every ¢ € V and every
x € E such that 7, x(x) < n. Now, for every ¢ € E
such that m,, k(1) # 0, we see that x = ¥n/ (27, k (V)
satisfies 7, k(x) < m. Thus, |[DF,(x)| < € for every
¢ € V and, by linearity, |DF,(¢)| < (2¢/1)mm, k(). On
the other hand, if 7, x(¢) = 0, then for any u > 0
Y,k (W) = 0 < n, so that |[DF,(ut)| < e. By linearity,
|IDF,(¢)| < €/u for any p > 0 and we conclude that
|DF,(¢)| = 0. Thus, for every ¢ € V and every ¢ € E,

IDF,(¥)| < zgwm,mw»

Of course, this inequality implies that DF,,(¢) = 0 when
1) is identically zero on the compact subset K.

Let us show that this implies that the support of DF,
is contained in K. To avoid possible problems at the
boundary, take any compact neighborhood K’ of K.
Now, take an open set Q in M such that Q 