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Functionals (i.e. functions of functions) are widely used in quantum field theory and solid-state physics. In
this paper, functionals are given a rigorous mathematical framework and their main properties are described.
The choice of the proper space of test functions (smooth functions) and of the relevant concept of differential
(Bastiani differential) are discussed.

The relation between the multiple derivatives of a functional and the corresponding distributions is described
in detail. It is proved that, in a neighborhood of every test function, the support of a smooth functional is
uniformly compactly supported and the order of the corresponding distribution is uniformly bounded. Relying
on a recent work by Yoann Dabrowski, several spaces of functionals are furnished with a complete and nuclear
topology. In view of physical applications, it is shown that most formal manipulations can be given a rigorous
meaning.

A new concept of local functionals is proposed and two characterizations of them are given: the first one
uses the additivity (or Hammerstein) property, the second one is a variant of Peetre’s theorem. Finally, the
first step of a cohomological approach to quantum field theory is carried out by proving a global Poincaré
lemma and defining multi-vector fields and graded functionals within our framework.
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I. MOTIVATION

Functionals (i.e. functions of functions) are mathe-
matical objects successfully applied in many areas of
physics. Since Schwinger’s ground-breaking papers1,2,
Green functions of quantum field theory are obtained as
functional derivatives of the generating functional Z(j)
with respect to the functions j (external sources). In
solid-state and molecular physics, the exchange and cor-
relation potential of density functional theory is com-
puted from the functional derivative of the total energy
E(ρ) with respect to the electron density ρ3,4. In per-
turbative algebraic quantum field theory (pAQFT), the
observables are functionals F (ϕ) of the classical field ϕ5.
This formulation was possible due to the crucial result6

that allowed to realize abstract quantum fields as con-
crete functionals on the space of classical configurations.
This viewpoint is not only simplifying computations, but
also allows to construct new perturbative and exact mod-
els of QFT’s7,8. It is, therefore, crucial to understand
functional analytic properties of classical functionals to
be able to use these in quantization and obtain even more
models. The importance of this endeavour is justified by
the fact that presently we do not know any exact inter-
acting QFT models in 4 spacetime dimensions.

Functionals are also used in pure mathematics, for ex-
ample loop space cohomology9 and infinite dimensional
integrable systems: the hierarchy of commuting Hamil-
tonians for the Korteweg de Vries equation is for instance
all made of functionals10.

In all these fields, the concept of locality is crucial: the
Lagrangian of quantum field theory is local and the coun-
terterms of the renormalization process have to be local,
the approximations of E(ρ) used in practice are local and
it is an open question whether the true density functional
E(ρ) is local or not. Therefore, it is crucial to determine
precisely what is meant by a local functional. According
to the standard definition11–14, if ϕ is a classical field (i.e.
a smooth section of a vector bundle over M and we mo-
mentarily consider M = Rd for notational convenience),
then a functional F (ϕ) is local if it is of the form

F (ϕ) =

∫
Rd
dxf

(
x, ϕ(x), ∂µϕ(x), . . . , ∂µ1...µkϕ(x)

)
.(1)

where f is a smooth compactly supported function with
a finite number of arguments.

However, this definition of local functionals is not very
handy in practice because it is global and sometimes too
restrictive. For example, general relativity has no lo-
cal gauge-invariant observables in the sense of Eq. (1),
whereas it has local gauge-invariant observables when the
concept of locality is slightly generalized, as discussed

in7 (see also the parallel work15). Note that the concept
of locality presented in the present paper gives a proper
topological framework for local functionals as understood
by16–18.

The present paper puts forth the following formulation
of the concept of locality:

Definition I.1. Let M be a manifold19. Let U be an
open subset of C∞(M). A smooth functional F : U →
K is said to be local if, for every ϕ ∈ U , there is a
neighborhood V of ϕ, an integer k, an open subset V ⊂
JkM and a smooth function f ∈ C∞(V) such that x ∈
M 7→ f(jkxψ) is supported in a compact subset K ⊂ M
and

F (ϕ+ ψ) = F (ϕ) +

∫
M

f(jkxψ)dx,

whenever ϕ+ ψ ∈ V and where jkxψ denotes the k-jet of
ψ at x.

In other words, we require F to be local in the sense of
Eq. (1), but only around each ϕ ∈ U because the integer
k and the function f can depend on the neighborhood
V . In short, our local functionals are local in the “tradi-
tional sense”, but only locally in the configuration space
(i.e. in a neighborhood of each ϕ). We do not need
global locality to apply variational methods and derive
Euler-Lagrange equations. We will show by exhibiting
an example that this concept of locality is strictly more
general than the traditional one. Our first main result is
a simple characterization of local functionals in the sense
of Def. 1.1:

Theorem I.2. Let U be an open subset of C∞(M). A
smooth functional F : U → K (where K = R or C) is
local if and only if

1. F is additive (i.e. it satisfies F (ϕ1 + ϕ2 + ϕ3) =
F (ϕ1+ϕ2)+F (ϕ2+ϕ3)−F (ϕ2) whenever supp ϕ1∩
supp ϕ3 = ∅)

2. For every ϕ ∈ U , the differential DFϕ of F at ϕ is a
distribution with empty wave front set. Thus, it can
be represented by a function ∇Fϕ ∈ D(M) (with
D(M) the space of compactly supported smooth
functions on M , i.e. “test functions”).

3. The map U → D(M) defined by ϕ 7→ ∇Fϕ is
smooth (in the sense of Bastiani).

Our characterization of locality is inspired by the mi-
crolocal functionals proposed by Brunetti, Fredenhagen
and Ribeiro20. However, the proof of their Proposi-
tion 2.3.12 is not complete because the application of
the Fubini theorem and the second use of the fundamen-
tal theorem of calculus are not justified. Our condition 3
solves that problem. On the other hand, we do not need
their assumption that F is compactly supported.

Let us stress that the notion of locality is quite sub-
tle and depends strongly on the functional analytic set-
ting. A functional characterization of a notion of lo-
cal functionals on measurable functions might not be
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valid anymore when applied to smooth functions as
is shown by the simple counterexample of Section V B.
We also make a conjecture as to how to generalize our
main result to multi-vector fields and graded functionals,
which is crucial for a rigorous version of the Batalin-
Vilkovisky approach to gauge field theory and quantum
gravity. The second main result is a proof of the global
Poincaré lemma (in our context), which is crucial to set
up the BRST and variational complexes. The last one is
another characterization of local (and multilocal) func-
tionals in the form of a Peetre’s theorem.

Along the way to these results, we prove interesting
properties of general functionals that we briefly describe
now. In section 2, we explain why we choose test func-
tions that are only smooth instead of smooth and com-
pactly supported, we describe the topology of the space
of test functions and we present the concept of Bastiani
differentiability and its main properties. In section 3,
we show that a smooth functional is locally compactly
supported (i.e. in a neighborhood of every test func-
tion), we prove that the kth derivative of a functional
defines a continuous family of distributions whose order
is locally bounded. Section 4, which relies heavily on
Dabrowski’s work21,22, describes in detail a nuclear and
complete topology on several spaces of functionals used
in quantum field theory. Section 5 discusses the con-
cept of additivity which characterizes local functionals.
Sections 6 and 7 prove the main results discussed above.
Note that the present paper has a somewhat foundational
character, in as much as the choice of test-functions, ad-
ditivity property and differential are carefully justified
from the physical and mathematical points of view. It
contributes to the formulation of a mathematically rig-
orous basis on which the quantum field theory of gauge
fields and gravitation can be built.

Note also that this paper aims at both functional an-
alysts and theoretical physicists. Because of this dual
readership, the proofs are often more detailed than what
would be required for experts in functional analysis.

II. FUNCTIONALS AND THEIR DERIVATIVES

To set up a mathematical definition of functionals, we
need to determine precisely which space of test functions
(i.e. classical fields and sources) we consider and what
we mean by a functional derivative.

A. The space of classical fields

Propagators and Green functions of quantum fields
in flat spacetimes are tempered distributions23,24 and
the corresponding test functions are rapidly decreasing.
Tempered distributions are computationaly convenient
because they have Fourier transforms. However, tem-
pered distributions cannot be canonically extended to
curved spacetimes (i.e. Lorentzian smooth manifolds)

because the rapid decrease of test functions at infinity is
controlled by some Euclidian distance which is not canon-
ically defined on general spacetime manifolds [25, p. 339].

The most natural spaces of test functions on a general
spacetime M are the space C∞(M) of real valued smooth
functions on M and its subspace D(M) of compactly sup-
ported functions. These two spaces are identical when
M is compact, but physically relevant spacetimes are
not compact because they are globally hyperbolic, and
a choice must be made.

In this paper, we choose C∞(M) (or the set Γ(M,B)
of smooth sections of a vector bundle B). There is a
strong physical reason for this26: in the quantization pro-
cess we must be able to deal with on-shell fields ϕ, that
are smooth solutions to normally hyperbolic equations
and as such cannot be compactly supported. Therefore,
the domain of the functionals can be C∞(M) but not
D(M). There are also good mathematical arguments
for this choice: In particular, C∞(M) is a Fréchet space
and its pointwise multiplication is continuous [27, p. 119].
Moreover, the Fréchet property of C∞(M) saves us the
trouble of distinguishing Bastiani from convenient differ-
entiability which is treated in Ref. 28.

The choice of C∞(M) has, however, several drawbacks:
(i) Since smooth functions are generally not integrable
over M , the Lagrangian density L(ϕ) must be multi-
plied by a smooth compactly supported function g so that
L(ϕ)g is integrable over M29. As a result, long-range in-
teractions are suppressed and infrared convergence is en-
forced. This simplifies the problem but makes it difficult
to deal with the physics of infrared divergence. (ii) The
function g breaks the diffeomorphism invariance of the
Einstein-Hilbert action. (iii) The effect of a perturbation
ϕ + εψ is easier to deal with when ψ is compactly sup-
ported because it avoids the presence of boundary terms.
This problem can be solved by considering C∞(M) as a
manifold modeled on D(M)5,20, but this is an additional
complication.

B. Locally convex spaces

The spaces of test functions and functionals consid-
ered in the paper are all locally convex. The most peda-
gogical introduction to locally convex spaces is probably
Horvath’s book30, so we refer the reader to it for more
details.

We describe now the topology of the spaces of test
functions that we use. For the space of smooth test func-
tions C∞(Rd), the topology is defined by the seminorms

πm,K(f) = sup
x∈K

sup
|α|≤m

|∂αf(x)|, (2)

where f ∈ C∞(Rd), m is an integer, K is a compact
subset of Rd, α = (α1, . . . , αd) is a d-tuple of nonnegative
integers, with |α| = α1 + · · · + αd and ∂α = ∂α1

1 . . . ∂αdd ,
with ∂i = ∂/∂xi the derivative with respect to the i-th
coordinate of x [27, p. 88].
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If U is open in Rd, we denote by C∞(U) the space
of all functions defined on U which possess continuous
partial derivatives of all orders. We equip C∞(U) with
the topology defined by the seminorms πm,K where K
runs now over the compact subsets of U [30, p. 89]. For
every open set U ⊂ Rd, the space C∞(U) is Fréchet,
reflexive, Montel, barrelled [30, p. 239], bornological [30,
p. 222] and nuclear [31, p. 530].

We define now C∞(M), where M is a d-dimensional
manifold (tacitly smooth, Hausdorff, paracompact and
orientable) described by charts (Uα, ψα). If for ev-
ery Uα ⊂ M we are given a smooth function gα ∈
C∞(ψα(Uα)) such that gβ = gα◦ψα◦ψ−1

β on ψβ(Uα∩Uβ),
we call the system gα a smooth function g on M .
The space of smooth functions on M is denoted by
C∞(M) [32, p. 143]. This definition is simple but to de-
scribe the topological properties of C∞(M) the following
more conceptual definition is useful.

Let M be a manifold and B → M a smooth vector
bundle of rank r over M with projection π. Let E =
Γ(M,B) be the space of smooth sections of B equipped
with the following topology28:

Definition II.1. The topology on Γ(M,B) is defined as
follows. Choose a chart (Uα, ψα)α and a trivialization
map Φα : π−1(Uα) → Ω × Rr, where Ω is a fixed open
set in Rd. Then the map Φα allows to identify Γ(Uα, B)
with C∞(Ω,Rr) by Φα : π−1Uα → Ω× Rd such that

Φα(x, s(x)) = (ψα(x),Kα(s)(ψα(x))),

where

Kα : s ∈ Γ(Uα, B) 7→ Kα(s) ∈ C∞(Ω,Rr).

The topology on Γ(M,B) is the weakest topology making
all the maps Kα continuous.

This topology does not depend on the choice of charts
or trivialization maps [28, p. 294]. To interpret this topol-
ogy, denote by ρα : s ∈ Γ(M,B) 7→ s|Uα ∈ Γ(Uα, B) the
restriction map of sections on open sets of our open cover
(Uα)α∈I of M . The space Γ(M,B) fits into the following
complex of vector spaces

0→ Γ(M,B)
(ρα)α∈I−→

∏
α∈I

Γ(Uα, B) '
∏
α∈I

C∞(Ω,Rr)

(ρα−ρβ)α6=β−→
∏

(α 6=β)∈I2
Γ(Uα ∩ Uβ , B). (3)

The topology on Γ(Uα, B) is given by the isomorphism
Γ(Uα, B) ' C∞(Ω,Rr) hence it is nuclear Fréchet. The
countable products

∏
α∈I Γ(Uα, B) and

∏
(α,β)∈I2 Γ(Uα∩

Uβ , B) are therefore nuclear Fréchet. For every pair
(α, β) of distinct elements of I, the difference of re-
striction maps ρα − ρβ is continuous and the topology
on Γ(M,B) is the weakest topology which makes the
above complex topological, which implies that it is nu-
clear Fréchet as the kernel of

∏
α6=β ρα − ρβ .

Locally convex spaces are very versatile and they are
the proper framework to define spaces of smooth func-
tionals, i.e. smooth functions on a space of functions (or
sections of a bundle). The first step towards this goal is
to provide a rigorous definition of functional derivatives.

C. Functional derivatives

To define the space of functionals, we consider the main
examples Z(j) and F (ϕ). These two functionals send
smooth classical fields to K, where K = R or K = C.
Moreover, functional derivatives of Z and F of all orders
are required to obtain the Green functions from Z(j) and
to quantize the product F (ϕ)G(ϕ). Therefore, we must
define the derivative of a function f : E → K, where E
is the space of classical fields.

It will be useful to generalize the problem to functions
f between arbitrary locally convex spaces E and F . To
define such a derivative we start from

Definition II.2. Let U be an open subset of a Hausdorff
locally convex space E and let f be a map from U to a
Hausdorff locally convex space F . Then f is said to have
a derivative at x ∈ U in the direction of v ∈ E if the
following limit exists33

Dfx(v) := lim
t→0

f(x+ tv)− f(x)

t
.

One can also consider the same definition restricted
to t > 034. A function f is said to have a Gâteaux dif-
ferential35,36 (or a Gâteaux variation37) at x if Dfx(v)
exists for every v ∈ E. However, this definition is far
too weak for our purpose because Dfx(v) is generally
neither linear nor continuous in v and it can be linear
without being continuous and continuous without being
linear [38, p. 7]. Therefore, we will use a stronger def-
inition, namely Bastiani differentiability39, which is the
fundamental concept of differentiability used throughout
the paper:

Definition II.3. Let U be an open subset of a Hausdorff
locally convex space E and let f be a map from U to a
Hausdorff locally convex space F . Then f is Bastiani
differentiable on U (denoted by f ∈ C1(U)) if f has a
Gâteaux differential at every x ∈ U and the map Df :
U × E → F defined by Df(x, v) = Dfx(v) is continuous
on U × E.

With this definition, most of the properties used in
physics textbooks (e.g. chain rule, Leibniz rule, linearity)
are mathematically valid.
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1. Examples

We shall consider several examples of functions from
C∞(M) to R or C, where M = Rd:

F (ϕ) =

∫
M

f(x)ϕn(x)dx,

G(ϕ) =

∫
Mn

g(x1, . . . , xn)ϕ(x1) . . . ϕ(xn)dx1 . . . dxn,

H(ϕ) =
∑
µν

∫
M

gµν(x)h(x)∂µϕ(x)∂νϕ(x)dx,

I(ϕ) =

∫
M

f(x)eϕ(x)dx,

J(ϕ) = e
∫
M
f(x)ϕ(x)dx,

K(ϕ) =

∫
M

f(x) sin
(
ϕ(x)

)
dx,

where f , g, and h are smooth compactly supported func-
tions and where g is a symmetric function of its argu-
ments. Further examples can be found in17,40. It is im-
mediate to check that

DFϕ(v) = n

∫
M

g(x)ϕn−1(x)v(x)dx,

DGϕ(v) = n

∫
Mn

g(x1, . . . , xn)ϕ(x1) . . . ϕ(xn−1)

v(xn)dx1 . . . dxn,

DHϕ(v) = 2
∑
µν

∫
M

gµν(x)h(x)∂µϕ(x)∂νv(x)dx,

DIϕ(v) =

∫
M

f(x)eϕ(x)v(x)dx,

DJϕ(v) = e
∫
M
f(x)ϕ(x)dx

∫
M

f(x)v(x)dx,

DKϕ(v) =

∫
M

f(x) cos
(
ϕ(x)

)
v(x)dx.

2. Historical remarks

Definition II.3 is due to Bastiani39,41 and looks quite
natural. In fact, it is not so. For a long time, many differ-
ent approaches were tried. For any reasonable definition
of differentiability, the map Dfx : E → F is linear and
continuous, so that Dfx ∈ L(E,F ). If E and F are Ba-
nach spaces, then a map f : E → F is defined to be con-
tinuously (Fréchet) differentiable if the map x→ Dfx is
continuous from U to Lc(E,F ), where Lc(E,F ) is the set
of continuous maps from E to F equipped with the opera-
tor norm topology. But Fréchet differentiability is strictly
stronger than Bastiani’s differentiability specialized to
Banach spaces42. This is why Bastiani’s definition was
often dismissed in the literature43 and, for locally convex
spaces that are not Banach, the map Df was generally
required to be continuous from U to L(E,F ) equipped
with some well-chosen topology. However, when E is

not normable, no topology on L(E,F ) provides the nice
properties of Bastiani’s definition [44, p. 6] (Hamilton [40,
p. 70] gives a simple example of a map which is contin-
uous U × E → E but such that the corresponding map
U → L(E,E) is not continuous). Thus, L(E,F ) was
equipped with various non-topological convergence struc-
tures [44, p. 23]. The result is an impressive zoology of
differentiabilities. Twenty-five of them were reviewed and
classified by Averbukh and Smolyanov45. Still more can
be found in the extensive lists given by Gähler46 and Ver
Eecke47 covering the period up to 1983 (see also38,44,48).

Nowadays, essentially two concepts of differentiabil-
ity survive, Bastiani’s and the so-called convenient ap-
proach developed by Kriegl–Michor in the reference
monograph28, which is weaker than Bastiani’s for gen-
eral Hausdorff locally convex spaces. In particular, on
any locally convex space which is not bornological, there
is a conveniently smooth map which is not continuous [41,
p. 19]. However, a nice feature of both approaches is that
for a Fréchet space E, a function f : E → K is smooth in
the sense of Bastiani iff it is smooth in the sense of the
convenient calculus49. Bastiani differentiability became
widespread after it was used by Michor50, Hamilton40

(for Fréchet spaces) and Milnor51 and it is now vigor-
ously developed by Glöckner and Neeb (see also52).

To complete this section, we would like to mention that
the Bastiani differential is sometimes called the Michal-
Bastiani differential53–55 (or even Michel-Bastiani differ-
ential54). This is not correct. The confusion comes from
the fact that Bastiani defines her differentiability in sev-
eral steps. She starts from the Gâteaux derivability, then
she says that a map f : U → F is differentiable at x
(see [41, p. 18] and [39, p. 18]) if: i) Dfx is linear and
continuous from E to F and ii) the map mx : R×E → F
defined by

mx(t, v) =
f(x+ tv)− f(x)

t
−Dfx(v),

for x + tv ∈ U , is continuous at (0, v) for all v ∈ E.
This differentiability at x is indeed equivalent to the dif-
ferentiability defined by Michal56 in 1938, as proved in
Refs. 45 and 57, [44, p. 72] and [47, p. 202]. What we
call Bastiani differentiability is called differentiability on
an open set by Bastiani (see [41, p. 25] and [39, p. 44])
and is strictly stronger than Michal differentiability.

The same distinction between Michal-Bastiani dif-
ferentiability and Bastiani differentiability is made by
Keller [44, p. 72] in his thorough review. Bastiani’s dif-
ferentiability is denoted by C1

c by Keller44, who also
attributes the definition equivalent to C1

c to Bastiani
alone [44, p. 11].

In her PhD thesis, Andrée Bastiani developed her con-
cept of differentiability to define distributions on a locally
convex space E with values in a locally convex space F .
She started from Schwartz’ remark that a distribution is,
locally, the derivative of a continuous function. She used
her differential D to define F -valued distributions over
E58. A drawback of Bastiani’s framework with respect
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to the convenient framework is that her category is not
Cartesian closed for locally convex spaces that are not
Fréchet.

D. Properties of the differential

We review now some of the basic properties of func-
tional derivatives which will be used in the sequel. We
strongly recommend Hamilton’s paper40, adapted to lo-
cally convex spaces by Neeb42.

1. Continuity

We characterize continuous (nonlinear) maps between
two locally convex spaces.

Lemma II.4. Let E and F be locally convex spaces
whose topology is defined by the families of seminorms
(pi)i∈I and (qj)j∈J , respectively. Then f is continu-
ous at x iff, for every seminorm qj of F and every
ε > 0, there is a finite number {pi1 , . . . , pik} of semi-
norms of E and k strictly positive numbers η1, . . . , ηk
such that pi1(x − y) < η1, . . . , pik(x − y) < ηk imply
qj
(
f(y)− f(x)

)
< ε.

Proof. This is just the translation in terms of seminorms
of the fact that f is continuous at x if, for every open set
V containing f(x) , there is an open set U containing x
such that f(U) ⊂ V [59, p. 86].

When the seminorms of E are saturated [30, p. 96], as
the seminorms πm,K of C∞(Rd), the condition becomes
simpler: a map f : C∞(Rd)→ K is continuous at x if and
only if, for every ε > 0, there is a seminorm πm,K and an
η > 0 such that πm,K(x−y) < η implies |f(y)−f(x)| < ε.
Since Fréchet spaces are metrizable, we can also use the
following characterization of continuity [60, p. 154]:

Proposition II.5. Let E be a metrizable topological
space and F a topological space. Then, a map f : E →
F is continuous at a point x iff, whenever a sequence
(xn)n∈N converges to x in E, the sequence f(xn)n∈N con-
verges to f(x) in F .

Another useful theorem is [61, p. III.30]:

Proposition II.6. Let E and F be two Fréchet spaces
and G a locally convex space. Every separately continu-
ous bilinear mapping from E × F to G is continuous.

This result extends to multilinear mappings from a
product E1×· · ·×En of Fréchet spaces to a locally convex
space62,63.

2. The fundamental theorem of calculus

The fundamental theorem of calculus for functionals
reads

Theorem II.7. Let f be a Bastiani differentiable map
between two Hausdorff locally convex spaces E and F .
Let U be an open set in E, x in U and v in E such that
(x + tv) ∈ U for every t in an open neighborhood I of
[0, 1], so that g : t 7→ f(x + tv) is a map from I to F .
Then,

f(x+ v) = f(x) +

∫ 1

0

g′(t)dt

= f(x) +

∫ 1

0

Dfx+tv(v)dt. (4)

To give a meaning to Eq. (4), we need to define an
integral of a function taking its values in a locally convex
space. To cut a long story short64,65:

Definition II.8. Let X be a locally compact space (for
example Rn or some finite dimensional manifold), µ a
measure on X and F a Hausdorff locally convex space.
Let f be a compactly supported continuous function from
X to F . Let F ′ be the topological dual of F (i.e. the
space of continuous linear maps from F to K). If there
is an element y ∈ F such that

〈α, y〉 =

∫
X

〈α, f〉dµ,

for every α ∈ F ′, where 〈·, ·〉 denotes the duality pairing,
then we say that f has a weak integral and we denote y
by
∫
X
fdµ.

The uniqueness of the weak integral follows from the
fact that F is Hausdorff. In general, the existence of
a weak integral requires some completeness property for
F [64, p. 79]. However, this is not the case for the fun-
damental theorem of calculus [41, p. 27]. This point was
stressed by Glöckner66.

3. Additional properties

For maps between locally convex spaces, the linearity
of the differential is not completely trivial40.

Proposition II.9. Let E and F be locally convex spaces
and f be a Bastiani differentiable map from an open sub-
set U of E to F . Then, for every x ∈ U , the differential
Dfx : E → F is a linear map.

The chain rule for Bastiani-differentiable functions was
first proved by Bastiani herself4139 (see also53).

Proposition II.10. Assume that E,F,G are locally con-
vex spaces, U ⊂ E and V ⊂ F are open subsets and
f : V → G and g : U → V are two Bastiani-differentiable
maps. Then, the composite map f ◦g : U → G is Bastiani
differentiable and D(f ◦ g)x = Dfg(x) ◦Dgx.

By using these properties, the reader can prove that
our examples are all Bastiani differentiable.
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E. Smooth functionals

To define smooth functionals we first define multiple
derivatives.

Definition II.11. Let U be an open subset of a locally
convex space E and f a map from U to a locally convex
space F . We say that f is k-times Bastiani differentiable
on U if:

• The kth Gâteaux differential

Dkfx(v1, . . . , vk) =
∂kf(x+ t1v1 + · · ·+ tkvk)

∂t1 . . . ∂tk

∣∣∣
t=0

,

where t = (t1, . . . , tk), exists for every x ∈ U and
every v1, . . . , vk ∈ E.

• The map Dkf : U × Ek → F is continuous.

Notice that for a function f assumed to be k-times
Bastiani differentiable, the restriction to any finite di-
mensional affine subspace is not only k-times differen-
tiable (in the usual sense) but indeed of class Ck. The
set of k-times Bastiani differentiable functions on U is
denoted by Ck(U), or Ck(U,F ) when the target space
F has to be specified. Bastiani gives an equivalent def-
inition, called k-times differentiability on U [41, p. 40],
which is denoted by Ckc by Keller44.

Definition II.12. Let U be an open subset of a locally
convex space E and f a map from U to a locally convex
space F . We say that f is smooth on U if f ∈ Ck(U,F )
for every integer k.

We now list a number of useful properties of the k-th
Bastiani differential:

Proposition II.13. Let U be an open subset of a locally
convex space E and f ∈ Ck(U,F ), where F is a locally
convex space, then

1. Dkfx(v1, . . . , vk) is a k-linear symmetric function
of v1, . . . , vk [40, p. 84].

2. The function f is of class Cm for all 0 ≤ m ≤ k [41,
p. 40]. In particular, f is continuous.

3. The compositions of two functions in Ck is in Ck

and the chain rule holds [41, p. 51] and [40, p. 84].

4. The map Dmf is in Ck−m(U,L(Em, F )) [41, p. 40]
where L(Em, F ) is the space of jointly continuous
m-linear maps from E to F , equipped with the lo-
cally convex topology of uniform convergence on the
compact sets of E: i.e. the topology generated by
the seminorms

pC,j(α) = sup
(h1,...,hm)∈C

qj
(
α(h1, . . . , hm)

)
,

where C = C1 × · · · × Cm, Ci runs over the com-
pact sets of E and (qj)j∈J is a family of seminorms
defining the topology of F .

5. If E is metrizable, then f ∈ Ck(U,F ) iff f belongs
to Ck−1(U,F ) and Dk−1f : U → L(Ek−1, F ) is
Bastiani differentiable [41, p. 43]. Here the metriz-
ability hypothesis is used to obtain a canonical in-
jection from C(U×E,L(Ek−1, F )) to C(U×Ek, F ).

We refer the reader to40,42 and Bastiani’s cited works
for the proofs. Other results on Ck(U) functions can be
found in Keller’s book44. All the statements of Propo-
sition II.13 are valid for k = ∞, i.e. smooth functions.
Bastiani also defines jets of smooth functions between
locally convex spaces [41, p. 52] and [39, p. 75].

Note that Neeb67 and Glöckner68 agree with Bastiani
for the definition of the first derivative but they use an ap-
parently simpler definition of higher derivatives by saying
that f is Ck iff df is Ck−1 iff dk−1f is C1. However, this
definition is less natural because, for example, f ∈ C2 if
df : U×E → F is C1. In the definition of the first deriva-
tive, U is now replaced by U×E and E by E×E. In other
words, d2 is a continuous map from U × E3 to F . More

generally dk is a continuous map from U×E2k−1 to F [68,
p. 20]. Moreover, according to Proposition 1.3.13 [68,
p. 23], a map f belongs to Ck if and only if it belongs
to Ck(U) is the sense of Bastiani, and Bastiani’s Dkf
is denoted by d(k)f by Glöckner [68, p. 23] and called
the k-th differential of f . The k-th derivatives dkf and
d(k)f = Dkf are not trivially related. For example [68,
p. 24]: d2f(x, h1, h2, h3) = D2f(x, h1, h2) +Df(x, h3).

The Taylor formula with remainder for a function in
Cn+1(U) reads [41, p. 44]:

f(x+ th) = f(x) +

n∑
k=1

tk

k!
Dkfx(hk)

+

∫ t

0

(t− τ)n

n!
Dn+1fx+τh(hn+1)dτ, (5)

= f(x) +

n∑
k=1

tk

k!
Dkfx(hk)

+

∫ t

0

(t− τ)n−1

(n− 1)!

(
Dnfx+τh(hn)−Dnfx(hn)

)
dτ.

Taylor’s formula with remainder is a very important tool
to deal with smooth functions on locally convex spaces.

The reader can check that all our examples are smooth
functionals in the sense of Bastiani.

DkFϕ(v1, . . . , vk) =
n!

(n− k)!

∫
M

f(x)ϕn−k(x)

v1(x) . . . vk(x)dx,

for k ≤ n and DkFϕ = 0 for k > n.

DkGϕ(v1, . . . , vk) =
n!

(n− k)!

∫
Mn

g(x1, . . . , xn)

v1(x1) . . . vk(xk)ϕ(xk+1) . . . ϕ(xn)

dx1 . . . dxn,

for k ≤ n and DkGϕ = 0 for k > n. Recall that g is
a symmetric, smooth compactly supported function of
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its arguments. The functional H has only two non-zero
derivatives and

D2Hϕ(v1, v2) = 2
∑
µν

∫
M

gµν(x)h(x)∂µv1(x)∂νv2(x)dx.

The example I has an infinite number of nonzero deriva-
tives:

DkIϕ(v1, . . . , vk) =

∫
M

f(x)eϕ(x)v1(x) . . . vk(x)dx.

Finally

DkJϕ(v1, . . . , vk) = e
∫
M
f(x)ϕ(x)dx

∫
Mk

f(x1) . . . f(xk)

v1(x1) . . . vk(xk)dx1 . . . dxk.

The functionals F , G and H are polynomials in the
sense of Bastiani [41, p. 53]:

Definition II.14. Let E and F be locally convex spaces.
A polynomial of degree n on E is a smooth function f :
E → F such that Dkf = 0 for all k > n.

Let u be a distribution in D′(Mk), then the functional
f : D(M) → K defined by f(ϕ) = u(ϕ⊗k) is polynomial
in the sense of Bastiani and its k-derivative is:

Dkfϕ(v1, . . . , vk) =
∑
σ

u(vσ(1) ⊗ · · · ⊗ vσ(k)),

where σ runs over the permutations of {1, . . . , k} and the
canonical inclusion D(M)⊗k ⊂ D(Mk) was used.

If F and G are smooth maps from E to K, we can
compose the smooth map ϕ 7→

(
F (ϕ), G(ϕ)

)
and the

multiplication in K to show that:

Proposition II.15. Let E be a locally convex space, and
U an open set in E. Then the space of smooth functionals
from U to K is a sub-algebra of the algebra of real valued
functions.

III. PROPERTIES OF FUNCTIONALS

We now prove important properties of smooth func-
tionals. We first investigate the support of a functional.
The fact that DFϕ is continuous from C∞(M) to K ex-
actly means that DFϕ is a compactly supported distri-
bution for every ϕ. The support of F is then essentially
the union over ϕ of the supports of DFϕ. We prove that,
for any smooth functional and any ϕ ∈ C∞(M), there
is a neighborhood V of ϕ such that F |V is compactly
supported.

The second property that we investigate is required to
establish a link with quantum field theory. In this paper,
we deal with functionals that are smooth functions F on
an open subset U of E = Γ(M,B), where Γ(M,B) is
the space of smooth sections of some finite rank vector
bundle B on the manifold M . There is a discrepancy
between DkFϕ, which is a continuous multilinear map

from Ek to K, and the quantum field amplitudes (e.g.
represented pictorially by Feynman diagrams) that are

continuous linear maps from E⊗̂πk = Γ(Mk, B�k) to K,
i.e. elements of the space Γ′(Mk, (B∗)�k) of compactly
supported distributions with values in the k-th external
tensor power of the dual bundle B∗. It is easy to see that
there is a canonical correspondence between DkFϕ and

its associated distribution on E⊗̂πk, that we denote by

F
(k)
ϕ . However, the equivalence between the continuity of

DkF on U ×Ek and the continuity of F (k) on U ×E⊗̂πk
requires a proof.

Finally, we show that the order of F (k) is locally
bounded.

A. Support of a functional

Brunetti, Dütsch and Fredenhagen proposed to define
the support of a functional F by the property that, if
the support of the smooth function ψ does not meet the
support of F , then F (ϕ + ψ) = F (ϕ) for all ϕ. More
precisely17:

Definition III.1. Let F : U → K be a Bastiani smooth
function, with U a subset of C∞(M). The support of F
is the set of points x ∈M such that, for every open set Ux
containing x, there is a ϕ ∈ U and a ψ in C∞(M) with
ϕ+ψ ∈ U such that suppψ ⊂ Ux and F (ϕ+ψ) 6= F (ϕ).

We want to relate this definition of the support of F
with the support of DϕF , which is compactly supported
as every distribution over C∞(M)32. To do so, we need a
technical lemma about connected open subsets in locally
convex spaces.

Lemma III.2. Let U be a connected open set in a lo-
cally convex space E then any pair (x, y) ∈ U2 can be
connected by a piecewise affine path.

Proof. Define the equivalence relation ∼ in E as follows,
two elements (x, y) are equivalent iff they are connected
by a piecewise affine path. Let us prove that this equiv-
alence relation is both open and closed hence any non
empty equivalence class for ∼ is both open and closed in
U hence equal to U .

Let x ∈ U then there exists a convex neighborhood
V of x in U which means that every element in V lies
in the class of x, the relation is open. Conversely let y
be in the closure of the equivalence class of x, then any
neighborhood V of y contains an element equivalent to x.
Choose some convex neighborhood V then we find z ∈ V
s.t. z ∼ x, but z ∼ y hence x ∼ z ∼ y and we just proved
that the equivalence class of x was closed.

We can now prove an alternative formula, due to
Brunetti, Fredenhagen and Ribeiro20.
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Lemma III.3. For every Bastiani smooth function F :
U → K, with U a connected open subset of C∞(M):

supp (F ) =
⋃
ϕ∈U

suppDFϕ. (6)

Proof. Using the result of Lemma III.2, we may reduce
to the case where U is an open convex set. We prove
that both sets

⋃
ϕ suppDFϕ and suppF as defined in

Def. III.1 have identical complements. Indeed, for every
point x ∈ M , x /∈ supp F means by definition of the
support that there exists an open neighborhood Ω of x
such that ∀(ψ,ϕ) ∈ D(Ω) × C∞(M), F (ϕ + ψ) = F (ϕ).
It follows that for all ψ ∈ D(Ω), there exists ε > 0 such
that |t| 6 ε =⇒ ϕ + tψ ∈ U and t ∈ [−ε, ε] 7→ F (ϕ +

tψ) is a constant function of t therefore dF (ϕ+tψ)
dt |t=0 =

DFϕ(ψ) = 0. This means that for all ϕ ∈ U , the support
of DFϕ ∈ E ′(M) does not meet Ω hence Ω lies in the
complement of ∪ϕ∈U supp (DFϕ) and therefore x ∈ Ω

does not meet the closure ∪ϕ∈U supp (DFϕ).
Conversely if x does not meet the closure

∪ϕ∈U supp (DFϕ), then there is some neighborhood
Ω of x which does not meet ∪ϕ∈U supp (DFϕ) therefore
for all (ϕ,ψ) ∈ U × D(Ω) s.t. ϕ + ψ ∈ U , the whole
straight path [ϕ,ϕ + ψ] lies in U (by convexity of U)
hence

∀t ∈ [0, 1], DFϕ+tψ(ψ) = 0 =⇒
∫ 1

0

dtDFϕ+tψ(ψ) = 0,

and by the fundamental theorem of calculus F (ϕ+ψ) =
F (ϕ).

Now we show that any smooth functional is locally
compactly supported:

Proposition III.4. Let F : U 7→ K be a Bastiani smooth
function, where U is an open connected subset of E =
C∞(M). For every ϕ ∈ U , there is a neighborhood V
of ϕ in U and a compact subset K ⊂ M such that the
support of F restricted to V is contained in K. Moreover
for all integers n and all ϕ ∈ U , the distributional support
supp (DnFϕ) is contained in Kn ⊂Mn.

Proof. By definition of the support of a functional, it is
enough to show that, for every ϕ ∈ V , suppDFϕ ⊂ K.
If F is smooth, then DF : U × E → K is continuous.
Thus, it is continuous in the neighborhood of (ϕ0, 0) for
every ϕ0 ∈ U . In other words, for every ε > 0, there
is a neighborhood V of ϕ0, a seminorm πm,K and an
η > 0 such that |DFϕ(χ)| < ε for every ϕ ∈ V and every
χ ∈ E such that πm,K(χ) < η. Now, for every ψ ∈ E
such that πm,K(ψ) 6= 0, we see that χ = ψη/(2πm,K(ψ))
satisfies πm,K(χ) < η. Thus, |DFϕ(χ)| < ε for every
ϕ ∈ V and, by linearity, |DFϕ(ψ)| < (2ε/η)πm,K(ψ). On
the other hand, if πm,K(ψ) = 0, then for any µ > 0
ψm,K(µψ) = 0 < η, so that |DFϕ(µψ)| < ε. By linearity,
|DFϕ(ψ)| < ε/µ for any µ > 0 and we conclude that
|DFϕ(ψ)| = 0. Thus, for every ϕ ∈ V and every ψ ∈ E,

|DFϕ(ψ)| ≤ 2
ε

η
πm,K(ψ).

Of course, this inequality implies that DFϕ(ψ) = 0 when
ψ is identically zero on the compact subset K.

Let us show that this implies that the support of DFϕ
is contained in K. To avoid possible problems at the
boundary, take any compact neighborhood K ′ of K.
Now, take an open set Ω in M such that Ω ∩ K ′ = ∅.
Then, for every smooth function ψ supported in Ω, we
have πm,K(ψ) = 0 because the seminorm πm,K takes
only into account the points of K. As a consequence,
the restriction of DFϕ to Ω is zero, which means that
Ω is outside the support of DFϕ for every ϕ ∈ V .
Thus, suppF |V ⊂ K because, for every ϕ ∈ V , the
support of DFϕ is included in every compact neighbor-
hood of K. Finally we show that, if F is compactly
supported, then all DnFϕ are compactly supported with
supp DnFϕ ⊂ (supp F )×n. This is easily seen by the
following cutoff function argument: if F is compactly
supported then for every cutoff function χ equal to 1 on
an arbitrary compact neighborhood of suppF , we have:
F (ϕ) = F (χϕ),∀ϕ ∈ E. Then it is immediate by defini-
tion of DnFϕ that

DnFϕ(ψ1, . . . , ψn) =
dnF (χ(ϕ+ t1ψ1 + · · ·+ tnψn))

dt1 . . . dtn
|t=0

= DnFχϕ(χψ1, . . . , χψn)

thus suppDnFϕ ⊂ suppχ×n for all test function χ s.t.
χ|suppF = 1 and therefore supp DnFϕ ⊂ (supp F )×n

since
⋂

χ|suppF=1

suppχ = suppF .

B. A multilinear kernel theorem with parameters.

We work with M a smooth manifold and B → M a
smooth vector bundle of finite rank over M . Let E =
Γ(M,B) be its space of smooth sections and U an open
subset of E. We consider smooth maps F : E 7→ K
where K is the field R or C. In this section we relate the
Bastiani derivatives DkF , which are k-linear on Γ(M,B)
to the distributions used in quantum field theory, which
are linear on Γ(Mk, B�k). Since the k-th derivative DkF
of a smooth map is multilinear and continuous in the last
k variables, we can use the following result [69, p. 471]
and [70, p 259]:

Lemma III.5. Let E be a Hausdorff locally convex
space. There is a canonical isomorphism between any
k-linear map f : Ek → K and the map f : E⊗k → K,
where ⊗ is the algebraic tensor product, which is linear
and defined as follows: if χ =

∑
j χ

j
1⊗· · ·⊗χ

j
k is a finite

sum of tensor products, then

f̄(χ) =
∑
j

f(χj1, . . . , χ
j
k). (7)

Let us give a topological version of this lemma, us-
ing the projective topology. We recall the definition of
a family of seminorms defining the projective topology
on tensor powers of locally convex spaces following [71,
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p. 23]. For arbitrary seminorms p1, . . . , pk on E there
exists a seminorm p1⊗ · · · ⊗ pk on E⊗k defined for every
ψ ∈ E⊗k by

p1 ⊗ · · · ⊗ pk(ψ) = inf
∑
n

p1(e1,n) . . . pk(ek,n),

where the infimum is taken over the representations of
ψ as finite sums: ψ =

∑
n e1,n ⊗ · · · ⊗ ek,n. Following

Köthe [72, p. 178], one can prove that p1⊗· · ·⊗pk is the
largest seminorm on E⊗k such that

p(x1 ⊗ · · · ⊗ xk) = p1(x1) . . . pk(xk), (8)

for all x1, . . . , xk in E. More precisely, if p is a seminorm
on E⊗k satisfying Eq. (8), then p(X) 6 (p1⊗· · ·⊗pk)(X)
for every X ∈ E⊗k.

The projective topology on E⊗k is defined by the fam-
ily of seminorms p1 ⊗ · · · ⊗ pk where each pi runs over
a family of seminorms defining the topology of E [71,
p. 24].

When E is Fréchet, its topology is defined by a count-
able family of seminorms and it follows that the family of
seminorms p1⊗· · ·⊗pk on E⊗k is countable. Hence they
can be used to construct a metric on E⊗k which defines
the same topology as the projective topology and E⊗̂πk

is defined as the completion of E⊗k relative to this metric
or equivalently with respect to the projective topology. A
fundamental property of the projective topology is that
f : Ek → K is (jointly) continuous iff f̄ : E⊗k → K, still
defined by Eq. (7) is continuous with respect to the pro-
jective topology [73, p. I-50]. Then f̄ extends uniquely to
a continuous map (still denoted by f̄) on the completed

tensor product E⊗̂πk [61, p. III.15].

If E = C∞(M), then E⊗̂πk = C∞(Mk) [31, p. 530],
and f̄ becomes a compactly supported distribution on
Mk. More generally, if E = Γ(M,B), then E is Fréchet

nuclear and E⊗̂πk = Γ(Mk, E�k) [74, p. 72]. Thus, f̄
becomes a compactly supported distributional section on

Mk. If f = DkFϕ we denote f̄ by F
(k)
ϕ .

Recall that, if U is an open subset of a Hausdorff locally
convex space E, a map F : U → K is smooth iff every
DkF is continuous from U × Ek to K. According to
the previous discussion, continuity on Ek is equivalent to

continuity on E⊗̂πk. Therefore, it is natural to wonder
when joint continuity on U × Ek is equivalent to joint

continuity on U × E⊗̂πk. This is the subject of the next
paragraphs.

We now prove an equicontinuity lemma.

Lemma III.6. Let E be a Fréchet space, U open in E,
and F : U × Ek 7→ K a continuous map, multilinear in
the last k variables. Then for every ϕ0 ∈ U , there exist

a neighborhood V of ϕ0, a seminorm q of E⊗̂πk and a
constant C > 0 such that

∀ϕ ∈ V,∀ψ ∈ E⊗̂πk, |F (ϕ,ψ)− F (ϕ0, ψ)| 6 C q(ψ).

Proof. By continuity of F : U ×Ek 7→ K, for every ε > 0,
there exist a neighborhood V of ϕ0 and neighborhoods

U1, . . . , Uk of zero such that ϕ ∈ V and ei ∈ Ui for i =
1, . . . , k imply |F (ϕ, e1, . . . , ek)| ≤ ε. Since E is locally
convex, there are continuous seminorms p1, . . . , pk on E
and strictly positive numbers η1, . . . , ηk such that ei ∈ Ui
if pi(ei) ≤ ηi. Consider now arbitrary elements e1, . . . , ek
of E such that pi(ei) 6= 0. Then, if fi = eiηi/pi(ei)
we have pi(fi) ≤ ηi. Thus, |F (ϕ, f1, . . . , fk)| < ε and,
by multilinearity, |F (ϕ, e1, . . . , ek)| < Mp1(e1) . . . pk(ek)
where M = ε/(η1, . . . , ηk). The argument in the proof
of Proposition III.4 shows that |F (ϕ, e1, . . . , ek)| = 0
if pi(ei) = 0. Therefore, for every ϕ ∈ V and every
e1,. . . , ek in E, |F (ϕ, e1, . . . , ek)| ≤ Mp1(e1) . . . pk(ek).
By defining C = 2M we obtain for every ϕ ∈ V and
every (e1, . . . , ek) ∈ Ek

|F (ϕ, e1, . . . , ek)−F (ϕ0, e1, . . . , ek)| 6 Cp1(e1) . . . pk(ek).
(9)

By definition of F , for all (ϕ,ψ) ∈ V × E⊗k:

|F (ϕ,ψ)− F (ϕ0, ψ)| 6
∑
n

|F (ϕ, e1,n, . . . , ek,n)

−F (ϕ0, e1,n, . . . , ek,n)|

6 C
∑
n

p1(e1,n) . . . pk(ek,n),

for all representations of ψ as finite sum ψ =
∑
n e1,n ⊗

· · · ⊗ ek,n. Taking the infimum over such representations
yields the estimate:

∀(ϕ,ψ) ∈ V ×E⊗k, |F (ϕ,ψ)−F (ϕ0, ψ)| 6 Cq(ψ), (10)

for the seminorm q = p1⊗· · ·⊗pk on E⊗πk and the above

inequality extends to any ψ of E⊗̂πk since, in a Fréchet
space, ψ can be approximated by a convergent sequence

of elements in E⊗k by density of E⊗k in E⊗̂πk and by
continuity of the seminorm p1⊗ · · ·⊗ pk for the topology

of E⊗̂πk.

Another way to state the previous result is to say that
the family of linear maps {F (ϕ, ·) ;ϕ ∈ V } is equicontin-
uous [61, p. II.6].

1. Proof of the main result.

We are now ready to prove

Proposition III.7. Let E be a Fréchet space and U ⊂ E
an open subset. Then F : U×Ek 7→ K, multilinear in the
last k variables, is jointly continuous iff the corresponding

map F : U × E⊗̂πk → K is jointly continuous.

Proof. One direction of this theorem is straightforward
and holds if E is any locally convex space. Indeed, by
definition of the projective tensor product, the canonical

multilinear mapping Ek → E⊗̂k is continuous [73, p. I-

50]. Therefore, if F is continuous on U × E⊗̂k then, by
composition with the canonical multilinear mapping, F
is continuous on U × Ek.
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Let us prove that the continuity of F implies the con-
tinuity of F . According to Lemma II.4, we have to show
that, for every ϕ0 ∈ U and every ε > 0, there exist a

finite number of continuous seminorms qi on E⊗̂πk, a
neighborhood V of ϕ0 and ηi > 0 such that, if ϕ be-

longs to V and ψ ∈ E⊗̂πk satisfies qi(ψ − ψ0) 6 ηi, then
|F (ϕ,ψ)− F (ϕ0, ψ0)| 6 ε.

In order to bound F (ϕ,ψ)− F (ϕ0, ψ0), we cut it into
three parts

F (ϕ,ψ)− F (ϕ0, ψ0) = F (ϕ,ψk)− F (ϕ0, ψk)
+ F (ϕ,ψ − ψk)− F (ϕ0, ψ − ψk)
+ F (ϕ0, ψ)− F (ϕ0, ψ0),

(11)
where ψk is some element of the algebraic tensor prod-
uct E⊗k close enough to ψ0 that we choose now. The
equicontinuity Lemma III.6 yields a neighborhood V2 of
ϕ0, a constant C > 0 and a continuous seminorm q2 on

E⊗̂πk so that

∀ϕ ∈ V2,∀ψ ∈ E⊗̂πk, |F (ϕ,ψ)− F (ϕ0, ψ)| 6 Cq2(ψ).

Now we use the fact that the algebraic tensor product

E⊗k is everywhere dense in E⊗̂πk hence there is some
element ψk in the algebraic tensor product E⊗k such that
q2(ψ0 − ψk) 6 η2 with η2 := ε

6C .
Now that ψk is chosen, we can bound the second term

of the sum (11), namely F (ϕ,ψ − ψk) − F (ϕ0, ψ − ψk).
From the previous relation, for every ϕ ∈ V2 and every
ψ such that q2(ψ − ψ0) ≤ η2, the triangle inequality for
q2(ψ − ψk) gives us

|F (ϕ,ψ − ψk)− F (ϕ0, ψ − ψk)| 6 C(q2(ψ − ψ0)

+q2(ψ0 − ψk)) 6
ε

3
.

We continue by bounding the last term F (ϕ0, ψ) −
F (ϕ0, ψ0) in the sum (11). Since ϕ0 is fixed, the map
ψ 7→ F (ϕ0, ψ) is continuous in ψ because, since F (ϕ0, ·)
is continuous on E⊗πk, its extension to the completion

E⊗̂πk, also denoted by F (ϕ0, ·), is continuous. It follows

that there is some seminorm q1 of E⊗̂πk and a number
η1 > 0 such that if ψ ∈ U satisfies q1 (ψ − ψ0) 6 η1 then

|F (ϕ0, ψ)− F (ϕ0, ψ0)| 6 ε

3
.

To bound the first term F (ϕ,ψk) − F (ϕ0, ψk) in the
sum (11), we use the fact that ψk ∈ E⊗k. Thus, ψk =∑p
j=1(e1,j ⊗ · · · ⊗ ek,j) for some (e1,j , . . . , ek,j) ∈ Ek. By

definition of F ,

F (ϕ,ψk)− F (ϕ0, ψk) =

p∑
j=1

F (ϕ, e1,j , . . . , ek,j)

−F (ϕ0, e1,j , . . . , ek,j).

By continuity of F in the first factor, the finite sum∑p
j=1 F (ϕ, e1,j , . . . , ek,j) is continuous in ϕ and there is

some neighborhood V3 of ϕ0 such that for all ϕ ∈ V3 the
following bound

|
p∑
j=1

F (ϕ, e1,j , . . . , ek,j)− F (ϕ0, e1,j , . . . , ek,j)| 6
ε

3
,

holds true.
Finally we found some neighborhood V = V2 ∩ V3 of

ϕ0, two seminorms q1 and q2 of E⊗̂πk, and two numbers
η1 > 0 and η2 = ε/6C such that q1(ψ − ψ0) < η1 and
q2(ψ − ψ0) < η2 imply

|F (ϕ,ψ)− F (ϕ0, ψ0)| 6 ε.

The proposition is proved.

Now we can specialize our result to the space of smooth
sections of vector bundles. We recall a fundamental result
on the projective tensor product of sections [74, p. 72]:

Proposition III.8. Let Γ(M,B) be the space of smooth
sections of some smooth finite rank vector bundle B →M

on a manifold M . Then Γ(M,B)⊗̂πk = Γ(Mk, B�k).

Note that we could remove the index π in ⊗̂π because
we saw that Γ(M,B) is nuclear. If we specialize Proposi-
tion III.7 to sections of vector bundles (which is a Fréchet
space) we obtain

Theorem III.9. Let E = Γ(M,B) be the space of
smooth sections of some smooth finite rank vector bundle
B →M . Then F : U ×Ek → K multilinear in the last k
variables is jointly continuous iff the corresponding map
F : U × Γ(Mk, B�k)→ K is jointly continuous.

Proof. The proof is an immediate consequence of the fact

that E⊗̂πk = Γ(Mk, B�k) and Proposition III.7.

The definition of a Bastiani smooth functional implies
the following corollary:

Theorem III.10. Let E = Γ(M,B) be the space of
smooth sections of some smooth finite rank vector bundle
B → M . A map F : U → K, where U is open in E, is
Bastiani smooth iff the maps F (k) : U×Γ(Mk, B�k)→ K
are (jointly) continuous for every k ≥ 1.

To interpret Theorem III.7 in terms of distributional
kernels, let B → M denote a smooth vector bundle of
finite rank over a manifold M equipped with a fixed
density |dx| and B∗ → M the corresponding dual bun-
dle. Recall that Γ(M,B)′ ' Γ(M,B∗)⊗C∞(M) E ′(M)75,
where Γ(M,B∗) ⊗C∞(M) E ′(M) denotes the compactly
supported distributional sections of the dual bundle B∗.
In global analysis, to every continuous linear map L :
Γ(M,B)→ Γ(M,B)′, we associate the continuous bilin-
ear map B : (ϕ1, ϕ2) ∈ Γ(M,B)2 7→ 〈ϕ1, Lϕ2〉 ∈ K where
the pairing is understood as a pairing between a smooth
function and a distribution once the smooth density on
M is fixed.
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The usual kernel theorem of the theory of distributions
states that a bilinear map can be represented by a dis-
tribution: KL ∈ E ′(M ×M) ⊗C∞(M2) Γ(M2, B∗ � B∗)
living on configuration space M2 such that, for every
(ϕ1, ϕ2) ∈ Γ(M,B)2

〈KL, ϕ1 � ϕ2〉Γ′2,Γ2
= 〈ϕ1, Lϕ2〉Γ(M,B),Γ(M,B)′ ,

where Γ2 = Γ(M2, B � B). Theorem III.7 generalizes
the kernel theorem by using multilinear maps instead of
bilinear ones and by considering that these multilinear
maps depend continuously and non-linearly on a param-
eter ϕ.

C. Order of distributions

If F is a Bastiani smooth map from an open subset U
of E = C∞(M) to K, then, for every ϕ ∈ U , DkFϕ is a
compactly supported distribution. Therefore, the order

of F
(k)
ϕ is finite [27, p. 88]. For some applications, for

example to local functionals, it is important to require

the order of F
(k)
ϕ to be locally bounded :

Proposition III.11. Let E = C∞(M) and F : E →
K be a smooth functional on an open subset U of E.
Then, for every ϕ0 ∈ U and every integer k, there is
a neighborhood V of ϕ0, an integer m and a compact

K ⊂Mk such that, for every ϕ ∈ V , the order of F
(k)
ϕ is

smaller than m and F
(k)
ϕ is supported in K.

Proof. According to Lemma III.6, for every ϕ0 in U , there
is a neighborhood V of ϕ0, a constant C and a seminorm
πn,K of C∞(M) such that

|F (k)
ϕ (ψ)− F (k)

ϕ0
(ψ)| 6 C πn,K(ψ).

This means that the order of F
(k)
ϕ − F (k)

ϕ0 is bounded by

n [27, p. 64], and the order of F
(k)
ϕ is bounded by n

plus the order of F
(k)
ϕ0 . Moreover, if suppψ ∩ K = ∅,

then πn,K(ψ) = 0 and F
(k)
ϕ (ψ) − F

(k)
ϕ0 (ψ) = 0. This

means that the support of F
(k)
ϕ − F (k)

ϕ0 is contained in K

and the support of F
(k)
ϕ (ψ) is contained in the compact

K ∪ suppF
(k)
ϕ0 .

Note also that, in general, the order of the distributions
is not bounded on U :

Lemma III.12. Let g ∈ D(R) and (χn)n∈Z a sequence of
functions such that χn ∈ D([n−1, n+1]) and

∑
n∈Z χn =

1. Then, the functional

F (ϕ) =

∞∑
n=−∞

∫
R
χn(ϕ(x))

d|n|ϕ

dx|n|
(x)g(x)dx,

is Bastiani smooth on C∞(R) but the order of F (k) is not
bounded on C∞(R).

Proof. The functional F is smooth because, for every
ϕ0 ∈ C∞(R), we can define a neighborhood of ϕ0 by
V = {ϕ ;π0,K(ϕ − ϕ0) < ε}, where K is a compact
neighborhood of the support of g. Let N be the small-
est integer strictly greater than π0,K(ϕ0) + ε. Then,
−N < ϕ(x) < N for every ϕ ∈ V and every x ∈ K
and

F (ϕ) =

N+1∑
n=−N−1

∫
χn(ϕ(x))ϕ(|n|)(x)g(x)dx,

is a finite sum of smooth functionals.
However, the order of

F (1)
ϕ (ψ) =

∞∑
n=−∞

∫ (
χn(ϕ(x))ψ(|n|)(x)

+χ′n(ϕ(x))ψ(1)(x)ϕ(|n|)(x)
)
g(x)dx,

is not bounded on C∞(R). Indeed, for any positive
integer n, we can find a smooth function ϕ such that

χn
(
ϕ(x)

)
g(x) 6= 0 for some x ∈ supp g. Since F

(1)
ϕ (ψ)

contains a factor ψ(n)(x) it is at least of order n.

D. Derivatives as smooth functionals

In the next section we equip several spaces of function-
als with a topology. As a warm-up exercise, we show here
that the maps F (k) are smooth functionals from C∞(M)
to E ′(Mk).

We adapt to the case of functionals the general re-
sult given in item 4 of Prop. II.13 stating that, if F
is a smooth functional on U , then DkF is a Bastiani
smooth map from U to L(Ek,K). We need to identify
the topology of L(Ek,K) used by Bastiani. Let us start
with L(E,K). Bastiani furnishes E with the topology of
convergence on all compact sets of E. In other words,
the seminorms that define the topology of L(E,K) are
pC(u) = supf∈C |〈u, f〉|, where C runs over the compact
subsets of C∞(M). Since C∞(M) is a Montel space [30,
p. 239], the topology of uniform convergence on compact
sets is the same as the strong topology [30, p. 235]. This
means that L(E,R) is the space E ′(M) of compactly sup-
ported distributions with its usual topology. Similarly,
L(Ek,R) can be identified to a subset of E ′(Mk) with its
usual topology. We just obtained the following result:

Proposition III.13. Let U be an open subset of C∞(M)
and F : U → K a Bastiani smooth functional. Then, for
every integer k, the map F (k) : U → E ′(Mk) is smooth
in the sense of Bastiani.

IV. TOPOLOGIES ON SPACES OF FUNCTIONALS

We need to define a topology on the various spaces of
functionals used in quantum field theory. The generally
idea is to define seminorms on F and its derivatives F (k).
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The topology proposed by Brunetti, Dütsch and Freden-

hagen17 is the initial topology of all the maps F → F
(k)
ϕ ,

where each F
(k)
ϕ belongs to a nuclear space determined by

a wavefront set condition. This topology is nuclear, but
the absence of a control of the dependence on ϕ makes
it generally not complete. We then describe Bastiani’s
topology, which is complete but has two drawbacks: it
does not take wavefront set conditions into account and
it is generally not nuclear. Finally we shall describe the
family of topologies proposed by Dabrowski21 which are
both nuclear and complete.

A. Bastiani’s topology

Bastiani defines several topologies on the space of Bas-
tiani smooth maps between two locally convex spaces [41,
p. 65]. For the case of functionals, we consider the topol-
ogy defined by the following seminorms:

pC0
(F ) = sup

ϕ∈C0

|F (ϕ)|,

pC0,C(F ) = sup
(ϕ,h1,...,hk)∈C0×C

|DkFϕ(h1, . . . , hk)|,

where C = C1 × · · · × Ck and Ci runs over the compact
sets of Γ(M,B). By using Bastiani’s results [41, pp. 66]
we obtain

Proposition IV.1. Let B
π→ M be a finite rank vector

bundle over the manifold M and Γ(M,B) be the space of
smooth sections of B. Then, with the seminorms defined
above, the space of smooth functionals on Γ(M,B) is a
complete locally convex space.

A similar topology was used by Glöckner [76, p. 367]
and Wockel [77, p. 29] and [78, p. 12].

B. Nuclear and complete topologies

Quantum field theory uses different spaces of function-

als defined by conditions on the wave front set of F
(k)
ϕ .

Recall that the wave front set describes the points and
the directions of singularity of a distribution79. Yoann
Dabrowski21 recently described nuclear and complete
topologies for spaces of functionals with wave front set
conditions. We present some of his topologies for several
common spaces of functionals.

Dabrowski’s definition differs from Bastiani in two re-
spects. To describe the first difference, recall that, ac-
cording to Proposition III.13, if F : U → R is a smooth
functional, then the derivatives F (k) : U → E ′(Mk) are
smooth functionals. To add the wave front set condi-
tions, Dabrowski requires F (k) to be smooth from U to
E ′Γk(Mk), which is the space of compactly supported dis-
tributions whose wave front sets are included in Γk, a
cone in T ∗Mk. In fact, Dabrowski supplements this def-
inition with a more refined wave front set (the dual wave

front set) which enables him to equip E ′Γk(Mk) with a
Montel, complete, ultrabornological and nuclear topol-
ogy. He also considers support conditions which are dif-
ferent from compact.

To describe the second difference, recall that Bastiani’s
topology gives a locally convex space which is complete.
However it is generally not nuclear. This is due to a
theorem by Colombeau and Meise80 which says, broadly
speaking, that a function space over a Fréchet space
cannot be nuclear for the topology of convergence over
some balanced, convex, compact sets of infinite dimen-
sion. To avoid that problem, the variable ϕ is made to
run over finite dimensional compact sets. More precisely,
Dabrowski considers compact sets in Rm for any finite
value of m and smooth maps f from Rm to an open sub-
set of C∞(M). He defines two families of seminorms:

pf,K(F ) = sup
ϕ∈f(K)

|F (ϕ)|, (12)

pn,f,K,C(F ) = sup
ϕ∈f(K)

sup
v∈C
|〈F (n)

ϕ , v〉|, (13)

where K is a compact subset of Rm for some m and C is
an equicontinuous subset of the dual of the space of dis-

tributions to which F
(n)
ϕ belong. Dabrowski proved that,

with this family of seminorms, the space of functionals F
is a complete locally convex nuclear space22.

We describe now several types of functionals that have
been used in the literature and we specify more precisely
their topologies.

C. The regular functionals

A polynomial functional of the form

F (ϕ) =
∑
n

∫
Mn

dx1 . . . dxnfn(x1, . . . , xn)ϕ(x1) . . . ϕ(xn),

where the sum over n is finite and fn ∈ D(Mn), is
called a regular functional81, because all its derivatives

are smooth functions82, i. e. the wave front set of F
(k)
ϕ

is empty. More generally, we define the space Freg(M)
of regular functionals to be the set of Bastiani smooth
functionals F such that WF(F (n)) = ∅ for every n > 0.
Thus, F (n) ∈ E ′∅(M

n) = D(Mn) and the sets C in Equa-
tion (13) are the equicontinuous sets of D′(Mn). By a
general theorem [30, p. 200], the topology of uniform con-
vergence on the equicontinuous sets of D′(Mn) is equiv-
alent to the topology given by the seminorms of its dual
D(Mn). In other words, the topology of Freg(M) is de-
fined by the seminorms22:

pf,K(F ) = sup
ϕ∈f(K)

|F (ϕ)|, (14)

pn,f,K,α(F ) = sup
ϕ∈f(K)

pα,n
(
F (n)
ϕ

)
, (15)

where pα,n runs over a defining family of seminorms of
D(Mn)83. With this topology, Freg(M) is nuclear and
complete.
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Note that the tensor product of elements of
D(Mm) with elements of D(Mn) is not continuous in
D(Mm+n)84. Thus, the product in Freg(M) is hypocon-
tinuous but not continuous.

D. The microcausal functionals

It is possible to describe quantum field theory (up to
renormalization) as the deformation quantization of clas-
sical field theory26. For the deformation quantization of
the product FG of two functionals to first order in ~, we
need to evaluate 〈DFϕ⊗DGϕ,∆+〉, where ∆+ is a singu-
lar distribution (the Wightman propagator) and 〈·, ·〉 is
an extension of the duality pairing between distributions
and test functions85. For this pairing to be meaningful
to all orders in ~, the wave front set of ∆+ imposes that

the wave front set of D
(k)
ϕ must not meet the cone Γk

defined as follows26.

Let M be a Lorentzian manifold with pseudo-metric
g. Let V +

x (resp. V −x ) be the set of (x; ξ) ∈ T ∗xM such
that gµν(x)ξµξν ≥ 0 and ξ0 ≥ 0 (resp. ξ0 ≤ 0), where we
assume that g00 > 0. We define the closed cone

Γk = {(x1, . . . , xk; ξ1, . . . , ξk) ∈ Ṫ ∗Mn ; (ξ1, . . . , ξn) ∈
(V +
x1
× · · · × V +

xn) ∪ (V −x1
× · · · × V −xn)},

where Ṫ ∗Mn is the cotangent bundle T ∗Mn without its
zero section. The space Fmc of microcausal functionals
was originally defined as the set of Bastiani smooth func-

tionals such that F
(n)
ϕ ∈ E ′Ξn(Mn) for every ϕ, where

Ξn = Ṫ ∗Mn\Γn is an open cone16,17,20,26,81,86,87.

However, the space E ′Ξn(Mn) being not even sequen-

tially complete85, it is not suitable to define a complete
space of functionals. Therefore, Dabrowski defines the
space Fmc of microcausal functionals to be the set of Bas-

tiani smooth functionals such that F
(n)
ϕ ∈ E ′

Ξn,Ξn
(Mn),

which is the completion of E ′Ξn(Mn). Dabrowski proved
that E ′

Ξn,Ξn
(Mn) is the set of compactly supported dis-

tributions u ∈ E ′(Mn) such that the dual wavefront set
of u is in Ξn and the wavefront set of u is in its closure
Ξn (see21 for a precise definition of these concepts and
of the topology). This completion is not only complete,
but even Montel and nuclear21. According to the general
results of Ref. 21, the sets C are now equicontinuous sets
of the bornologification of the normal topology of D′Γn .

However, it was shown21 that these equicontinuous sets
are the same as the bounded sets of D′Γn with its nor-
mal topology. Therefore, the sets C are the well-known
bounded sets of D′Γn

85.

With this topology, the space Fmc is a complete nuclear
algebra with hypocontinuous product.

E. Local functionals

As discussed in the introduction, local functionals are
the basic building block (Lagrangian) of quantum field
theory. We shall see that local functionals are a closed

subset of the set of smooth functionals such that F
(1)
ϕ

can be identified with an element of D(M) that we de-

note by ∇Fϕ and the wave front set of F
(k)
ϕ is included

in the conormal Ck of Dk = {(x1, . . . , xk) ∈ Mk ;x1 =
· · · = xk}. Recall that the conormal of Dk is the set of
(x1, . . . , xk; ξ1, . . . , ξk) ∈ T ∗Mk such that x1 = · · · = xk
and ξ1 + · · ·+ ξk = 0.

Since the additivity property (defined in Section V C)
of local functionals complicates the matter, we follow
Dabrowski21 and, for any open set Ω ⊂M , we first define
FC(Ω) to be the set of smooth maps such that ϕ 7→ ∇Fϕ
is Bastiani smooth from C∞(Ω) to D(M) and, for ev-

ery integer k, ϕ 7→ F
(k)
ϕ is Bastiani smooth from C∞(Ω)

to E ′Ck(Mk) (we do not need to index E ′(Mk) with two

cones because Ck is closed21). The set Floc(Ω) of local
functionals is then the subset of FC(Ω) satisfying the ad-
divity condition.

The topology of FC is induced by the family of
seminorms given by Eq. (15) that depend on the
equicontinuous sets of the dual D′

Λk,Λk
(Mk) of D′Ck(Mk),

where Λk = Ṫ ∗Mk\Ck. They were determined by
Dabrowski [21, Lemma 28]:

Proposition IV.2. A subset B of D′Λk(Mk) is equicon-
tinuous if and only if there is a closed cone Γ ⊂ Λk such
that WF(u) ⊂ Γ for every u ∈ B and B is bounded in
D′Γ(Mk).

The bounded sets of D′Γ(Mk) are characterized in de-
tail in Ref. 85. The topology of D′Λk(Mk), where Λk is
open, can be described as a non-countable inductive limit
as follows. Write the complement Λck = ∪Γn, where each
Γn is a compactly supported closed set. We write the
open set Γcn as a countable union of closed sets Γcn =
∪mΛn,m, so that Γn = ∩mΛcn,m and Λck = ∪n ∩m Λcn,m is
a countable union of countable intersections of open sets.
We obtain Λk = ∩n∪mΛn,m. We define for a sequence α
the closed set Πα = ∩nΛn,α(n), such that α ≤ β implies
Πα ⊂ Πβ . Then Λ = ∪αΠα is a non-countable induc-
tive limit of closed cones from which we can define the
topology of D′Λk(Mk) as a non-countable inductive limit

of D′Πα(Mk).

The space FC furnished with the topology induced by
the seminorms defined by Eqs. (12) and (13) is complete
and nuclear. The space Floc of local functionals is the
closed subset of FC defined by the additivity condition
defined in the next section. As a closed subspace of a
nuclear complete space, the space of local functionals is
nuclear and complete.

Further examples of spaces of functionals are given by
Dabrowski22.
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V. ADDITIVITY

The characterization of local functionals is a long-
standing mathematical problem. According to Rao88,
the first criterium was proposed by Pinsker in 1938 and
called partial additivity89. This criterium is also used in
physics, but we shall see that it is not what we need by
exhibiting a partially additive functional which is not lo-
cal. Then, we shall discuss a more stringent criterium
which is exactly what we need.

A. Partial additivity

When looking for an equation to characterize function-
als having the form of Eq. (1), one can make the follow-
ing observation. Let ϕ1 and ϕ2 be two smooth func-
tions with disjoint support K1 and K2 and assume that
f(x, ϕ(x), . . . ) = 0 if ϕ = 0 on a neighborhood of x89,
so that F (0) = 0. Then, since the support of ϕ1 + ϕ2 is
included in K1 ∪K2,

F (ϕ1 + ϕ2) =

∫
K1

dxf(x, ϕ1(x) + ϕ2(x), . . . )

+

∫
K2

dxf(x, ϕ1(x) + ϕ2(x), . . . )

=

∫
K1

dxf(x, ϕ1(x), . . . )

+

∫
K2

dxf(x, ϕ2(x), . . . ) = F (ϕ1) + F (ϕ2).

Therefore, it is tempting to use the condition of locality:

F (ϕ1 + ϕ2) = F (ϕ1) + F (ϕ2), (16)

for ϕ1 and ϕ2 with disjoint support and functionals F
such that F (0) = 0. And indeed, many authors since
1938, including Gelfand and Vilenkin [90, p. 275], used
condition (16), but with disjoint support replaced by
ϕ1ϕ2 = 0 and smooth functions by measurable functions
(see88 for a review). In perturbative quantum field the-
ory, partial additivity in our sense is also used when the
function f in Eq. (1) is polynomial17,91,92 because, in
that case, partial additivity is equivalent to locality in
the sense of Eq. (1)17.

However, this definition of locality does not suit our
purpose, essentially because the set of functions ϕ that
can be written as ϕ = ϕ1+ϕ2 (with suppϕ∩suppϕ2 = ∅)
is not dense in the space of smooth functions. We show
this now and we construct a partially additive functional
which is not local.

B. A non-local partially additive functional

We work in the space C∞(S1) of smooth functions on
the unit circle. We denote by I the subset of functions
f = ϕ1 + ϕ2 which are sums of two elements of C∞(S1)

whose supports are disjoint. It is not a vector subspace
of C∞(S1).

The idea of the construction is the following. In the
metric space C∞(S1), we will show that the subset I is
bounded away from the constant function f = 1. This
means that the functional equation (16) only concerns
the restriction F |I to a subset which is bounded away
from 1. Therefore there is some open neighborhood of
f = 1 which does not meet I. Then we use Sobolev
norms to build some cut–off function χ to glue a local
functional near I with a nonlocal functional near f = 1.

Lemma V.1. The constant function f = 1 is bounded
away from I in C∞(S1): if f ∈ I, then ||f − 1||C0 =
supx∈S1 |f(x)− 1| ≥ 1.

Proof. Let us denote by ‖.‖C0 the norm ‖f‖C0 =
supx∈S1 |f(x)|. It is a continuous norm for the Fréchet
topology of C∞(S1) because ||f ||C0 = π0,S1(f). Then,
if suppϕ1 ∩ suppϕ2 = ∅ we have ‖ϕ1 + ϕ2 − 1‖C0 > 1.
Indeed, the supports of ϕ1 and ϕ2 being compact, the
fact that they do not meet implies that they are at a
finite distance. Thus, there is a point x ∈ S1 such that
ϕ1(x) = ϕ2(x) = 0. Hence, |ϕ1(x) + ϕ2(x) − 1| = 1 and
supx∈S1 |ϕ1(x) + ϕ2(x)− 1| ≥ 1.

The second step is to build a smooth function χ such
that χ(1) = 1 and χ|I = 0.

Lemma V.2. There is a smooth function χ : C∞(S1)→
R such that χ = 1 on a neighborhood of f = 1 and χ(f) =
0 if ||f − 1||C0 ≥ 1. In particular, χ|I = 0.

Proof. First recall that the Sobolev norm H2k on S1 is
defined as

‖f‖H2k =

√∫
S1

((1−∆)kf(x))
2
dx

= 2π

(∑
n∈Z

(1 + n2)2k|f̂(n)|2
) 1

2

, (17)

where the last representation uses the Fourier series

f(x) =
∑
n f̂(n)einx. By the Sobolev injections, H2(S1)

injects continuously in C0(S1). In other words, there is
a constant C > 0 such that ‖f‖C0 6 C‖f‖H2 for every
f ∈ C∞(S1).

Now we take a function g ∈ C∞(R) such that g(t) = 1
when t ≤ 1/3C2 and g(t) = 0 when t ≥ 1/2C2 and we
define χ : C∞(S1) → R by composing g with the square
of the Sobolev norm.

χ(f) = g
(
||1− f ||2H2

)
.

If ‖1− f‖C0 > 1 (in particular, if f ∈ I by Lemma V.1)
the Sobolev injection leads to:

1 6 ‖1− f‖C0 6 C‖1− f‖H2 =⇒ ‖1− f‖2H2 >
1

C2

hence g
(
‖1− f‖2H2

)
= 0 by definition of g.
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On the other hand ‖1−f‖H2) 6
1√
3C

means that f be-

longs to the neighborhood of the constant function f = 1
defined by V = {f ; ‖1−f‖H2 6 1/

√
3C}. On this neigh-

borhood, g
(
‖1− f‖2H2

)
= 1. The smoothness of χ is an

immediate consequence of the chain rule, the smoothness
of g and of the squared Sobolev norm ‖.‖2H2(S1).

We are now ready to define our counterexample:

Theorem V.3. The functional Fnl on C∞(S1) defined
for any integer N > 1 by

Fnl(f) =
(
1− χ(f)

) ∫
S1
f(x)dx+ χ(f)

(∫
S1
f(x)dx

)N
,

(18)
is partially additive but not local.

Proof. For every (ϕ1, ϕ2) ∈ C∞(S1)2 whose supports are
disjoint, f = ϕ1 + ϕ2 ∈ I hence χ(f) = 0 by Lemma
V.2. Moreover, we saw that, if suppϕ1 ∩ suppϕ2 = ∅,
then there is a point x ∈ S1 such that ϕ1(x) = ϕ2(x) =
0. Thus, ||1 − ϕ1||C0 ≥ 1 and ||1 − ϕ2||C0 ≥ 1. As
a consequence, χ(ϕ1) = χ(ϕ2) = 0 by Lemma V.2 and
Fnl(ϕ1+ϕ2) =

∫
S1(ϕ1(x)+ϕ2(x))dx = Fnl(ϕ1)+Fnl(ϕ2).

On the other hand, in the neighborhood V of f =
1 given by Lemma V.2, χ(f) = 1 hence Fnl(f) =(∫

S1 f(x)dx
)N

which is not local. It is even a typical

example of a multilocal functional16.

Since partial additivity is equivalent to locality for
polynomial functions, the non-locality of Fnl can be con-
sidered to be non perturbative. Moreover, the fact that
the derivatives DnFnl calculated at f = 0 are supported
in the thin diagonal of (S1)n, although Fnl is not local,
means that locality cannot be controlled by the support
of differentials taken at a single function f . We come now
to the property that is relevant for quantum field theory.

C. Additive functionals

In 1965, Chacon and Friedman93 introduced a more
stringent concept of additivity which meets our needs:

Definition V.4. We say that a Bastiani smooth map
F : C∞(M) → K is additive if, for every triple
(ϕ1, ϕ2, ϕ2) of smooth functions on M , the property
supp ϕ1 ∩ supp ϕ3 = ∅ implies the property

F (ϕ1 + ϕ2 + ϕ3) = F (ϕ1 + ϕ2) + F (ϕ2 + ϕ3)− F (ϕ2).

(19)

In the literature, the additivity equation (19) is also
called the Hammerstein property94–99. The additivity
property is equivalent to the fact that the functional
derivatives are supported on the thin diagonal Dn =
{(x1, . . . , xn) ∈Mn ;x1 = · · · = xn}17,92.

Proposition V.5. A smooth functional F on C∞(M)

is additive iff supp F
(2)
ϕ ⊂ D2 for every ϕ ∈ C∞(M),

where D2 = {(x, y) ∈ M2 ;x = y}. If F is an additive

functional, then supp F
(n)
ϕ ⊂ Dn for every ϕ ∈ C∞(M),

where Dn = {(x1, . . . , xn) ∈Mn ;x1 = · · · = xn}.

Proof. We first prove that the second derivative of an
additive functional is localized on the diagonal17. If we
use the additivity property with ϕ1 = λψ, ϕ3 = µχ and
supp ψ ∩ supp χ = ∅, then

F (λψ + ϕ2 + µχ) = F (λψ + ϕ2) + F (ϕ2 + µχ)− F (ϕ2).

Since no term on the right hand side of this equation
depends on both λ and µ, we have

∂2F (λψ + ϕ2 + µχ)

∂λ∂µ
= D2Fλψ+ϕ2+µχ(ψ, χ)

= F
(2)
λψ+ϕ2+µχ(ψ ⊗ χ) = 0.

This equation, being true for every ϕ2, can be written

F
(2)
ϕ (ψ ⊗ χ) = 0 for every ϕ and every pair (ψ, χ) with

disjoint supports. Now for every point (x, y) ∈ M2 such
that x 6= y, there are two open sets Ux containing x and
Uy containing y such that Ux ∩ Uy = ∅. Then, any pair
of functions ψ and χ supported in Ux and Uy satisfies

F
(2)
ϕ (ψ ⊗ χ) = 0. Since the functions ψ ⊗ χ are dense in
D(M2), this implies that every test functions f ∈ D(M2)

supported in Ux×Uy satisfies F
(2)
ϕ (f) = 0. Thus (x, y) /∈

supp F
(2)
ϕ and suppF

(2)
ϕ ⊂ D2. To determine the support

of F
(n)
ϕ , consider a point (x1, . . . , xn) which is not in Dn.

Then, there are two indices i and j such that xi 6= xj .
Denote by Ux an open neighborhood of xi and by Uy an
open neighborhood of xj and repeat the previous proof

to obtain F
(2)
ϕ (ψ ⊗ χ) = 0 for every ϕ and every pair

(ψ, χ) with supports in Ux and Uy. Now, rewrite ϕ =
ϕ0 +

∑
λkψk, where ψk(xk) 6= 0 and the sum is over all

integers from 1 to n except i and j. Then, the derivatives
with respect to λk are all zero and we find again with the
same argument that (x1, . . . , xn) is not in the support of

F
(n)
ϕ for every ϕ.

Conversely20,92, assume that supp F
(2)
ϕ ⊂ D2 for ev-

ery ϕ. As we have seen in the first part of the proof,
this means that, if ψ and χ have disjoint support, then

D2Fϕ(ψ, χ) = F
(2)
ϕ (ψ ⊗ χ) = 0. By the fundamental

theorem of calculus,

F (ϕ+ ψ + χ) = F (ϕ+ ψ) +

∫ 1

0

dµ
d

dµ
F (ϕ+ ψ + µχ),

F (ϕ+ ψ + µχ) = F (ϕ+ µχ) +

∫ 1

0

dλ
d

dλ
F (ϕ+ λψ + µχ).

Thus,

F (ϕ+ ψ + χ) = F (ϕ+ ψ) +

∫ 1

0

dµ
d

dµ
F (ϕ+ µχ)

+

∫ 1

0

dλ

∫ 1

0

dµ
∂2

∂λ∂µ
F (ϕ+ λψ + µχ).
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The last term is zero because D2Fϕ(ψ, χ) = 0 and the
second term is F (ϕ+χ)−F (ϕ). We recover the additivity
condition.

Finally, additivity is stronger than partial additivity
because the latter corresponds to the case ϕ2 = 0 and
F (0) = 0. It is strictly stronger because Fnl is not addi-
tive.

VI. CHARACTERIZATION OF SMOOTH LOCAL
FUNCTIONALS

In this section, we give a characterization of local
functionals inspired by the topology described in Sec-
tion IV E. In the sequel, we shall deal with compactly
supported distributions u with empty wavefront sets. We
repeat the definition of local functionals in terms of jets:

Definition VI.1. Let U be an open subset of C∞(M). A
Bastiani smooth functional F : U → K is said to be local
if, for every ϕ ∈ U , there is a neighborhood V of ϕ, an
integer k, an open subset V ⊂ JkM and a smooth func-
tion f ∈ C∞(V) such that x ∈M 7→ f(jkxψ) is supported
in a compact subset K ⊂M and

F (ϕ+ ψ) = F (ϕ) +

∫
M

f(jkxψ)dx,

whenever ϕ+ ψ ∈ V and where jkxψ denotes the k-jet of
ψ at x.

We invite the reader not familiarized with jet bundles
to have a look at Section VI A, where these objects are
carefully defined. Note that the representation of F by
f is not unique: adding the total derivative of a function
does not change the result. We shall see that f belongs to
a unique cohomology class for some specific cohomology
theory on the space of local functionals.

Before we state the main Theorem of this section, let
us start by some useful definition-lemma :

Lemma VI.2. Let U be an open subset of C∞(M) and
F : U → K be Bastiani smooth. For every ϕ such that
the distribution DFϕ ∈ E ′(M) has empty wave front set,
there exists a unique function ∇Fϕ ∈ D(M) such that

DFϕ[h] =

∫
M

∇Fϕ(x)h(x)dx. (20)

Proof. Once a density dx is fixed on M , functions in
L1
loc(M) (in particular in C∞(M)) can be identified with

distributions by the map :

f ∈ L1
loc(M) 7→

(
φ 7→

∫
M

fφdx

)
and [32, Theorem 1.2.4] shows that the distribution is
uniquely defined when f is continuous hence when f is
smooth.

Since WF (DFϕ) = ∅, there exists a unique C∞ func-
tion∇Fϕ which represents the distributionDFϕ ∈ E ′(M)
by integration on M against dx.

The main theorem of this section is

Theorem VI.3. Let U be an open subset of C∞(M) and
F : U → K be Bastiani smooth. Then, F is local if and
only if the following two conditions are satisfied:

1. F is additive,

2. for every ϕ ∈ U , the differential DFϕ = F
(1)
ϕ of

F at ϕ has an empty wave front set and the map
ϕ 7→ ∇Fϕ is Bastiani smooth from U to D(M).

Note that our definition of locality is strictly more gen-
eral than the usual one because the counterexample de-
scribed in Lemma III.12 is local in our sense but not in
the sense of Eq. (1) since its order is infinite.

The proof is delayed to Section VI C. Since this the-
orem deals with jets, we start with a short presentation
of the jet bundle. Our point of view on jets is based
on the concept of infinitesimal neighborhoods due to
Grothendieck and is closely related to several expositions
in the literature100–102.

A. The manifold of jets of functions on a manifold

Let M be a manifold. For every smooth real-valued
function ϕ on M , we call k-jet of ϕ at a point x ∈ M
the class jkx(ϕ) of ϕ in the quotient C∞(M)/Ik+1

x , with
the understanding that Ik+1

x stands for the (k + 1)-th
power of the ideal Ix of smooth functions on M vanishing
at x ∈ M . Recall that Ik+1

x coincides with the ideal
of smooth functions on M whose k + 1 first derivatives
vanish at the point x.

For all x ∈ M , the space Jkx (M) of all k-jets of func-
tions onM at x coincides with C∞(M)/Ik+1

x and is called
the space of k-jets at x. It is clearly a vector space. The
disjoint union Jk(M) :=

∐
x∈M Jkx (M) is a smooth vec-

tor bundle over M called the bundle of k-th jets. Con-
sider the map:

J∆ : C∞(M ×M) → Γ(Jk(M))
ψ 7→ x 7→ jkx(i∗xψ),

where ix : M → M ×M is the map y 7→ (x, y). It is
known that J∆ is surjective onto the space of smooth
sections of Jk(M) and its kernel is the (k + 1)-th power
of the ideal I∆ of functions on M ×M vanishing on the
diagonal.

Last, the projection p1 : M ×M → M onto the first
component dualizes in an algebra morphism ϕ 7→ p∗1ϕ
from C∞(M) to C∞(M×M) which endows C∞(M×M)
with a C∞(M)-module structure. The space of sections
of Jk(M) is also a C∞(M)-module, and it is routine to
check that J∆ is a morphism of C∞(M)-modules. There-
fore, the space of sections of Jk(M) is, as a C∞(M)-

module, isomorphic to the quotient C∞(M ×M)/Ik+1
∆

and Γ(Jk(M)) fits into the following exact sequence of
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C∞(M)-modules:

0→ Ik+1
∆ → C∞(M ×M)→ Γ(Jk(M)) '
C∞(M ×M)/Ik+1

∆ → 0.

And the map that to f associates its k-jet reads:

f ∈ C∞(M) 7→ [(p∗1f)] ∈ C∞(M ×M)/Ik+1
∆ .

The purpose of the rest of this section is to prove the
technical Proposition VI.4, the statement of which we
now explain. For all integer k ∈ N, there is a natu-
ral vector bundle morphism jk from the trivial bundle
over M with typical fiber E = C∞(M) to the bundle
Jk(M) → M of k-jets. This morphism simply consists
in assigning to a pair (f, x) in E ×M → M the k-jet of
f at x. In equation:

jk : E ×M 7→ jk(M)
(f, x) → jkx(f).

(21)

The result goes as follows.

Proposition VI.4. Let E = C∞(M) and V ⊂ E be an
open subset and k ∈ N an integer.

1. The subset jk(V ×M) is an open subset of jk(M).

2. Let c be a smooth K-valued function on V ×M , with
V ⊂ E an open subset. Assume that c(f, x) depends
only on the k-jet of the function f at the point x.
Then there exists a unique smooth K-valued func-
tion c̃ on the open subset jk(V ×M) ⊂ jk(M) that
makes the following diagram commutative:

V ×M

jk

��

c // K.

jk(V ×M)

c̃

:: (22)

i.e, such that the relation c(f, x) = c̃(jkx(f)) holds
for all f ∈ V and x ∈M .

When V = E, Proposition VI.4 specializes to the fol-
lowing easier statement:

Corollary VI.5. Let c be a smooth function from E×M
to K. Assume that there exists an integer k such that
c(f, x) depends only on the k-jet of the function f at
the point x. Then there exists a unique smooth K-valued
function c̃ on jk(M) such that the following diagram com-
mutes:

E ×M

jk

��

c // K.

jk(M)

c̃

;; (23)

i.e. such that the relation c(f, x) = c̃(jkx(f)) holds for all
f ∈ V and x ∈M .

Before establishing these results, we shall need several
lemmas.

Lemma VI.6. The vector bundle morphism jk described
in (21) is surjective and admits a smooth section sk.

Proof. The section sk, when it exists, being by construc-
tion a right inverse of jk, the latter is surjective. It suffices
therefore to prove the existence of sk.

We first prove that the lemma holds true for M an
open subset V of Rn. In that case, the bundle of k-jets
jkx(V ) is isomorphic to the trivial bundle over V with
typical fiber the space of polynomials of degree less or
equal to k. There is an obvious candidate for the section
of jk: it consists in mapping αx ∈ jkx(V ) to the unique
polynomial of degree k whose k-jet at x ∈ V is α. The
henceforth obtained assignment, that we denote by skV ,
is a smooth vector bundle morphism from jk(V )→ V to
the trivial bundle C∞(V )×V → V . It is by construction
a section of jk.

We now go back to the general case of an arbitrary
manifold M . For every point x ∈M , choose Vx a coordi-
nate neighbourhood and let χ be a smooth function with
compact support on Vx which is identically equal to 1 in
a neighbourhood V ′x ⊂ Vx of x. Since Vx is a coordinate
neighbourhood, it can be identified with an open subset
of Rn, which allows to consider

skVx : jk(Vx) 7→ C∞(Vx)× Vx

as in the previous paragraph. We can then consider the
composition of vector bundle morphisms over Vx:

jk(M)|Vx ' jk(Vx)
skVx // C∞(Vx)× Vx

mχ×id // E × Vx

where jk(M)
∣∣
Vx
' jk(Vx) is the obvious identification of

the k-jet bundle of Vx to the restriction to Vx of the k-jet
bundle on M , and where mχ is the smooth linear map
from C∞(Vx) to E = C∞(M) defined by mχ(f) = fχ.
Since χ = 1 identically equal to 1 on V ′x, the restriction
to V ′x of this vector bundle morphism is by construction
a section of the restriction of jk to V ′x.

Since the manifold M is paracompact103, the latter
point implies that the manifold M can be covered by
open subsets (Ui)i∈I such that the restriction of jk to
Ui admits a section ski . Without any loss of generality,
we can assume the existence of a smooth partition of
unity (χi)i∈I relative to this open cover. A global smooth
section of jk is then given by the explicit formula sk =∑
i∈I χi s

k
i , as follows from the obvious computation:

jk ◦ sk =
∑
i∈I

χi j
k ◦ ski =

∑
i∈I

χi idjk(M) = idjk(M)

where we used the fact that jk commutes with multipli-
cations by χi since jk : E×M 7→ JkM is a vector bundle
morphism. This completes the proof.
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Since c : V ×M → K is only defined on the open subset
V ×M of E ×M , we need the following refinement of
Lemma VI.6 where the local sections tkx of jk are valued
in V ×M :

Lemma VI.7. For every (f, x) ∈ E × M , the vector
bundle morphism jk described in (21) admits a smooth
section tk through104 (f, x).

Proof. Notice that Lemma VI.7 can be derived from
Lemma VI.6 for any vector bundle morphism over the
identity of M . A careful check shows that the arguments
below are absolutely general and indeed show that for
any two vector bundles E1, E2 over M , any vector bun-
dle morphism E1 7→ E2 over M that admits a section is
a submersion, and admits a section through every point
of E1.

We prefer to do it, however, in our particular setting
– since one of the bundles is infinite dimensional and
requires careful attention.

Let sk be a section of jk as in Lemma VI.6. Consider
the smooth map defined at all point y ∈M by

tky : jky (M) → (E ×M)y ' E,
β 7→ sky(β) + (f − sky ◦ jky (f))

This map is smooth by construction. It is again a section
jk, as follows from the following computation, valid for
all y ∈M,β ∈ jky (M):

jky ◦ tky(β) = jky
(
sky(β) + (f − sky ◦ jky (f))

)
= jky ◦ sky(β) + jky(f)− jky ◦ sky ◦ jky (f)

= β + jky(f)− jky(f) = β.

Then the section tk above satisfies by construction:

tkx ◦ jkx(f) = skx ◦ jkx(f) + f − skx ◦ jkx(f) = f.

This completes the proof.

Lemma VI.7 has the following immediate consequence.

Lemma VI.8. The vector bundle morphism jk described
in (21) is a submersion.

Proof. For every (f, x) in E ×M , let us choose tk to be
a section through (f, x) as in Lemma VI.7. By construc-
tion, the differential of jk at (f, x) admits the differential
of tk at jk(f, x) as right inverse, so it is surjective.

We can now prove Proposition VI.4.

Proof. Since the vector bundle morphism jk described in
(21) is a submersion by Lemma VI.8 and since V ×M is
open in E ×M , the subset jk(V ×M) is an open subset
of jk(M). This proves the first item in Proposition VI.4.

Let us now prove the second item. Assume that we
are given a function c : V ×M 7→ K such that the value
c(f, x) at an arbitrary f ∈ E and x ∈ M depends only
the k-jet of f at x. The existence of an unique function
c̃ from jk(M) to K making the diagram (22) commute is

simply a set-theoretic property: the difficulty is to show
that this function c̃ is smooth.

When V = E (i.e. under the assumptions of Corollary
VI.5), the smoothness of c̃ follows directly from Lemma
VI.6, which implies that the commutative diagram (23)
can be completed to

E ×M

jk





c // K.

jk(M)

sk

II
c̃

;;

which amounts to say that the following relation holds

c̃ = c ◦ sk. (24)

The latter formula and the smoothness of sk implies that,
when c is assumed to be a smooth function, so is the
function c̃ by composition. This proves Corollary VI.5.

For the general case, we have to choose, for all α ∈
jk(V ×M) a section tk of jk such that tk(α) ∈ V ×M .
Such a section tk always exists by Lemma VI.7. Since
tk is smooth, there exists a neighbourhood Wα of α in
jk(V × M) on which tk takes values in the domain of
definition V×M of c, which implies that the commutative
diagram (22) can be completed to

(V ×M) ∩ (jk)−1(Wα)

jk

		

c // K.

Wα

tk

II
c̃

66

In turn, the commutativity of this diagram gives the ex-
plicit description of c̃ through the following formula, valid
on Wα:

c̃ = c ◦ tk. (25)

Formula (25) and the smoothness of tk imply that, when
c is assumed to be a smooth function, so is, by com-
position, the restriction to Wα of the function c̃. Since
every α ∈ jk(V ×M) admits a neighbourhood on which
the restriction of c̃ is smooth, the function c̃ is a smooth
function. This completes the proof.

B. Properties of F
(2)
ϕ

We first show that the two assumptions of our theorem
are equivalent to some strong assumptions on the second
derivative of F :

Lemma VI.9. Let U be an open subset of C∞(M) and
F : U → K be Bastiani smooth. Assume that for every

ϕ ∈ U , the differential DFϕ = F
(1)
ϕ of F at ϕ has no wave

front set, i.e. WF(F
(1)
ϕ ) = ∅. Then the two following

properties are equivalent:



20

1. F is additive and the map ϕ 7→ ∇Fϕ is Bastiani
smooth from U to D(M).

2. For every ϕ0 ∈ U , there is a neighborhood V of
ϕ0, a compact K ⊂ M and a finite family of Bas-
tiani smooth maps fα : V → D(K) with |α| 6 k,
such that in any system of local coordinates (x, y)
on M2:

F (2)
ϕ (x, y) =

∑
|α|6k

fα(ϕ)(x)∂αy δ(x− y), (26)

for every ϕ ∈ V .

In particular, both conditions imply that D2Fϕ is rep-

resented by a distribution F
(2)
ϕ whose wave front set is

the conormal bundle of the diagonal in M2 [105, p. 32].
In the sequel, we shall often use the following simple

lemma :

Lemma VI.10. Let E, F and G be locally convex spaces.
If f : E → F is Bastiani smooth and ` : F → G is linear
and continuous, then ` ◦ f : E → G is Bastiani smooth
and Dk(` ◦ f) = ` ◦Dkf .

Proof. This is a consequence of three facts: the map ` is
Bastiani smooth because it is linear and continuous, `◦f
is Bastiani smooth because it is the composition of two
Bastiani smooth maps and the chain rule.

We also need the following lemma in the proof of
Lemma VI.9:

Lemma VI.11. Let U be a convex open subset of E =
C∞(M) containing the origin and F : U → E a Bastiani
smooth map. Then, G : U → E defined by G(ϕ) =∫ 1

0
F (sϕ)ds is Bastiani smooth.

Proof. The first step is to define a candidate for the Bas-
tiani differential DkG by determining DkG(x) pointwise
in x ∈ M . For every (t1, . . . , tk, x) ∈ [0, 1]k × M and
(ϕ,ψ1, . . . , ψk) ∈ U × Ek, the function (t1, . . . , tk, x) 7→∫ 1

0
dsF (s(ϕ + t1ψ1 + · · · + tkψk))(x) is smooth in

(t1, . . . , tk, x) by dominated convergence theorem since
x can always be restricted to some compact subset K ⊂
M to obtain uniform bounds. We can differentiate in
(t1, . . . , tk) outside and inside the integral and both dif-
ferentials coincide. Therefore, for every x ∈M , the Bas-

tiani kth–differential DkG(x) of G(x) =
∫ 1

0
dsF (sϕ(x))

exists and satisfies the relation DkGϕ(ψ1, . . . , ψk)(x) =∫ 1

0
dsskDkFsϕ(ψ1, . . . , ψk)(x). Let us show that DkG :

U × Ek 7→ E is jointly continuous in (ϕ,ψ1, . . . , ψk).
We know that the map χ : (s, ϕ, ψ1, . . . , ψk) ∈ [0, 1] ×

U × Ek 7→ skDkFsϕ(ψ1, . . . , ψk) ∈ E is continuous by
joint continuity of DkF : U × Ek 7→ E and composition
of the continuous maps

(s, ϕ, ψ) 7→ (sϕ, ψ) 7→ skDkFsϕ(ψ),

where ψ = (ψ1, . . . , ψk). Then by [40, Thm 2.1.5
p. 72] applied to the function χ, the integrated map

(ϕ,ψ1, . . . , ψk) 7→
∫ 1

0
dsskDkFsϕ(ψ1, . . . , ψk) is continu-

ous and the proof is complete because continuity holds
true for every k.

Let us now prove Lemma VI.9.

Proof. First of all, by Proposition V.5, F is additive iff
its second derivative is represented by a distribution sup-
ported in the diagonal. We start by proving the direct
sense assuming that ϕ ∈ U 7→ ∇Fϕ ∈ C∞(M) is Bastiani
smooth.

We first show that item 1 implies item 2 in
Lemma VI.9. Since F is Bastiani smooth for any ϕ0 ∈ U ,
we already know by Proposition III.4 that there is some
neighborhood V of ϕ0 on which F |V has fixed compact
support that we denote by K. Therefore, ∇Fϕ belongs to

D(K) for every ϕ ∈ V and F
(2)
ϕ is supported in K ×K.

Since F
(2)
ϕ is also supported in the diagonal of M2 by

Proposition V.5, the support of F
(2)
ϕ is contained in the

diagonal of K ×K which can be identified with K itself.
Since DFϕ has an empty wavefront set by assumption,

its singular support is empty and it can be represented by
a unique smooth compactly supported function ∇Fϕ [32,
p. 37] such that

d

dt
F (ϕ+ th)|t=0 = DFϕ(h) =

∫
M

∇Fϕ(x)h(x)dx. (27)

The main step is to represent F
(2)
ϕ as the Bastiani dif-

ferential of ∇Fϕ by calculating the second derivatives in
two different ways. The Bastiani smoothness of F yields:

D2Fϕ(g, h) =
d2

dt1dt2
F (ϕ+ t1h+ t2g)|t1=t2=0

=
d

dt2

(
d

dt1
F (ϕ+ t1h+ t2g)|t1=0

)
|t2=0

=
d

dt2

(∫
M

∇Fϕ+t2g(x)h(x)dx

)
|t2=0,

where we used the Schwarz lemma and Equation (27).
To justify switching d

dt2
and integration over M , observe

that the map ϕ ∈ U 7→ ∇Fϕ ∈ D(M) is Bastiani smooth

hence C1. It follows by the chain rule that t 7→ d
dt∇Fϕ+tg

is a C0 map valued in D(M). Since ∇Fϕ is actually in
D(K) for every ϕ ∈ V and the topology induced byD(M)
on D(K) is the usual Fréchet topology of D(K), the map
∇F is smooth from V to the Fréchet space D(K).

Since D(K) injects continuously in (C0(K), π0,K), this

implies that (t, x) ∈ [−1, 1] × K 7→ d
dt∇Fϕ+tg(x) ∈

C0([−1, 1]×K). Hence the integrand d
dt2
∇Fϕ+t2g(x)h(x)

is in C0([−1, 1] ×K) and is bounded on the integration
domain. A continuous map u : t ∈ [−1, 1] 7→ u(t, .) ∈
(C0(K), π0,K) corresponds to a map also denoted by
u ∈ C0([−1, 1] × K). Indeed for every convergent se-
quence (tn, xn) →

n→∞
(t, x) in [−1, 1]×K, the simple esti-

mate |u(t, x)−u(tn, xn)| 6 |u(t, x)−u(t, xn)|+|u(t, xn)−
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u(tn, xn)| 6 |u(t, x) − u(t, xn)| + π0,K(u(tn, .) − u(t, .))
shows that u(tn, xn) →

n→∞
u(t, x).

By the dominated convergence theorem, we can differ-
entiate under the integral sign:

D2Fϕ(g, h) =
d

dt2

(∫
M

∇Fϕ+t2g(x)h(x)dx

)
|t2=0

=

∫
M

(
d

dt2
∇Fϕ+t2g(x)|t2=0

)
h(x)dx.

By definition d
dt2
∇Fϕ+t2g|t2=0 is only the Bastiani deriva-

tive

D∇F : (ϕ, g) ∈ V × C∞(M) 7→ D∇Fϕ[g] ∈ D(K),(28)

where D∇F is a Bastiani smooth map since ∇F is Bas-
tiani smooth.

Note also that by Theorem III.9, the second deriva-
tive D2Fϕ(g, h) can be represented by a map ϕ ∈
U 7→ F

(2)
ϕ ∈ E ′(M2) such that ∀(ϕ, g, h) ∈ U ×

C∞(M)2, D2Fϕ(g, h) =
〈
F

(2)
ϕ , g ⊗ h

〉
which means that

F
(2)
ϕ is the distributional kernel of the second deriva-

tive D2Fϕ. We now arrive at the following equality
which identifies two different representations of the sec-
ond derivative. For every (ϕ, g, h) ∈ U × C∞(M)2

〈
F (2)
ϕ , g ⊗ h

〉
=

∫
M

D∇Fϕ[g](y)h(y)dy. (29)

By the same Theorem III.9 and the chain rule,
D∇Fϕ[g](y) = evyD∇Fϕ[g] is linear continuous in
g ∈ C∞(M), hence there is a distribution, denoted
by D∇Fϕ(x, y), such that

∫
M
D∇Fϕ(x, y)g(x)dx =

D∇Fϕ[g](y) and
∫
M
D∇Fϕ(x, y)g(x)dx is in D(K) by

Eq. (28). Since the above identity holds for all (g, h) ∈
C∞(M)2, we have in the sense of distributions that

F
(2)
ϕ (x, y) = D∇Fϕ(x, y) where the map

(ϕ, g) ∈ V × C∞(M) 7→
∫
M

F (2)
ϕ (x, ·)g(x)dx ∈ D(K),

(30)

is Bastiani smooth.
It suffices to do the last part of the proof, which

is local in nature, on M = Rd. We now represent

F
(2)
ϕ (x, y) as a C∞(M)-linear combination of deriva-

tives of Dirac distributions concentrated on the diago-
nal. By Proposition V.5, the additive property satis-
fied by F implies that the distribution F (2) associated
to the second derivative D2F is supported in the diag-
onal D2 ⊂ M × M . By Proposition III.11, the kernel

F
(2)
ϕ (x, y) ∈ E ′(M ×M) has bounded distributional or-

der uniformly in ϕ ∈ V . Schwartz’ theorem on distri-
butions supported on a submanifold [27, p. 101] states
that in local coordinates, there exists a finite sequence of
distributions (ϕ ∈ V 7→ fα(ϕ, .) ∈ D(K))|α|6k such that

F
(2)
ϕ =

∑
|α|6k fα(ϕ, x)∂αy δ(x − y). We denote the dis-

tributions fα(ϕ) by fα(ϕ, x) because we shall show that
ϕ 7→ fα(ϕ) is Bastiani smooth from V to D(K).

By Equation (30), we know that for every (ϕ, g) ∈
V ×C∞(M) the map from V ×C∞(M) to D(K) defined
by

(ϕ, g) 7→
∫
M

F (2)
ϕ (x, ·)g(x)dx =

∑
|α|6k

(−1)|α|fα(ϕ, .)∂αg(.)

is smooth. Choosing g to be equal to the Fourier oscil-
latory function e−i〈ξ.x〉, we obtain by the chain rule the
maps that sends (ϕ, ξ) to∫

M

F (2)
ϕ (x, y)e−i〈ξ.x〉dy =

∫
M

∑
|α|6k

(−1)|α|fα(ϕ, y)

δ(x− y)∂αy e
−i〈ξ.x〉dy

=
∑
|α|6k

(−1)|α|fα(ϕ, x)(−iξ)α,

is Bastiani smooth. Moreover, since the image of the map
in Eq. (30) is in D(K) for every smooth g, we obtain that∑
|α|6k(−1)|α|fα(ϕ, ·)(−iξ)α is in D(K) for every ξ. This

is only possible if fα(ϕ) ∈ D(K) for every |α| 6 k. There-

fore ϕ 7→ fα(ϕ) = (i ddξ )α
∫
M
F

(2)
ϕ (., y)e−i〈ξ.y〉dy|ξ=0 is

Bastiani smooth from V to D(K) and the proof of the
direct sense is complete.

Conversely, we want to prove that if there is a neigh-
borhood V of ϕ0, a compact K ⊂M and a finite family
of smooth maps ϕ 7→ fα(ϕ) ∈ D(K), |α| 6 k such that in
any system of local coordinates (x, y) on M2:

F (2)
ϕ (x, y) =

∑
|α|6k

fα(ϕ)(x)∂αy δ(x− y),

then ϕ 7→ ∇Fϕ ∈ D(M) is Bastiani smooth. Without
loss of generality, we assume that V is convex. By the
Taylor formula with remainder for Bastiani smooth func-
tions, for every (ϕ,ψ1, ψ2) ∈ V × C∞(M)2:

D2Fϕ+s1ψ1+s2ψ2
(ψ1, ψ2) = ∂s1∂s2F (ϕ+ s1ψ1 + s2ψ2)

= ∂s2DFϕ+s1ψ1+s2ψ2(ψ1),

for s1 and s2 small enough. It follows by the fundamen-
tal theorem of calculus and by evaluating at s1 = 0 the
previous relation that

DFϕ+tψ2
(ψ1) = DFϕ(ψ1) +

∫ t

0

∂s2DFϕ+s2ψ2
(ψ1)ds2

= DFϕ(ψ1) +

∫ t

0

D2Fϕ+sψ2
(ψ1, ψ2)ds,

where by assumption DFϕ(ψ1) is represented by integra-
tion against a smooth function

DFϕ(ψ1) =

∫
M

∇Fϕ(x)ψ1(x)dx,

D2Fϕ+sψ2(ψ1, ψ2) =

∫
M×M

F
(2)
ϕ+sψ2

(x, y)ψ1(x)ψ2(y)dxdy,
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and F
(2)
ϕ+sψ is supported on a subset of the diagonal D2 ⊂

M ×M that can be identified with K. Hence, for ψ ∈
C∞(M) such that ϕ+ ψ ∈ V :

∇Fϕ+ψ(x) = ∇Fϕ(x) +

∫ 1

0

(∫
M

F
(2)
ϕ+sψ(x, y)ψ(y)dy

)
ds

= ∇Fϕ(x) +
∑
|α|6k

(−1)|α|∂αψ(x)

∫ 1

0

fα(ϕ+ sψ)(x)ds.

To show that the map χ : V → D(K) defined by χ(ψ) =
∇Fϕ+ψ is smooth, we notice that, according to the last
equation, ∇Fϕ+ψ is the sum of the constant ∇Fϕ and a
finite linear combination of products of ψ 7→ ∂αψ by an
integral over s. The integrand fα(ϕ + sψ) is smooth by
assumption. Therefore, the map

ψ ∈ (V − ϕ) 7→
∫ 1

0

fα(ϕ+ sψ)(x)ds ∈ D(K)

is smooth by Lemma VI.11 and the fact that the topology
induced on D(K) by the topology of C∞(M) is the stan-
dard topology of D(K). The map ψ 7→ ∂αψ is smooth
because it is linear and continuous. Finally, the product
of the integral by ∂αψ is smooth by a trivial extension
of Lemma VI.15. This completes the proof of Lemma
VI.9.

We are now ready to prove Theorem VI.3 characteriz-
ing local functionals.

C. Proof of Theorem VI.3

Let us start by proving the converse sense where we
assume that F is the integral of some local function on
jet space. Let ϕ ∈ U and V some neighborhood of ϕ
such that F (ϕ + ψ) =

∫
M
f(x, jkxψ)dx for every ψ ∈ V

where jkxψ is the k-jet of ψ at x and where f is smooth
and compactly supported in the variable x in some fixed
compact K ⊂ M . Without loss of generality, we can
restrict the support K of f by a smooth partition of unity
and assuming that K is contained in some open chart of
M , we may reduce to the same problem for f ∈ C∞(Ω)
where Ω is some open set in Rd and K ⊂ Ω.

We choose a smooth compactly supported function χ ∈
D(Ω) such that χ = 1 on a compact neighborhood of K
with suppχ ⊂ Ω and we observe that

Ψ : ψ ∈ C∞(Ω) 7−→ (∂αψ)|α|6k χ ∈ D(supp(χ))
(d+k)!
d! ,

is linear continuous hence Bastiani smooth. We need a
simple

Lemma VI.12. Let Ω be an open set in Rd then the
map

Φ : ϕ ∈ C∞(Ω,Rr) 7→ {x 7→ (x, ϕ(x))} ∈ C∞(Ω,Rd×Rr),

is Bastiani smooth.

Proof. The first Bastiani differential DΦϕ(h) can be iden-
tified with the smooth function x 7→ (0, h(x)), which is
linear continuous in h and does not depend on ϕ. It is
thus smooth and so is Φ.

Therefore, the composition

Φ ◦Ψ : C∞(Ω)→ C∞(Ω,Rd × R
(d+k)!
d! )

defined by

Φ ◦Ψ(ψ) : x 7→
(
x, χ∂αψ(x)|α|6k

)
,

is Bastiani smooth and finally

ψ ∈ C∞(M) 7→ f(., jkxψ(.)) ∈ D(K) 7→
∫

Ω

f(x, jkxψ)dx,

is Bastiani smooth by the chain rule and since the last in-
tegration map is linear continuous thus Bastiani smooth.

Now let us prove the direct sense of Thm. VI.3, where
we start from a functional characterization of F and
end up with a representation as a function F (ϕ + ψ) =∫
M
f(x, jkxψ)dx on jet space, for ϕ+ψ in a neighborhood

V of ϕ, that we assume convex. We start by deriving
a candidate for the function f . According to the funda-
mental theorem of calculus,

F (ϕ+ ψ) = F (ϕ) +

∫ 1

0

dtDFϕ+tψ(ψ). (31)

As discussed at the beginning of this section, since we

assume that WF(F
(1)
ϕ ) = ∅ for every ϕ ∈ U , there

exists a unique smooth compactly supported function
x 7→ ∇Fϕ(x) such that:

F (1)
ϕ (ψ) =

∫
M

dx∇Fϕ(x)ψ(x). (32)

Therefore equation (31) reads:

F (ϕ+ ψ) = F (ϕ) +

∫ 1

0

dt

∫
M

∇Fϕ+tψ(x)ψ(x)dx.(33)

We show that Fubini’s theorem can be applied to the
function χ : (x, t) 7→ ∇ϕ+tψF (x)ψ(x). By Prop. III.4,

F (1) is locally compactly supported, so that there is a
convex neighborhood V of ϕ and a compact subset K of

Ω such that F
(1)
ϕ+ψ is supported in K for every ϕ+ψ ∈ V .

The function χ is defined on [0, 1] × K and supported
on K for fixed t ∈ [0, 1]. Moreover, by imposing the ad-
ditional assumption carried by item 2 in Theorem VI.3,
namely that ϕ 7→ ∇Fϕ be Bastiani smooth from U to
D(M), the support property of F implies that the im-
age of ∇Fϕ+tψ is actually in D(K) and ∇F is smooth
from V to D(K) because the topology induced on D(K)
by D(M) is the Fréchet topology of D(K) determined
by the seminorms πm,K [30, p. 172]. Since D(K) in-
jects continuously in (C0(K), π0,K), ϕ 7→ DϕF is a con-
tinuous (C0(K), π0,K)-valued map. This implies that
(t, x) 7→ ∇Fϕ+tψ(x) is continuous as a K-valued func-
tion on [0, 1] × K. Hence so is the integrand of (33),
Fubini theorem holds and we obtain:
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Lemma VI.13. Let U be an open subset of E = C∞(M)
and F : E → K be Bastiani smooth. Assume that for

every ϕ ∈ U , WF(F
(1)
ϕ ) = ∅ and F (1) : U → D(M) is

Bastiani smooth, then, for every ϕ ∈ U , there is a convex
neighborhood V of ϕ such that, if ϕ+ ψ ∈ V , then

F (ϕ+ ψ) = F (ϕ) +

∫
M

dx

∫ 1

0

∇Fϕ+tψ(x)ψ(x)dt.(34)

From now on, we consider ϕ ∈ U to be fixed. Our
candidate for f(jkxψ) is

cψ(x) =

∫ 1

0

∇Fϕ+tψ(x)dt ψ(x). (35)

By definition and LemmaVI.13, for all ψ such that ϕ +
ψ ∈ V ,

F (ϕ+ ψ) = F (ϕ) +

∫
M

cψ(x)dx.

To show that cψ(x) is the right candidate we first need

Proposition VI.14. The function cψ depends only on
a finite jet of ψ. More precisely, for every ϕ ∈ U , there
is a convex neighborhood V of ϕ and an integer k ≥ 0
such that, for all x ∈ M , for every ψ1 and ψ2 such that
ϕ + ψ1 and ϕ + ψ2 are in V and jkxψ1 = jkxψ2, then
cψ1

(x) = cψ2
(x).

The beginning of the proof is inspired by Ref. 20. For
fixed ϕ ∈ U , by Proposition III.11, there exists an integer
k, a compact K and a convex neighborhood V of ϕ such

that the order of F
(2)
ϕ+ψ is smaller than k and the support

of DFϕ+ψ is in K if ϕ+ ψ ∈ V .
Let us choose some point x0 ∈ M . Consider a pair

ψ1, ψ2 of smooth functions such that ψ1(x0) = ψ2(x0).
Then,

cψ1(x0)− cψ2(x0) =

∫ 1

0

dt
(
∇Fϕ+tψ2(x0)ψ2(x0)

−∇Fϕ+tψ1
(x0)ψ1(x0)

)
= ψ1(x0)

∫ 1

0

dt
(
∇Fϕ+tψ2

(x0)

−∇Fϕ+tψ1(x0)
)
.

We use the fundamental theorem of analysis again
for DFϕ(h) =

∫
M
dx∇Fϕ(x)h(x) for an arbitrary h ∈

C∞(M) to get

DFϕ+tψ2(h)−DFϕ+tψ1(h) = t

∫ 1

0

ds〈F (2)
ϕ+tψ1+st(ψ2−ψ1),

(ψ2 − ψ1)⊗ h〉.

Now we take a sequence of smooth functions (hn)n∈N
which converges to δx0

in D′(M) when n goes to in-
finity and show that both the left and right hand side
have limits. For the left hand side, the distribution
DFϕ+tψi being smooth, it defines the continuous form

u 7→ DFϕ+tψi(u) on D′(M) by duality pairing. By conti-
nuity, DFϕ+tψi(hn)→ DFϕ+tψi(δx0

) and Eq. (32) yields

h = DFϕ+tψ2
(δx0

)−DFϕ+tψ1
(δx0

)

=

∫
M

dx
(
∇Fϕ+tψ2

(x)−∇F (1)
ϕ+tψ1

(x)
)
δ(x− x0)

= ∇Fϕ+tψ2
(x0)−∇Fϕ+tψ1

(x0).

For the right hand side, we know by Lemma VI.9 that
for every s ∈ [0, 1], the wave front set of the distribution

F
(2)
ϕ+tψ1+st(ψ2−ψ1) is in the conormal C2 and the sequence

(ψ2−ψ1)⊗hn converges to (ψ2−ψ1)⊗δx0
inD′N∗(M×{x0}),

where N∗ (M × {x0}) is the conormal of the submanifold
M × {x0} ⊂ M × M in T ∗ (M ×M). Therefore, by
transversality of the wave front sets and hypocontinuity
of the duality pairings106, the following limit exists

lim
n
〈F (2)
ϕ+tψ1+st(ψ2−ψ1), (ψ2 − ψ1)⊗ hn〉.

Moreover, still by Lemma VI.9, we have for ϕ+ψ ∈ V :

〈F (2)
ϕ+ψ, g ⊗ h〉 =

∑
|α|≤k

(−1)|α|
∫
M

dxθαψ(x)g(x)∂αh(x),

for every (g, h) ∈ C∞(M)2 and all θαψ belong to D(K).
An integration by parts yields

〈F (2)
ϕ+ψ, g ⊗ h〉 =

∑
|α|≤k

∫
M

dxfαψ (x)h(x)∂αg(x),

where fαψ =
∑
β

(
β
α

)
∂β−αθβψ where the sum is over the

multi-indices such that β ≥ α and |β| 6 k.
As a consequence, for ϕ+ψ1 +ψ2 in the convex neigh-

borhood V :

X = 〈F (2)
ϕ+tψ1+st(ψ2−ψ1), (ψ2 − ψ1)⊗ δx0〉

=
∑
|α|≤k

fαtψ1+st(ψ2−ψ1)(x0)∂α(ψ2 − ψ1)(x0).

If, at the point x0, jkx0
ψ1 = jkx0

ψ2, then

cψ1
(x0)− cψ2

(x0) = ψ1(x0)
∑
|α|≤k

∫ 1

0

tdt

∫ 1

0

ds

fαtψ1+st(ψ2−ψ1)(x0)
(
∂αψ2(x0)− ∂αψ1(x0)

)
= 0.

We showed that cψ depends only on the k-jet of ψ at x0.
Moreover, the number k depends only on V and not on
x0, so that cψ depends on the k-jet for every x ∈ M . In
other words there is an integer k and a function f such
that cψ(x) = f(x, ψ(x), . . . , ∂αψ(x)) for every x ∈ M ,
where 1 ≤ |α| ≤ k.

We want to show that f is smooth in its arguments
hence we now investigate in which manner cψ depends
on ψ. This suggests to study the regularity of the D(K)-
valued function ψ 7→ ∇Fϕ+tψψ. More precisely, we need
to show that the map ψ 7→ ∇Fϕ+tψψ is Bastiani smooth
from U to D(K). This is not completely trivial because
the map x 7→ ∇Fϕ+tψ(x) is in D(K) and ψ in C∞(M)
and we must check that the product of a function inD(K)
by a function in C∞(M) is continuous [27, p. 119].
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Lemma VI.15. If U is an open set in C∞(M) and
F : U → D(K) is a compactly supported Bastiani-smooth
map, then the function G : U → D(M) defined by
G(ϕ) = F (ϕ)ϕ is compactly supported Bastiani-smooth
with the same support as F .

Proof. Yoann Dabrowski pointed out to us the follow-
ing fact. For any compact subset K of Ω, both D(Ω)
and C∞(Ω) induce on D(K) the usual Fréchet topology
of D(K) [30, p. 172]. Thus to establish the smoothness
of G, it suffices to show that the multiplication (u, v) ∈
D(K) × C∞(M) 7→ D(K) is continuous then it would
be Bastiani smooth and by the chain rule it follows that
ϕ 7→ (F (ϕ), ϕ) 7→ F (ϕ)ϕ is smooth. Since both D(K)
and C∞(M) are Fréchet, the product D(K) × C∞(M)
endowed with the product topology is metrizable and it
is enough to prove that the product is sequentially con-
tinuous. Indeed, let (un, vn)→ (u, v) in D(K)×C∞(M),
we can find some cut–off function χ ∈ D(M) such that
χ = 1 on the support of all un, and for all m, by [85,
p. 1351]

πm,K(uv − unvn) 6 πm,K ((u− un)vχ)

+πm,K (unχ(v − vn))

6 2m
(
πm,K(u− un)πm,K(χv)

+πm,K(un)πm,K((v − vn)χ)
)
→ 0.

Hence G is smooth.

This implies that ψ 7→ cψ =
∫ 1

0
∇Fϕ+tψψdt is

smooth since the above Lemma shows the smoothness
of a(t, ψ) 7→ ∇Fϕ+tψψ and integration over t conserves
smoothness by Lemma VI.11. At this point, Theo-
rem VI.3 follows directly from Proposition VI.4.

D. Representation theory of local functionals.

In this section, we discuss the issue of representation of
our local functionals and the relations between the func-
tionals (cψ,∇F, f(jkxψ)) which are defined or constructed
in the course of our proof of Theorem VI.3. In the sequel,
we assume that our manifold M is connected, oriented
without boundary, hence we can fix a density dx on M
which is also a differential form on M of top degree.

In the sequel, we shall work out all explicit formu-
las in local charts which means without loss of gen-
erality that we work on Rd and the reference den-
sity dx is chosen to be the standard Lebesgue mea-
sure. We will denote by (x, u, uα)|α|6k where α are
multi–indices, some local coordinates on the jet bun-
dle Jk(Rd). Introduce the vertical Euler vector field
ρ =

∑
u(α) ∂

∂u(α) on the bundle Jk(Rd). In the mani-

fold case if we work on Jk(M), this vector field is in-
trinsic since it generates scaling in the fibers of Jk(M).
For all multiindex (α) = (α1 . . . αp), αi ∈ {1, . . . , d}, in-

troduce the operators ∂(α) = ∂α1 . . . ∂αp where ∂i =
∂
∂xi +

∑
α u

(αi) ∂
∂u(α) and the Euler–Lagrange operator

EL = u ∂
∂u +

∑
α(−1)|α|∂(α)u(α) ∂

∂u(α) . Let us discuss
the nature of the objects involved, ρ is a vertical vector
field and acts on C∞(JkM) as a C∞(M) linear map, for
χ ∈ C∞(Rd), f ∈ C∞(JkRd), ρ(χf) = χ(ρf). For every
i ∈ {1, . . . , d}, ∂i is a vector field on JkRd but it has a
horizontal component, therefore it is not C∞(Rd) linear
and the Euler–Lagrange operator is not C∞(Rd)–linear
either.

What follows is a definition–proposition where we give
an intrinsic and global definition of the Euler–Lagrange
operator in terms of the operator ∇F associated to a
functional.

Proposition VI.16 (Euler-Lagrange operator is intrin-
sic). Let U be an open subset of C∞(M) and F : U → K
a Bastiani smooth local functional. For ϕ ∈ U , if there is
an integer k, a neighborhood V of ϕ, an open subset V of
JkM and f ∈ C∞(V) such that x 7→ f(jkxψ) is compactly
supported and

F (ϕ+ ψ) = F (ϕ) +

∫
M

f(jkxψ)dx

whenever ϕ+ ψ ∈ V then in every local chart

∇Fϕ = EL(f)(jkψ) (36)

where EL(f)(ψ) =
∑
|α|6k(−1)|α|

(
∂(α)

(
∂f
∂u(α)

))
(jkxψ)

is the Euler–Lagrange operator and EL(f)(ψ) is uniquely
determined by F .

The above proposition means that EL(f) does not de-
pend on the choice of representative f and is intrinsic
(i.e. it does not depend on the choice of a local chart).

Proof. Indeed, assume that we make a small perturbation
ϕ+ψ of the background field ϕ by ψ which is compactly
supported in some open chart U of M . Then a local
calculation yields

DFϕ(ψ) =
∑
α

∫
M

∂f

∂u(α)(x)
ψ(α)(x)dx

=
∑
|α|≤k

(−1)|α|
∫
M

ψ(x)

(
∂(α)

(
∂f

∂u(α)

))
dx,

where we used an integration by parts to recover the
Euler-Lagrange operator and all boundary terms van-
ish since f is compactly supported in x and ψ ∈ D(U).
We have just proved that for all open chart U ⊂ M ,
∇Fϕ|U = EL(f)|U . But ∇Fϕ is intrinsically defined
on M therefore so is EL(f) and we have the equality
∇F = EL(f). The unique determination of ∇Fϕ follows
from Lemma VI.2.

Theorem VI.17. [Global Poincaré] Assume that M is a
smooth, connected, oriented manifold without boundary.
Let U be an open subset of C∞(M) and F : U → K
a Bastiani smooth local functional. Then the following
statements are equivalent:
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• two functions (f1, f2) ∈ C∞(V) for V an open sub-
set of the jet space JkM , are two representations
of F in a neighborhood V of ϕ ∈ U :

F (ϕ+ ψ) = F (ϕ) +

∫
M

f1(jkxψ)dx

= F (ϕ) +

∫
M

f2(jkxψ)dx

whenever ϕ+ ψ ∈ V

• for all ψ ∈ V − ϕ :

f1(jkxψ)dx− f2(jkxψ)dx = dβ(j2k
x ψ), (37)

where β(j2k
x ψ) ∈ Ωd−1

c (M) is a differential form of
degree d− 1 whose value at a point x depends only
on the 2k-jet of ψ at x.

Let us stress that we do not need to constraint the
topology of M in the above Theorem only the compact-
ness of the support of fi(j

k
xψ)dx, i ∈ {1, 2} really matters.

Proof. One sense of the equivalence is trivial since the in-
tegral of a compactly supported exact form on M always
vanishes. By Proposition VI.4, we know that the map
ψ ∈ V − ϕ 7→ jkψ has an open image in Jk(M) denoted
V and we only need (f1, f2) to be defined on V. We denote
by (x, u, uα)|α|6k where α are multi–indices, some local

coordinates on the jet bundle Jk(Rd). We use the vertical
Euler vector field ρ =

∑
u(α) ∂

∂u(α) on the bundle Jk(Rd).
For every multiindex (α) = (α1 . . . αp), αi ∈ {1, . . . , d},
introduce the operators ∂(α) = ∂α1 . . . ∂αp where ∂i =
∂
∂xi +

∑
α u

(αi) ∂
∂u(α) and the Euler–Lagrange operator

reads EL = u ∂
∂u +

∑
α(−1)|α|∂(α)u(α) ∂

∂u(α) .
We shall prove two related identities, in local chart

(ρf) (jkψ)dx = (uEL(f))(jkψ)dx

+d

(
d∑

µ=1

jµ(j2kψ)
∂

∂xµ
ydx

)
(38)

f(jk(ψ1 + ψ2))dx = f(jkψ1)dx

+

∫ 1

0

dtψ2EL(f)(jk(ψ1 + tψ2))dx

+d

(∫ 1

0

dt

t
jµ(j2k(ψ1 + tψ2))∂xµydx

)
.(39)

For all (f, g) ∈ C∞(JkRd)2 and all multiindices α, the
generalized Leibniz-like identity holds true:

(∂α1 . . . ∂αpf)g = (−1)pf(∂αp . . . ∂α1g)

+

p∑
i=1

(−1)i+1∂αi
(
(∂αi+1 . . . ∂αpf)∂αi−1 . . . ∂α1g

)
where the second term is a sum of total derivatives. Using
this we derive the following key identity which is valid on

jet spaces. For all fdx ∈ C∞(JkRd)⊗ Ωd(Rd) :

(ρf) dx =
∑

u(α) ∂f

∂u(α)
dx = u

∂f

∂u
+
∑
|α|>1

u(α) ∂f

∂u(α)
dx

= uEL(f)dx+

d∑
µ=1

∂µjµ(j2kψ)dx

= uEL(f)dx+ d

(
d∑

µ=1

jµ(j2kψ)
∂

∂xµ
ydx

)

where jµ ∈ C∞(J2kRd) is a local functional.
To prove the second identity, we shall use the funda-

mental Theorem of calculus and the first identity :

f(jk(ψ1 + ψ2))dx = f(jkψ1)dx

+

∫ 1

0

dt

t
(ρf) (jk(ψ1 + tψ2))dx

= f(jkψ1)dx

+

∫ 1

0

dtψ2EL(f)(jk(ψ1 + tψ2))dx

+ d

(∫ 1

0

dt

t
jµ(j2k(ψ1 + tψ2))∂xµydx

)
To prove the claim of the Lemma is equivalent to show

the following statement: if a local functional F is locally
constant i.e. F (ϕ+ψ) = F (ϕ) whenever ϕ+ψ ∈ V , then
F (ϕ+ψ) = F (ϕ)+

∫
M
dβ(j2k

x ψ) and β(j2k
x ψ) ∈ Ωn−1

c (M)
is a compactly supported n− 1 form. For all ψ in V −ϕ,

F (ϕ+ tψ) = F (ϕ) =⇒
∫
Rd

∫ 1

0

dt

t
(ρf)(jkx(tψ))dx = 0,

=⇒
∫
Rd

∫ 1

0

dt
(
ψEL(f)(jkx(tψ))dx

)
= 0.

This means that EL(f) = 0 therefore on any open chart
U (U is contractible), Eq. (39) yields

f(jpx(ψ)) = f(0) + d

∫ 1

0

dt

(∑
µ

jµ(j2p
x (tψ))∂xµydx

)
.

We want to prove that EL(f) = 0 =⇒ f(jkx(ψ))dx−
f(0)dx|Mp+1

= dβ(j2kψ) where β ∈ C∞(J2p(M)) know-
ing that this holds true on any local chart, and that
EL(f) = 0 is equivalent to assuming that F (ϕ + ψ) :=∫
M
f(jkxψ)dx is locally constant. We cover M by some

countable union ∪i∈NUi of contractible open charts such
that every element x ∈ M belongs to a finite number
of charts Ui, set Mp = (U1 ∪ · · · ∪ Up) and we arrange
the cover in such a way that Mp ∩ Up+1 6= ∅ for all p
which is always possible. Assume by induction on p that
EL(f) = 0 and supp (f) ⊂Mp implies

f(jkx(ψ))dx− f(0)dx|Mp
= dβ(j2kψ),

where β ∈ C∞(J2p(M))⊗ Ωd−1
c (Mp).

We want to prove that EL(f) = 0, supp (f) ⊂
Mp+1 =⇒ f(jkx(ψ))dx−f(0)dx|Mp+1

= dβ(j2kψ) where
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β ∈ C∞(J2p(M)) ⊗ Ωd−1
c (Mp+1). Choose a partition of

unity (χ, 1−χ) subordinated to Mp ∪Up+1, the key idea
is to decompose the variation ψ of the background field
ϕ as the sum of two components χψ+(1−χ)ψ where χψ
(resp (1 − χ)ψ) vanishes outside Up (resp Up+1) which
yields :

f(jkψ) = f(jk(χψ + (1− χ)ψ))− f(jk((1− χ)ψ))

+f(jk((1− χ)ψ))− f(0) + f(0).

The second idea is to note that for every fixed ψ, the new
functional

φ 7→ f̃(jkφ) = f(jk(χφ+ (1− χ)ψ))− f(jk((1− χ)ψ))

has trivial Euler–Lagrange equation EL(f̃)(jkφ) =
EL(f)(jk(χφ + (1 − χ)ψ)) = 0 since EL(f) = 0 and
its support is contained in Mp. Therefore :

f(jkψ) = f̃(jkψ) + f(jk((1− χ)ψ))− f(0) + f(0)

= dβ̃(j2kψ) + f(jk((1− χ)ψ))− f(0)︸ ︷︷ ︸+f(0)

by the inductive assumption. To treat the term under
brace, define a new functional

ψ 7→ g(jkψ) = f(jk((1− χ)ψ))− f(0)

whose support is contained in Up+1 and whose Euler-
Lagrange equation vanishes, EL(g) = 0 again by the
fact that EL(f) = 0. Since Up+1 is contractible we
know that f(jk((1 − χ)ψ)) − f(0) = dα(j2kψ) where
α ∈ C∞(J2kM) ⊗ Ωd−1

c (Up+1) and therefore we found
that

f(jkψ)dx = dβ(j2kψ) + f(0)dx

β ∈ C∞(J2kM) ⊗ Ωd−1
c (Mp+1). Therefore for all ψ ∈

V − ϕ, f(jkx(ψ))dx = dβ(j2kψ) + f(0)dx. Now we con-
clude by using the fact that F is a constant functional
thus 0 = F (ϕ+ ψ)− F (ϕ) =

∫
M

(
f(0)dx+ dβ(j2kψ)

)
=∫

M
f(0)dx. But f(0)dx is a top form in Ωdc(M) which

does not depend on ψ and whose integral over M van-
ishes hence f(0)dx = dk for some k ∈ Ωd−1

c (M) since
Hd
c (M,R) ' R for the top de Rham cohomology with

compact support when M is connected [107, Theorem
17.30 p. 454].

The next Theorem summarizes the above results :

Theorem VI.18. Let U be an open subset of C∞(M)
and F : U → K a Bastiani smooth local functional. For
ϕ ∈ U , if there is an integer k, a neighborhood V of
ϕ, an open subset V of JkM and f ∈ C∞(V) such that
x 7→ f(jkψx) compactly supported and

F (ϕ+ ψ) = F (ϕ) +

∫
M

f(jkxψ)dx

whenever ϕ+ ψ ∈ V then in every local chart

∇Fϕ = EL(f)(jkψ) (40)

where EL(f)(ψ) =
∑
|α|6k(−1)|α|

(
∂(α)

(
∂f
∂u(α)

))
(jkxψ)

is the Euler–Lagrange operator and EL(f)(ψ) is uniquely
determined by F .

Furthermore, we find that :

F (ϕ+ ψ) = F (ϕ) +

∫
M

f(jkxψ)dx

= F (ϕ) +

∫
M

(∫ 1

0

dtψEL(f)(tψ)ψ

)
dx

where f(jkxψ)−
(∫ 1

0
dtψEL(f)(tψ)ψ

)
dx = dβ(j2k

x ψ) and

β(j2k
x ψ) ∈ Ωd−1

c (M) is a compactly supported d−1 form.

1. Explicit forms

In this section we derive the explicit expression of ∇Fϕ
and F (α)(ϕ) in terms of f when M = Rd. Since the
general expression is not very illuminating, let us start
with the following simple example:

F (ϕ) =

∫
M

h(x)ϕ4(x) + gµν(x)∂µϕ(x)∂νϕ(x)dx,

where h and gµν are smooth and compactly supported
and gµν is symmetric. We compute

DFϕ(u) = 2

∫
M

dx2h(x)ϕ3(x)u(x) + gµν(x)∂µϕ(x)∂νu(x)

= 2

∫
M

dx
(

2h(x)ϕ3(x)− ∂ν
(
gµν(x)∂µϕ(x)

))
u(x),

where we used integration by parts. Thus,

∇Fϕ(x) = 4h(x)ϕ3(x)− 2∂ν
(
gµν(x)∂µϕ(x)

)
.

Moreover,

D2Fϕ(u, v) = 2

∫
M

dxu(x)
(

6h(x)ϕ2(x)v(x)

−∂ν
(
gµν(x)∂µv(x)

))
.

To write this as a distribution, we need to integrate over
two variables:

D2Fϕ(u, v) = 2

∫
M2

dxdyu(x)δ(x− y)
(

6h(y)ϕ2(y)v(y)

−∂ν
(
gµν(y)∂µv(y)

))
.

Now we can use integration by parts over y to recover
v(y):

D2Fϕ(u, v) =
∑
α

∫
M2

dxdyu(x)v(y)fα(ϕ)(y)∂αy δ(x− y),

where the non-zero fα(ϕ) are

f0(ϕ)(y) = 12ϕ2(y),

fµ(ϕ)(y) = −∂νgµν(y),

fµν(ϕ)(y) = −gµν(y).

More generally
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Proposition VI.19. If

F (ϕ) =

∫
M

f(ϕ(α)(x))dx,

then

Fα(ϕ)(x) =
∑
β≤γ

(−1)|β|
(
β

γ

)
∂yβ−γ

∂2f

∂ϕ(α−γ)(x)∂ϕ(β)(x)
.

Proof. The proof is a straightforward generalization of
the example. Indeed,

DFϕ(u) =
∑
α

∫
M

∂f

∂ϕ(α)(x)
u(α)(x)dx

=
∑
α

(−1)|α|
∫
M

u(x)
∂|α|

∂xα
∂f

∂ϕ(α)(x)
dx,

where we used an integration by parts to recover the
Euler-Lagrange operator. The second derivative is

D2Fϕ(u, v) =
∑
αβ

(−1)|α|
∫
M

u(x)

∂|α|

∂xα

( ∂f2

∂ϕ(α)(x)∂ϕ(β)(x)
v(β)(x)

)
dx.

We write this as a double integral

D2Fϕ(u, v) =
∑
αβ

(−1)|α|
∫
M2

u(x)δ(x− y)

∂yα
( ∂f2

∂ϕ(α)(y)∂ϕ(β)(y)
v(β)(y)

)
dxdy.

A first integration by parts gives us

D2Fϕ(u, v) =
∑
αβ

∫
M2

u(x)
( ∂f2

∂ϕ(α)(y)∂ϕ(β)(y)
v(β)(y)

)
∂yαδ(x− y)dxdy.

A second integration by parts isolates v(y):

D2Fϕ(u, v) =
∑
αβ

(−1)|β|
∑
γ≤β

(
β

γ

)∫
M2

dxdyu(x)v(y)

(
∂yβ−γ

∂f2

∂ϕ(α)(y)∂ϕ(β)(y)

)
∂yα+γ δ(x− y).

If we calculate higher differentialsDkFϕ(u1, . . . , uk) we
see that we always obtain products of smooth functions
by derivatives of products of delta functions. This shows

that the wavefront set of F
(k)
ϕ is in the conormal Ck.

VII. PEETRE THEOREM FOR LOCAL AND
MULTILOCAL FUNCTIONALS

In this section, we propose an alternative characteri-
zation of local functionals in terms of a nonlinear Peetre
theorem. We do not characterize the locality of the ac-
tion F but the locality of the Lagrangian density, that
we denoted ∇F in the previous section. We first state
our theorems for local functionals, and then we prove
them for the case of multilocal functionals, which are
a natural generalization of local functionals in quantum
field theory. Our proof is inspired by recent works on
the Peetre theorem108,109, however it is formulated in
the language of Bastiani smoothness and uses simpler
assumptions than Slovák’s paper110.

A. Peetre theorem for local functionals

Let Ω be some open set in a manifold M . We first
begin with an alternative definition of a local map from
C∞(Ω) to itself, that we call Peetre local.

Definition VII.1. A map F : C∞(Ω)→ C∞(Ω) is Pee-
tre local if for every x ∈ Ω, if ϕ1 = ϕ2 on some neigh-
borhood of x then F (ϕ1)(x) = F (ϕ2)(x).

The relation with the additivity condition is given by

Proposition VII.2. Let F : C∞(Ω) → C∞(Ω) be Pee-
tre local. For every (ϕ1, ϕ2) ∈ C∞(Ω)2 if supp ϕ1 and
supp ϕ2 do not meet then for every x ∈ Ω and for all ϕ,

F (ϕ1 + ϕ2 + ϕ)(x) = F (ϕ1 + ϕ)(x)

+F (ϕ2 + ϕ)(x)− F (ϕ)(x).(41)

Proof. If x /∈ (supp ϕ1 ∪ supp ϕ2) then ϕ1 = ϕ2 = 0
in some neighborhood of x, it follows that F (ϕ1 + ϕ2 +
ϕ)(x) = F (0 + 0 + ϕ)(x) = F (ϕ)(x) and F (ϕ1 + ϕ)(x) +
F (ϕ2+ϕ)(x)−F (ϕ)(x) = 2F (ϕ)(x)−F (ϕ)(x) = F (ϕ)(x)
hence Eq. (41) holds true.

If x ∈ supp ϕ1 then necessarily there is some neighbor-
hood U of x on which ϕ2|U = 0 hence ϕ1 + ϕ2 + ϕ|U =
ϕ1 + ϕ|U and F (ϕ1 + ϕ2 + ϕ)(x) = F (ϕ1 + ϕ)(x). Also
F (ϕ1 +ϕ)(x)+F (ϕ2 +ϕ)(x)−F (ϕ)(x) = F (ϕ1 +ϕ)(x)+
F (ϕ)(x)−F (ϕ)(x) = F (ϕ1 +ϕ)(x) hence again Eq. (41)
holds true. The case where x ∈ supp ϕ2 can be treated
by similar methods which yields the final result.

The Peetre theorem for local functionals is

Theorem VII.3. Let F : C∞(Ω) → C∞(Ω) be a Bas-
tiani smooth Peetre local map. Then, for every ϕ ∈
C∞(Ω) there is a neighborhood V of ϕ in C∞(Ω) and
an integer k such that for all ψ such that ϕ + ψ ∈ V ,
F (ϕ + ψ)(x) = c(jkψx) for some smooth function c on
JkΩ.

In other words, if F is a Bastiani smooth Peetre local
map, then for every g ∈ D(M),

∫
M
F (ϕ)g is a Bastiani
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smooth local map in the sense of the rest of the paper.
This relation between a priori different concepts of lo-
cality strongly supports the idea that our definition is a
natural one.

If F is only assumed to be a continuous local map,
then a similar theorem exists for which the function c is
not necessarily smooth. These theorems are proved in
the next section for the more general case of multilocal
functionals.

B. Multilocal functionals and first Peetre theorem

By generalizing Definition VII.1 of local maps, we can
define multilocal maps. These maps appear naturally
in quantum field theory as the product of several La-
grangian densities L(x1) . . .L(xk).

Definition VII.4. Let k be an integer. A map F :
C∞(Ω) → C∞(Ωk) is k-local if for every (x1, . . . , xk) ∈
Ωk, if ϕ1 = ϕ2 on some neighborhood of {x1, . . . , xk} ⊂ Ω
then F (ϕ1)(x1, . . . , xk) = F (ϕ2)(x1, . . . , xk).

The multilocal maps are the maps that are k-local for
some k. We emphasize that Peetre local maps in the
sense of definition VII.1 correspond with 1-local maps
in the above sense. For M a smooth manifold, we denote
by JpM�k the bundle over Mk whose fiber over a k-tuple
of points (x1, . . . , xk) ∈Mk is JpMx1

× · · · × JpMxk .

Theorem VII.5. Let F : C∞(Ω) → C∞(Ωk) be a con-
tinuous k-local map. Then, for every ϕ ∈ C∞(Ω) there
is a neighborhood V of ϕ in C∞(Ω), p ∈ N such that for
all ψ such that ϕ+ ψ ∈ V ,

F (ϕ+ ψ)(x1, . . . , xk) = c(jpψx1
, . . . , jpψxk)

for some function c : JpM�k|(Mk\Dk) → Mk, where

Mk \ Dk denotes the configuration space Mk minus all
diagonals.

Proof. Fix a k–tuple of points (x1, . . . , xk) ∈ Ωk and
some compact neighborhood K of (x1, . . . , xk) in Ωk.
Continuity of F implies that for all ε > 0, there ex-
ists η > 0 and a seminorm πm,K′ of C∞(Ω) such that
πm,K′(ϕ1 − ϕ2) 6 η implies

sup
(y1,...,yk)∈K

|F (ϕ1)(y1, . . . , yk)− F (ϕ2)(y1, . . . , yk)| 6 ε.

Assume that (ϕ1, ϕ2) have same (m + 1)-jets at
{x1, . . . , xk}. Let (χλ)λ be the family of compactly sup-
ported cut-off functions equal to 1 in some neighbor-
hood of X = {x1, . . . , xk} defined in lemma VII.6. It
follows that ϕ1,λ = ϕ1χλ (resp. ϕ2,λ = ϕ2χλ) coin-
cides with ϕ1 (resp. ϕ2) near {x1, . . . , xk}. Hence, for
all λ > 0, F (ϕ1,λ)(x1, . . . , xk) = F (ϕ1)(x1, . . . , xk) and
F (ϕ2,λ)(x1, . . . , xk) = F (ϕ2)(x1, . . . , xk). Set εn = 1

2n

then there exists ηn such that πm,K′(ψ1 − ψ2) 6 ηn im-
plies

sup
(y1,...,yk)∈K

|F (ψ1)(y1, . . . , yk)− F (ψ2)(y1, . . . , yk)| 6 1

2n
.

Therefore it suffices to find some sequence λn → 0 such
that πm,K′(ϕ1,λn − ϕ2,λn) 6 ηn. Since ϕ1 − ϕ2 vanishes
at order m+1 on the set X = {x1, . . . , xk}, Lemma VII.6
yields the estimate

|πm,K′(ϕ1,λ − ϕ2,λ)| 6 C̃λπm+1,K (ϕ1 − ϕ2) ,

which implies that

lim
λ→0

πm,K′(ϕ1,λ − ϕ2,λ) = lim
λ→0

πm,K′((ϕ1 − ϕ2)χλ) = 0.

Finally, we obtain that if ϕ1, ϕ2 have same (m+ 1)-jet
at X = {x1, . . . , xk} then for all n > 0:

|F (ϕ1)(x1, . . . , xk)− F (ϕ2)(x1, . . . , xk)| =

|F (ϕ1,λn)(x1, . . . , xk)− F (ϕ2,λn)(x1, . . . , xk)| 6 1

2n

which implies F (ϕ1)(x1, . . . , xk) = F (ϕ2)(x1, . . . , xk).

Lemma VII.6. Let X be any closed subset of Rd. Let
Im+1(X,Rd) denote the closed ideal of functions of reg-
ularity Cm+1 which vanish at order m + 1 on X. Then
there is a function χλ ∈ C∞(Rd) parametrized by λ ∈
(0, 1] s.t. χλ = 1 (resp χλ = 0) when d(x,X) 6 λ

8 (resp

d(x,X) > λ) such that for all compact subset K ⊂ Rd,

there is a constant C̃ such that, for every λ ∈ (0, 1] and
every ϕ ∈ Im+1(X,Rd)

πm,K (χλϕ) 6 C̃λπm+1,K∩{d(x,X)6λ} (ϕ) . (42)

Proof. Choose φ > 0 s.t.
∫
Rd φ(x)ddx = 1 and φ = 0 if

|x| > 3
8 . Then set φλ = λ−dφ(λ−1.) and set αλ to be

the characteristic function of the set {x s.t. d(x,X) 6
λ
2 } then the convolution product χλ = φλ ∗ αλ satisfies

χλ(x) = 1 if d(x,X) 6 λ
8 and χλ(x) = 0 if d(x,X) > λ.

Since by Leibniz rule one has

∂α(χλϕ)(x) =
∑
|k|6|α|

(
α
k

)
∂kχλ∂

α−kϕ(x),

it suffices to estimate each term ∂kχλ∂
α−kϕ(x) of the

above sum. For every multi-index k, there is some con-
stant Ck such that ∀x ∈ Rd \ X, |∂kxχλ| 6 Ck

λ|k|
and

supp ∂kxχλ ⊂ {d(x,X) 6 λ}. Therefore for all ϕ ∈
Im+1(X,Rd), for all x ∈ supp ∂kxχλ∂

α−kϕ, for y ∈ X
such that d(x,X) = |x− y|, we find that ∂α−kϕ vanishes
at y at order |k| + 1. Indeed ϕ vanishes at order m + 1
hence ∂α−kϕ vanishes at order m + 1 − |α| + k > k + 1
since |α| 6 m. Therefore:

∂α−kx ϕ(x) =
∑

|β|=|k|+1

(x− y)βRβ(x),

where the right hand side is just the integral remainder
in Taylor’s expansion of ∂α−kϕ around y. Hence:

|∂kχλ∂α−kϕ(x)| 6 Ck
λ|k|

∑
|β|=|k|+1

|(x− y)βRβ(x)|.
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It is easy to see that Rβ only depends on the jets of ϕ of
order 6 m+ 1. Hence

|∂kχλ∂α−kϕ(x)| 6 Ckλ sup
x∈K,d(x,X)6λ

∑
|β|=|k|+1

|Rβ(x)|

and the conclusion follows easily.

C. The second Peetre Theorem

Theorem VII.7. Let F : C∞(Ω)→ C∞(Ωk) be a Bas-
tiani smooth k-local map. Then, for every ϕ ∈ C∞(Ω)
there is a neighborhood V of ϕ in C∞(Ω), p ∈ N such
that for all ψ such that ϕ+ ψ ∈ V ,

F (ϕ+ ψ)(x1, . . . , xk) = c(jpψx1
, . . . , jpψxk)

for some smooth function c on JpM�k|(Mk\Dk) where

Mk \ Dk denotes the configuration space Mk minus all
diagonals.

Proof. Without loss of generality, we may assume
that M = Rd and to go back to arbitrary man-
ifolds, we use partitions of unity as in the proof
of Lemma VI.6. The coordinates on the jet space
Jp(Rd) are denoted by (x, pα)|α|6p. Let (U1, . . . , Uk)

be two by two disjoint open subsets of Rd, then U1 ×
· · · × Uk is an open subset of (Rd)k \ Dk. We de-
fine the smooth map: Φ : (x1, . . . , xk; p1, . . . , pk) ∈
Jp(Rd)�k|U1×···×Uk 7→ (

∑
16i6k

pi,α
α! (.−xi)αχi(.−xi)) ∈

C∞(Rd) where the functions χi ∈ C∞c (Rd) are cut–
off functions equal to 1 near 0 and such that for
all (x1, . . . , xk) ∈ U1 × · · · × Uk, the support of
the functions χi(. − xi) are disjoint on Rd. Then
the map sending (x1, . . . , xk; p1, . . . , pk), (y1, . . . , yk) to
F (ϕ+ Φ(x1, . . . , xk; p1, . . . , pk))(y1, . . . , yk) is smooth by
smoothness of F and Φ. Hence, its pull–back on the
diagonal x1 = y1, . . . , xk = yk is also smooth and reads

F (ϕ+ Φ(x1, . . . , xk; p1, . . . , pk))(x1, . . . , xk) =

c(x1, . . . , xk; p1, . . . , pk)

as the composition of smooth functions and it follows
that c is smooth on JpM�k|U1×···×Uk .

VIII. MULTI-VECTOR FIELDS AND GRADED
FUNCTIONALS

In the quantum theory of gauge fields, especially in the
Batalin-Vilkovisky approach, it is necessary to deal, not
only with functionals as discussed above, but also with
multi-vector fields on the configuration space E (assumed
to be the space of sections of some vector bundle B)16.
Such multi-vector fields can be seen as functionals on the
graded space T ∗[1]E

.
= E⊕E∗[1], where E∗

.
= Γ(M,B∗)

is the space of smooth sections. To make this notion pre-
cise, we use the ideas presented in111 and characterize the

“odd” space E∗[1] through the space of functions on it,
understood as multilinear smooth, totally antisymmet-
ric, functionals. Then we shall make a conjectural claim
on the meaning of locality in that context.

1. Locality of functionals on graded space.

We consider a graded space E0 ⊕ E1[1], where E0 =
Γ(M,B0) and E1 = Γ(M,B1) are spaces of smooth sec-
tions of finite rank vector bundles B0 and B1 over M
respectively. Before giving formal definitions, let us ex-
plain the idea of our construction. We will first define
the space O(E0 ⊕E1[1]) to be space of maps from E0 to
A, where

A .
=

∞∏
k=0

Ak .
=

∞∏
k=0

Γ′a(Mk, B�k1 ) ,

satisfying an appropriate smoothness condition. Let us
clarify the notation Γ′a. We first define the iterated wedge
product of k elements u1,. . . ,uk of the space of distribu-
tional sections Γ′(M,B1) by

〈u1 ∧ · · · ∧ uk, h1 ⊗ · · · ⊗ hk〉 =
∑
σ

(−1)σ〈u1, hσ(1)〉

. . . 〈uk, hσ(k)〉,

where h1,. . . ,hk are sections in Γ(M,B1) and σ runs over
the permutations of {1, . . . , k}. Then, the k-th exterior
power ΛkΓ′(M,B1) is the vector space of finite sums of
such iterated wedge products and Γ′a(Mk, B�k1 ) is the
completion of ΛkΓ′(M,B1) with respect to the topology

of Γ′(M,B1)⊗̂πk ∼= Γ′(Mk, B�k1 ) where all the duals are
strong. The subscript “a” stands for antisymmetry.

In the case of multilinear symmetric functions, we can
identify a k-linear map f(h1, . . . , hk) of k variables with a
polynomial map of one variable f(h, . . . , h) by using the
polarization identity. There is no polarization identity in
the antisymmetric case and we must consider a function
F : E0 → Ak as a function of one variable ϕ0 in E0 and k

variables (h1, . . . , hk) in E1 (or a variable in H ∈ E⊗̂πk1 ).
Then, we can identify a function F : E0 → Ak and the

function F̃ : E0 × E⊗̂πk1 → K defined by

F̃ (ϕ0;h1 ⊗ · · · ⊗ hk) = F (ϕ0)(h1 ⊗ · · · ⊗ hk).

This motivates the following

Definition VIII.1. Let M be a smooth manifold,
(B0, B1) are smooth vector bundles on M and E0 =
Γ(M,B0), E1 = Γ(M,B1) are spaces of smooth sections
of the respective bundles. We say that a function F from
E0 to Ak is an element of Ok(E0⊕E1[1]) if there exists a

Bastiani smooth map F̃ : E0×E⊗̂πk1 → K which is linear

in E⊗̂πk1 and antisymmetric w.r.t. the natural action

of permutations on E⊗̂πk1 such that :

F̃ (ϕ0;h1 ⊗ · · · ⊗ hk) = F (ϕ0)(h1 ⊗ · · · ⊗ hk). (43)
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We denote by O(E0 ⊕ E1[1]) the direct product of all
Ok(E0⊕E1[1]), over k ∈ N0 and set O0(E0⊕E1[1]) ≡ K.

Let us now discuss the notion of derivative for the type
of functionals introduced above. Clearly, if F belongs to
O(E0⊕E1[1]), there are two natural ways to differentiate

it. In the first instance we can differentiate F̃ in the sense
of Bastiani in the first variable (ϕ ∈ E0) and we denote
this derivative as

D0F(ϕ;u)(g)
.
= DF̃(ϕ,u)(g, 0) ,

where u ∈ E⊗̂πk1 → K, g ∈ E0 or δ
δϕ0

F .

2. The contraction operation.

Let us now consider contraction of the graded part
with some h ∈ E1, sometimes referred to as derivations
with respect to odd variables. This concept is needed in
order to define the Koszul complex and the Chevalley-
Eilenberg complex in the Batalin–Vilkovisky formalism
in infinite dimension. The definition is spelled out below.

Definition VIII.2. Let F ∈ Ok(E0 ⊕ E1[1]), h ∈ E1.
The contraction of F by h is defined, for every integer
k > 0 and u ∈ E⊗k−1

1 , by

〈ιhF, u〉 = F̃ (h⊗ u),

and ιhF = 0 if F ∈ A0 .

In particular, ιhF =
〈
F̃ , h

〉
if F ∈ A1. We extend this

definition to A by linearity.

In view of (43) and the definition ofOk(E0⊕E1[1]), it is
clear that ιhF ∈ Ok−1(E0 ⊕ E1[1]) for all F ∈ Ok(E0 ⊕
E1[1]). Equation (43) allows also to make sense of a
second important operation on O(E0 ⊕ E1[1]):

Definition VIII.3. The wedge product ∧ : Ok(E0 ⊕
E1[1])×Ok′(E0⊕E1[1])→ Ok+k′(E0⊕E1[1]) is defined
by(
F̃ ∧G

)
(u1, . . . , uk+k′) =

∑
σ

sgn(σ)F̃ (uσ(1), . . . , uσ(k))

G̃(uσ(k+1), . . . , uσ(k+k′)

(where the sum runs over k − k′ shuffles) and extended
by linearity on O(E0 ⊕ E1[1])×O(E0 ⊕ E1[1]).

Again, in view of (43) and the definition of O(E0 ⊕
E1[1]), it is clear that the wedge product of an element

inOk(E0⊕E1[1]) with an element inOk′(E0⊕E1[1]) is an

element inOk+k′(E0⊕E1[1]). The contraction and wedge
product satisfy the following relation on O(E0 ⊕ E1[1]):

Lemma VIII.4. The contraction satisfies the graded
Leibniz rule: if F ∈ Ok(E0 ⊕ E1[1]), G ∈ O(E0 ⊕ E1[1])
and h ∈ E1, then

ιh(F ∧G) = (ιhF ) ∧G+ (−1)kF ∧ ιhG.

Let us now discuss the notion of support which is the
appropriate generalization of the notion of support for
graded functionals, generalizing the definitions in Sec-
tion III A.

Definition VIII.5. Let F ∈ Ok(U ⊕E1[1]) be a graded
functional, with U an open subset of E0. The support of
F is defined by suppF = A ∪B, where

A =
⋃

(h1,...,hk)∈Ek1

supp (ϕ 7→ (ιh1 . . . ιhkF ) (ϕ))

B =
⋃

ϕ∈U,(h1,...,hk−1)∈Ek−1
1

supp
(
h 7→

(
ιh1

. . . ιhk−1
F (ϕ, h)

))
.

3. Some conjectures on local graded functionals.

Let F ∈ Ok(E0 ⊕ E1[1]) be such that the WF set of

both (ιh1 . . . ιhkF )
(1)
ϕ and ιh1 . . . ιhk−1

F (ϕ, .) is empty for

all ϕ ∈ U and (h1, . . . , hk) ∈ Ek1 . We conjecture that
some version of Lemmas VI.2 and VI.9 should hold in
the graded case. The “standard” characterization of lo-
cality for a functional F ∈ Ok(E0 ⊕ E1[1]) is the re-
quirement that F is compactly supported and for each
(ϕ;u1, . . . , uk) ∈ E0×Ek1 there exists i0, . . . , ik ∈ N such
that

F (ϕ;u1, . . . , uk) =

∫
M

α(ji0x (ϕ), ji1x (u1), . . . , jikx (uk)) ,

(44)
where α is a density-valued function on the jet bundle.
To conclude, we conjecture some graded analogue of
Theorem VI.3 whose formulation would be as follows :
Let U be an open subset of E0 and F ∈ Ok(U ⊕ E1[1])
be a graded functional. Assume that

1. F is additive in some suitable sense, still to be writ-
ten with care (conceivably this would be additivity

of F̃ as a function of several variables).

2. (ιh1
. . . ιhkF )

(1)
ϕ and ιh1

. . . ιhk−1
F (ϕ, .) have

empty wave front set for all ϕ ∈ U
and (h1, . . . , hk) ∈ Ek1 and the maps

(ϕ, u) 7→ (ιh1 . . . ιhkF )
(1)
ϕ , ιh1 . . . ιhk−1

F (ϕ, .)

are Bastiani smooth from U ×
⊕

k∈NE
⊗̂πk
1 to

Γc(M,B∗0) and Γc(M,B∗1), respectively. Here B∗0
and B∗1 denote dual bundles.

Then, for every ϕ ∈ U , u ∈
⊕

k∈NE
⊗̂πk
1 , there is a neigh-

borhood V of the origin in E0, an integer N and a smooth
K-valued function f on the N -jet bundle such that

F (ϕ+ψ; v1⊗· · ·⊗vk) =

∫
M

α(ji0x (ψ), ji1x (v1), . . . , jikx (vk)) ,

(45)
for every ψ ∈ V and some i0, . . . , ik < N .
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