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KAM FOR THE NONLINEAR WAVE EQUATION ON THE CIRCLE:

SMALL AMPLITUDE SOLUTION

MOUDHAFFAR BOUTHELJA

Abstract. In this paper we consider the nonlinear wave equation on the circle:

utt − uxx + mu = g(x, u), t ∈ R, x ∈ S
1,

where m ∈ [1, 2] is a mass and g(x, u) = 4u3 + O(u4). This equation will be treated as a perturbation
of the integrable Hamiltonian:

(∗) ut = v, vt = −uxx + mu.

Near the origin and for generic m, we prove the existence of small amplitude quasi-periodic solutions
close to the solution of the linear equation (∗). For the proof we use an abstract KAM theorem in infinite
dimension and a Birkhoff normal form result.
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1. Introduction and results

1.1. Introduction. We consider the cubic wave equation on the circle:

(1.1) utt − uxx +mu = g(x, u), t ∈ R, x ∈ S
1,

where m ∈ [1, 2] is a mass and g is a real holomorphic function on S
1 × J , for J some neighborhood of

the origin of R. We suppose that the nonlinearity g satisfies

(1.2) g(x, u) = 4u3 +O(u4).

We prove the existence of small amplitude quasi-periodic solutions close to the solution of the linear
equation.

Since the space variable belongs to the circle, we can diagonalize the linear part of the equation in
Fourier basis. So we can study the PDE as a perturbation of an integrable Hamiltonian of the following
form

(�) H =
∑

s∈Z

λsξsηs + Perturbation ,

This work was supported in part by the CPER Photonics4Society and the Labex CEMPI (ANR-11-LABX-0007-01).
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where λs =
√
s2 +m. In order to prove the existence of quasi-periodic solutions, we will use an abstract

KAM theorem in infinite dimension adapted to our situation and proven in [6]. The KAM theory
(Kolmogorov-Arnold-Moser) tells us that, under the effect of a small perturbation and under several
conditions of non resonance, an integrable Hamiltonian system continues to exhibit finite-dimensional
invariant tori in an infinite dimensional space. The existence of these invariant tori gives us the existence
of quasi-periodic solutions. The main issue here is that frequencies λs do not satisfy the standard non
resonance hypotheses 1. In the Dirichlet case, the sum in (�) is restricted to positive indices (see [15]).
In this case, the standard non resonance conditions can be verified with the mass m. In the periodic
case, both positive and negative indices are allowed. Note that λs = λ−s. So we obtain a resonant
Hamiltonian system. For this purpose, the KAM theorem that we will use must deal with the case of
multiple eigenvalues.

The existence of quasi-periodic solutions for nonlinear Hamiltonian PDEs have interested many au-
thors. The first result related to preserving such solutions, after the perturbation of an integrable Hamil-
tonian of infinite dimension, was given by Kuksin in 1987 in [11, 10] for the Schrödinger equation in
dimension 1 with Dirichlet conditions.

Concerning the wave equation, the first result is due to Wayne in [15]. He considered the cubic-wave
equation in dimension 1 with external potential in L2([0, 1]), and with Dirichlet conditions (which leads
to simplicity of the spectrum).

We can also cite the work of Pöschel in [13]. In this paper, the author considers the wave equation in
dimension 1 with mass, homogeneous Dirichlet condition, and analytical cubic nonlinearity that does not
depends on the space variable.

In 1998; Chierchia and You consider in [7] the wave equation in dimension 1 with analytic periodic
potential and an analytic quadratic perturbation that does not depends on the space variable. In this
case, the potential acts as an external parameter. This makes verifying the non resonance conditions
possible. In particular, the authors do not authorize the case of a vanishing potential.

The most recent work is due to Berti, Biasco and Procesi in 2013 in [5]. In this paper, they consider
the derivative wave equation given by:

utt − uxx +mu+ f(Du) = 0, m > 0, D :=
√

−∂2
xx +m, (t, x) ∈ R × T,

where f(s) is a real analytic nonlinearity of the form

f(s) = as3 +
∑

k≥5

fks
k, a 6= 0.

We remark that the nonlinearity is independent of the space variable x. This implies that the moment
−i
∫
T
ū∂xudx is preserved. This symmetry simplifies the proof of the KAM theorem.

In our case, there are no external parameters. The space variable belongs to the circle, so we are in
the periodic case. The non-linearity g depends on the space variable.

The plan of the paper is the following:

• In the first section, we give the main result of the paper (see Theorem 1.3).
• In the second section, we show that, for an admissible set (see definition 1.2), the small divisors
of the wave equation (1.1) admit a positive lower bound. This is proven for m ∈ [1, 2] \ U where
U is zero Lebesgue measure set.

• In the third section, using a Birkhoff normal form, we transform the resonant Hamiltonian asso-
ciated to the equation (1.1) into a Hamiltonian that satisfies the hypotheses of the KAM theorem
(see Theorem 3.7).

• In the fourth section, we state the KAM theorem (see Theorem 4.1), and we verify the non
resonance hypotheses (see Lemma 4.2-4.8).

• In the last part we prove the existence of quasi-periodic solutions of small amplitudes for the
equation (1.1).

1.2. Results. We consider the nonlinear wave equation on the circle (1.1) with g in the form (1.2).
Introducing the change of variable v = u̇, the equation (1.1) becomes:

{
u̇ = v,

v̇ = −Λ2u+ g(x, u),

where Λ := (
√−∂xx +m). Defining ψ := 1√

2
(Λ

1
2u− iΛ− 1

2 v), we get the following equation for ψ̇:

ψ̇ =
1√
2

(
Λ1/2u̇− iΛ−1/2v̇

)
.

1Hypothese likes: |k1λ1 + . . . + knλn| ≥ γ

|k|τ , k ∈ Zn \ {0}.
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We note that u = Λ−1/2
(
ψ+ψ̄√

2

)
; replacing u̇ and v̇ by their expressions yields:

1

i
ψ̇ = Λψ − 1√

2
Λ−1/2g

(
x,Λ−1/2

(
ψ + ψ̄√

2

))
.

Let us endow L2(S1,C) with the classical real symplectic form −idψ ∧ dψ̄ = −du ∧ dv and consider the
following Hamiltonian:

H(ψ, ψ̄) =

∫

S1

(Λψ)ψ̄dx+

∫

S1

G

(
x,Λ−1/2

(
ψ + ψ̄√

2

))
dx,

where G is a primitive of g with respect to u:

g = ∂uG, G(x, u) = u4 + O(u5).

Then, (1.1) becomes a Hamiltonian system:

ψ̇ = i
∂H

∂ψ̄
.

Consider now the complex Fourier orthonormal basis given by {ϕs(x) = eisx
√

2π
, s ∈ Z}. In this base,

the operator Λ is diagonal, and we have:

Λϕs = λsϕs,

with λs =
√
s2 +m. Decomposing ψ and ψ̄ in this basis yields:

ψ =
∑

s∈Z

ξsϕs and ψ̄ =
∑

s∈Z

ηsϕ−s.

By injecting this decomposition into the expression of H , we obtain:

(1.3) H =
∑

s∈Z

λsξsηs +

∫

S1

G

(
x,
∑

s∈Z

ξsϕs + ηsϕ−s√
2λs

)
dx.

Let PC := ℓ2(Z,C) × ℓ2(Z,C) that we endow with the complex symplectic form −i∑s∈Z
dξs ∧ dηs. We

define

PR := {(ξ, η) ∈ PC|ηs = ξ̄s}.
Then, equation (1.1) is equivalent to the following Hamiltonian system on PR:

(1.4)





ξ̇s = i
∂H

∂ηs
,

η̇s = −i∂H
∂ξs

,

for s ∈ Z.
From now, we write H = H2 + P , where

(1.5) H2 =
∑

s∈Z

λsξsηs, and P =

∫

S1

G

(
x,
∑

s∈Z

ξsϕs + ηsϕ−s√
2λs

)
dx.

Remark 1.1. Recall that g(x, u) = 4u3 +O(u4) and g = ∂uG, so we can decompose P into P = P4 +R5

where

P4(ξ, η) =

∫

S1

u4dx =

∫

S1

(∑

s∈Z

ξsϕs + ηsϕ−s√
2λs

)4

dx,

R5(ξ, η, x) = P (ξ, η, x) − P4(ξ, η) = O(‖(ξ, η)‖5).

In addition, P4 reads

P4 =
∑

i,j,k,l∈Z

C(i, j, k, l)(ξi + η−i)(ξj + η−j)(ξk + η−k)(ξl + η−l),

where

C(i, j, k, l) :=

∫

S1

ϕi(x)ϕj(x)ϕk(x)ϕl(x)dx =





1

2π
if i+ j + k + l = 0,

0 otherwise.
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Let A be a finite set of Z of cardinality n, and a vector I = (Ia)a∈A with positive components (i.e.
Ia > 0 for all a ∈ A). Let T nI be the real torus of dimension n defined by

T nI =

{
ξa = η̄a, |ξa|2 = Ia if a ∈ A,
ξs = ηs = 0 if s ∈ L = Z \ A.

This torus is stable by the Hamiltonian flow when the perturbation P is zero. We can even give the
analytic expression of the solution of the linear equation.

Our purpose in all the following is to prove the persistence of the torus T nI when the perturbation P
is no longer zero, while making the crucial assumption that this torus is admissible. A torus is said to be
admissible if it is constructed from an admissible set A.

Definition 1.2. Let A be a finite set of Z. A is admissible if, for all j ∈ A \ {0}, we have −j /∈ A \ {0} .

Let us introduce the sets L = Z \ A and A− = {j ∈ L | − j ∈ A}. In a neighborhood of the invariant
torus T nI in C2n, we define the action-angle variables (ra, θa)A by:

{
ξa =

√
(Ia + ra)eiθa ,

ηa = ξ̄a.

For s ∈ A, we denote by ωs (instead of λs) the internal frequencies. In these new variables and notations,
the quadratic part H2 of H becomes, up to a constant,

H2 =
∑

a∈A
ωara +

∑

s∈L
λsξsηs.

In addition, the perturbation becomes:

P (r, θ, ξ, η) =

∫

S1

G(x, ûI,m(r, θ, ξ, η))dx,

with

ûI,m(r, θ, ξ, η) =
∑

a∈A

√
(Ia + ra)

e−iθaϕa(x) + eiθaϕ−a(x)√
2(a2 +m)1/4

+
∑

s∈L

ξsϕs(x) + η−sϕs(x)√
2(s2 +m)1/4

.

We set uI,m(θ, x) = ûI,m(0, θ, 0, 0). Then, for any I ∈ RA
+ , m ∈ [1, 2] and θ0 ∈ S1, the function

(t, x) 7→ uI,m(θ0 + tω, x) is solution of the linear wave equation. In this case, the torus T nI is stable by the
Hamiltonian flow. Our goal is to state a similar result when the perturbation is not zero (in the nonlinear
case).

Theorem 1.3. Let α > 1/2. Assume that A is an admissible set of cardinality n. Assume also that the
perturbation g is real holomorphic on a neighborhood of S1 × J with J some neighborhood of the origin
of R and reads g(x, u) = 4u3 +O(u4). There exists a Borel subset U ⊂ [1, 2] with zero Lebesgue measure,
such that for m ∈ ([1, 2] \ U), there exists ν0 that depends on A, m, and the nonlinearity g, such that:

For 0 < ν ≤ ν0 there exists a Borel set D′ ⊂ [ν, 2ν]n asymptotically of full Lebesgue measure,i.e.

mes ([ν, 2ν]
n \ D′) ≤ νn+γ ,

with γ > 0 and depending on n. For m ∈ ([1, 2] \ U) and I ∈ D′, there exists:
(1) a function u(θ, x) analytic in θ and of class Hα in x ∈ S1 such that:

sup
θ∈R

‖ u(θ, .) − uI,m(θ, .) ‖Hα ≤ Cν4/5,

with C an absolute constant.
(2) a mapping ω′ : ([1, 2] \ U) × D′ → Rn verifying:

ω′ = ω +MI +O(ν3/2),

such that for any m ∈ ([1, 2] \ U) and I ∈ D′ the function

t 7→ u(θ + tω′, x)

is solution of the wave equation (1.1). This solution is linear stable.

The rest of the paper will be devoted to the proof of this theorem.
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2. Small divisors

2.1. Non resonance of frequencies. In this section, we assume that A is an admissible set as in
Definition 1.2.
We consider the frequency vector

ω ≡ ω(m) = (ωa(m))a∈A,

with ωa(m) =
√
a2 +m. The main and only result of this section is the following:

Proposition 2.1. Consider an admissible set A of cardinality n that verifies A ⊂ {a ∈ Z | |a| ≤ N,N ≥
1}. Then, for any k ∈ ZA \ {0}, any χ > 0 and any c ∈ R, we have

mes

{
m ∈ [1, 2] |

∣∣∣∣∣
∑

a∈A
kaωa(m) + c

∣∣∣∣∣ ≤ χ

}
≤ C

N2n2

χ1/n

|k| ,

with |k| :=
∑

a∈A |ka| and C > 0 is a constant that depends only on n.

The proof uses the same arguments as in Theorem 6.5 of [2] (see also [1] and [3]). For clarity, we recall
the main steps of the proof.

Lemma 2.2. Assume that A ⊂ {a ∈ Z | |a| ≤ N}. For any p ≤ n := Card(A), consider a1, · · · , ap ∈ A.
The the following determinant

D :=

∣∣∣∣∣∣∣∣∣∣∣

dωa1

dm

dωa2

dm . . .
dωap

dm
d2ωa1

dm2

d2ωa2

dm2 . . .
d2ωap

dm2

. . . . . .

. . . . . .
dpωa1

dmp

dpωa2

dmp . . .
dpωap

dmp

∣∣∣∣∣∣∣∣∣∣∣

verifies

(2.1) |D| ≥ CN−2p2

,

where C = C(p) > 0 is a constant that depends only on p.

Proof. An explicit computation gives

(2.2)
djωi
dmj

=
(2j − 2)!

22j−1(j − 1)!

(−1)j+1

(a2
i +m)j−

1
2

.

Inserting this formula inD, by factoring from each l-th column (a2
ℓ+m)−1/2, and from j-th row (2j−2)!

22j−1(j−1)! ,

the determinant is equal up to a sign to

[
p∏

l=1

ω−1
aℓ

]


p∏

j=1

(2j − 2)!

22j−1(j − 1)!


×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
xa1 xa2 xa3 . . . xap

x2
a1

x2
a2

x2
a3

. . . x2
ap

. . . . . . .

. . . . . . .

. . . . . . .
xpa1

xpa2
xpa3

. . . xpap

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where xa := (a2 +m)−1 ≡ ω−2
a . The above determinant is a Vandermonde determinant. It is equal to

∏

1≤l<k≤p
(xaℓ

− xak
) =

∏

1≤l<k≤p

a2
k − a2

ℓ

ω2
aℓ
ω2
ak

.

The set A is admissible, so
∣∣∣
∏

1≤l<k≤p(a
2
k − a2

ℓ)
∣∣∣ ≥ 1. Since |a| ≤ N , then for any a ∈ A we have

|ωa| ≤ 2N . Therefore:

p∏

l=1

ω−1
aℓ

∏

1≤l<k≤p

1

ω2
aℓ
ω2
ak

≥ 1

2p(2p−1)

1

Np(2p−1)
≥ 1

2p(2p−1)

1

N2p2 ,

which leads to (2.1). �

We need the following proposition, presented in appendix B of [4].
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Lemma 2.3. Let
(
u(1), . . . , u(p)

)
be p independent vector in Rn such that ‖u(j)‖ℓ1 ≤ K for j ∈ [1, . . . , p].

Let w be a linear combination of u(1), . . . , u(p). There exists j ∈ [1, . . . , p] such that:

(2.3) |u(j) · w| ≥ ‖w‖ℓ2Vp
(
u(1), . . . , u(p)

)

pKp−1
,

where Vp
(
u(1), . . . , u(p)

)
denotes the Euclidean volume of the parallelepiped generated by the p vectors

u(1), . . . , u(p).

Recall that, for m ∈ [1, 2], the internal frequency vector is given by

ω(m) ≡ (ωa(m))a∈A = (
√
a2 +m)a∈A.

Corollary 2.4. Let n = Card(A) and w a nonzero vector in R
n. Then, for any m ∈ [1, 2], there exists

j ∈ [1, ..., n] such that ∣∣∣∣w · d
jω

dmj
(m)

∣∣∣∣ ≥ CN−2n2‖w‖ℓ1 ,

where C > 0 is a constant that depends only on n.

Proof. From Lemma 2.2,
(
dω
dm(m), . . . , d

nω
dmn (m)

)
is a basis of Rn. Therefore w is as a linear combination

of these vectors. According to Lemma 2.3, there exists j ∈ [1 . . . , n] such that
∣∣∣∣w · d

jω

dmj
(m)

∣∣∣∣ ≥ ‖w‖ℓ2Vn
(
dω
dm(m), . . . , d

nω
dmn (m)

)

nKn−1

≥ ‖w‖ℓ1Vn
(
dω
dm(m), . . . , d

nω
dmn (m)

)

n3/2Kn−1
.

Note that
(
dω
dm(m), . . . , d

nω
dmn (m)

)
is a n-family vector in Rn. So

Vn
(
dω

dm
(m), . . . ,

dnω

dmn
(m)

)
= D,

where D is the determinant defined in the Lemma 2.2. Let us now give the expression of K. For
j ∈ [1, . . . n] we have

∥∥∥∥
djω

dmj
(m)

∥∥∥∥
ℓ1

=
∑

1≤k≤n

∣∣∣∣
(2j − 2)!

22j−1(j − 1)!

(−1)j+1

(k2 +m)j−
1
2

∣∣∣∣

≤
∑

1≤k≤n

(2n− 2)!

(n− 1)!
=
n(2n− 2)!

(n− 1)!
=: K.

Then ∣∣∣∣w · d
jω

dmj
(m)

∣∣∣∣ ≥ (n− 1)!

n5/2(2n− 2)!
D‖w‖ℓ1 ≥ CN−2n2 ‖w‖ℓ1 ,

which ends the proof of the corollary. �

We need the following lemma 2.1 from [16]:

Lemma 2.5. Assume that g(τ) is a p-th differentiable on J ⊂ R. For h > 0, we define the open set Jh

Jh := {τ ∈ J | |g(τ)| < h} .
If |g(p)(τ)| ≥ d > 0, for τ ∈ J , then

(2.4) mes(Jh) ≤ Mh1/p,

where M := 2(2 + 3 + ...+ p+ d−1).

Now we have all the tools to give a proof of the Proposition 2.1.

Proof of Proposition 2.1. Let k ∈ Rn, where n = Card(A), and consider the function g ∈ C∞([1, 2],R)
defined by:

g(m) = k · ω(m) + c.

From Corollary 2.4, there exists j ∈ [1 . . . n] such that
∣∣∣∣k · d

jω

dmj
(m)

∣∣∣∣ ≥ CN−2n2 |k|.

Using Lemma 2.5 with h = CN−2n2 |k|, we obtain

mes {m ∈ [1, 2] | |k · ω(m) + c| ≤ χ} ≤ Mχ1/n,

where M ≤ C̃N2n2 |k|−1. The constant C̃ is strictly positive and depends only on n. This ends the proof
of the proposition. �
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2.2. Small Divisors Estimates. For m ∈ [1, 2], recall that the internal frequencies are denoted by

ω ≡ ω(m) = (
√
a2 +m)a∈A, while the external frequencies are denoted by λs ≡ λs(m) =

√
s2 +m for

s ∈ L = Z \ A. We Note that for s ∈ L \ {0} we have

(2.5) |λs(m) − |s|| ≤ m

2|s| .

We Recall that A− := {s ∈ L | −s ∈ A}. We denote by L∞ the complementary of A− in L and n the
cardinality of A.

In this part, we will give a lower bound of the modulus of the following small divisors:

D0 =ω · k, k ∈ Z
n \ {0},

D1 =ω · k + λa, k ∈ Z
n, a ∈ L,

D2 =ω · k + λa + λb, k ∈ Z
n, a, b ∈ L,

D3 =ω · k + λa − λb, k ∈ Z
n, a, b ∈ L.

Definition 2.6. Let k ∈ Zn, a, b ∈ L.
(i) The vector k is D0 resonant if k = 0.
(ii) The couple (k; a) is D1 resonant if |a| = |s| where s ∈ A and ω · k = −ωs
(iii) The triplet (k; a, b) is D2 resonant if |a| = |s|, |b| = |s′| where s, s′ ∈ A and ω · k = −ωs − ωs′

(iv) The triplet (k; a, b) is D3 resonant if |a| = |s|, |b| = |s′| where s, s′ ∈ A and ω · k = −ωs + ωs′ .

Remark 2.7. Note that (k; a, b) can be D2 or D3 resonant only if (a, b) ∈ A− × A−. Similarly, (k; a)
can be D1 resonant only if a ∈ A−.

Our goal is to give a lower bound to the modulus of small divisors D0, D1, D2 and D3 when they are
not resonant, for m ∈ [1, 2] \ C, with C an open set of zero Lebesgue measure. In this section, C will
denotes a constant that depends only on the admissible set A. Let us start with the small divisors D0,
D1 and D2.

Proposition 2.8. Let κ > 0 and an integer N > 1. Then there is an open set C ⊂ [1, 2] that verifies

mes (C) ≤ CκτN ι,

where τ, ι > 0 and depend only on n = Card (A), such that for all m ∈ ([1, 2] \ C), all 0 < |k| ≤ N and
all a, b ∈ L we have:

(2.6) |ω · k| ≥ κ,

except when k is D0 resonant;

(2.7) |ω · k + λa| ≥ κ〈a〉,
except when (k; a) is D1 resonant;

(2.8) |ω · k + λa + λb| ≥ κ (〈a〉 + 〈b〉) ,
except when (k; a, b) is D2 resonant. The constant C depends only on the admissible set A.

Proof. We start by proving (2.6). Let κ > 0 and an integer N > 1. Consider

U = {m ∈ [1, 2] | |ω · k| < κ, k ∈ Z
n for 0 < |k| ≤ N}.

For k ∈ Zn we consider the sets:

Uk = {m ∈ [1, 2] | |ω · k| < κ}
and

B0 = {k ∈ Z
n||k| ≤ N}.

Then

U =
⋃

k∈B0

Uk.

Thanks to Proposition 2.1, we have mes (Uk) ≤ C κ1/n

|k| . We Note that there are at most Nn points in B0.

So we obtain:

mes (U) ≤ Cκ1/nNn.

Let us now look at the second small divisor (2.7). Consider

CA =
(
max{|a| | a ∈ A}2

)1/2
.

There are two cases: if |a| ≥ 2CAN , then

|ω · k + λa| ≥ λa − |ω · k| ≥ |a| − CA|k| ≥ |a| − 1

2
|a| ≥ κ〈a〉,

7
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for 0 < κ ≤ 1/2. If |a| < 2CAN , let

V = {m ∈ [1, 2] | |ω · k + λa| < κ〈a〉, (k; a) ∈ L × Z
n

with 0 ≤ |k| ≤ N and (k; a) non D1 resonant }.
We want to give an upper bound of the Lebesgue measure of V . Consider for k ∈ Zn and a ∈ L the sets

Vk,a = {m ∈ [1, 2] | |ω · k + λa| < κ〈a〉, (k; a) non D1 resonant }
and

B1 = {(k, a) ∈ Z
n × L||k| ≤ N et |a| < 2CAN}.

Then we have

(2.9) V ⊂
⋃

(k,a)∈B1

Vk,a.

We note that there are at most 4CANn+1 points in B1. It remains to give an upper bound of the Lebesgue
measure of Vk,a. There are two cases:

• If {a,−a} 6⊂ A, then A′ = A ∪ {a} is still an admissible set of cardinality n+ 1. In addition, we
have A′ ⊂ {a ∈ Z | |a| ≤ CN}. Applying Proposition 2.1 to the new admissible set, we have

mes (Vk,a) ≤ C
κ1/(n+1)N2(n+1)2+1/(n+1)

|k + 1| .

• If |a| ∈ A but (k; a) is not D1 resonant, then by applying Proposition 2.1 without changing A we
have

mes (Vk,a) ≤ C
κ1/nN2n2+1/n

|k| .

So

mes (V) ≤ Cκ1/(n+1)N (n+1)(2n+3)+1/(n+1).

With the same argument we show (2.8). We end the proof of Proposition 2.8 by taking C = U ∪ V ∪ W
where W is the open set where (2.8) is not verified. �

It remains to control D3 = ω · k + λa − λb.

Lemma 2.9. Let κ̃ ∈]0, 1] and an integer N > 1. We have

mes{m ∈ [1, 2] | |ω · k − e| < 2κ̃, (k, e) ∈ Z
n+1 for 0 < |k| ≤ N} ≤ Cκ̃

1
nNn+1,

where C > 0 and depends only on the admissible set A.

Proof. Let (k, e) ∈ Zn × Z such that 0 < |k| ≤ N . Using Proposition 2.1, we have

mes{m ∈ [1, 2] | |ω · k − e| < 2κ̃, } ≤ C
κ̃

1
n

|k| .

Since κ ≤ 1, we can restrict ourselves to

|e| ≤ |ω · k − e| + |ω · k| ≤ CN.

Then

mes
⋃

|k|≤N

(k,e)∈Zn+1

{m ∈ [1, 2] | |ω · k − e| < 2κ̃} ≤ CNn+1κ̃
1
n .

The proof is thus concluded. �

Proposition 2.10. Let κ > 0 and an integer N > 0. Then there is an open set C ⊂ [1, 2] satisfying

mes (C) ≤ CκτN ι,

where τ and ι are two strictly positive exponents which depend only on n = Card (A), such that for all
m ∈ ([1, 2] \ C), all 0 < |k| ≤ N and all a, b ∈ L we have

(2.10) |ω · k + λa − λb| ≥ κ(1 + ||a| − |b||),
except when (k; a, b) is D3 resonant. The constant C depends only on the admissible set A.

8
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Proof. Using (2.5) for |b| ≥ |a| > 0, we remark that

|λa − λb − (|a| − |b|)| ≤ m

|a| ≤ 2|a|−1.

So we have

|ω · k + λa − λb| ≥ |ω · k + |a| − |b|| − 2|a|−1.

In Lemma 2.9, we denote κ̃ = κ̺̄ where ̺ is an exponent in ]0, 1[ which will be determined later. According

to this Lemma, there is an open set C1 = C1(N, κ̺̄) whose Lebesgue measure is smaller than Cκ̄
̺
nNn+1,

where C is a constant that depends on A. For all m ∈ ([1, 2] \ C1), all 0 < |k| ≤ N and all a, b ∈ L where
|b| ≥ |a| ≥ 2κ̄−̺, we have:

(2.11) |ω · k + λa − λb| ≥ κ̺̄ ≥ κ̄.

Let us look at the remaining cases where the previous estimate does not hold. These cases are included
in the set:

C2 =
{
m ∈ [1, 2] | |ω · k + λa − λb| < κ̄, (a, b) ∈ L2, |a| ≤ 2κ̄−̺, 0 < |k| ≤ N

}
.

We note that, if |ω · k + λa − λb| < κ̄, |a| ≤ 2κ̄−̺ and |k| ≤ N , then we have:

|b| ≤ λb ≤ |ω · k + λa − λb| + |ω · k| + λa

≤ 2κ−̺ + (CA + 3)N,

where CA =
(
max{|a| | a ∈ A}2

)1/2
. Consider the set

B = {(a, b) ∈ Z
2 | |a| ≤ |b| ≤ 2κ̄−̺ + (CA + 3)N}.

There are at most 4(2κ̄−̺ + (CA + 3)N)2 points in B. So we have

C2 ⊂ {m ∈ [1, 2] | |ω · k + λa − λb| < κ̄, (a, b) ∈ B, 0 < |k| ≤ N} := C3

Recall that L∞ = L \ A− where A− = −A. For a ∈ L, we define the set ]a[ by : ]a[= {a} if a ∈ L∞ and
]a[= ∅ if a ∈ A−. We define

A′ = A∪]a[∪]b[.

The set A′ is admissible. In addition, we have

A′ ⊂ {a ∈ Z | |a| ≤ C
(
2κ̄−̺ + (CA + 3)N

)
}.

The triplet (k; a, b) is D3 non resonant. By applying the Proposition 2.1 with the admissible set A′,
we have:

mes (C2) ≤ mes (C3) ≤ Cκ̄1/(n+2)Nn
(
2κ̄−̺ + (CA + 3)N

)2(n+2)2

Card B
≤ Cκ̄1/(n+2)κ̄−2̺((n+2)2+1)N (n+2)(2n+5).

Let

̺ =
1

4 ((n+ 2)2 + 1) (n+ 2)
, τ =

1

2(n+ 2)
, ι′ = (n+ 2)(2n+ 5),

and consider C = C1 ∪ C2, then we have:

mes (C) ≤ Cκ̄τN ι′ .

Moreover, for all m ∈ [1, 2] \ C4, all 0 < |k| ≤ N and all a, b ∈ L non D3 resonant, the estimation (2.11)
is satisfied.

To conclude the proof of the proposition, we need to estimate the difference ||a| − |b||. Without loss of
generality, assume that |a| > |b|.

• If |a| − |b| ≥ 8CAN ≥ 8|ω · k|, then for m ∈ [1, 2] and 0 < |k| ≤ N , we have:

|ω · k + λa − λb| ≥ λa − λb − |ω · k| ≥ 1

4
(|a| − |b|) − |ω · k|

≥ 1

8
(|a| − |b|) ≥ 1

16
(1 + |a| − |b|) ≥ κ(1 + |a| − |b|),

if we assume that κ ≤ 1
16 .

• If |a| − |b| < 8CAN , then for m ∈ [1, 2] \ C, we have:

|ω · k + λa − λb| ≥ κ̄

1 + 8CAN
(1 + |a| − |b|)

≥ κ(1 + |a| − |b|).
9
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Thus, for all m ∈ [1, 2] \ C, all 0 < |k| ≤ N and all a, b ∈ L non D3 resonant, the estimation (2.10) holds.
Moreover,

mes (C) ≤ CκτN ι′+τ = CκτN ι.

�

It remains to treat the case where k = 0 in D3.

Lemma 2.11. Let m ∈ [1, 2] and a, b ∈ L such that |a| 6= |b|. Therefore

|λa − λb| ≥ 1

8
(1 + ||a| − |b||).

Proof. Without loss of generality, assume that |a| > |b|. Then for all m ∈ [1, 2], we have:

λa − λb =
(|a| − |b|)(|a| + |b|)√
a2 +m+

√
b2 +m

≥ 1

4
(|a| − |b|) ≥ 1

8
(1 + ||a| − |b||),

which concludes the proof. �

3. Normal form

In this section, we construct a symplectic change of variable that puts the Hamiltonian (1.5) in normal
form to which we can apply our KAM theorem.

3.1. Class of Hamiltonian function. In this part, we begin by recalling some notations introduced in
[6]. For L a set of Z and α ≥ 0, we define the ℓ2 weighted space:

Yα :=

{
ζ =

(
ζs =

(
ξs
ηs

)
∈ C

2, s ∈ L
)

| ‖ζ‖α < ∞
}
,

where
‖ζ‖2

α =
∑

s∈L
|ζs|2〈s〉2α, où 〈s〉 = max(|s|, 1).

We endow C2 with the euclidean norm, i.e. if ζs = t(ξs, ηs) then |ζs| =
√

|ξs|2 + |ηs|2.
For β ≥ 0, we define the ℓ∞ weighted space

Lβ =

{(
ζs =

(
ξs
ηs

)
∈ C

2, s ∈ L
)

| |ζ|β < ∞
}
,

where
|ζ|β = sup

s∈L
|ζs|〈s〉β .

We remark that for, β ≤ α, we have Yα ⊂ Lβ.
Infinite matrices. Consider the orthogonal projector Π defined on the set of square matrices by

Π : M2×2(C) → S,

where

S = CI + Cσ2, with σ2 =

(
0 −1
1 0

)
.

We introduce M the set of infinite symmetric matrices A : L×L → M2 (R), that verify, for any s, s′ ∈ L,
As

′

s ∈ M2 (R), As
′

s = tAss′ and ΠAs
′

s = As
′

s .

We also define Mα, a subset of M, by:

A ∈ Mα ⇔ |A|α := sup
s,s′∈L

〈s〉α〈s′〉α‖As′

s ‖∞ < ∞.

Let n ∈ N, ρ > 0 and B be a Banach space. We define:

T
n
ρ = {θ ∈ C

n/2πZn| |Imθ| < ρ}
and

Oρ (B) = {x ∈ B|‖x‖B < ρ} .
For σ, µ ∈ ]0, 1[, we define

Oα(σ, µ) = T
n
σ × Oµ2 (Cn) × Oµ(Yα) = {(θ, r, ζ)},

Oα,R(σ, µ) = Oα(σ, µ) ∩ {Tn × R
n × Y R

α },

where Y R
α =

{
ζ ∈ Yα | ζ =

(
ζs =

(
ξs
ηs

)
, ξs = η̄s s ∈ L

)}
.

Let us denote a point in Oα(σ, µ) as x = (θ, r, ζ). A function on Oα(σ, µ) is real if it has a real value for
any real x. We define:

‖(r, θ, ζ)‖α = max(|r|, |θ|, ‖ζ‖α).
10
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Class of Hamiltonian functions. Let D be a compact set of Rp, called the parameters set from
now on. Let f : Oα(δ, µ) × D → C be a C1 function, real and holomorphic in the first variable, such that
for all ρ ∈ D, the maps

Oα(δ, µ) ∋ x 7→ ∇ζf(x, ρ) ∈ Yα ∩ Lβ

and

Oα(δ, µ) ∋ x 7→ ∇2
ζf(x, ρ) ∈ Mβ,

are holomorphic. We define:

|f(x, .)|D = sup
ρ∈D

|f(x, ρ)| ,
∥∥∥∥
∂f

∂ζ
(x, .)

∥∥∥∥
D

= sup
ρ∈D

‖∇ζf(x, ρ)‖α ,
∣∣∣∣
∂f

∂ζ
(x, .)

∣∣∣∣
D

= sup
ρ∈D

|∇ζf(x, ρ)|β ,
∣∣∣∣
∂2f

∂ζ2
(x, .)

∣∣∣∣
D

= sup
ρ∈D

∣∣ ∇2
ζf(x, ρ)

∣∣
β
.

We denote by T α,β(D, σ, µ) the space of functions f that verify, for all x ∈ Oα(σ, µ), the following
estimates:

|f(x, .)|D ≤ C,

∥∥∥∥
∂f

∂ζ
(x, .)

∥∥∥∥
D

≤ C

µ
,

∣∣∣∣
∂f

∂ζ
(x, .)

∣∣∣∣
D

≤ C

µ
,

∣∣∣∣
∂2f

∂ζ2
(x, .)

∣∣∣∣
D

≤ C

µ2
.

For f ∈ T α,β(D, σ, µ), we denote by JfKα,βσ,µ,D the smallest constant C that satisfies the above estimates.

If ∂jρf ∈ T α,β(D, σ, µ) for j ∈ {0, 1}, then for γ > 0 we define:

JfKα,β,γσ,µ,D = JfKα,βσ,µ,D + γJ∂ρfKα,βσ,µ,D.

We also denote by

T α,β(µ) =
{
f(ζ) | f ∈ T α,β(D, σ, µ)

}
,

the set of functions of T α,β(D, σ, µ) that do not depend on r, θ and ρ. The norm of such functions will
be denoted by JfKα,βµ .

We finish this part by defining the space T α,β+(D, σ, µ). Consider the following spaces

Lβ+ = {ζ = (ζs = (ps, qs) , s ∈ L) | |ζ|β+ < ∞},
where |ζ|β+ = sup

s∈L
|ζs|〈s〉β+1, and

Mβ+ = {A ∈ M| |A|β+ < ∞},
where |A|β+ = sup

s,s′∈L
(1 + | |s| − |s′| |)〈s〉β〈s′〉β‖As′

s ‖∞.

We remark that Lβ+ ⊂ Lβ and Mβ+ ⊂ Mβ . We define T α,β+(D, σ, µ) the same way that we defined
T α,β(D, σ, µ), but replacing Lβ by Lβ+ and Mβ by Mβ+. So, we have T α,β+(D, σ, µ) ⊂ T α,β(D, σ, µ).
For f, g ∈ T α,β(µ), we define the Poisson bracket by:

{f, g} = i〈∇ζf, J∇ζg〉.
Lemma 3.1. Consider f ∈ T α,β(µ) and g ∈ T α,β+(µ). Then, for any 0 < µ′ < µ, {f, g} ∈ T α,β(µ′), we
have:

J{f, g}Kα,βµ′ ≤ C

µ(µ− µ′)
JfKα,βµ JgKα,β+

µ ,

where the constant C depends on α on β.

For the proof, we recall the following lemma from [14] (appendix A).

Lemma 3.2. Let E and F be two complex Banach spaces, f : E → F and v ∈ E. Assume that there
exists r > 0 such that f is holomorphic on the open ball of center v and radius r and satisfies ‖f‖F ≤ M
on this ball. Then dvf ∈ L(E,F ), and we have:

‖dvf‖L(E,F ) ≤ M

r
.

Proof of Lemma 3.1. Let x ∈ Oµ′(Yα). Our goal is to prove that

(i) |{f, g} (x)| ≤ C

µ(µ− µ′)
JfKα,βµ JgKα,β+

µ ;

(ii) ‖∇ζ {f, g} (x)‖α ≤ C

µµ′(µ− µ′)
JfKα,βµ JgKα,β+

µ ;

(iii) |∇ζ {f, g} (x)|β ≤ C

µµ′(µ− µ′)
JfKα,βµ JgKα,β+

µ ;

(iv) |∇2
ζ {f, g} (x)|β ≤ C

µµ′2(µ− µ′)
JfKα,βµ JgKα,β+

µ .

11
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Let us begin with the first estimation (i). We have

|{f, g} (x)| = |〈∇ζf(x), J∇ζg(x)〉| ≤ ‖∇ζf(x)‖α‖J∇ζg(x)‖α

≤ 1

µ2
JfKα,βµ JgKα,β+

µ

≤ 1

µ(µ− µ′)
JfKα,βµ JgKα,β+

µ .

Let us now turn to the ζ-gradient of the Poisson bracket:

∇ζ {f, g} (x) = 〈∇2
ζf(x), J∇ζg(x)〉 + 〈∇ζf(x), J∇2

ζg(x)〉 =: Σ1 + Σ2.

For Σ1, we have ∇ζf : Oµ′(Yα) → Yα. Moreover, x 7→ ∇ζf(x) is holomorphic, so ∇2
ζf(x) ∈ L(Yα, Yα) for

x ∈ Oµ′(Yα). Using Lemma 3.2, we have:

‖Σ1‖α ≤ ‖∇2
ζf(x)‖L(Yα,Yα)‖J∇ζg(x)‖α

≤ 1

µ− µ′ sup
y∈Oµ(Yα)

(‖∇ζf(y)‖α) ‖∇ζg(x)‖α

≤ 1

µ2(µ− µ′)
JfKα,βµ JgKα,β+

µ

≤ 1

µµ′(µ− µ′)
JfKα,βµ JgKα,β+

µ .

We use the same arguments for Σ2, which ends the proof of (ii). To prove (iii), we use estimations 2. and
3. from Lemma 2.1 in [6]. So we have:

|∇ζ {f, g} (x)|β ≤
∣∣〈∇2

ζf(x), J∇ζg(x)〉
∣∣
β

+
∣∣〈∇ζf(x), J∇2

ζg(x)〉
∣∣
β

≤ C
∣∣∇2

ζf(x)
∣∣
β

|J∇ζg(x)|β+ + C |∇ζf(x)|β
∣∣J∇2

ζg(x)
∣∣
β+

≤ C

µ3
JfKα,βµ JgKα,β+

µ

≤ C

µµ′(µ− µ′)
JfKα,βµ JgKα,β+

µ .

It remains to prove estimation (iv). We start by computing the second derivative of the Poisson bracket:

∇2
ζ {f, g} (x) = 〈∇3

ζf(x), J∇ζg(x)〉 + 〈∇2
ζf(x), J∇2

ζg(x)〉
+ 〈∇2

ζf(x), J∇2
ζg(x)〉 + 〈∇ζf(x), J∇3

ζg(x)〉
=: Γ1 + Γ2 + Γ3 + Γ4.

For Γ1, we have ∇2
ζf : Oµ′(Yα) → Mβ . Moreover, x 7→ ∇2

ζf(x) is holomorphic, so ∇3
ζf(x) ∈ L(Yα,Mβ)

for x ∈ Oµ′(Yα). By Lemma 3.2, we have

|Γ1| ≤ ‖∇3
ζf(x)‖L(Yα,Mβ)|J∇ζg(x)‖α

≤ 1

µ− µ′ sup
y∈Oµ(Mβ)

∣∣∇2
ζf(y)

∣∣
β

‖∇ζg(x)‖α

≤ 1

µ3(µ− µ′)
JfKα,βµ JgKα,β+

µ

≤ 1

µµ′2(µ− µ′)
JfKα,βµ JgKα,β+

µ .

We use the same arguments for Γ4. It remains to estimate Γ2 and Γ3. The two cases are treated in the
same way. Let us look for example at Γ3. Using the first estimation from Lemma 2.1 in [6], we have

|Γ3| ≤ C
∣∣∇2

ζf(x)
∣∣
β

∣∣∇2
ζg(x)

∣∣
β+

≤ C

µ4
JfKα,βµ JgKα,β+

µ

≤ C

µµ′2(µ− µ′)
JfKα,βµ JgKα,β+

µ .

The proof is thus concluded. �

Consider g a C1-function on Oµ(Yα). We denote by Φg the Hamiltonian flow of g at t = 1, i.e.

ζ = ζ(1) = Φg(ζ0) = Φt=1
g (ζ0),

12



KAM FOR THE NLW EQUATION ON THE CIRCLE: SMALL AMPLITUDE SOLUTION

where
ζ̇ = iJ∇ζg(ζ) and ζ(0) = ζ0.

Corollary 3.3. Let f ∈ T α,β(µ), g ∈ T α,β+(µ) and 0 < µ′ < µ such that:

JgKα,β+
µ ≤ 1

C
µ(µ− µ′).

Then Φg : Oµ′(Yα) → Oµ(Yα) and f ◦ Φg ∈ T α,β(µ′). In addition, we have:

(3.1) Jf ◦ ΦgK
α,β
µ′ ≤ C′JfKα,βµ ,

where C is a constant that depends on α and β while C′ is an absolute constant.

Proof. Let us first prove that Φg is well-defined and that Φg : Oµ′(Yα) → Oµ(Yα). Consider

t̄ = sup{t > 0 | ζ(a) is well-defined for 0 ≤ a ≤ t and ‖ζ(a)‖α < µ}.
Let us prove that t̄ ≥ 1. We have:

ζ(a) = ζ0 + i

∫ a

0

J∇ζg(ζ(s))ds.

Recall that g ∈ T α,β+(µ), then for ζ ∈ Oµ(Yα) we have

‖∇ζg(ζ)‖α ≤ JgKα,β+
µ

µ
≤ 1

C
(µ− µ′).

It follows that, for a = 1,

‖ζ(a)‖α ≤ ‖ζ0‖α +
a

C
(µ− µ′)

≤ µ′ +
a

C
(µ− µ′) < µ,

We deduce that t̄ ≥ 1, Φg is well-defined and Φg : Oµ′(Yα) → Oµ(Yα). Let us prove now that f ◦ Φg ∈
T α,β(µ′), as well as the estimation (3.1). We recall that, for two holomorphic functions f and g, we have:

f ◦ Φg = f + {f, g} +
1

2!
{{f, g} , g} +

1

3!
{{{f, g} , g} , g} + . . .

=
∑

n≥0

1

n!
Png f,

where P 0
g f = f , P 1

g f = {f, g} et P 2
g f = {{f, g} , g} . . .

Using Lemma 3.1, we have:

JPng fKα,βµ′ ≤ CnJfKα,βµ
(
µ(µ− µ′)JgKα,β+

µ

)n
.

Thanks to the assumption made on g, we obtain that f ◦ Φg is a convergent series. So f ◦ Φg ∈ T α,β(µ′)
and satisfies estimation (3.1). �

We define the real finite-dimensional torus:

(3.2) Tρ =
{
ζ = ((ξs, ηs), s ∈ Z)| ξs = η̄s, |ζa|2 = νρa si a ∈ A, ξs = 0 si s ∈ L

}
,

where ν > 0 is small and ρ = (ρa, a ∈ A) is a parameter vector that belongs to D = [1, 2]
A
.

Let n = Card(A). The n-dimensional torus Tρ is invariant for the linear wave equation. We wish to
put the Hamiltonian H2 + P in a suitable normal form to which we will apply the KAM theorem 4.1.
This normal form will be defined on tori constructed on the space Yα and in the vicinity of the real torus
Tρ.
In the vicinity of the real torus Tρ, we change from variables (ζa, a ∈ A) to action-angle variables defined
by:

ξa =
√
Iae

iθa , ηa =
√
Iae

−iθa , a ∈ A.
So we change from variables (ξ, η) to the new variables (I, θ, ξ, η) where I = (Ia, a ∈ A), θ = (θa,∈ A),

ξ = (ξs,∈ L) and η = (ηa, a ∈ L). The new variable vector is real if I = Ī, θ = θ̄, and ξ = η̄.
We now define a complex toroidal vicinity of the real torus Tρ by

(3.3) Tρ = Tρ(ν, σ, µ, α) =
{

(I, θ, ξ, η)| |I − νρ| < νµ2, |Imθ| < σ, ‖ζL‖α < ν1/2µ
}
,

where I = (Ia, a ∈ A), θ = (θa,∈ A), ζL = (ζs,∈ L).

Lemma 3.4. Assume that g is a real holomorphic fuction on S1 × J , for J some neighborhood of the
origin on R. Let α > 0 and ν > 0 small. There exist σ∗ > 0 and µ∗ > 0 such that the perturbation P is
well-defined and analytic on Tρ(ν, σ, µ, α) for 0 < σ ≤ σ∗ and 0 < µ ≤ µ∗. The parameters σ∗ and µ∗

depend on the nonlinearity g, the admissible set A, ν and α.
13
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Remark 3.5.

- We can fix σ∗ ( σ∗ = 1 for example) and explicitly determine µ∗.
- For small ν, we have:

Tρ(ν, σ, µ, α) ⊂ Oα (σ, µ∗) .

Proof. The nonlinearity g is real holomorphic on S1 × J , for J some neighborhood of the origin on R.
Assume that I = [−M,M ] for M > 0. We can extend holomorphically g on S1 × IC, for some IC of the
form

IC = {u ∈ C| |Re(u)| ≤ M, |Im(u)| < K} .
Recall that

u(ζ)(x) =
∑

s∈Z

ξsϕs + ηsϕ−s√
2λs

=
∑

a∈A

ξaϕa + ηaϕ−a√
2λa

+
∑

s∈Z

ξsϕs + ηsϕ−s√
2λs

.

We want to control these two sums. For the first sum we have:∣∣∣∣∣
∑

a∈A

ξaϕa + ηaϕ−a√
2λa

∣∣∣∣∣ ≤
∑

a∈A
|ξa| + |ηa|

≤ 2
∑

a∈A

√
Iae

|Im(θa)| ≤ CA|I|1/2e|Im(θ)|,

where CA is a constant that depends on A. For the second sum, using the Cauchy-Schwarz inequality,
we have: ∣∣∣∣∣

∑

s∈L

ξsϕs + ηsϕ−s√
2λs

∣∣∣∣∣ ≤
∑

s∈L

|ξs| + |ηs|√
2λs

≤ C(α)‖ζ‖α.

So we have:

|u(ζ)| ≤ C(α)‖ζ‖α + CA|I|1/2e|Im(θ)|,

≤ C(α)‖ζ‖α + CA|I − νρ|1/2e|Im(θ)| + CA(νρ)1/2e|Im(θ)|.

We want to prove that, if (I, θ, ζ) ∈ Tρ(ν, σ, µ, α), then u(ζ)(x) ∈ IC for all x ∈ S1. This is true if we
assume

C(α)ν1/2µ+ CAν
1/2µeσ + CA

√
2ν1/2eσ ≤ min(M,K).

For example, if we assume that σ∗ = 1, we have

µ∗ ≤ min(M,K) − CA
√

2ν1/2e

ν1/2(C(α) + CA)
.

The proof is thus achieved. �

Now, we are interested in the perturbation P . We will prove that P belongs to the right class of
Hamiltonian functions. Recall that

P (ζ) =

∫

S1

G(x, u(ζ)(x))dx,

where g = ∂uG and g(x, u) = 4u3 +O(u4).

Lemma 3.6. Assume that (x, u) 7→ g(x, u) is real holomorphic on a neighborhood of S1 × J , for J some
neighborhood of the origin of R. Then for α > 0, there exists µ∗ > 0 such that, for 0 < µ ≤ µ∗, the
perturbation

P : Oµ(Yα) → C

ζ 7→ P (ζ)

belongs to T α,1/2(µ).

Proof. Recall that for x ∈ S1, we have:

u(x) =
∑

s∈Z

ξsϕs(x) + ηsϕ−s(x)√
2λs

= u(ζ)(x).

Using the Cauchy-Schwarz inequality and the fact that α > 0, there exists a constant Cα that depends
on α, such that for ζ ∈ Oµ(Yα) we have

|u(ζ)(x)| ≤ Cα‖ζ‖α ≤ Cαµ.
14
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To prove that P ∈ T α,1/2(µ), it is enough to show that

∇P ∈ Y α ∩ L1/2 and ∇2P ∈ M1/2.

For α ≥ 0, we define the following space:

Zα =
{
v = (vs ∈ C, s ∈ Z) | (|vs|〈s〉α)s ∈ ℓ2 (Z)

}
.

For v ∈ Zα, we define the Fourier transform F(v) of v by u(x) = F(v) :=
∑
vse

isx. We also define the
discrete Sobolev space by

Hα(S1) =

{
u |u(x) =

∑

s∈Z

û(s)eisx| (|û(s)|〈s〉α)s ∈ ℓ2 (Z)

}
.

If α ∈ N, then

Hα(S1) =

{
u |u(x) =

∑

s∈Z

û(s)eisx|
(
∂̂αu(s)

)
s

∈ ℓ2 (Z)

}
.

So we have the following equivalence:

(3.4) u ∈ Hα(S1) ⇐⇒ (û(s))s ∈ Zα.

• To prove that ∇ζP ∈ Yα, it is sufficient to prove, for example, that ∂P
∂ξ ∈ Zα. We have

∂P

∂ξs
(ζ) =

1√
2λs

∫

S1

∂uG (x, u(ζ)(x))ϕs(x)dx.

The map (x, u) 7→ g(x, u) is real holomorphic on a neighborhood of S1×J , so x 7→ ∂uf (x, u(ζ)(x)) ∈
Hα(S1). We deduce from equivalence (3.4) that ∂P

∂ξ ∈ Zα.

• Let us prove now that ∇2P ∈ M1/2. Recall that:

|∇2P |1/2 = sup
s,s′∈Z

〈s〉1/2〈s′〉1/2

∥∥∥∥
∂2P

∂ζs∂ζs′

∥∥∥∥
∞
.

We have
∂2P

∂ξsξs′

=
1

2λ
1/2
s λ

1/2
s′

∫

S1

∂2
uG(x, u(ζ)(x))ϕs(x)ϕs′ (x)dx.

Then

∂2P

∂ζsζs′

=
1

2λ
1/2
s λ

1/2
s′

(
∂̂2
uG(s+ s′) ∂̂2

uG(s− s′)

∂̂2
uG(−s+ s′) ∂̂2

uG(−s− s′)

)
,

which leads to

|∇2P |1/2 = sup
s∈Z

∣∣∣∂̂2
uG(s)

∣∣∣ < ∞.

• To conclude the proof, we have to show that ∇P ∈ L1/2. Recall that for β ≤ α, we have Yα ⊂ Lβ.
So ∇P ∈ Y1 ⊂ L1/2, and the proof is achieved. �

Now, we are able to give the symplectic change of variable which puts the Hamiltonian (1.5) into a normal
form that satisfies the hypotheses of the KAM theorem.
Let 0 < µ < µ∗ and 0 < σ < σ∗ where µ∗ and σ∗ are defined in Lemma 3.2.

Theorem 3.7. Let A be an admissible set. There exists a Borel set of zero Lebesgue measure U ⊂ [1, 2],
such that for any m ∈ ([1, 2] \ U) there exists ν0 that depends on A, m and g such that:

(i) For 0 < ν ≤ ν0, α > 1/2 and ρ ∈ D there exists a real symplectic holomorphic change of variable

Ψρ : Oα
(σ

2
,
µ

2

)
→ Tρ(ν, σ, µ, α),

that transforms the symplectic form −idξ ∧ dη on Tρ(ν, σ, µ, α) into

− ν
∑

a∈A
dra ∧ dθa − iν

∑

s∈L
dξs ∧ dηs.

(ii) For c > 1
2 , the change of variable Φρ can be extended holomorphically on the following complex

domain

Dc =

{
ρ ∈ C

A |
∣∣∣∣ρj − 3

2

∣∣∣∣ ≤ c, 1 ≤ j ≤ Card(A)

}
.

It transforms the perturbed Hamiltonian H = H2 + P into the following normal form

(3.5) ν−1H ◦ Ψρ = Ω(ρ) · r +
∑

a∈L
Λa(ρ)ξaηa + f(r, θ, ζ, ρ),

15
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for all ρ ∈ Dc. The internal frequency vector Ω and the external frequencies Λa, a ∈ L, are given
explicitly in (3.22) and (3.23). Moreover, they are linear in ρ and verify:

(3.6) |Ω(ρ) − ω(ρ)| ≤ Cν, |Λa(ρ) − λa(ρ)| ≤ Cν|a|−1,

for all ρ ∈ Dc. The constant C depends on the admissible set A.
(iii) The perturbation f is real holomorphic on Dc, belongs to T α,1/2(D, σ2 ,

µ
2 ) and satisfies

JfK
α,1/2,γ
σ
2 ,

µ
2 ,D

≤ C1(1 + γ)νµ4,

JfT K
α,1/2,γ
σ
2 ,

µ
2 ,D

≤ C1(1 + γ)ν3/2µ5.

The constant C1 depends on the admissible set A, the mass m and the nonlinearity g.

Remark 3.8. In (iii), we need to estimate the derivative of the perturbation f with respect to the
parameter ρ. This is possible thanks to the Cauchy estimate. So we need to extend Ψρ holomorphically
onto Dc (see 3.6).

All the rest of this section will be dedicated to the proof of the previous theorem.

3.2. Resonance. We consider H4, the quartic part of the Hamiltonian H defined by:

H4 = H2 + P4,

where
H2 =

∑

s∈Z

λsξsηs,

and

P4 =
∑

(i,j,k,l)∈Z

C(i, j, k, l)
(ξi + η−i)(ξj + η−j)(ξk + η−k)(ξl + η−l)

4
√
λiλjλkλl

.

The constant C(i, j, k, l) is defined by:

C(i, j, k, l) :=

∫

S1

ϕi(x)ϕj(x)ϕk(x)ϕl(x)dx =

{
1

2π if i+ j + k + l = 0,
0 if i+ j + k + l 6= 0.

We define the following subset of Z4:

J := {(i, j, k, l) ∈ Z
4|i+ j = k + l}.

So

P4 =
1

2π

∑

(i,j,k,l)∈J

(ξi + η−i)(ξj + η−j)(ξk + η−k)(ξl + η−l)

4
√
λiλjλkλl

.

We can decompose P4 in three parts P4 = P 0
4 + P 1

4 + P 2
4 where:

P 0
4 =

1

8π

∑

(i,j,k,l)∈J

ξiξjξkξl + ηiηjηkηl√
λiλjλkλl

,

P 1
4 =

1

2π

∑

(i,j,k,−l)∈J

ξiξjξkηl + ηiηjηkξl√
λiλjλkλl

,

P 2
4 =

3

4π

∑

(i,j,−k,−l)∈J

ξiξjηkηl√
λiλjλkλl

.

For (i, j, k, l) ∈ Z4, we define the small divisors:

Ω0(i, j, k, l) = λi + λj + λk + λl; Ω1(i, j, k, l) = λi + λj + λk − λl; Ω2(i, j, k, l) = λi + λj − λk − λl.

Definition 3.9. A monomial ξiξjξkηl or ηiηjηkξl is resonant if Ω1(i, j, k, l) = 0. In this case, we denote
R1 := {(i, j, k, l) ∈ Z4 | Ω1(i, j, k, l) = 0}. A monomial ξiξjηkηl is resonant if Ω2(i, j, k, l) = 0. In this
case, we denote R2 := {(i, j, k, l) ∈ Z4 | Ω2(i, j, k, l) = 0}. Let R be the union of R1 and R2.

We define also
J2 = {(i, j, k, l) ∈ J | #{i, j, k, l} ∩ A ≥ 2},

and
J c

2 = J \ J2 = {(i, j, k, l) ∈ J | #{i, j, k, l} ∩ L ≥ 3}
Lemma 3.10. There exists a Borel set U ⊂ [1, 2] of full Lebesgue measure, such that for m ∈ U we have:

(i) R1 = ∅,
(ii) R2 ⊂ {(i, j, k, l) ∈ Z4 | {|i|, |j|} = {|k|, |l|}},
(iii) There exists γ(m) > 0 such that for any (i, j, k, l) ∈ J2 \ R, we have:

|Ω1(i, j, k, l)| ≥ γ(m); |Ω2(i, j, k, l)| ≥ γ(m).
16



KAM FOR THE NLW EQUATION ON THE CIRCLE: SMALL AMPLITUDE SOLUTION

Proof. We begin by proving assertions (i) and (ii). Let us fix (i, j, k, l) ∈ Z4. Consider, for δ = ±1, the
function:

f(m) =
√
i2 + m+

√
j2 +m+ δ

√
k2 +m−

√
l2 +m.

The function f is analytic on [1, 2], and it can be extended to an algebraical multi-valued function of
m ∈ C. If j = k = l = 0, then −i2 is a branching point of f . Branching points for f are −i2,−j2,−k2

and −l2.
If δ = 1, then f is not identically zero on [1, 2], and admits finitely many zeros. It follows that, there

is a Borel set U1 ⊂ [1, 2] of full Lebesgue measure, such that for m ∈ U1, we have R1 = ∅.
Now, for δ = −1, if f |[1,2]≡ 0, then f ≡ 0, and we have {i2, j2} = {k2, l2}. If f is not identically zero

on [1, 2], then f admits finitely many zeros. So there is a Borel set U2 ⊂ [1, 2] of full Lebesgue measure,
such that for any m ∈ U2, we have R2 ⊂ {(i, j, k, l) ∈ Z4 | {|i|, |j|} = {|k|, |l|}}.

It remains to prove the last assertion. Let us begin with Ω2. Thanks to Proposition 2.10, for κ > 0,
there is an open set Cκ ⊂ [1, 2] such that

mes(Cκ) < Cκτ ,

where τ > 0 and depends on Card(A). The constant C depends on the admissible set A. For m ∈
([1, 2] \ Cκ) and any (i, j, k, l) ∈ J2 \ R, we have:

|Ω2(i, j, k, l)| > κ.

If κ′ ≤ κ, then Cκ′ ⊂ Cκ. So C := ∩
0<κ<1

Cκ is a Borel set, and we have

mes(C) = 0.

Moreover, for m ∈ U3 ≡ ([1, 2] \ C) = ∪
0<κ<1

([1, 2] \ Cκ), there exists a constant γ(m) such that for each

(i, j, k, l) ∈ J2 \ R, we have:

|Ω2(i, j, k, l)| > γ(m).

To control Ω1(i, j, k, l) we follow the same procedure, but we use Proposition 2.8 instead of Proposi-
tion 2.10. Finally we denote U = U1 ∩ U2 ∩ U3 ∩ U4, where U4 is the Borel set of full Lebesgue measure
that we obtain after controlling Ω1(i, j, k, l). �

3.3. Birkhoff’s Precedure. For α > 0, we recall the definition of the following space:

Zα =
{
v = (vs ∈ C, s ∈ Z) | (|vs|〈s〉α)s ∈ ℓ2 (Z)

}
.

We endow Zα with the norm:

‖v‖2
α =

∑

s∈Z

|vs|2〈s〉2α, 〈s〉 = max(|s|, 1).

We denote by v ∗ y the convolution in ℓ2(Z) defined by (v ∗ w)l =
∑
i+j=l viwj . We recall Lemma 2

from [12].

Lemma 3.11. Consider v, w ∈ Zα for α > 1
2 . Then, v ∗ w ∈ Zα, and

(3.7) ‖v ∗ w‖α < C(α)‖v‖α‖w‖α,
where C is a constant that depends only on α.

Proof. Consider v, w ∈ Zα. We have:

‖v ∗ w‖2
α =

∑

s∈Z

〈s〉2α

∣∣∣∣∣∣
∑

i+j=s

viwj

∣∣∣∣∣∣

2

=
∑

s∈Z

〈s〉2α

∣∣∣∣∣∣
∑

i+j=s

〈s〉α
〈i〉α〈j〉α

〈i〉α〈j〉α
〈s〉α viwj

∣∣∣∣∣∣

2

≤
∑

s∈Z

〈s〉2α


 ∑

i+j=s

( 〈s〉
〈i〉〈j〉

)2α



 ∑

i+j=s

〈i〉2α〈j〉2α

〈s〉2α
|vi|2|wj |2


 ,

and
∑

i+j=s

( 〈s〉
〈i〉〈j〉

)2α

≤
∑

i,j∈Z

( 〈i〉 + 〈j〉
〈i〉〈j〉

)2α

≤ 4α
∑

i,j∈Z

1

〈i〉2α
+

1

〈j〉2α
≤ C2(α).

17
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Then

‖v ∗ w‖2
α ≤ C(α)2

∑

s∈Z

∑

i+j=s

〈i〉2α|vi|2〈j〉2α|wj |2

≤
∑

i,j∈Z

〈i〉2α|vi|2〈j〉2α|wj |2

= C(α)2‖v‖2
α‖w‖2

α.

The proof is thus achieved. �

We endow the phase space with symplectic structure −i∑dξk ∧ dηk. For α > 1/2, Yα is an algebra
for the convolution.

Lemma 3.12. Let α > 1/2 and P 4 a real homogeneous polynomial on Yα, of degree 4, indexed by J .
We assume that P 4 is of the form:

P 4(ζ) =
∑

(j1,j2,j3,j4)∈J

∑

1≤r≤4

arj1,j2,j3,j4
ξj1 . . . ξjrηjr+1 . . . ηj4 ,

where |arj1,j2,j3,j4
| < M for any (j1, j2, j3, j4) ∈ J . Then we have:

‖∇P 4‖α ≤ C(α,M)‖ζ‖3
α.

So, for t ≤ 1, the flow ΦtP 4 of the Hamiltonian vector XP 4 = iJ∇P 4 is well-defined, real and analytic on
the ball:

Oδ(Yα) = {ζ ∈ Yα|‖ζ‖α < δ = δ(M)} .
Moreover, for any ζ ∈ Oδ(Yα),

‖ΦtP4
(ζ) − ζ‖α ≤ C(M)‖ζ‖3

α.

Proof. We recall that XP 4 = i

(
∇ξP

4

∇ηP
4

)
. Since |arj1,j2,j3,j4

| < M , we have:

∣∣∣∣
∂P

∂ηl

∣∣∣∣ ≤ M
∑

(i,j,k,l)∈J
|ξiξjξk| + |ξiξjηk| + |ξiηjηk| + |ηiηjηk|.

We remark that
∑

(i,j,k,l)∈J
|ξiξjξk| = (ξ ⋆ ξ ⋆ ξ)l + (ξ ⋆ ξ ⋆ ξ̃)l + (ξ ⋆ ξ̃ ⋆ ξ̃)l + (ξ̃ ⋆ ξ̃ ⋆ ξ̃)l + (ξ ⋆ ξ̃ ⋆ ξ)l + (ξ̃ ⋆ ξ̃ ⋆ ξ)l,

where ξ̃ = (ξ̃j)j∈Z and ξ̃j = ξ−j . Using Lemma 3.11, we have
∥∥∥∥
∂P 4

∂η

∥∥∥∥
2

α

=
∑

l∈Z

〈l〉2α

∣∣∣∣
∂P 4

∂ηl

∣∣∣∣
2

≤ C(M)
(
‖ξ ⋆ ξ ⋆ ξ‖2

α + ‖ξ ⋆ ξ ⋆ η‖2
α + ‖ξ ⋆ η ⋆ η‖2

α + ‖η ⋆ η ⋆ η‖2
α

)

≤ C(α,M)
(
‖ξ‖6

α + ‖ξ‖4
α‖η‖2

α + ‖ξ‖2
α‖η‖4

α + ‖η‖6
α

)

≤ C(α,M)
(
‖ξ‖2

α + ‖η‖2
α

)3
= C(α,M)‖ζ‖6

α.

We prove the same way that: ∥∥∥∥
∂P 4

∂ξ

∥∥∥∥
2

α

≤ C(α,M)‖ζ‖6
α.

So, we have:

∥∥∇ζP
4
∥∥
α

=

(∥∥∥∥
∂P 4

∂ξ

∥∥∥∥
2

α

+

∥∥∥∥
∂P 4

∂η

∥∥∥∥
2

α

)1/2

≤ C(α,M)‖ζ‖3
α.

This concludes the proof of the lemma. �

Lemma 3.13. Consider D− the following bounded operator on Yα

D− = diag
{
λ−1/2
s I2, s ∈ Z

}
.

Define Q4(ζ) := P 4(D−(ζ)), where P 4 is the polynomial defined in the Lemma 3.12. Then ∇2
ζQ

4 ∈ M1/2,
and we have: ∣∣∇2

ζQ
4
∣∣
1/2

≤ C(α,M)‖ζ‖2
α.
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Proof. We recall that

P 4(ζ) =
∑

(j1,j2,j3,j4)∈J

∑

1≤r≤4

arj1,j2,j3,j4
ξj1 . . . ξjrηjr+1 . . . ηj4 ,

where |arj1,j2,j3,j4
| < M for (j1, j2, j3, j4) ∈ J . So we have

Q4(ζ) =
∑

(j1,j2,j3,j4)∈J

∑

1≤r≤4

arj1,j2,j3,j4√
λj1λj2λj3λj4

ξj1 . . . ξjrηjr+1 . . . ηj4 ,

and

|∇2
ζQ

4|1/2 = sup
s,s′∈Z

〈s〉1/2〈s′〉1/2

∥∥∥∥
∂2Q4

∂ζs∂ζs′

∥∥∥∥
∞
.

For any s and s′ in Z, we have:

〈s〉1/2〈s′〉1/2

∥∥∥∥
∂2Q4

∂ζs∂ζs′

∥∥∥∥
∞

≤ ‖A‖∞,

where A is a real square matrix of size 2, whose coefficients are homogeneous polynomials of Yα of degree 2,
of the form:

P 2(ζ) =
∑

j̄∈J

4∑

k,l=1

1√
λjσ(k)

λjσ(l)

(
a1ξjσ(k)

ξjσ(l)
+ a2ξjσ(k)

ηjσ(l)
+ a3ηjσ(k)

ηjσ(l)

)
,

where j̄ = (jσ(1), jσ(2), jσ(3), jσ(4)) and σ is a permutation from the symmetric group S4. Using Lemma 3.11,
we have: ∣∣P 2(ζ)

∣∣ ≤ C(α,M)‖ζ‖2
α.

So
|∇2

ζQ|1/2 ≤ C(α,M)‖ζ‖2
α.

�

Remark 3.14. We recall that P4 = P 0
4 + P 1

4 + P 2
4 where

P 0
4 =

1

8π

∑

(i,j,k,l)∈J

ξiξjξkξl + ηiηjηkηl√
λiλjλkλl

,

P 1
4 =

1

2π

∑

(i,j,k,−l)∈J

ξiξjξkηl + ηiηjηkξl√
λiλjλkλl

,

P 2
4 =

3

4π

∑

(i,j,−k,−l)∈J

ξiξjηkηl√
λiλjλkλl

.

The coefficients of each monomial are bounded by 3/4π. Using 3.12 and 3.13, we have P4 ∈ T α,1/2(µ),
for α > 1/2 and ζ ∈ Oµ(Yα).

Let U ⊂ [1, 2] be the Borel full Lebesgue measure set from Lemma 3.10. For m ∈ U , we want to
construct a holomorphic real symplectic change of variable in the neighborhood of the origin of Yα which
transforms the quartic part of the Hamiltonian H into a Birkhoff normal form up to order 5. This
transformation extracts the integrable terms from the quartic part of the perturbation P and cubic terms
in the direction of L = Z \ A.

Proposition 3.15. For m ∈ U , there is a holomorphic real symplectic change of variable τ on Oδ(m)(Yα),
for some δ(m) > 0 and α > 1/2. The change of variable τ satisfies:

(3.8) ‖τ(ζ) − ζ‖α ≤ C(m)‖ζ‖3
α, ∀ζ ∈ Oδ(m)(Yα).

The mapping τ tranforms the Hamiltonian H = H2 + P = H2 + P4 +R5 into :

(3.9) H ◦ τ = (H2 + P ) ◦ τ = H2 + Z4 +Q4 +R6 +R5 ◦ τ,
where

Z4 =
3

π

∑

(i,j,k,l)∈J2∩R2

ξiξjηkηl
λiλj

,

and Q4 = Q4,1 +Q4,2 for

Q4,1 =
1

2π

∑

(i,j,−k,l)∈J c
2

ξiξjξkηl + ηiηjηkξl√
λiλjλkλl

,

Q4,2 =
3

4π

∑

(i,j,k,l)∈J c
2

ξiξjηkηl√
λiλjλkλl

.
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The polynomial Z4 contains integrable terms while Q4 is cubic or quartic in the direction of L. Moreover,
Z4, Q4, R6 and R5 ◦ τ are real holomorphic on Oδ(m)(Yα). The remainder terms R5 ◦ τ and R6 are
respectively of order 5 and 6 at the origin of Yα. Moreover, for any 0 < µ ≤ δ(m), Z4, Q4, R5 ◦ τ and
R6 belong to T α,1/2(µ) and satisfy:

(3.10) JZ4K
α,1/2
µ + JQ4K

α,1/2
µ ≤ Cµ4,

(3.11) JR6K
α,1/2
µ ≤ Cµ6,

(3.12) JR5 ◦ τKα,1/2
µ ≤ Cµ5,

where the constant C depends on m, the nonlinearity g and the admissible set A.

We recall that the Poisson bracket associated to the symplectic form−i∑
s∈Z

dξs ∧ dηs is

{f, g}(ξ, η) = i
∑

j∈Z

∂f

∂ηj

∂g

∂ξj
− ∂f

∂ξj

∂g

∂ηj
,

for f, g ∈ C1(Zα × Zα).

Lemma 3.16. Let P be a homogeneous polynomial of degree 4 defined by:

P (ξ, η) =
∑

|α|+|β|=4

= aα,βξ
αηβ ,

where ξα = ξα1
1 ξα2

2 ξα3
3 ξα4

4 . Then:

{H2, P} (ξ, η) = i
∑

|α|+|β|=4

aα,βΩmin(|α|,|β|)(α, β)ξαηβ .

Proof. We prove the previous lemma by using the expression of the Hamiltonian H2, the Poisson bracket
and the frequencies Ωp(α, β) for 0 ≤ p ≤ 2. �

Proof of the Proposition 3.15. We want to construct a holomorphic real symplectic change of variable τ
in the neighborhood of the origin of Yα for α > 1/2. The mapping τ puts the Hamiltonian H into a
Birkhoff normal form up to order 5. To do this, we use a classical method: τ will be the time one flow
of a Hamiltonian χ4 (ie τ = Φ1

χ4
where Φtχ4

is the flow of χ4 at time t). The Hamiltonian χ4 will be a
solution of a certain homological equation. Using the Taylor formula, we obtain:

(H2 + P4 +R5) ◦ τ = (H2 + P4) ◦ τ +R5 ◦ τ
= H2 + P4 + {H2, χ4} + {P4, χ4}

+

∫ 1

0

(1 − t) {{H2 + P4, χ4} , χ4} ◦ Φtχ4
dt+R5 ◦ τ.

We want that

(H2 + P4 +R5) ◦ τ = H2 + Z4 +Q4 +R6 +R5 ◦ τ.
So, by taking

R6 = {P4, χ4} +

∫ 1

0

(1 − t) {{H2 + P4, χ4} , χ4} ◦ Φtχ4
dt,

the Hamiltonian χ4 satisfies the following homological equation:

(3.13) {H2, χ4} = Z4 +Q4 − P4.

Using Lemma 3.16, the Hamiltonian χ4 is given by:

χ4 =
i

8π

∑

(i,j,−k,−l)∈J

ξiξjξkξl − ηiηjηkηl

Ω0(i, j, k, l)
√
λiλjλkλl

+
i

2π

∑

(i,j,−k,l)∈J2

ξiξjξkηl − ηiηjηkξl

Ω1(i, j, k, l)
√
λiλjλkλl

+
3i

4π

∑

(i,j,k,l)∈J2\R2

ξiξjηkηl

Ω2(i, j, k, l)
√
λiλjλkλl

.

By Lemma 3.10, there is a Borel set U ⊂ [1, 2] of full Lebesgue measure set, such that for m ∈ U , there
is a constant γ(m) > 0 smaller than |Ω1(i, j, k, l)| and |Ω2(i, j, k, l)|. Remark also that Ω0(i, j, k, l) > 4.
Then χ4 is a homogeneous polynomial of degree 4 indexed by J , with bounded coefficients. So, the
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Hamiltonian vector field Xχ4 is real and holomorphic on Yα. Using Lemma 3.12, for m ∈ U and α > 1/2,
there exists C(α,m) > 0 such that:

‖Xχ4‖α ≤ C(α,m)‖ζ‖3
α.

So, there is δ(m) > 0 such that τ is real holomorphic symplectic change of variable on Oδ(m)(Y α).
By Lemma 3.16, we have

{H2, χ4} = − 1

8π

∑

(i,j,−k,−l)∈J

ξiξjξkξl + ηiηjηkηl√
λiλjλkλl

− 1

2π

∑

(i,j,−k,l)∈J2

ξiξjξkηl + ηiηjηkξl√
λiλjλkλl

− 3

4π

∑

(i,j,k,l)∈J2\R2

ξiξjηkηl√
λiλjλkλl

.

So

(H2 + P4) ◦ τ = H2 + Z4 +Q4 +R6,

where Z4, Q4 is defined as in the proposition. They are two homogeneous polynomials of degree 4 with
bounded coefficients. From Lemma 3.11 and 3.12, for α > 1/2 and 0 < µ ≤ δ(m), these two polynomials
belong to T α,1/2(µ) and satisfy 3.10.

Let us study the remainder terms R6 and R5 ◦ τ . Concerning R6, by construction, R6 is a holomorphic
Hamiltonian of order 6 in the neighborhood of the origin of Yα. We recall that

R6 = H ◦ τ −H2 − Z4 −Q4 −R5 ◦ τ.
The right-hand side of the equation is real, so R6 is also real. Let us prove that R6 belongs to T α,1/2(µ),
with 0 < µ ≤ δ(m).

We begin by proving that χ4 ∈ T α,1/2+(µ). We remark that, for i ∈ Z such that (i, j, k, l) ∈ J , we
have

〈i〉3/2

|Ωι(i, j, k, l)|
√
λiλjλkλl

≤ C(A,m), ι = 0, 1, 2.

Using this estimate and the same method as in the proof of the Lemma 3.12, we get that ∇ζχ4 ∈ L 1
2 +.

It remains to prove that ∇2
ζχ4 ∈ M 1

2 +. The first terms of χ4 are indexed by J . For i, j ∈ Z, we have

〈i〉1/2〈j〉1/2(1 + ||i| − |j||)
Ω0(i, j, k, l)

√
λiλjλkλl

≤ 1.

The next terms of χ4 are indexed by J2. By Proposition 2.8, we have:

〈i〉1/2〈j〉1/2(1 + ||i| − |j||)
Ωι(i, j, k, l)

√
λiλjλkλl

≤ C′(m,A), ι = 1, 2.

Using these two estimates and the same method as in the proof of the Lemma 3.13, we get that ∇2
ζχ4 ∈

M 1
2 +. So we proved that χ4 ∈ T α,1/2+(µ) for α > 1/2 and 0 < µ ≤ δ(m).

By Lemma 3.1, we have
{

T α,1/2(δ(m)), T α,1/2+(δ(m))
}

∈ T α,1/2(1
2δ(m)). So {P4, χ4} ∈ T α,1/2(1

2δ(m))

and for 0 < µ ≤ 1
2δ(m), we have:

J{P4, χ4}Kα,1/2
µ ≤ Cµ−2JP4K

α,1/2
µ Jχ4K

α,1/2+
µ ≤ Cµ6.

Due to the homological equation (3.13), we have:

{H2 + P4, χ4} = Z4 +Q4 − P4 + {P4, χ4} ∈ T α,1/2(
1

2
δ(m)).

Using Lemma 3.1 again, for 0 < µ ≤ 1
4δ(m), we have:

{{H2 + P4, χ4} , χ4} ∈ T α,1/2(
1

4
δ(m)) and J{{H2 + P4, χ4} , χ4}Kα,1/2

µ ≤ Cµ6.

Since χ4 ∈ T α,1/2+(δ(m)) and Jχ4K
α,1/2+
µ ≤ Cµ4, we have by Corollary 3.3

T α,1/2(
1

4
δ(m)) ◦ Φtχ4

∈ T α,1/2(
1

8
δ(m)).

So, R6 ∈ T α,1/2(µ) and satisfies (3.11) for 0 < µ ≤ 1
8δ(m).

Now, consider the remainder term R5 ◦ τ . Recall that R5 = P − P4, so R5 is real and holomorphic,
of order 5 at the origin and belongs to T α,1/2(δ(m)). Using Corollary 3.3 again, we obtain that R5 ◦ τ ∈
T α,1/2(1

2δ(m)), so R5 ◦ τ ∈ T α,1/2(µ) and satisfies for 0 < µ ≤ 1
2δ(m):

JR5 ◦ τKα,1/2
µ ≤ JP − P4K

α,1/2
µ ≤ Cµ5.
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We finish the proof by replacing 1
8δ(m) by δ(m). �

Lemma 3.17. For m ∈ U and α > 1/2, the change of variable τ defined on the Proposition 3.15 satisfies:

τ
(
Tρ(ν,

σ

2
,
µ

2
, α)
)

⊂ Tρ(ν, σ, µ, α),

for 0 < σ ≤ 1, 0 < µ ≤ 1 and ν ≤ 4µ−2e−σδ2(m).

Proof. Consider m ∈ U ⊂ [1, 2] and α > 1/2, the change of variable τ satisfies:

‖τ(ζ) − ζ‖α ≤ C(m)‖ζ‖3
α, ∀ζ ∈ Oδ(m)(Yα).

Recall that

Tρ(ν, σ, µ, α) =
{

(I, θ, ξ, η) | |I − νρ| < νµ2, |Imθ| < σ, ‖ζL‖α < ν1/2µ
}
.

Let ζ̃ = τ(ζ). Then, for ν ≤ 4µ−2e−σδ2(m), we have:

(3.14) ‖ζ̃ − ζ‖α ≤ C′(m)µ3e
3δ
2 ν

3
2 ,

where C′(m) is a multiple constant of C(m). Using the previous estimate, let us prove that:

τ
(
Tρ(ν,

σ

2
,
µ

2
, α)
)

⊂ Tρ(ν, σ, µ, α).

• On L, we have:

‖ζ̃‖α ≤ ‖ζ‖α + C′(m)µ3e
3δ
2 ν

3
2 <

1

2
ν

1
2 + C′(m)µ3e

3δ
2 ν

3
2 < νµ.

• For a ∈ A, we have:

|Ĩa − νρa| ≤ |Ia − νρa| + |Ĩa − Ia|

<
1

4
νµ2 + |ξ̃aη̃a − ξaηa|

<
1

4
νµ2 + |ξ̃a||η̃a − ηa| + |ηa||ξ̃a − ξa|.

As ζ ∈ Tρ(ν,
σ
2 ,

µ
2 , α), we have

|ηa| < (
1

2
µ+

√
2)e

σ
2 ν

1
2 .

Using estimate (3.14), we have:

|ξ̃a| < (
1

2
µ+

√
2)e

σ
2 ν

1
2 + C′(m)µ3e

3δ
2 ν

3
2 ,

|η̃a − ηa| + |ξ̃a − ξa| < C′(m)µ3e
3δ
2 ν

3
2 .

So

|Ĩa − νρa| < νµ2.

• It remains to verify that |Im(θ̃a)| < σ for a ∈ A. On the one hand we have:

|ξ̃a| =

∣∣∣∣
√
Ĩae

iθ̃a

∣∣∣∣ ≤
√
Ĩae

|Im(θ̃a)| < ν
1
2 (µ+

√
2)e|Im(θ̃a)|.

On the other hand, using estimate (3.14), we have:

|ξ̃a| < (
1

2
µ+

√
2)e

σ
2 ν

1
2 + C′(m)µ3e

3δ
2 ν

3
2 .

So

e|Im(θ̃a)| ≤ µ+ 2
√

2

2(µ+
√

2)
e

σ
2 + ν

C′(m)µ3

µ+
√

2
e

3σ
2 ,

and we get that |Im(θ̃)| ≤ σ.

�
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3.4. Normal form on admissible sets. We recall that Z4 is given by:

Z4 = 3/4π
∑

(i,j,k,l)∈J2∩R2

ξiξjηkηl
λiλj

,

where
J2 = {(i, j, k, l) ∈ J | #{i, j, k, l} ∩ A ≥ 2}.

We note that Z4 contains integrable terms formed by the monomials of the form ξiξjηiηk = IiIj . Those

monomials depend only on actions defined by In = ξnηn for n ∈ Z. We denote those terms by Z+
4 and

Z−
4 = Z4 − Z+

4 . After straightforward computations, we obtain that:

(3.15) Z+
4 =

3

4π

∑

l∈A, k∈Z

4 − 3δl,k
λlλk

IlIk.

Concerning Z−
4 , we have Z−

4 =
∑

0≤r≤4 Z
−r
4 where r = Card ({i, j, k, l} ∩ A). Using the definition of J2

yields Z−0
4 = Z−1

4 = 0.

Lemma 3.18. Assume that A is an admissible set. Then, for m ∈ U , we have

Z−4
4 = 0.

Proof. Consider F = {(i, j, k, l) ∈ J2 ∩ R2 ∩ A}. Then, for (i, j, k, l) ∈ F and m ∈ U ,

⋆ i+ j = k + l using the definition of J ,
⋆ {|i|, |j|} = {|k|, |l|} using Lemma 3.10,
⋆ {i, j} 6= {|k|, |l|} since A is an admissible set.

So F = ∅ and Z−4
4 = 0. �

Lemma 3.19. Assume that A is an admissible set. Then for m ∈ U
Z−3

4 = 0.

Proof. Suppose that there is (i, j, k, l) ∈ J2 ∩R2 such that #{i, j, k, l}∩A = 3. Without loss of generality,
we can suppose that i, j, k ∈ A and l ∈ L. Due to Lemma 3.10, we have |i| = |k| or |j| = |k|. Moreover,
since A is an admissible set, we have i = k or j = k. Suppose that i = k. Since i + j = k + l, we have
j = l and l ∈ A, which contradicts the fact that A is an admissible set. So Z−3

4 = 0. �

Lemma 3.20. Assume that A is an admissible set. Then, for any m ∈ U ,

Z−2
4 = 0.

Proof. Consider ℵ = {(i, j, k, l) ∈ J2 ∩ R2 | #{i, j, k, l} ∩ A = 2}.
⋆ Assume that i, j ∈ A and k, l ∈ L. Then, by Lemma 3.10, we have i = −k and j = −l or i = −l
and j = −k. Without loss of generality, we can suppose that i = −k and j = −l. We have
(i, j, k, l) ∈ J , so i+j = k+ l = −k− l and i = −j. It contradicts the fact that A is an admissible
set. The case where k, l ∈ A and i, j ∈ L is treated in the same way.

⋆ Assume now that i, l ∈ A and j, k ∈ L. By Lemma 3.10, we have |i| = |k| and |j| = |l| or i = l
and |j| = |k|. Let us first consider the case where i = l and |j| = |k|. since i+ j = k + l, we have
j = k. So the monomial ξiξjηjηi will be in Z−

4 , which leads to a contradiction. Consider now
the case where |i| = |k| and |j| = |l|. Since A is an admissible set, we have i = −k and l = −j.
As i + j = k + l, necessarily i = l and j = k, which lead to the previous case. The cases where
k, l ∈ A and i, j ∈ L or i, k ∈ A and j, l ∈ L are treated in the same way.

Thus, we deduce that ℵ = ∅ and Z−2
4 = 0 �

3.5. Action-angle variables. As in (3.3), we pass from variables (ξ, η) to (I, θ, ζL), where I = (Ia, a ∈
A), θ = (θa,∈ A) and ζL = (ζs,∈ L). We recall that, for a ∈ A, action-angle variables I and θ are given
by:

ξa =
√
Iae

iθa , ηa =
√
Iae

−iθa .

In these new variables, the symplectic form −idξ ∧ dη becomes:

(3.16) −
∑

a∈A
dIa ∧ dθa − i

∑

s∈L
dξs ∧ dηs.

Moreover I is of order 2, θ is of order zero, ξ and η are of order 1.
Using expression (3.15) Z+

4 and the lemmas 3.18-3.20, the Hamiltonian 3.9 becomes:

H ◦ τ =
∑

a∈A
ωaIa +

3

4π

∑

l,a∈A

4 − 3δl,a
λlλa

IlIa +
∑

s∈L
λsξsηs +

3

π

∑

l∈A, s∈L

1

λlλs
Ilξsηs

+Q4 +R5 ◦ τ +R6.
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The first line contains the integrable terms. The second one contains:

• Q4, of order 4 and at least of order 3 in the direction of L;
• R6, which comes from the Birkhoff normal form and of order 6;
• R5 ◦ τ , which comes from term of order 5 of the nonlinearity (1.2).

The Hamiltonian H ◦ τ depends on variables
(
I, θ, ζL). For the rest of the paper, we will drop the

multi-index L ( i.e. ζL will be replaced by ζ).

3.6. Rescaling the variables. We want to study the Hamiltonian H1. To do this, we will rescale the
variables (I, θ, ξ, η) by considering the following change of variables:

(3.17) χρ :
(
r̃, θ̃, ξ̃, η̃

)
7→ (I, θ, ξ, η) ,

where

I =νρ+ νr̃, θ = θ̃,

ξ =ν1/2ξ̃, η = ν1/2η̃.

We have

χρ : Oα
(σ

2
,
µ

2

)
→ Tρ

(
ν,
σ

2
,
µ

2
, α
)
.

In these new variables, the symplectic form (3.16) becomes

(3.18) − ν
∑

a∈A
dr̃a ∧ dθ̃a − iν

∑

s∈L
dξ̃s ∧ dη̃s.

Consider

Ψ̆ = Ψ̆ρ = τ ◦ χρ.
The change of variables χρ is linear on ρ. We can extend Φ holomorphically on

Dc =

{
ρ ∈ C

A |
∣∣∣∣ρj − 3

2

∣∣∣∣ ≤ c, 1 ≤ j ≤ Card(A)

}
.

To simplify notations, we will drop the tilde. In these rescaled variables, the Hamiltonian H becomes up
to a constant:

H ◦ Ψ̆ = ν
∑

a∈A
ωara + ν2 3

2π

∑

a,l∈A

4 − 3δa,l
λaλl

ρlra

+ ν
∑

s∈L
λsξsηs + ν2 3

π

∑

l∈A
s∈L

1

λlλs
ρlξsηs

+ ν2 3

4π

∑

a,l∈A

4 − 3δa,l
λaλl

rlra + ν2 3

π

∑

l∈A
s∈L

1

λlλs
rlξsηs

+ (Q4 +R5 ◦ τ +R6) ◦ χρ.
By dividing by ν, we can rewrite the previous Hamiltonian under the following form:

(3.19) ν−1H ◦ Ψ̆ = h0 + f,

where h0 ≡ h0(r, ξ, η; ρ, ν) and contains linear terms in r, quadratic terms in ξ, η and independent from
the angle variable θ. The new perturbation f contains all the rest and depends on the angle variable.
More precisely

(3.20) f ≡ ν
3

4π

∑

a,l∈A

4 − 3δa,l
λaλl

rlra + ν
3

π

∑

l∈A
s∈L

1

λlλs
rlξsηs + ν−1 (Q4 +R5 ◦ τ +R6) ◦ χρ.

We can rewrite the new Hamiltonian h under the following form

(3.21) h0 = Ω · r +
∑

a∈L
Λaξaηa,

where Ω = (Ωk)k∈A, and

Ωk = Ωk(ρ, ν) = ωk + νω̃k = ωk + ν
3

2π

1

λk

∑

l∈A

4 − 3δl,k
λl

ρl,(3.22)

Λa = Λa(ρ, ν) = λa + νλ̃a = λa + ν
3

π

1

λa

∑

l∈A

ρl
λl
,(3.23)
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for ρ ∈ Dc. We remark that for the internal frequencies, we have:

(3.24) ω̃k =
∑

l∈A
M l
kρl, M l

k =
3

2π

4 − 3δl,k
λkλl

.

M is an invertible matrix, since

detM =

(
3

2π

)n(∏

l∈A
λ−2
l

)
(4n− 3) (−3)n−1 , n = Card(A).

Recall that ρ ∈ [1, 2]
A

and A ⊂ {a ∈ Z
d | |a| ≤ N}. For ρ ∈ Dc, we have

|Ω(ρ) − ω(ρ)| ≤ ν

∣∣∣∣∣
3

2π

∑

l∈A

4 − 3δl,k
λl

ρl

∣∣∣∣∣ , and |Λa(ρ) − λa(ρ)| ≤ ν|a|−1

∣∣∣∣∣
3

π

∑

l∈A

ρl
λl

∣∣∣∣∣ .

This proves estimations (3.6) and concludes the proof of the first and second points of Theorem 3.7.
We recall that ζ = (ζa)a∈L. The quadratic part of the Hamiltonian h is given by the following infinite

matrix:

A(ρ, ν) = diag

((
0 Λa(ρ, ν)
Λa(ρ, ν) 0

)
, a ∈ L

)
.

We can put the Hamiltonian h under the following form

h = Ω(ρ, ν) · r +
1

2
〈A(ρ, ν)ζ, ζ〉.

The Hamiltonian operator is given by:

iJA(ρ, µ) = diag
(( −iΛa(ρ, ν) 0

0 iΛa(ρ, ν)

)
, a ∈ L

)
.

The spectrum of the Hamiltonian operator is:

σ(iJA) = {±iΛa(ρ, ν), a ∈ L}.
Let us study now the perturbation (3.20). Due to Proposition 3.15, the perturbation f is real holomor-

phic and belongs to T α,1/2(D, σ2 ,
µ
2 ). Using estimations (3.10)-(3.12) and for x = (r, θ, ζ) ∈ Oα

(
σ
2 ,

µ
2

)
,

we have:

|f | ≤ Cνµ4,

‖∇ζf‖α ≤ Cνµ3,

|∇ζf |1/2 ≤ Cνµ3,

|∇2
ζf |1/2 ≤ Cνµ2,

where C is a constant that depends on the admissible set A, the mass m and the nonlinearity g. So we
have:

JfK
α,1/2
σ
2 ,

µ
2 ,D

≤ Cνµ4.

Let us study now the jet of the perturbation f . Recall that the jet function fT is defined by:

fT = f(θ, 0, 0, ρ) + ∇rf(θ, 0, 0, ρ)r + 〈∇ζf(θ, 0, 0, ρ), ζ〉 +
1

2
〈∇2

ζζf(θ, 0, 0, ρ)ζ, ζ〉.

We look for the terms of (3.20) which can contribute to fT . Clearly the first two terms do not contribute
to fT . The third term is indexed by J c

2 and does not contribute to fT . Let us now look at R5 ◦ τ .
According to 3.15, R5 ◦ τ is of order 5. Moreover R5 ◦ τ depends on the action variable (of order 2), on
the angle θ, on ξ and η (of order 1). So R5 ◦ τ can contains terms like:

- I5/2 will contribute to f(θ, 0, 0, ρ) and ∇rf(θ, 0, 0, ρ);
- I2ξ, I2η will contribute to ∇ξf(θ, 0, 0, ρ) or ∇ηf(θ, 0, 0, ρ);

- I3/2ξη, I3/2ξξ, I3/2ηη will contribute to ∇2
ξηf(θ, 0, 0, ρ),∇2

ξξf(θ, 0, 0, ρ) or ∇2
ηηf(θ, 0, 0, ρ).

So R5 ◦ τ ◦ χρ will contribute to fT . A similar result holds for R6 ◦ χρ. We deduce that:

JfT K
α,1/2
σ
2 ,

µ
2 ,D

≤ Cν3/2µ5.

To finish the proof of the third point of Theorem 3.7, we have to look at the derivative in ρ of the
perturbation f and its jet fT . Note that, according to (3.20), the dependence of the perturbation f on
ρ comes from the change of variable χρ via the relation I = νρ+ νr̃. We can extend f holomorphically
on Dc with the same estimates. Using a Cauchy estimate on Dc, we obtain

J∂ρfK
α,1/2
σ
2 ,

µ
2 ,D

≤ c−1JfK
α,1/2
σ
2 ,

µ
2 ,D

, J∂ρf
T K
α,1/2
σ
2 ,

µ
2 ,D

≤ c−1JfT K
α,1/2
σ
2 ,

µ
2 ,D

.

Then ∂ρf and ∂ρf
T satisfy the same estimates as f and fT .

25



Moudhaffar Bouthelja

3.7. Real variables. In the normal form (3.5), the quadratic part is expressed in complex variables.
However, the KAM theorem is expressed in real variables. In order to remedy to this, we consider the
following symplectic change of variable:

Υ(r, θ, ζ) = (r, θ, ζ̆),

where ζ̆ = (p, q) =
(
ζ̆s = (ps, qs), s ∈ L

)
. Variables p and q are given by:

ξs =
1√
2

(ps + iqs), ηs =
1√
2

(ps − iqs).

Under the hypotheses of Theorem 3.7, consider Ψρ = Ψ̆ρ ◦Υ. This change of variables is real holomorphic
and satisfies:

Ψρ : Oα
(σ

2
,
µ

2

)
→ Tρ(ν, σ, µ, α).

It transforms the symplectic form −idξ ∧ dη into −dr ∧ dθ − dp ∧ dq. In the new variables, the normal
form (3.5) becomes:

(3.25)

h(r, θ, ζ̆; ρ) = H ◦ Ψρ

= Ω(ρ) · r +
1

2

∑

a∈L
Λa(ρ)(p2

a + q2
a) + f(r, θ, ζ̆; ρ)

= Ω(ρ) · r +
1

2

∑

a∈L
〈Ă(ρ, ν)ζ̆ , ζ̆〉 + f(r, θ, ζ̆; ρ),

where

Ă(ρ, ν) = diag

((
Λa(ρ, ν) 0
0 Λa(ρ, ν)

)
, a ∈ L

)
.

In these new variables, the perturbation f satisfies the estimates of the third point of Theorem 3.7.

4. KAM for the wave equation

4.1. Abstract KAM theorem. In this section we state a KAM theorem and adapt the notations for
the cubic nonlinear wave equation on the circle.

Consider a real Hamiltonian hρ on normal form and depends on a parameter ρ, given by:

(4.1) h(r, p, q; ρ) = Ω(ρ) · r +
1

2

∑

a∈L
Λa(ρ)

(
p2
a + q2

a

)
,

with

• ρ ∈ D, a compact set of Rp;
• Ω : D → Rn a C1 internal frequency vector;
• L a set of Z;
• for a ∈ L, Λa an external frequency of class C1 on D.

The internal frequencies Ω and the external frequencies Λ satisfy certain hypotheses which will be stated
in the following paragraph. Let us fix two parameters 0 < δ0 ≤ δ ≤ 1 and consider A− a finite set of L.
The set L \ A− shall be denoted by L∞.

Hypothesis A1: Separation condition. Assume that, for all ρ ∈ D, we have:

⋆ for all a ∈ L,
(4.2) Λa(ρ) ≥ c0〈a〉;

⋆ for all a, b ∈ L and |a| 6= |b|, we have

(4.3) |Λa(ρ) − Λb(ρ)| ≥ c1 ||a| − |b|| .
Hypothesis A2: Transversality condition. Assume that for all Ω′ ∈ C1(D,Rn) that satisfies

|Ω − Ω′|C1(D) < δ0,

for all k ∈ Z
n, there exists a unit vector zk ∈ R

p, and all a, b ∈ L with |a| > |b| the following holds :

⋆
|k · Ω′(ρ)| ≥ δ, ∀ρ ∈ D,

or
〈∂ρ(k · Ω′(ρ)), zk〉 ≥ δ ∀ρ ∈ D;

where k 6= 0
⋆

|k · Ω′(ρ) ± Λa(ρ)| ≥ δ〈a〉, ∀ρ ∈ D,
or

〈∂ρ(k · Ω′(ρ) ± Λa(ρ)), zk〉 ≥ δ ∀ρ ∈ D;
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⋆

|k · Ω′(ρ) + Λa(ρ) + Λb(ρ)| ≥ δ(〈a〉 + 〈b〉), ∀ρ ∈ D,
or

〈∂ρ(k · Ω′(ρ) + Λa(ρ) + Λb(ρ)), zk〉 ≥ δ ∀ρ ∈ D;

⋆

|k · Ω′(ρ) + Λa(ρ) − Λb(ρ)| ≥ δ(1 + ||a| − |b||), ∀ρ ∈ D,
or

〈∂ρ(k · Ω′(ρ) + Λa(ρ) − Λb(ρ)), zk〉 ≥ δ ∀ρ ∈ D;

Hypothesis A3: Second Melnikov condition. Assume that for all Ω′ ∈ C1(D,Rn) that satisfies

|Ω − Ω′|C1(D) < δ0,

the following holds:
for each 0 < κ < δ and N > 1 there exists a closed set D′ ⊂ D that satisfies

(4.4) mes(D \ D′) ≤ C(δ−1κ)τN ι;

for some τ, ι > 0, such that for all ρ ∈ D′, all 0 < |k| < N and all a,b ∈ L with |a| 6= |b| we have:

(4.5) |Ω′(ρ) · k + Λa(ρ) − Λb(ρ)| ≥ κ(1 + ||a| − |b||).

We denote A0 = diag{ΛaI2, a ∈ L}. Now we are able to state the abstract KAM theorem proved in
[6]:

Theorem 4.1. Assume that h is a Hamiltonian given by (4.1) and satisfies hypotheses A1, A2 and A3
for fixed δ and δ0 and all ρ ∈ D. Fix α, β > 0 and 0 < σ, µ ≤ 1. Then there is ε0 depending on
α, β, σ, n, µ, |ω0|C1(D) and |A0|β,C1(D) such that, if ∂jρf ∈ T α,β(D, σ, µ) for j = 0, 1, if

JfT Kα,β,κσ,µ,D = ε < min(ε0,
1

8
δ0) and JfKα,β,κσ,µ,D = O(ετ ),

for 0 < τ < 1, then there is a Borel set D′ ⊂ D with mes(D \ D′) ≤ cεγ such that for all ρ ∈ D′:

• there is a symplectic analytical change of variable

Φ = Φρ : Oα(
σ

2
,
µ

2
) → Oα(σ, µ)

• there is a new internal frequency vector Ω̃(ρ) ∈ Rn, a matrix A ∈ Mβ and a perturbation

f̃ ∈ T α,β(D′, σ/2, µ/2) such that

(hρ + f) ◦ Φ = Ω̃(ρ) · r +
1

2
〈ζ, A(ρ)ζ〉 + f̃(θ, r, ζ; ρ),

where A : L × L → M2×2(R) is a block diagonal symmetric infinite matrix in Mβ (ie A
[b]
[a] = 0

if [a] 6= [b]). Moreover ∂r f̃ = ∂ζ f̃ = ∂2
ζζ f̃ = 0 for r = ζ = 0. The change of variables

Φ = (Φθ,Φr,Φζ) is close to identity, and for all x ∈ Oα(σ2 ,
µ
2 ) and all ρ ∈ D′, we have:

(4.6) ‖Φ − Id‖α ≤ Cε4/5.

For all ρ ∈ D′, the new frequencies ω̃ and matrix A satisfy

(4.7) |A(ρ) −A0(ρ))|α ≤ Cε, |Ω̃(ρ) − Ω(ρ)|C1(D′) ≤ Cε,

where C is a constant that depends on ε0.

4.2. Verification of the hypotheses of the KAM theorem.

4.2.1. Non resonance. In this section, we verify that the real normal form (3.25) satisfies the hypotheses
of Theorem 4.1. We start by verifying the separation hypothesis A1, then the transversality condition
A2 and finally the second Melnikov condition A3.

Lemma 4.2. For all ρ ∈ D, and all a , b ∈ L, we have

(i) Λa(ρ) ≥ 〈a〉;

(ii) |Λa(ρ) − Λb(ρ)| ≥ 1

8
||a| − |b|| , with |a| 6= |b|.
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Proof. Recall that, for a ∈ L, the external frequencies are given by:

Λa(ρ) = λa + ν
3

π

1

λa

∑

l∈A

ρl
λl

= λa + ν
C

λa
.

Estimation (i) is obvious. For (ii), we remark that, for ν small enough, we have:

Cν

∣∣∣∣
1

λa
− 1

λb

∣∣∣∣ =
Cν

λaλb
|λa − λb| ≤ 1

2
|λa − λb| .

So

|Λa − Λb| ≥ 1

2
|λa − λb| ≥ 1

8
||a| − |b||,

which concludes the proof of the lemma. �

The non resonance hypothesis A2 will be verified in three steps. We begin by recalling the results
obtained in the Propositions 2.8 and 2.10. For κ = ν1/2, we have the following lemma:

Lemma 4.3. For γ > 0 small enough, |k| ≤ ν−γ and (a, b) ∈ L2 we have:

|ω · k| ≥ 2ν1/2,

except when k is D0 resonant.

|ω · k + λa| ≥ 2ν1/2〈a〉,
except when (k, a) is D1 resonant.

|ω · k + λa + λb| ≥ 2ν1/2(〈a〉 + 〈b〉),
except when (k, a, b) when D2 resonant.

|ω · k + λa − λb| ≥ 2ν1/2(1 + ||a| − |b||),
where |a| 6= |b| and (k, a, b) is not D3 resonant.

Remark 4.4. In the previous lemma, we have applied the Propositions 2.8 and 2.10 with κ = ν1/2,
N = ν−γ and m ∈ [1, 2] \ C. The Lebesgue measure of C satisfies:

mes (C) ≤ CκτN ι,

where τ = O(
1

n
) and ι = O(n2). With this choice of parameter, the Lebesgue measure of C still small, if

we assume that γ < O(
1

n3
).

Now we will verify the transversality hypothesis A2 for k small. Recall that the internal frequencies
are given by:

Ω = ω + νMρ,

where M is the symmetric invertible matrix defined in (3.24). We denotes CA = ‖M−1‖2.

Lemma 4.5. For γ > 0 small enough, k ∈ Z
n with |k| ≤ ν−γ, (a, b) ∈ L2, consider δ0 = 1

2C
−1
A ν. Then

for all Ω′ ∈ C1(D,Rn) that satisfies

|Ω − Ω′|C1(D) < δ0,

and all ρ ∈ D, we have

|Ω′ · k| ≥ ν1/2,

except when k is D0 resonant.

|Ω′ · k + Λa| ≥ ν2/3〈a〉,
except when (k, a) is D1 resonant.

|Ω′ · k + Λa + Λb| ≥ ν2/3(〈a〉 + 〈b〉),
except when (k, a, b) is D2 resonant.

|Ω′ · k + Λa − Λb| ≥ ν2/3(1 + ||a| − |b||),
whith |a| 6= |b| and (k, a, b) is not D3 resonant.
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Proof. Let k ∈ Zn such that |k| ≤ ν−γ for γ > 0 small enough. We begin with the first estimate. We
have

|Ω′ − ω| ≤ |Ω′ − Ω| + |Ω − ω| ≤ 1

2
C−1

A ν + cν ≤ Cν.

So, for a ∈ A
|Ω′ − ω| ≤ Cν〈a〉.

By the Cauchy-Schwarz inequality, for all (a, b) ∈ L, we have:

|Ω′ · k − ω · k| ≤ Cν1−γ ≤ ν1/2.

|Ω′ · k − ω · k| ≤ ν1/2〈a〉.
|Ω′ · k − ω · k| ≤ ν1/2(〈a〉 + 〈b〉).
|Ω′ · k − ω · k| ≤ ν1/2(1 + ||a| − |b||), |a| 6= |b|.

To conclude the proof of the first case, we use the fact that:

|Ω′ · k| ≥ |ω · k| − |Ω′ · k − ω · k| ≥ 2ν1/2 − ν1/2 = ν1/2.

Let us now look at the second estimate. We note that for a ∈ L, we have:

|λa − Λa| ≤ c̃ν〈a〉.
So

|Ω′ · k + Λa| ≥ |Ω′ · k + λa| − |λa − Λa|
≥ |ω · k + λa| − |Ω′ · k − ω · k| − |λa − Λa|
≥ 2ν1/2〈a〉 − ν1/2〈a〉 − c̃ν〈a〉 ≥ ν2/3〈a〉.

Consider now the third estimate. For (a, b) ∈ L2, we have:

|Ω′ · k + Λa + Λb| ≥ |Ω′ · k + λa + λb| − |λa − Λb| − |λb − Λa|
≥ |ω · k + λa + λb| − |Ω′ · k − ω · k| − |λa − Λa| − |λb − Λb|
≥ (2ν1/2 − ν1/2 − 2c̃ν)(〈a〉 + 〈b〉) ≥ ν2/3(〈a〉 + 〈b〉).

Let us now look at the last small divisor. Using (3.23), we remark that, for (a, b) ∈ L2 with |a| 6= |b|, we
have:

|Λa − Λb − (λa − λb)| ≤ c̃ν
∣∣λ−1
a − λ−1

b

∣∣

= c̃ν
||a| + |b||

(λa + λb)λaλb
||a| − |b||

≤ c̃ν(1 + ||a| − |b||).
Which leads to

|Ω′ · k + Λa − Λb| ≥ |Ω′ · k + λa − λb| − |Λa − Λb − (λa − λb)|
≥ |ω · k + λa − λb| − |Ω′ · k − ω · k| − |Λa − Λb − (λa − λb)|
≥ (2ν1/2 − ν1/2 − c̃ν)(1 + ||a| − |b||) ≥ ν2/3(1 + ||a| − |b||).

The proof is thus achieved. �

We have verified the non resonance hypotheses for |k| ≤ ν−γ , δ0 = 1
2C

−1
A ν and δ = ν2/3. For large k,

i.e. |k| > ν−γ , we verify the separation conditions A2 on the derivatives in ρ of the small divisors. More
precisely, we have:

Lemma 4.6. For γ > 0 small enough, k ∈ Zn with |k| > ν−γ, (a, b) ∈ L2, we consider δ0 = 1
2C

−1
A ν.

Then for all Ω′ ∈ C1(D,Rn) that satisfies

|Ω − Ω′|C1(D) < δ0,

there exists a unit vector zk, such that for all ρ ∈ D we have

(i) |〈∂ρ(k · Ω′(ρ)), zk〉| ≥ Cν1−γ ≥ ν,

(ii) |〈∂ρ(k · Ω′(ρ) ± Λa(ρ)), zk〉| ≥ ν for all a ∈ L,
(iii) |〈∂ρ(k · Ω′(ρ) + Λa(ρ) + Λb(ρ)), zk〉| ≥ ν for all (a, b) ∈ L2,

(iv) |〈∂ρ(k · Ω′(ρ) + Λa(ρ) − Λb(ρ)), zk〉| ≥ ν for all (a, b) ∈ L2.

The constant C depends on the admissible set A.
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Proof. Let us begin with (i). First of all, we remark that:

〈∂ρ(k.Ω′(ρ)), zk〉 = 〈∂ρ(k.Ω(ρ)), zk〉 + 〈∂ρ(k.Ω′(ρ)) − k.Ω(ρ)), zk〉.
However

|〈∂ρ(k.Ω′(ρ)) − k.Ω(ρ)), zk〉| ≤ 1

2
|k|C−1

A ν.

Recall that the matrix M is symmetric and |k| > ν−γ . Assume that zk = Mk
|Mk| . Then, we have:

|〈∂ρ(k · Ω′(ρ)), zk〉| ≥ ν

∣∣∣∣〈Mk,
Mk

|Mk| 〉
∣∣∣∣− |〈∂ρ(k.Ω′(ρ)) − k.Ω(ρ)), zk〉|

= ν |Mk| − 1

2
|k|C−1

A ν

≥ ν

(
C−1

A − 1

2
C−1

A

)
|k|

≥ 1

2
C−1

A ν1−γ ≥ ν.

Let us now consider the second estimation (ii). For a, l ∈ L, we have:

|∂ρl
Λa(ρ)| =

∣∣∣∣ν
3

π

1

λaλl

∣∣∣∣ ≤ cν.

Using the same unit vector zk, we get:

|〈∂ρ(k · Ω′(ρ) ± Λa(ρ)), zk〉| ≥ |〈∂ρ(k · Ω′(ρ)), zk〉| − |∂ρ(Λa(ρ))| |zk|

≥ 1

2
C−1

A ν1−γ − c′ν ≥ ν.

Applying the same principle for (iii) and (iv), we obtain:

|〈∂ρ(k · Ω′(ρ) + Λa(ρ) ± Λb(ρ)), zk〉| ≥ |〈∂ρ(k · Ω′(ρ)), zk〉| − |∂ρ(Λa(ρ))| |zk|
− |∂ρ(Λb(ρ))| |zk|

≥ 1

2
C−1

A ν1−γ − 2c′ν ≥ ν,

and the proof is thus concluded. �

To finish the verification of the transversality condition, it remains to consider the cases where (k, a)
is D1 resonant and (k, a, b) is D2 or D3 resonant.

Lemma 4.7. Let k ∈ Zn and (a, b) ∈ L2. Consider δ0 = 1
4νC̆A, where C̆A is a constant that depends on

the admissible set A. Then for all Ω′ ∈ C1(D,Rn) that satisfies

|Ω − Ω′|C1(D) < δ0,

and all ρ ∈ D, we have:

|Ω′ · k + Λa| ≥ C̆Aν〈a〉,
if (k, a) is D1 resonant;

|Ω′ · k + Λa + Λb| ≥ C̆Aν(〈a〉 + 〈b〉),
if (k, a, b) is D2 resonant;

|Ω′ · k + Λa − Λb| ≥ C̆Aν(1 + ||a| − |b||),
where |a| 6= |b| and (k, a, b) is D3 resonant.

Proof. Consider a ∈ A. From (3.22) and (3.23), we have

ω̃a − λ̃a =
3

2π

1

λa

∑

l∈A

2 − 3δl,a
λl

ρl.

Assume that (k, a) is D1 resonant. Then we have

Ω′ · k + Λa = (Ω′
a − Ωa) − ν(ω̃a − λ̃a).

We remark that there exists a constant C1, that depends on the admissible set A, such that:

|ω̃a − λ̃a| ≥ C1

λa
.
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Consider δ0 ≤ 1

2
ν

C1

max(A)2 + 2
:=

1

2
νC̃1, then we have:

|Ω′ · k + Λa| ≥ C1ν
1

λa
− 1

2
C̃1ν

≥ C̃1ν〈a〉 − 1

2
C̃1ν

≥ 1

2
C̃1ν〈a〉.

Let us consider now the case where (k, a, b) is D2 resonant. There is a constant C2, that depends on the
admissible set A, such that for all (a, b) ∈ A2, we have:

|(ω̃a − λ̃a) + (ω̃b − λ̃b)| ≥ C2(
1

λa
+

1

λb
)

≥ C̃2(〈a〉 + 〈b〉),

where C̃2 :=
C2

max(A)2 + 2
. So, if (k, a, b) is D2 resonant and δ0 ≤ 1

4
νC̃2, then we have:

|Ω′ · k + Λa + Λb| = |(Ω′ − Ω) · k − ν((ω̃a − λ̃a) + (ω̃b − λ̃b))|
≥ ν|(ω̃a − λ̃a) + (ω̃b − λ̃b)| − 2|Ω′ − Ω|

≥ 1

2
C̃2ν(〈a〉 + 〈b〉).

It remains to look at the last small divisor in the case where (k, a, b) is D3 resonant. We note that there
exists a constant C3, which depends on the admissible set A, such that for all (a, b) ∈ A2, we have:

|(ω̃a − λ̃a) − (ω̃b − λ̃b)| ≥ C3

∣∣∣∣
1

λa
− 1

λb

∣∣∣∣
≥ C̃3(1 + ||a| − |b||),

where C̃3 :=
C3

8(max(A)2 + 2)
. So, if (k, a, b) is D3 resonant and δ0 ≤ 1

4
νC̃3, then we have:

|Ω′ · k + Λa − Λb| = |k · (Ω′ − Ω) − ν((ω̃a − λ̃a) − (ω̃b − λ̃b))|
≥ ν|(ω̃a − λ̃a) − (ω̃b − λ̃b)| − 2|Ω′ − Ω|

≥ 1

2
C̃3ν(1 + ||a| − |b||).

We conclude the proof by choosing C̆A = 1
2 min(C̃1, C̃2, C̃3). �

The last hypothesis to verify to apply the KAM theorem is the second Melnikov condition. Recall that
n = Card(A).

Lemma 4.8. For δ = ν , δ0 ≤ δ, τ = 1
3 and ι = n+ 3

2 + 2
3γ , the second Melnikov condition is satisfied.

Proof. Consider γ > 0 small enough and N ≥ 0. If N ≤ ν−γ , then, using Lemma 4.5, the second
Melnikov condition is satisfied for all ρ ∈ D. If N > ν−γ , then from Lemma 4.5 and for |k| ≤ ν−γ the
second Melnikov condition is satisfied for all ρ ∈ D. Assume now that |k| > ν−γ , then from Lemma 4.6
there is a unit vector zk such that:

|〈∂ρ(k · Ω′(ρ) + Λa(ρ) − Λb(ρ)), zk〉| ≥ ν.

For 0 < κ < ν, consider the set

J(k, a, b) = {ρ ∈ D | |Ω′(ρ) · k + Λa(ρ) − Λb(ρ)| < κ}.
Then we have

mesJ(k, a, b) ≤ Cκν−1,

where C is a constant that depends on D. For p ∈ Z and k ∈ Zn, we consider the following set

W (k, p) = {ρ ∈ D | |Ω′ · k + p| < 5κ1/3}.
By the first estimate (i) from Lemma 4.6, we have

mesW (k, p) ≤ Cκ1/3ν−1,

where C is a constant that depends on D. Consider

W = {ρ ∈ D | |Ω′ · k + p| < 5κ1/3}.
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We remark that |Ω′ · k + p| < 5κ1/3 for |k| < N , so we have |p| ≤ C|k| < CN . This leads to

mes (W ) ≤
∑

k∈Zn

|k|≤N

∑

p∈Z

|p|<CN

W (k, p) ≤ CNn+1κ1/3ν−1.

For a ∈ L, we recall that Λa(ρ) = λa + νC(ρ)λ−1
a . Consider ν small enough, then for ρ ∈ D, we have:

|Λa(ρ) − |a|| =

∣∣∣∣λa(ρ) − |a| + ν
C(ρ)

λa

∣∣∣∣ =

∣∣∣∣
m

λa + |a| + ν
C(ρ)

λa

∣∣∣∣ ≤ 2

|a| .

If |a| > |b| > k−1/3, we obtain

|Λa(ρ) − Λb(ρ) − (|a| − |b|)| ≤ 4

|b| ≤ 4κ1/3.

So, if ρ ∈ D \W and |a| > |b| > κ−1/3, we obtain

|k · Ω′(ρ) + Λa(ρ) − Λb(ρ)| ≥ |k · Ω′(ρ) + (|a| − |b|)| − |Λa(ρ) − Λb(ρ) − (|a| − |b|)|
≥ 5κ1/3 − 4κ1/3 = κ1/3.

It remains to look at the cases where |a| ≤ κ−1/3 or |b| ≤ κ−1/3. Then, there is k ∈ Zn such that

|k · Ω′(ρ) + Λa(ρ) − Λb(ρ)| < 1,

for ν−γ < |k| < N . We remark that, in those cases, ||a| − |b|| ≤ CN . Consider the set:

Q =
{

(a, b) ∈ Z
2 | min(|a|, |b|) ≤ κ−1/3 et ||a| − |b|| ≤ CN

}
.

We have
Card (Q) ≤ CNκ−2/3.

Let
D′ = D \ (W

⋃

|k|≤N

(a,b)∈Q

(J(k, a, b))).

Then for all ρ ∈ D′ we have:
|k · Ω′(ρ) + Λa(ρ) − Λb(ρ)| ≥ κ.

Moreover,

mes (D \ D′) ≤ mes (W ) +
∑

k∈Zn

|k|≤N

∑

(a,b)∈Q
mes J(k, a, b)

≤ CNn+1κ1/3ν−1 + CNnNκ−2/3κν−1

≤ CNn+1(κν−1)1/3.

Recall that N > ν−γ . This leads to

mes (D \ D′) ≤ CNn+1+2/3γν−2/3(κν−1)1/3.

Now it remains to show that for all ρ ∈ D′ we have:

|Ω′(ρ) · k + Λa(ρ) − Λb(ρ)| ≥ κ(1 + |a| − |b||).
We will prove this estimation in two steps. Assume at first that ||a| − |b|| ≥ 16|Ω′ · k|. Then, using the
second separation condition from Lemma 4.2, we have:

|Ω′(ρ) · k + Λa(ρ) − Λb(ρ)| ≥ |Λa − Λb| − |Ω′ · k|

≥ 1

16
||a| − |b|| ≥ 1

32
(1 + ||a| − |b||)

≥ κ(1 + ||a| − |b||),
for all 0 ≤ κ ≤ 1

32 and all ρ ∈ D.
Assume now that ||a| − |b|| < 16|Ω′ · k| < 16CAN . Then for all ρ ∈ D′, 0 < |k| < N and a,b ∈ L with

|a| 6= |b|, we have:

|Ω′ · k + Λa − Λb| ≥ κ

1 + 16CAN
(1 + |a| − |b|)

≥ κ̃(1 + |a| − |b|),
where

mes (D \ D′) ≤ CNn+3/2+2/3γ
(
κ̃ν−7/5

)1/2

,

which ends the proof and concludes the verification of the assumptions made on the frequencies. �
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4.2.2. Application of KAM theorem 4.1. Using lemmas 4.2-4.8, the separation conditions, the Transver-
sality condition and the second Melnikov condition are satisfied for δ = ν and δ0 ≤ δ. From Theorem 3.7,
for 0 < µ ≤ 1, we have:

(4.8) JfT K
α,1/2,κ
σ
2 ,

µ
2 ,D

≤ 2Cν3/2.

Moreover we have:

JfKα,γ,κσ,µ,D = O

((
JfT K

α,1/2,κ
σ
2 ,

µ
2 ,D

)3/2
)
.

To use Theorem 4.1, we need that:

JfKα,γ,κσ,µ,D ≪ δ = ν7/5

and

JfKα,γ,κσ,µ,D = O
((

JfT K
α,1/2,κ
σ
2 ,

µ
2 ,D

)τ)
, for τ ∈ ]0, 1[ .

These last two conditions are indeed verified. We can therefore apply the Theorem 4.1.

5. Proof of Theorem 1.3

Now we have all the tools to prove Theorem 1.3. For m ∈ U and ρ ∈ (D \ D′), consider:

Πρ = Ψρ ◦ Φρ = τ ◦ χρ ◦ Υ ◦ Φρ,

where

• τ is the Birkhoff change of variable constructed in the Proposition 3.15.
• χρ is the rescaling defined in 3.17;
• Υ is the transition to real variables;
• Φρ is the KAM change of variable from Theorem 4.1.

So Πρ is a real holomorphic symplectic change variable

Πρ : Oα
(σ

4
,
µ

4

)
→ Tρ(ν, σ, µ, α),

that transforms the perturbed Hamiltonian (1.5) into

H ◦ Πρ = ω′(ρ) · r +
1

2
〈ζ, A(ρ)ζ〉 + f̃(θ, r, ζ; ρ).

where A : L×L → M2×2(R) is a block diagonal symmetric infinite matrix in Mβ (ie A
[b]
[a] = 0 if [a] 6= [b]).

Moreover ∂r f̃ = ∂ζ f̃ = ∂2
ζζ f̃ = 0 for r = ζ = 0. From (3.24) and (4.7), the internal frequencies are given

by

ω′ = ω + νMρ+O(ν3/2).

For the following, let I = νρ and D = [ν, 2ν]n. Then, for m ∈ U , there is a Borel set D′ ⊂ [ν, 2ν]n such
that:

mes ([ν, 2ν]n \ D′) ≤ νγ+n,

for γ > 0 and depends on n. For X = (θ, r, ζ), we denotes [X ]α =

( ∑
a∈A

|rae2iθa |
)1/2

+ ‖ζ‖α. Let

X ∈ Tn × {I} × {0}. So χρ ◦ Υ(X) ∈ Tρ(ν, [X ]α, α), and we have:

distα(χρ ◦ Υ(X), X) ≤ 2ν1/2[X ]α ≤ 4ν3/2.

Using (3.8), we obtain that

distα(τ ◦ χρ ◦ Υ(X), X) ≤ ν3/2 + distα(χρ ◦ Υ(X), X) ≤ 5ν3/2.

Then, thanks to (4.6) and (4.8), we have

distα(Πρ(X), X) ≤ Cν4/5,

where C is an absolute constant. For m ∈ ([1, 2] \ U) and I ∈ D′, consider (θ̃, Ĩ, ζ̃) = Π−1(X); and let

u
(
θ̃, Ĩ , x

)
=
∑

a∈A

√
Ĩa
e−iθ̃aϕa(x) + eiθaϕ−a(x)√

2ω′1/4
.

The function t 7→ u(θ̃ + tω′, Ĩ, x) is a quasi-periodic solution of the wave equation (1.1). Let ζI,θ =
(ξI,θ, ηI,θ) where

(ξI,θ)a =
√
Iae

iθa , (ηI,θ)a =
√
Iae

−iθa , if a ∈ A,
(ξI,θ)s = (ηI,θ)s = 0, if s ∈ L.
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Then we have:
sup
θ0∈Tn

‖ u(θ0, I, .) − uI,m(θ0, .) ‖Hα ≤ ‖Πρ(X) − ζI,θ‖α ≤ Cν4/5.
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