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KAM FOR THE NONLINEAR WAVE EQUATION ON THE CIRCLE:
SMALL AMPLITUDE SOLUTION

MOUDHAFFAR BOUTHELJA

ABSTRACT. In this paper we consider the nonlinear wave equation on the circle:
Utt — Uze + mu = g(z,u), tER, xS
where m € [1,2] is a mass and g(z,u) = 4u® + O(u?*). This equation will be treated as a perturbation
of the integrable Hamiltonian:
() Ut =V, UVt = —Ugy + Mu.

Near the origin and for generic m, we prove the existence of small amplitude quasi-periodic solutions
close to the solution of the linear equation (). For the proof we use an abstract KAM theorem in infinite
dimension and a Birkhoff normal form result.
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1. INTRODUCTION AND RESULTS
1.1. Introduction. We consider the cubic wave equation on the circle:
(1.1) Ugy — Uge +mu = g(z,u), tER, xS,

where m € [1,2] is a mass and ¢ is a real holomorphic function on S x J, for J some neighborhood of
the origin of R. We suppose that the nonlinearity g satisfies

(1.2) g(w,u) = 4u® + O(u?).

We prove the existence of small amplitude quasi-periodic solutions close to the solution of the linear
equation.

Since the space variable belongs to the circle, we can diagonalize the linear part of the equation in
Fourier basis. So we can study the PDE as a perturbation of an integrable Hamiltonian of the following
form

(0O) H= Z As&sms + Perturbation |

SEZL

This work was supported in part by the CPER Photonics4Society and the Labex CEMPI (ANR-11-LABX-0007-01).
1



MOUDHAFFAR BOUTHELJA

where Ay = v/s2 + m. In order to prove the existence of quasi-periodic solutions, we will use an abstract
KAM theorem in infinite dimension adapted to our situation and proven in [6]. The KAM theory
(Kolmogorov-Arnold-Moser) tells us that, under the effect of a small perturbation and under several
conditions of non resonance, an integrable Hamiltonian system continues to exhibit finite-dimensional
invariant tori in an infinite dimensional space. The existence of these invariant tori gives us the existence
of quasi-periodic solutions. The main issue here is that frequencies Ay do not satisfy the standard non
resonance hypotheses !. In the Dirichlet case, the sum in (0) is restricted to positive indices (see [15]).
In this case, the standard non resonance conditions can be verified with the mass m. In the periodic
case, both positive and negative indices are allowed. Note that Ay = A_s. So we obtain a resonant
Hamiltonian system. For this purpose, the KAM theorem that we will use must deal with the case of
multiple eigenvalues.

The existence of quasi-periodic solutions for nonlinear Hamiltonian PDEs have interested many au-
thors. The first result related to preserving such solutions, after the perturbation of an integrable Hamil-
tonian of infinite dimension, was given by Kuksin in 1987 in [11, 10] for the Schrodinger equation in
dimension 1 with Dirichlet conditions.

Concerning the wave equation, the first result is due to Wayne in [15]. He considered the cubic-wave
equation in dimension 1 with external potential in L?([0,1]), and with Dirichlet conditions (which leads
to simplicity of the spectrum).

We can also cite the work of Péschel in [13]. In this paper, the author considers the wave equation in
dimension 1 with mass, homogeneous Dirichlet condition, and analytical cubic nonlinearity that does not
depends on the space variable.

In 1998; Chierchia and You consider in [7] the wave equation in dimension 1 with analytic periodic
potential and an analytic quadratic perturbation that does not depends on the space variable. In this
case, the potential acts as an external parameter. This makes verifying the non resonance conditions
possible. In particular, the authors do not authorize the case of a vanishing potential.

The most recent work is due to Berti, Biasco and Procesi in 2013 in [5]. In this paper, they consider
the derivative wave equation given by:

Utg — Ugg +mu+ f(Du) =0, m >0, D:=+-02,+m, (t,z)cRxT,

where f(s) is a real analytic nonlinearity of the form

f(s) = as®+ Z fus®, a 0.
k>5
We remark that the nonlinearity is independent of the space variable . This implies that the moment
—1i fT udzudz is preserved. This symmetry simplifies the proof of the KAM theorem.
In our case, there are no external parameters. The space variable belongs to the circle, so we are in
the periodic case. The non-linearity g depends on the space variable.
The plan of the paper is the following:

e In the first section, we give the main result of the paper (see Theorem 1.3).

e In the second section, we show that, for an admissible set (see definition 1.2), the small divisors
of the wave equation (1.1) admit a positive lower bound. This is proven for m € [1,2] \ i where
U is zero Lebesgue measure set.

e In the third section, using a Birkhoff normal form, we transform the resonant Hamiltonian asso-
ciated to the equation (1.1) into a Hamiltonian that satisfies the hypotheses of the KAM theorem
(see Theorem 3.7).

e In the fourth section, we state the KAM theorem (see Theorem 4.1), and we verify the non
resonance hypotheses (see Lemma 4.2-4.8).

e In the last part we prove the existence of quasi-periodic solutions of small amplitudes for the
equation (1.1).

1.2. Results. We consider the nonlinear wave equation on the circle (1.1) with ¢ in the form (1.2).
Introducing the change of variable v = 4, the equation (1.1) becomes:

U=,
V= —A2u+g(:c,u),

where A := (v/—0 + m). Defining ¢ := %(A%u — iA~2v), we get the following equation for v:
. 1
b= — (A1/2u _ Z'A_l/21')) .
V2

MHypothese likes: [k1A1 + ... 4 knAn| > e, ke zm\ {0}
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We note that u = A~1/2 (hﬂﬁ), replacing @ and © by their expressions yields:

L L1y —1/2 (1/’+¢))
Zw A \/QA g(m,A NG .

Let us endow L2(S', C) with the classical real symplectic form —idy A dip = —du A dv and consider the

following Hamiltonian:
TN - “1p (Y 15))
1) = [ (yidet [ 6 (o2 (250 ) ae

where G is a primitive of g with respect to u:
g=0.G, G(z,u)=u"+0’).

Then, (1.1) becomes a Hamiltonian system:

. 0H
o
Consider now the complex Fourier orthonormal basis given by {¢s(z) = f/i;, s € Z}. In this base,
the operator A is diagonal, and we have:
Asﬁs = )\58057

with Ay = v/s2 + m. Decomposing 1) and ¢ in this basis yields:
Y= Z&s%ﬁs and 7/_) = 27755075-
SEZL SEL

By injecting this decomposition into the expression of H, we obtain:

(1.3) H = A&y + / ( Zfswsjﬁw 5>dx.

SEZ SEZL

Let Pc := (*(Z,C) x £*(Z,C) that we endow with the complex symplectic form —iy _,d& A dns. We
define

Pr = {(&,m) € Pelns = &3

Then, equation (1.1) is equivalent to the following Hamiltonian system on Prg:

=il
ns
(1.4) o

G
for s € Z.

From now, we write H = Hy + P, where

(15) Hy = Z)\Sgsns, and P:/ ( ngws + s 5) d.

SEZL SEZ

Remark 1.1. Recall that g(z,u) = 4u®+ O(u*) and g = 0,G, so we can decompose P into P = Py + Rj

where
4
P4(§,7]):/Slu4dz:/ (Zéssﬁsﬂw ) dr.

Rs(&,m,x) = P(&n,2) — Pa(&,n) = O([| (&, )]1°)
In addition, Py reads
D Clind kD& +n-)(& +n-3) (& +n-1) (& +1-1),
i,4,k,lE€Z
where

if itj+k+1=0,

Clininl) 1= [ ouales @)oula)ala)da

3
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Let A be a finite set of Z of cardinality n, and a vector I = (I,)ase.a with positive components (i.e.
I, > 0 for all a € A). Let T} be the real torus of dimension n defined by

™ — o = Nas |§a|2:1a if aecA,
I Es=ns=0 if selL=7Z\A

This torus is stable by the Hamiltonian flow when the perturbation P is zero. We can even give the
analytic expression of the solution of the linear equation.

Our purpose in all the following is to prove the persistence of the torus 77 when the perturbation P
is no longer zero, while making the crucial assumption that this torus is admissible. A torus is said to be
admissible if it is constructed from an admissible set A.

Definition 1.2. Let A be a finite set of Z. A is admissible if, for all j € A\ {0}, we have —j ¢ A\ {0} .

Let us introduce the sets £L =Z\ A and A~ ={j € L| — j € A}. In a neighborhood of the invariant
torus 77 in C*", we define the action-angle variables (74, 0,).4 by:

{ ga =V (Ia +Ta)ei6a7
Na = ga-

For s € A, we denote by wy (instead of As) the internal frequencies. In these new variables and notations,
the quadratic part Hy of H becomes, up to a constant,

oy = Zwara + Z)\sgsns-

acA seLl

In addition, the perturbation becomes:
P(T, 9;6377) = G(xaaf,m(r; Gagan))dm
St
with
ba Pa(z) + ewa‘P—a(x)
Ur,m(r, 0 V(I +714)
I ,651) ; \/§(a2+m)1/4
Es@s +77 s‘Ps( )
27 -
S VI

We set uym(0,2) = G5,,m(0,0,0,0). Then, for any I € Rj‘r‘, m € [1,2] and §p € S!, the function
(t,x) = urm (0o +tw,x) is solution of the linear wave equation. In this case, the torus T} is stable by the
Hamiltonian flow. Our goal is to state a similar result when the perturbation is not zero (in the nonlinear
case).

Theorem 1.3. Let o > 1/2. Assume that A is an admissible set of cardinality n. Assume also that the
perturbation g is real holomorphic on a neighborhood of S* x J with J some neighborhood of the origin
of R and reads g(z,u) = 4u® + O(u). There exists a Borel subset U C [1,2] with zero Lebesgue measure,
such that for m € ([1,2] \U), there exists vy that depends on A, m, and the nonlinearity g, such that:

For 0 < v <y there exists a Borel set D' C [v,2v]" asymptotically of full Lebesque measure,i.e.
mes ([v,2v]" \ D’) < "7,

with v > 0 and depending on n. Form € ([1,2)\U) and I € D', there exists:
(1) a function u(0,z) analytic in 0 and of class H* in x € S' such that:

sup || uw(6,.) — wrm(0,.) | ma< Cv*°,
feR

with C an absolute constant.
(2) a mapping ' : ([1,2] \U) x D" — R™ verifying:

W' =w+ MI+0W*?),
such that for any m € ([1,2]\U) and I € D' the function
t—u(f+ tw', z)
is solution of the wave equation (1.1). This solution is linear stable.

The rest of the paper will be devoted to the proof of this theorem.
4
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2. SMALL DIVISORS

2.1. Non resonance of frequencies. In this section, we assume that A is an admissible set as in
Definition 1.2.
We consider the frequency vector

w = w(m) = (wa(m))aea,
with we(m) = va? + m. The main and only result of this section is the following:

Proposition 2.1. Consider an admissible set A of cardinality n that verifies AC {a € Z | |a]| < N,N >
1}. Then, for any k € Z2\ {0}, any x > 0 and any c € R, we have

N2n2 1/n
mes {mE[l,Q] | Sx}SC’iX

k|
with [k| := 3, c 4 |ka| and C > 0 is a constant that depends only on n.

Z kowq(m) + ¢

acA

The proof uses the same arguments as in Theorem 6.5 of [2] (see also [1] and [3]). For clarity, we recall
the main steps of the proof.

Lemma 2.2. Assume that A C{a € Z| |a| < N}. For any p < n:= Card(A), consider ai,--- ,a, € A.
The the following determinant

dwaq dwa, dwap

dm dm oo éim

dzwal d2wa2 d Way,

D= dm? dm? o dm?

dPwa,q dPw,., dpu:mp

dmP dmP oo dmP
verifies
(2.1) ID| > CN~%",

where C' = C(p) > 0 is a constant that depends only on p.

Proof. An explicit computation gives

dw; (2§ —2)! (—1)7+t
dmi — 2271(j — 1)l (a2 4 m)i—3

(2.2)

Inserting this formula in D, by factoring from each I-th column (a?+m)~'/2, and from j-th row 22]@17@23'1),,

the determinant is equal up to a sign to

1 1 | |
Tay LTay Lag .. IL'ap
2 2 2
fo [z ] 2R R
o T2l
Qp 22]71 '71| 9
=1 j=1 (j ) . . . L. .
p P P p
SCal SCaz .’L'a3 e :Cap

where x, := (a®> + m)~! = w; 2. The above determinant is a Vandermonde determinant. It is equal to

2 _ 2
ai —a?
H (Ta, = Tay,) = H et

w; w
1<I<k<p 1<I<k<p @ ok

The set A is admissible, so ‘H1<l<k<p(ai — a?)‘ > 1. Since |a|] < N, then for any a € A we have
|wa| < 2N. Therefore:

. 1 - 1 1 - 1 1
Hw‘” H w2 w2 T 9op(2p-1) Np(2p—1) = 9p(2p—1) N2p*’
=1 1<I<k<p e Ok

which leads to (2.1). O

We need the following proposition, presented in appendix B of [4].
)
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Lemma 2.3. Let (uV),...,u?)) be p independent vector in R™ such that [|u?||p < K forj € [1,...,p].

Let w be a linear combination of uV, ... ,uP). There exists j € [1,...,p| such that:
(2.3) |u(j) w| > HU}HPV (U(l .. ,u(p))
. pr 1 B}

where V), (u(l), e ,u(p)) denotes the Fuclidean volume of the parallelepiped generated by the p wvectors
1) (p)
TAS R T

Recall that, for m € [1,2], the internal frequency vector is given by

w(m) = (wa(m))aca = (Va* + m)aea.
Corollary 2.4. Let n = Card(A) and w a nonzero vector in R™. Then, for any m € [1,2], there exists
Jj €[1,...,n] such that
w dw (m)
dmJ

where C' > 0 is a constant that depends only on n.

> CN =27 |w| 1,

Proof. From Lemma 2.2, (42 (m),.. ., %—“fl(m)) is a basis of R™. Therefore w is as a linear combination
of these vectors. Accordmg to Lemma 2.3, there exists j € [1...,n] such that
b P ellaVa (..., )
dmJ - nKn—1
> lwlle:Vn (e (m), -, G (m))
n3/2 Kn—1 ’
Note that (42 (m),..., %(m)) is a n-family vector in R™. So
dw d"w
o | o (m), .y =D,
Vo (G Gt

where D is the determinant defined in the Lemma 2.2. Let us now give the expression of K. For
Jj €[1,...n] we have

H Pom| = 5 |G DT
de 1<k<n 2215 = 1)! (k2 + m)j—%
2n — 2)! on — 2)!
= Z . )| = n(@n ') =K.
1<k<n (n—1)! (n—1)!

Then ‘ ( !

djw n— 1! —2n?

’w' dmi (m)‘ = leleel > CON=2" w1,

which ends the proof of the corollary. .

We need the following lemma 2.1 from [16]:
Lemma 2.5. Assume that g(7) is a p-th differentiable on J C R. For h > 0, we define the open set Jy,
Jp={reJ||g(r)| <h}.
If |g®) ()| > d > 0, for T € J, then
(2.4) mes(.J;,) < MRYP,
where M :=2(2+3+ ...+ p+d1).
Now we have all the tools to give a proof of the Proposition 2.1.

Proof of Proposition 2.1. Let k € R™, where n = Card(A), and consider the function g € C*([1, 2], R)
defined by:
glm) =k-w(m)+ec.
From Corollary 2.4, there exists j € [1...n] such that
di
—“.(m)‘ > ON~2|).

k-
’ dmJ
Using Lemma 2.5 with h = CN~2"" |k|, we obtain

mes {m € [1,2] | [k-w(m)+c| < x} < Mx'/",

where M < CN 2n |k|=t. The constant C is strictly positive and depends only on n. This ends the proof
of the proposition. 0
6
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2.2. Small Divisors Estimates. For m € [1,2], recall that the internal frequencies are denoted by

w = w(m) = (Va? +m)gea, while the external frequencies are denoted by A = As(m) = vs? +m for
se L=17\A. We Note that for s € £\ {0} we have

(2.5) [As(m) —[s]] < ST

We Recall that A~ := {s € L | —s € A}. We denote by £ the complementary of A~ in £ and n the
cardinality of A.
In this part, we will give a lower bound of the modulus of the following small divisors:
Dy=w-k, keZ"\{0},
Dy=w-k+ X, k€Z" a€lL,
Dy=w-k+ X+ N, k€Z" abeL,
Dy=w-k+Xg—XNy, k€EZ" a,be L.

Definition 2.6. Let k € Z™, a,b e L.

(i) The vector k is Dgy resonant if k = 0.

(ii) The couple (k;a) is Dy resonant if |a| = |s| where s € A and w - k = —wj
(iii) The triplet (k;a,b) is Dy resonant if |a| = |s|, |b| = |s'| where s,8' € A and w -k = —ws — wy
(iv) The triplet (k;a,b) is D3 resonant if |a| = |s|, |b] = |s'| where s,s’ € A and w -k = —w,s + wyr.

Remark 2.7. Note that (k;a,b) can be Dy or D3 resonant only if (a,b) € A~ x A~. Similarly, (k;a)
can be D1 resonant only if a € A™.

Our goal is to give a lower bound to the modulus of small divisors Dy, D1, Do and D3 when they are
not resonant, for m € [1,2] \ C, with C an open set of zero Lebesgue measure. In this section, C' will
denotes a constant that depends only on the admissible set A. Let us start with the small divisors Dy,
D1 and D2.

Proposition 2.8. Let k > 0 and an integer N > 1. Then there is an open set C C [1,2] that verifies
mes (C) < Ck™N*,

where 7,0 > 0 and depend only on n = Card (A), such that for all m € ([1,2]\ C), all 0 < |k| < N and
all a,b € L we have:

(2.6) lw - k| > K,

except when k is Do resonant;

(2.7) ks Xa| > w(a),
except when (k;a) is Dy resonant;

(2.8) -+ Aa + Mol > 8 ({a) + (B)),

except when (k;a,b) is Do resonant. The constant C depends only on the admissible set A.

Proof. We start by proving (2.6). Let £ > 0 and an integer N > 1. Consider
U={me[l,2]||w-k| <k, ke€Z" for 0 <|k|] < N}.
For k € Z™ we consider the sets:
Uy ={m e [1,2] | |lw- k| < K}

and
Bo = {k € Z"||k| < N}.

U= J t.

keBg

Thanks to Proposition 2.1, we have mes (Uy) < C”‘”"‘lk/‘n . We Note that there are at most N™ points in By.
So we obtain:

Then

mes (U) < CkY"N™,
Let us now look at the second small divisor (2.7). Consider
C4 = (max{|a| | a € A}?)

There are two cases: if |a] > 2C 4N, then

1/2

1
Wk + Al 2 Ao — |w - k| 2 |a] = Calk| 2 |a] = Sla| = x(a),
7
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for 0 < k <1/2. If |a] < 2C4 N, let

V={me[l,2]||w-k+ | < r&la), (k;a) e LXZ"
with 0 < |k] < N and (k;a) non Dy resonant }.

We want to give an upper bound of the Lebesgue measure of V. Consider for & € Z™ and a € L the sets

Via ={m € [1,2] | |lw-k+ Aa| < K{a), (k;a) non D; resonant }
and
By = {(k,a) € Z" x L||k] < N et |a|] < 2CsN}.

Then we have

(2.9) ve U Ve
(k,a)eB1

We note that there are at most 4C 4 N™*! points in B;. It remains to give an upper bound of the Lebesgue

measure of Vi, ,. There are two cases:

o If {a,—a} ¢ A, then A’ = AU {a} is still an admissible set of cardinality n + 1. In addition, we

have A" C {a € Z | |a] < CN}. Applying Proposition 2.1 to the new admissible set, we have

Hl/(n+1)N2(n+1)2+1/(n+l)
|k + 1]

mes (Vo) < C

e If |a] € A but (k;a) is not D; resonant, then by applying Proposition 2.1 without changing A we

have
l/nN2n2+1/n
mes (Vo) < (O N—
||
So

mes (V) < Cxl/ D) N+ DEn+3)+1/(n41)

With the same argument we show (2.8). We end the proof of Proposition 2.8 by taking C =4/ UV UW

where W is the open set where (2.8) is not verified.

It remains to control D3 = w -k + \g — \p.
Lemma 2.9. Let & €]0,1] and an integer N > 1. We have
mes{m € [1,2] | |w-k — e| < 2&, (k,e) € Z" for 0 < |k| < N} < CRw N1,
where C' > 0 and depends only on the admissible set A.

Proof. Let (k,e) € Z" x Z such that 0 < |k| < N. Using Proposition 2.1, we have

mes{m € [1,2] | |w-k—e|<2k,}§6‘%.

Since k < 1, we can restrict ourselves to
le] <|w-k—e|+ |w- k| <CN.

Then
mes U {mel,2||w-k—e| <2} <CON" in.

k<N
(k,e)EZN+1

The proof is thus concluded.

Proposition 2.10. Let k > 0 and an integer N > 0. Then there is an open set C C [1,2] satisfying

mes (C) < Ck™"N*,

O

where T and v are two strictly positive exponents which depend only on n = Card (A), such that for all

m € ([1,2]\C), all 0 < |k| < N and all a,b € L we have
(2.10) lw -k + Ao — Xo| > k(1 + ||a] — [b]]),

except when (k;a,b) is D3 resonant. The constant C depends only on the admissible set A.
8
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Proof. Using (2.5) for |b| > |a| > 0, we remark that

m

Ao =X = (Ja] = [B])] < — < 2[al 7"

al
So we have

lw-k+ Ao — Xo| > |w-k+ |a| — |b]| —2]a| ™.
In Lemma 2.9, we denote & = k¢ where g is an exponent in ]0, 1[ which will be determined later. According
to this Lemma, there is an open set C; = C1(N, k2) whose Lebesgue measure is smaller than CRw N7t

where C'is a constant that depends on A. For all m € ([1,2]\ Cy1), all 0 < |k| < N and all a,b € £ where
|b] > |a| > 2k, we have:

(2.11) lw- k4 Ao — Xo| > RE > R

Let us look at the remaining cases where the previous estimate does not hold. These cases are included
in the set:

Co={me[L2]||lw-k+ X — | <F, (a,b) € L% |a] <272,0< |k| < N}.
We note that, if |w -k + Ag — M| < R, |a] <2K72 and |k| < N, then we have:
bl <X < w-k+ Ao = Xp| + |w- k| + g
<2672+ (C4 + 3)N,

where C4 = (max{|a| | a € A}?) "2 Consider the set

B={(a,b) € Z*||a| < |b| < 2K 2+ (Ca+3)N}.
There are at most 4(2x~¢ + (C4 + 3)N)? points in B. So we have

Coc{mel,2]||w-k+ X — | <R, (a,0) € B,0< |k| < N}:=Cs

Recall that L = L\ A~ where A~ = —A. For a € L, we define the set |a[ by : Ja[= {a} if a € L> and
la[=0if a € A~. We define

A" = AUJa|Ub|.
The set A’ is admissible. In addition, we have
A c{ae€Z]|lal <C 252+ (Ca+3)N)}.

The triplet (k;a,b) is D3 non resonant. By applying the Proposition 2.1 with the admissible set A’
we have:

=1/(n+2) arn (9=—0 2(n+2)?
mes (C2) < mes (C3) < Ck N™ (25724 (Ca +3)N) Card B
< CR1/(n+2)E—2g((n+2)2+1)N(n+2)(2n+5)_

Let

1 1

) T= o7 v

4((n+2)2+1)(n+2) 2(n+2)
and consider C = C; U Cy, then we have:

0= /= (n+2)2n+5),

mes (C) < CE™N" .

Moreover, for all m € [1,2] \ C4, all 0 < |k| < N and all a,b € £ non D3 resonant, the estimation (2.11)
is satisfied.

To conclude the proof of the proposition, we need to estimate the difference ||a| — |b||. Without loss of
generality, assume that |a| > [b].

o If |a| — |b] > 8C4N > 8|w - k|, then for m € [1,2] and 0 < |k| < N, we have:
1
|w-k+>\a—)\b|2/\a—)\b—|w-k|zZ(|a|—|b|)—|w-k|

> ~(lal = [bl) = <= (1 + [a] — [b]) > £(1 + |a] — [b]),

16

oo | —

if we assume that xk < %.
o If |a| — |b] < 8C 4N, then for m € [1,2]\ C, we have:

R
k4 — X > —(1 — b
- A = M| 2 g (14 [al = [B)

> k(1 +a] — b).
9
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Thus, for all m € [1,2]\C, all 0 < |[k| < N and all a,b € £ non D3 resonant, the estimation (2.10) holds.
Moreover,
mes (C) < Ck"N* 17 = Ox"N".

O
It remains to treat the case where k£ = 0 in Ds.
Lemma 2.11. Let m € [1,2] and a,b € L such that |a| # |b]. Therefore
1
Aa = As] = 2 (1 +[lal = [BI]).

Proof. Without loss of generality, assume that |a| > |b|]. Then for all m € [1, 2], we have:

(la| — 16D (lal +16) (1 1

Aa =X = —= ~ > ~(la] = 1b]) = (1 + [[a] — [b]]),

Va2 +m+Vi2+m 4 8

which concludes the proof. O

3. NORMAL FORM

In this section, we construct a symplectic change of variable that puts the Hamiltonian (1.5) in normal
form to which we can apply our KAM theorem.

3.1. Class of Hamiltonian function. In this part, we begin by recalling some notations introduced in
[6]. For L a set of Z and « > 0, we define the ¢5 weighted space:

vom{e= (o= (§) ectoe ) il < oo},

ISR = D 1¢s[*(s)*, ot (s) = max(]s], 1).

seL

We endow C? with the euclidean norm, i.e. if (5 = #(&s,ns) then |(s| = v/|€s]% + |ns|2.
For 8 > 0, we define the (., weighted space

LB:{(QSZ (f;) E(C2,S€£) ||C|ﬂ<oo},

I¢lg = sup| sl (s)”.
seL

where

where

We remark that for, 8 < «, we have Y, C Lg.
Infinite matrices. Consider the orthogonal projector II defined on the set of square matrices by

II: M2><2((C) — S,
where

S=CI +Coy, with JQG) _01>

We introduce M the set of infinite symmetric matrices A : £ x £ — My (R), that verify, for any s, s’ € L,
AS € My (R), A3 ='A% and TIAS = AY.
We also define M, a subset of M, by:
A€My & |Alo = sup (s)%(s)[ AL | < 0.

s,8’€L
Let n € N, p > 0 and B be a Banach space. We define:
T, = {0 € C"/2xZ"| [Imb| < p}
and
O, (B) ={z € Bll|lz|lp < p}.
For o, €10, 1], we define
0%, p) = Ty x O0p2(C") x Op(Ya) ={(0,7,¢)},
O“R (g, 1) = O%(o, ) N {T™ x R™ x YX},

where Y® = {§€Ya|§ <§S (7575> ,fsﬁSSEE)}.
Let us denote a point in O%(o, u) as x = (0,r,¢). A function on O%(o, pu) is real if it has a real value for
any real . We define:

(7,0, Ol = max({r[, 6], [[Clla)-
10
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Class of Hamiltonian functions. Let D be a compact set of RP, called the parameters set from
now on. Let f: 0%, u) x D — C be a C! function, real and holomorphic in the first variable, such that
for all p € D, the maps

0%, ) >+ Vef(z,p) €Yo N Lg
and
O%(6,p) 3 = Vf(x,p) € Mg,
are holomorphic. We define:

0
[f(, )lp = sup|f(z,p)l, H_ajgc (@, )| = sup|[Vef(@, ),
D

pe p peD
of o f
S| jgwmmw\@@qﬁywmm

We denote by T4 (D, o, ) the space of functions f that verify, for all z € O%(o, ), the following
estimates:

C of C 0% f C
fep s [Hwo < || <S |Fe| <5
u ¢ I ¢ p M
For f € T*#(D, o, 1), we denote by [f] :fﬁp the smallest constant C' that satisfies the above estimates.
If 8gf € T”"ﬁ(D, o, ) for j € {0,1}, then for v > 0 we define:

120D = L1820 » + 210,120 -

We also denote by
T () = {f()| f € T**(D,0,1)},

the set of functions of 7% (D, o, ) that do not depend on r,6 and p. The norm of such functions will
be denoted by [[f]]fjﬁ

We finish this part by defining the space 7%#%(D, o, u). Consider the following spaces

L5+:{C:(<sz(p57QS),5€£)| |C|ﬁ+<00},
where [C|s+ = sup|¢s[(s)”*, and
seLl

Mpy = {A € M[[A|p4 < oo},
where []s; = sup (1-+ | Is] = |51 1)(s)7 ()42 .
We remark that Lg. C Lg and Mgy C Mg. We define T#*(D, 0, 1) the same way that we defined

TP(D, 0, ), but replacing Lg by Lgy and Mg by Mgs.. So, we have T +(D, o, ) C TP (D, o, ).
For f,g € T*"(p), we define the Poisson bracket by:

{fag} = i<va’ Jv(Q)'

Lemma 3.1. Consider f € TP(u) and g € TP+ (u). Then, for any 0 < ' < u, {f, g} € TP (i), we
have:

[{£. 935" <

where the constant C' depends on o on 3.

¢ @B B+
u(u—u’)[m]“ Lol "™,

For the proof, we recall the following lemma from [14] (appendix A).

Lemma 3.2. Let E and F be two complex Banach spaces, f : E — F and v € E. Assume that there

exists v > 0 such that [ is holomorphic on the open ball of center v and radius v and satisfies || f||p < M
on this ball. Then d,f € L(E,F), and we have:

M
ldv fllee,F) < o
Proof of Lemma 3.1. Let x € O,/ (Y,). Our goal is to prove that

i x — [ f]®P[g] >Rt
1) [{f g} (@) < u(u—u’)[m]“ lgl P+

(i) Ve {f, 9} @)]la < L1157 Lol

s (= ')
iii z o, a,B+.
(it) [Ve{f g} ()]s < F,(MC_ M,)[[fﬂu Lol

(iv) [Vi{f.g}(@)|p < LIS P Tale ™

11
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Let us begin with the first estimation (). We have
{f g} (@) = (Ve f (@), IVeg(@)| < [Vef(@)]all TVeg(@)]o

1
< E[[fﬂff’ﬁ[[g]]ﬁ’ﬁ+

1 B 0B
_u(u*u’)ﬂfﬂ“ Lol

Let us now turn to the (-gradient of the Poisson bracket:
Ve {fig} (@) = (Ve (@), V(@) + (Ve f (2), TVEg(x)) =: T + Da.

For %y, we have V¢ f : O (Ya) — Yao. Moreover, z +— V¢ f(x) is holomorphic, so VZf(x) € L(Ya, Ya) for
z € O (Yy). Using Lemma 3.2, we have:

IZ1lla < IVEF @)l £(va,va ITVEg() o

1
< sup  (IVef@Wlla) [Veg(@)lla
1=l yeo,(va)

p—— T

- uQ(u - W)

B[ T8
_uu(u u)[[fﬂ [gle .

We use the same arguments for 3o, which ends the proof of (ii). To prove (iii), we use estimations 2. and
3. from Lemma 2.1 in [6]. So we have:

Ve {f. 9} @)y < [(VEf(2), IV cg(a)] ; + [(Vef (2), TVEg ()] 4
<C\V<f 2)| 5 1IVeg(@)| gy + C Ve f(@)|5 | TVEg(

< — [[f]]ff’ﬂ [[gﬂff’BJr
%
¢
o (e — )
It remains to prove estimation (iv). We start by computing the second derivative of the Poisson bracket:

‘ﬁ+

L/152Tal

Ve{f g} () = (Vif (), IVcg(x)) + (VEf(2), TVEg(x))
+(VEf (@), IVEg(@) + (Ve f (@), Vg (@)
= Fl +F2+F3+F4
For 'y, we have VZf : O, (Ya) — Mg. Moreover, z — VZf(x) is holomorphic, so Vf(z) € L(Ya, Mp)
for z € O, (Ya). By Lemma 3.2, we have
IT1| < IVEF(@) (v mal TV eg(@)]|a

1
< Vf Veg(@)|la
o s [, Vet

_ 1
3 (g — p')

<

4 ] s

< 7[[fﬂ“ﬁ[[gl]“ﬁ+
P2 (e — ) =
We use the same arguments for I'y. It remains to estimate I's and I's. The two cases are treated in the

same way. Let us look for example at I's. Using the first estimation from Lemma 2.1 in [6], we have

ITs| < C|VEf( ’,@‘vcg ’,@+

C o «
< F[[fﬂu.ﬂ[[g]]pyﬁ+
C
< f a,p g .+
uu’Q(u—u’)[[ L Lol
The proof is thus concluded. O

Consider g a C!-function on O, (Y,). We denote by ®, the Hamiltonian flow of g at t = 1, i.e.
¢ =<¢(1) = 4(¢0) = @ (o),
12
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where .
¢ =1iJV¢g(¢() and ((0) = G-
Corollary 3.3. Let f € TP (u), g € T* *H(n) and 0 < p’ < p such that:
1
bt < — ).

[ol% gHln—4)
Then ®,: O, (Ya) = 0,(Ya) and fo ®, € TP (1'). In addition, we have:
(3.1) [f o @I < C'UIY,
where C' is a constant that depends on o and 3 while C' is an absolute constant.
Proof. Let us first prove that ®, is well-defined and that ®, : O,/ (Y,) = O, (Y,). Consider

t = sup{t > 0 ((a) is well-defined for 0 < a <t and ||{(a)|lo < p}-
Let us prove that ¢ > 1. We have:

Cla) = ot [ IVeal(s))ds.
0
Recall that g € TP+ (u), then for ¢ € O, (Y,) we have

[gle-P+

I1Veg(Qlla £ —— . 5(# ).

It follows that, for a = 1,
a
IS(@lla < olla + 7 (k= 1)
<4 a. <
SptEle =) <m,

We deduce that ¢t > 1, @, is well-defined and ®, : O,/ (Y,) — O, (Ya). Let us prove now that fo ®, €
T8 (1), as well as the estimation (3.1). We recall that for two holomorphic functions f and g, we have

fo@gff+{f,g}+ {{f,g} 9}+ {{{f,g} g}t,9}+ ..

n>0

where P)f = f, P f ={f,g} et P7f={{f.g9}.9}...
Using Lemma 3.1, we have:

[Py 1" < CPIfe? (i — 1) gl® )"

Thanks to the assumption made on g, we obtain that f o ®, is a convergent series. So fo ®, € TP (')
and satisfies estimation (3.1). U

We define the real finite-dimensional torus:
(3.2) T, = {C = ((§s,ms), s €Z)|[ & = 7s, |<a|2 =vpasia€ A §=0sis€ ﬁ} )

where v > 0 is small and p = (pq, a € A) is a parameter vector that belongs to D = [1, Q]A
Let n = Card(A). The n-dimensional torus T}, is invariant for the linear wave equation. We wish to
put the Hamiltonian Hs 4+ P in a suitable normal form to which we will apply the KAM theorem 4.1.
This normal form will be defined on tori constructed on the space Y, and in the vicinity of the real torus
T,.
P
In the vicinity of the real torus T}, we change from variables (¢4, a € A) to action-angle variables defined

by:
& = \/I_aew“, Na = \/I_ae_w“, a € A.
So we change from variables (&, 7)) to the new variables (I,6,&,7n) where I = (I,,a € A), 0 = (04, € A),
€= (&,€ L) and ) = (n4,a € L£). The new variable vector is real if I = I, 0 = 6, and ¢
We now define a complex toroidal vicinity of the real torus 7), by

|

(3.3) T, =T, (v, 0,1, 0) = {(1,9,5,77)| 1T — vp| < v, |Imb| < o, ||CE|a < yl/m} :
where I = (I,,a € A), 0 = (0,,€ A), ¥ = (s, € L).

Lemma 3.4. Assume that g is a real holomorphic fuction on S' x J, for J some neighborhood of the
origin on R. Let a > 0 and v > 0 small. There exist c* > 0 and p* > 0 such that the perturbation P is
well-defined and analytic on T,(v,o,pn, ) for 0 < o < o* and 0 < p < p*. The parameters o and p*
depend on the nonlinearity g, the admissible set A, v and «.

13



MOUDHAFFAR BOUTHELJA

Remark 3.5.
- We can fix o* (o* =1 for example) and explicitly determine p*.
- For small v, we have:
Tp(v,o,pn,0) C OY (o, 1").

Proof. The nonlinearity g is real holomorphic on S! x J, for J some neighborhood of the origin on R.
Assume that I = [-M, M| for M > 0. We can extend holomorphically g on S* x I¢, for some I¢ of the
form
Ic = {u € C| |Re(u)| < M, |[Im(u)] < K}.
Recall that
Esps + Msp—s
(@)= =

= 25

Z ga@a + 77(150 a Z 55905 + 77590 s

a€eA
We want to control these two sums. For the first sum we have:

<3 1&al + Inal

Z ga(Pa + 7711(;0 a

acA acA
<2 Z /T,elfm0a)l < C’A|I|1/Qe|1m(9)‘,
acA
where C4 is a constant that depends on A. For the second sum, using the Cauchy-Schwarz inequality,
we have:
Eésoé + 775 1€ + sl

DT < ) = < C@) o

seL seL >\
So we have:

[w(Q)] < C(@)[[Clla + CalT]M 2™,
C(@)[[¢lla + Call = wpl' /2T 4 C a(wp) /2l
We want to prove that, if (1,6,¢) € T,(v,0,u, ), then u(¢)(z) € I¢ for all z € S'. This is true if we
assume
Cla)W 2+ Cav? e + C a2 %e% < min(M, K).
For example, if we assume that ¢* = 1, we have
min(M, K) — C4/2v' /¢
V1/2(C(a) + Cu)
The proof is thus achieved. O

*

Now, we are interested in the perturbation P. We will prove that P belongs to the right class of
Hamiltonian functions. Recall that

PO) = [ Glau(O )i
where g = 0,G and g(z,u) = 4u® + O(u?).

Lemma 3.6. Assume that (x,u) — g(x,u) is real holomorphic on a neighborhood of S' x J, for J some
neighborhood of the origin of R. Then for a > 0, there exists p* > 0 such that, for 0 < p < p*, the
perturbation

P:0,Y,) —=C
(= P(()
belongs to T2 (p).

Proof. Recall that for x € S!, we have:

Esps () +msp—s()
= u(¢)(x).
KPP REEo

Using the Cauchy-Schwarz inequality and the fact that o > 0, there exists a constant C, that depends
on «, such that for ¢ € O,(Y,) we have

[u(O)(@)] < CallClla < Cap-
14
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To prove that P € T®'/2(y), it is enough to show that
VPEY*NLyp and VP E M;p.
For a > 0, we define the following space:
Zo={v=(vs €C, s€Z) | (|vs|(5)%), € £*(2)}.

For v € Z,, we define the Fourier transform F(v) of v by u(z) = F(v) := > vse’*®. We also define the
discrete Sobolev space by

HA(S') = {u lu(e) =Y a(s)e™ | (lals)l(s)*), € € (Z)} :

SEZ
If a € N, then

HO(SY) = {u lu(z) = 3 a(s)e’™| (a/@(s)) €2 (Z)} .
SEL s
So we have the following equivalence:

(3.4) ue H*(S'") <= (u(s)), € Za.
e To prove that V¢ P €Y, it is sufficient to prove, for example, that 6P € Zo. We have

opP, .. 1
2= I
The map (z,u) — g(x,u) is real holomorphic on a neighborhood of S x .J, so x + 9, f (z,u({)(z)) €
H*(S'). We deduce from equivalence (3.4) that 85 € Zg.
e Let us prove now that V2P € M /5. Recall that:

OuG (2,u(C)(7)) ps(x)de.

0?P
P _ 1/2/ . \1/2
|V |1/2 SSSHIG) (8)772(s) 9C.0Cy || o
We have
o?pP 1 )
€Ly 2)\1/2)\1/2 - 9,G (z,u(C)(2))ps () ps (7)d.
Then

o*P 1 BG(s+5)  BG(s— )
sl 2Ny e RG(—s+8) 2G(-s—s))’

which leads to
|V2P|1/2 = sup ‘@%G(S)
SEZ

e To conclude the proof, we have to show that VP € Ly /5. Recall that for < o, we have Y, C Lg.
So VP €Y1 C Ly/3, and the proof is achieved. O

Now, we are able to give the symplectic change of variable which puts the Hamiltonian (1.5) into a normal
form that satisfies the hypotheses of the KAM theorem.
Let 0 < p < p* and 0 < 0 < ¢* where p* and ¢* are defined in Lemma 3.2.

Theorem 3.7. Let A be an admissible set. There exists a Borel set of zero Lebesque measure U C [1,2],
such that for any m € ([1,2] \ U) there exists vy that depends on A, m and g such that:

(i) For0<v <wy, a>1/2 and p € D there exists a real symplectic holomorphic change of variable

v, 0% (2 ';) = T, (v, 0,1, ),

that transforms the symplectic form —id§ A dn on T,(v, o, i, «) into
—v Y drg NdO, —iv Y dE A ds.

acA seLl
(ii) For ¢ > %, the change of variable ®, can be extended holomorphically on the following complex
domain
3
Dc:{pe(CA| pj—§’ <e, 1§j§Card(A)}.
It transforms the perturbed Hamiltonian H = Ho + P into the following normal form
(3.5) v H oW, =Qp) 7+ Y Aa(p)éana + £(r,0,¢, p),

a€el
15
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for all p € D.. The internal frequency vector € and the external frequencies Ay, a € L, are given
explicitly in (3.22) and (3.23). Moreover, they are linear in p and verify:

(3.6) 1p) —w(p)| < Cv,  [Aalp) — Aalp)| < Cvlal ™,

for all p € D.. The constant C depends on the admissible set A.
(iii) The perturbation f is real holomorphic on D., belongs to T*?(D, Z, £) and satisfies

2
171545 < i+ v,
1545 < G+,

The constant Cy depends on the admissible set A, the mass m and the nonlinearity g.

Remark 3.8. In (iii), we need to estimate the derivative of the perturbation f with respect to the
parameter p. This is possible thanks to the Cauchy estimate. So we need to extend ¥, holomorphically
onto D, (see 3.6).

All the rest of this section will be dedicated to the proof of the previous theorem.
3.2. Resonance. We consider H,, the quartic part of the Hamiltonian H defined by:

H4 - H2 + P4a
where
H2 = Z)\sgsnsa
SEZ
and

ooy G n-) (&G A+ n-) (& +n-k) (& + 1)
Pi= Y C(ijkl) :
(i RDez 4/ AiXj AN
The constant C(4, 4, k, 1) is defined by:
1 op - .
. . _ _ ) o i+ j+E+1I=0,
Cligikd)i= [ e @aata={ % LTI Z0
We define the following subset of Z*:
T ={64,k ) €Zi+j=k+1}.
So

P, = QL Z (& +1-0)(& +1-5) (& +n-k) (& +1-1)
ﬂ-(i,j,k,l)ej A/ NiNj AN
We can decompose P; in three parts P4 = P{ + P} + P} where:
L &&&& + UL
(”kl = AN AR

Pl = 1 Z §i&ikm + 77i77j77k§l,
27 (irjisk,—)eg VY Aidj Ak

3 §i&Gimem
e ¥ o
47‘(‘ (z‘,j,—k,—l)ej )\i)\j)\k)\l

For (i,7,k,1) € Z*, we define the small divisors:
Qo(i, 7,k D)= i+ XN+ e+ QG 0,kD=X+XN+ =X Qa(i,5,kD) =X+ — X\ — A

Py =

Definition 3.9. A monomial §;&;§xm or nin;nk& is resonant if Q4(i, j, k,1) = 0. In this case, we denote
R = {(i,5,k, 1) € Z* | Q(i,4,k,1) = 0}. A monomial &E;mem is resonant if Qa(i, j, k,1) = 0. In this
case, we denote Ra = {(i,4,k,1) € Z* | Qa(i,4,k,1) = 0}. Let R be the union of Ry and Ro.
We define also
Jo =A{(i, 4, k1) € T |#{i. j. k, I} N A > 2},
and
=JI\ T ={(0,5,k,1) € T | 31,5, k, 1} N L > 3}
Lemma 3.10. There exists a Borel set U C [1,2] of full Lebesgue measure, such that for m € U we have:
(i) R1 =10,
(i) Ro < {(i, 4, k,1) € Z* [{[il, ]} = {IK]. U]},
(i) There exists y(m) > 0 such that for any (i,7,k,1) € Jo \ R, we have:

94 (i, 4, k, D] 2 v(m); 92(1, 4, k, D] 2 v(m).
16
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Proof. We begin by proving assertions (i) and (ii). Let us fix (4,4, k,1) € Z*. Consider, for § = +1, the
function:

fm)=Vi+m+vViZ+m+oVE2+m—VI2+m.

The function f is analytic on [1,2], and it can be extended to an algebraical multi-valued function of
m € C. If j = k =1=0, then —i? is a branching point of f. Branching points for f are —i2, —j2, —k?
and —{2.

If 6 = 1, then f is not identically zero on [1,2], and admits finitely many zeros. It follows that, there
is a Borel set U; C [1,2] of full Lebesgue measure, such that for m € U, we have Ry = 0.

Now, for § = =1, if f |1 9= 0, then f =0, and we have {i?, j*} = {k? ,1?}. If f is not identically zero
on [1,2], then f admits finitely many zeros. So there is a Borel set Us C [1,2] of full Lebesgue measure,
such that for any m € Us, we have Ro C {(i, 4, k,1) € Z* | {]il, 5]} = {|kl, |1} }-

It remains to prove the last assertion. Let us begin with €25. Thanks to Proposition 2.10, for x > 0,
there is an open set C,;, C [1,2] such that

mes(C) < CK",

where 7 > 0 and depends on Card(A). The constant C' depends on the admissible set \A. For m €
([1,2]\ Cx) and any (i,7,k,1) € J2 \ R, we have:

|QQ(%J’]€7Z>| > K.

If ¥ <k, then Cor CCk. So C := . N 1C,.i is a Borel set, and we have
<K<

mes(C) = 0.
Moreover, for m € Us = ([1,2]\ C) = 0<E<1([1’ 2]\ Cy), there exists a constant y(m) such that for each
(4,7,k,1) € J2 \ R, we have:
€02(4, 4, k, 1) > y(m).
To control Q(i,7,k,1) we follow the same procedure, but we use Proposition 2.8 instead of Proposi-

tion 2.10. Finally we denote U = U; NUs N U3 N Uy, where U, is the Borel set of full Lebesgue measure
that we obtain after controlling (4, j, k, ). O

3.3. Birkhoff’s Precedure. For a > 0, we recall the definition of the following space:
Lo = {v =(vs €C, s€Z)| (Jus|(s)¥), € 2 (Z)} .
We endow Z,, with the norm:
ol = [P (s)>*,  (s) = maz(]s],1).
SEZ

We denote by v * y the convolution in ¢3(Z) defined by (v * w); = >
from [12].

i+je Viwj. We recall Lemma 2

Lemma 3.11. Consider v,w € Z, for a > % Then, v*w € Z,, and
(3.7) [vxwlla < Cla)llvllallw]a,
where C' is a constant that depends only on .

Proof. Consider v,w € Z,. We have:

w2 = 32| S v,
SEZL itj=s
=3 () () @G
*SEZZU iﬂzzs@a(ﬁ”‘ (sye
<2 iﬂz_s<<i><j>> 2 g Pl )

and
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Then
lox w2 < C)® Y7 D> @) ol () > wy
SEZL i+j=s
< 3@ ol () sl
i,j€Z
= C(a)? 2 ]lwll
The proof is thus achieved. O

We endow the phase space with symplectic structure —i Y d&; A dny. For a > 1/2, Y, is an algebra
for the convolution.

Lemma 3.12. Let a > 1/2 and P* a real homogeneous polynomial on Y,, of degree 4, indexed by J.
We assume that P* is of the form:

P4(C) = Z Z a’;l,jz,jg,j4§j1 te 'ngan+1 t njzl’
(J1,J2,73,J4) €T 1<r<4
| < M for any (ji1,j2,J3,ja) € J. Then we have:
IVPo < Cla, M)][C]|2.-

So, fort <1, the flow @', of the Hamiltonian vector X ps = iJV P4 is well-defined, real and analytic on
the ball:

where |a]1 ,J2.03,74

O5(Ya) ={¢ € Yalll¢lla <6 =6(M)}.
Moreover, for any ¢ € Os5(Ys,),
105, () = Clla < CM)CI-

Ve Pl

Proof. We recall that Xps =1 <VUP4

) Since |a}, j, 55,1 < M, we have:

or

| <M 1&gk + (& mel + |gmimil + il

(i,4,k, 1) €T

We remark that
> GGG = ExEx i+ (ExEF i+ (ExEx i+ (ExExEi+ (ExEx i+ (ExEx ),
(i,j,k,l)GJ

where € = (§j jez and §j &_;. Using Lemma 3.11, we have

2 2

ort
o
) ([[E*ExEN2+ 1€ ExnllZ + € xn*nll2 + lln*nxnll2)
) (1ENE + NENANIZ + NENZNIE + In1S)

) (€2 + 1m12)° = Ca, M)IIClS.

<l>2a

H or*
zez

<CM
<C(a,M
<C(a,M
We prove the same way that:

2

P4
H < O, M)|IC]C

So, we have:
2

4
et = (|5 .

This concludes the proof of the lemma. O

H op*

) < C(a, M|[C]I3.

Lemma 3.13. Consider D~ the following bounded operator on Yy,
T = d1ag{)\ 21, s e Z}

Define Q*(¢) :== P*(D™(()), where P* is the polynomial defined in the Lemma 3.12. Then VZQ* € My s,

and we have:
18
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Proof. We recall that
4 } : } :
P (C) = a‘jl 72,73, ]4 gjrnjr+1 e 77j47

(J1,J2,73,J4) €T 1<r<4d

where [af . . . | < M for (ji,ja, j3,ja) € J. So we have
Q4(§) = Z Z )\h)j\z j;\ M)\ 5]1 v fjﬂ?jrﬂ s Mg

(J1,J2,73,Ja) €T 1<r<4
and 20

v _ 1/2/.1\1/2

VEQ /2 = R ACRE N Frov oy
For any s and s’ in Z, we have:

62Q4
(s)1/2(s")1/? 9.0, < [ Alloos

where A is a real square matrix of size 2, whose coefficients are homogeneous polynomials of Y,, of degree 2,
of the form:

Z Z \/7 (alEJa(k)EJa(z) + a2£]o(k) Mieqy T a377.7cr(k)77.7c7(l))
Jo (k) Mo (1)

JET k,l=1

where j = (Jo(1)>Jo(2)s Jo(3)s Jo(a)) and o is a permutation from the symmetric group S4. Using Lemma 3.11,
we have:
[P2(Q)] < Cla, M)|IC]a
So
[V2Ql1/2 < Cla, M|ICIZ-

Remark 3.14. We recall that Py = P{ + P} + P? where

po— L 3 §i&i Skt g
s Gikneg VAN

1 A i
Pl=— % &i&iSkm + iy

2 (i k)T 1/>\i>\j)\k>\l

3 §i&inkm
Peg X
47‘(‘ (i,j,—k,—l)ej )\i)\j)\k)\l

The coefficients of each monomial are bounded by 3/4w. Using 3.12 and 3.13, we have Py € T“’l/Q(u),
forao>1/2 and ¢ € O, (Ya,).

Let U C [1,2] be the Borel full Lebesgue measure set from Lemma 3.10. For m € U, we want to
construct a holomorphic real symplectic change of variable in the neighborhood of the origin of Y, which
transforms the quartic part of the Hamiltonian H into a Birkhoff normal form up to order 5. This
transformation extracts the integrable terms from the quartic part of the perturbation P and cubic terms
in the direction of £L =17\ A.

Proposition 3.15. Form € U, there is a holomorphic real symplectic change of variable T on Oy (Ya),
for some 6(m) > 0 and o > 1/2. The change of variable T satisfies:

(3.8) 17(Q) = Clla < CM)CIZ,  YE € Os(amy (Ya)-

The mapping T tranforms the Hamiltonian H = Hy + P = Hy + Py + R5 into :
(3.9) Hor=(Hy+P)or=Hy+Zy+ Qs+ Rs+ Rs 0T,
where

3 §i&imem
Zy= 2 E S
4 T )\1)\] ’
(2,7,k,1)ET2NR 4
and Q4 = Q4,1 + Qa2 for

Qus = 1 3 §&Eem + nin &
’ 2 gk DedTs W/Ai)‘j)\k)\l

3 &
Qu2 = Z —
in (gkDegs VAAARN

19
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The polynomial Z4 contains integrable terms while Q4 is cubic or quartic in the direction of L. Moreover,
Zy, Q4, Rs and Rs o T are real holomorphic on Og(m)(Ya). The remainder terms Rs o T and Rg are
respectively of order 5 and 6 at the origin of Y,. Moreover, for any 0 < p < 6(m), Z4, Q4, Rs o7 and
Rg belong to T*'Y?(u) and satisfy:

(3.10) [Za5"? + [Qal'/? < Cpt,
(3.11) [Re]o'/? < O,
(3.12) [Rs o r]3!/2 < O,

where the constant C' depends on m, the nonlinearity g and the admissible set A.

We recall that the Poisson bracket associated to the symplectic form—i > d& A dny is
SEZL

of 09 9f 99

for f,g € CHZy x Zy).
Lemma 3.16. Let P be a homogeneous polynomial of degree 4 defined by:
PEn) = Y =a.s" ",
o] +[B]=4
where £~ = £71E52€5° 64 . Then:
{H2, PY(&m) =i Y opmin(lal o) B)ED.
loe|+18]=4
Proof. We prove the previous lemma by using the expression of the Hamiltonian Hs, the Poisson bracket

and the frequencies Q,(a, ) for 0 < p < 2. O

Proof of the Proposition 3.15. We want to construct a holomorphic real symplectic change of variable 7
in the neighborhood of the origin of Y,, for @ > 1/2. The mapping 7 puts the Hamiltonian H into a
Birkhoff normal form up to order 5. To do this, we use a classical method: 7 will be the time one flow
of a Hamiltonian y, (ie 7 = <I>§<4 where @’;4 is the flow of x4 at time ¢). The Hamiltonian x4 will be a
solution of a certain homological equation. Using the Taylor formula, we obtain:

(Hy+ Py+ Rs)or=(Hy+ Py)oT+ Rs o7
= Hy + Py + {Hz2, xa} + {Ps, x4}

1
+/ (1—t){{HQ+P4,X4},X4}O(I)§(4dt+R5OT.
0

We want that
(H2+P4+R5)OT:H2+Z4+Q4+R6+R5OT.

So, by taking

R = { Py, xa} + /1(1 —t){{H2+ Py, x4}, x4} © (I);4dtv
the Hamiltonian y4 satisfies the following flomological equation:
(3.13) {Hy, x4} = Zs+ Qs — Py
Using Lemma 3.16, the Hamiltonian x4 is given by:
X4 = é Z in?jék&l - niﬁjﬁénz
ii—tnes 03B DVAX NN

n QL 3 €i§j§knl — N Mk&l

T s e g R DA NN
n 3i &k '
dm (1,4, k)€ T2\ R D26, 5k, D)/ AidjAehi
By Lemma 3.10, there is a Borel set U C [1,2] of full Lebesgue measure set, such that for m € U, there
is a constant «y(m) > 0 smaller than |Q(4, 7, k,1)| and [Q2(4, j, k,1)|. Remark also that Qq(i, 7, k,1) > 4.

Then x4 is a homogeneous polynomial of degree 4 indexed by J, with bounded coefficients. So, the
20
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Hamiltonian vector field X, is real and holomorphic on Y,,. Using Lemma 3.12, for m € U and o > 1/2,
there exists C'(o,m) > 0 such that:
X xalla < Cla,m)C]l3-
So, there is d(m) > 0 such that 7 is real holomorphic symplectic change of variable on Os,,) (Y ).
By Lemma 3.16, we have

{Hz, x4} = — 1 Z §i&i€e& + ningnkm

81 (iji—k—l)ET w/>\i)\j>\k>\l
1 Z &&i&em + ninimké

T ig kDT Aidj AR Al
_3 oy Ghmm
AT mhega\rs VAN ARA

So

(H2+P4)OT:H2+Z4+Q4+R6,
where Z4, Q4 is defined as in the proposition. They are two homogeneous polynomials of degree 4 with
bounded coefficients. From Lemma 3.11 and 3.12, for a > 1/2 and 0 < pu < 6(m), these two polynomials
belong to 7%/2(p) and satisfy 3.10.

Let us study the remainder terms Rg and R5o7. Concerning Rg, by construction, Rg is a holomorphic
Hamiltonian of order 6 in the neighborhood of the origin of Y,. We recall that

R6:HO7'7H27Z47Q47R5OT.
The right-hand side of the equation is real, so Rg is also real. Let us prove that Rg belongs to 71/2 (1),
with 0 < p < d(m).
We begin by proving that y, € T2 (u). We remark that, for i € Z such that (i, ], k,1) € J, we
have
<i>3/2
— <
|QL(Z) I k? l)| \/ >‘1)\]>\k>\l

Using this estimate and the same method as in the proof of the Lemma 3.12, we get that Vx4 € L%+.

C(A,m), ¢=0,1,2.

It remains to prove that Vg)@ € /\/l%+. The first terms of y4 are indexed by J. For ,j € Z, we have
@22 [l -1l
Qo(d, J, k, D)/ Aidj Ak A

The next terms of x4 are indexed by J5. By Proposition 2.8, we have:

@22 A+l 151D

Q15 4, ks D/ AN A
Using these two estimates and the same method as in the proof of the Lemma 3.13, we get that Vg)@ €
M. So we proved that x4 € T2+ () for a > 1/2 and 0 < p < 6(m).
By Lemma 3.1, we have {T%'/2(5(m)), T2+ (5(m))} € T*V2(15(m)). So {Py, x4} € T*V2(16(m))
and for 0 < p < 26(m), we have:
[{ Py xaJ5? < Cu2[Pa)e P [xa] M /2F < Cp.

Due to the homological equation (3.13), we have:

<C'(m,A), 1=1,2.

1
{Hy+ Py, x4} = Zs+ Qs — Py + {Ps, x4} € Ta’1/2(§5(m))-

Using Lemma 3.1 again, for 0 < p < %6(m), we have:
1
{H2 + Py, xa} x4} € Ta’1/2(15(m)) and  [{{Hs + Py, xa}, xa}5"/? < Cp®.
Since x4 € T*'/2%(5(m)) and [[)(4]]2’1/%r < Cp*, we have by Corollary 3.3
1 1
To2(Z0(m)) 0 &, € T2(26(m)).

So, Rg € T*'/2(1) and satisfies (3.11) for 0 < p < £5(m).

Now, consider the remainder term Rs o 7. Recall that Rs = P — Py, so R5 is real and holomorphic,
of order 5 at the origin and belongs to 7'/2(§(m)). Using Corollary 3.3 again, we obtain that Rs o7 €
T1/2(15(m)), so Rs o7 € T*/2(1) and satisfies for 0 < pu < 16(m):

[Rsor]3!/2 < [P — Py2t/? < Cub.
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We finish the proof by replacing %5(m) by d(m). O
Lemma 3.17. Form € U and o > 1/2, the change of variable T defined on the Proposition 3.15 satisfies:
T (Ip(y, %, g, a)) CZo(v,o,p, ),

for0<o<1,0<pu<1andv <4u=2e776%(m).
Proof. Consider m € U C [1,2] and o > 1/2, the change of variable T satisfies:
I7(¢) = ¢lla < CM)IICIR, V¢ € Oy (Ya).
Recall that
T (v p0) = {(1,0,60) | [T =vpl < v, [Imb] < o, I o < 20}
Let ¢ = 7(¢). Then, for v < 4u~2e~762(m), we have:
(3.14) 1€ = Clla < C'tm)Pe® v,

where C'(m) is a multiple constant of C'(m). Using the previous estimate, let us prove that:

T(E( %

wlt

)) C Tp(v,0,p, ).

e On L, we have:

€0l < Gl + " mpte Bt < 2ud 4 e vt <.
e For a € A, we have:
I, — vpa| < |1 — vpa| + 1o — 1|
< iwﬁ + |€afla — EaTlal
< 3o H1Eulle — ol + ol — &l
As (€ Z,(v, %, 5, ), we have
el < (gt V3)eEwt,
Using estimate (3.14), we have:
[ARS (%u +V2)e5 v + C'(m)pPe® 13,

|70 — Mal + |§~a =&l < Cl(m).uge
So
I, — vpa| < vp?.

e It remains to verify that [Im(f,)| < o for a € A. On the one hand we have:

ol = |[Vie™ | <

On the other hand, using estimate (3.14), we have:

eumw < vh (i + V2)elIm@al

35 3
e2vz.

&l < (5 u+f)ezv2+0’( )

So
@) ¢ PF2V2 g Clm)r? s
(u+\/_) V2

and we get that [Im(0)| < o.
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3.4. Normal form on admissible sets. We recall that Z, is given by:

&i&imem
Zy = 3/4m Z A ALEA
(i,4,k, ) ET2NR iAj

)

where

Jo = {(Za]7k7l) eJ | #{Za]7k7l} nA > 2}
We note that Z, contains integrable terms formed by the monomials of the form &;&;nn, = I;1;. Those
monomials depend only on actions defined by I,, = £,n, for n € Z. We denote those terms by ZI and
Zy = Z4— Z] . After straightforward computations, we obtain that:

3 4 — 3011
3.15 Z5 == —1 1.
( ) 4 47 Z )\l>\k Lok
leA, ke

Concerning Z, , we have Z; = > ., ., Z; " where r = Card ({4, j, k,1} N A). Using the definition of J;
yields Z,° = Z; ' =0.
Lemma 3.18. Assume that A is an admissible set. Then, for m € U, we have

Zrt=o.

Proof. Consider F = {(i,7,k,l) € Jo N Ra N A}. Then, for (i,5,k,l) € F and m € U,
* i+ j = k + [ using the definition of 7,
* {li, 17|} = {Ik|, [I|} using Lemma 3.10,
* {i,5} # {|kl|, ||} since A is an admissible set.
So F=0and Z;* = 0. O

Lemma 3.19. Assume that A is an admissible set. Then for m € U
Z;%=0.

Proof. Suppose that there is (i, j, k, 1) € JoNRo such that #{4, j, k, 1} N.A = 3. Without loss of generality,
we can suppose that i, j,k € A and [ € £. Due to Lemma 3.10, we have |i| = |k| or |j| = |k|. Moreover,
since A is an admissible set, we have i = k or j = k. Suppose that ¢ = k. Since i + j = k + [, we have
j=1and !l € A, which contradicts the fact that A is an admissible set. So Z;g =0. 0

Lemma 3.20. Assume that A is an admissible set. Then, for any m € U,
Z;%=0.

Proof. Consider X = {(4,4,k,1) € o NRa | #{i,7,k, [} NA=2}.

* Assume that i,j € A and k,l € L. Then, by Lemma 3.10, we have i = —k and j = —[ or i = —
and j = —k. Without loss of generality, we can suppose that i = —k and 7 = —[. We have
(t,4,k, 1) € J,s0i+j=k+1l=—k—1landi= —j. It contradicts the fact that A is an admissible
set. The case where k,l € A and i,j € L is treated in the same way.

* Assume now that i,l € A and j,k € £. By Lemma 3.10, we have |i| = |k| and |j| = |l| or i =1

and |j| = |k|. Let us first consider the case where i = [ and |j| = |k|. since i + j = k + [, we have
j = k. So the monomial §;§;n;n; will be in Z,;, which leads to a contradiction. Consider now
the case where |i| = |k| and |j] = [I|. Since A is an admissible set, we have i = —k and [ = —j.

As i+ j =k +1, necessarily i = [ and j = k, which lead to the previous case. The cases where
k,ie Aandi,j € Lorikec Aand j | € L are treated in the same way.

Thus, we deduce that X = () and Z, > =0 O

3.5. Action-angle variables. As in (3.3), we pass from variables (¢,7) to (I,6,¢%), where I = (I,,a €
A), 0= (0,,€ A) and ¢* = (s, € L£). We recall that, for a € A, action-angle variables I and 6 are given

by:
o = \/Zewaa Na = \/Ze_wa-
In these new variables, the symplectic form —id¢ A dn becomes:
(3.16) = dI, Adfy =iy dég A dns.
acA seLl
Moreover I is of order 2, § is of order zero, £ and n are of order 1.
Using expression (3.15) Z;” and the lemmas 3.18-3.20, the Hamiltonian 3.9 becomes:

3 4-36, 3 1
Hor=Y wilat+ = > — 01, + Y Néans + 2 Y. —— L&,
°T Wala ¥ 0 o, dat Soms + o s
ac A lae A seEL leA, seL

+ Q4+ Rs 07+ Re.
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The first line contains the integrable terms. The second one contains:

® ()4, of order 4 and at least of order 3 in the direction of L;
e Rg, which comes from the Birkhoff normal form and of order 6;
e Rs5 o7, which comes from term of order 5 of the nonlinearity (1.2).

The Hamiltonian H o 7 depends on variables (I ,0, Cﬁ). For the rest of the paper, we will drop the
multi-index £ (i.e. (¥ will be replaced by ().

3.6. Rescaling the variables. We want to study the Hamiltonian H;. To do this, we will rescale the
variables (1,0, &,7n) by considering the following change of variables:

(3.17) o (7.0,6,9) — (1,0,&m),
where
I =vp+vi, 6=0,
E=v'28 n=v"7

w0 (35) 2% (n g pe)

In these new variables, the symplectic form (3.16) becomes

(3.18) v dig Ady —iv Y dE A dils.

acA seL

We have

Consider
U=0,=rT0x,.

The change of variables x, is linear on p. We can extend ¢ holomorphically on

p.-{

To simplify notations, we will drop the tilde. In these rescaled variables, the Hamiltonian H becomes up
to a constant:

pj—glgc, 1§j§Card(A)}.

o 3 4—304,
HoWV=vp E wara+u2— g ——PiTa
acA 2m a,le A )\ )\

+VZ)‘ 55775+V _ZAA /)l'fa??s

seL leA
seL

3 4—304,
2 a
+VEZ )\a>\l la+V_Z>\)\rl§s775

a,le A
sEL

+(Qs+ Rs 07+ Rg) 0 Xp.
By dividing by v, we can rewrite the previous Hamiltonian under the following form:
(3.19) v H oW = hy + f,

where hg = ho(r, &, n; p,v) and contains linear terms in r, quadratic terms in &,n and independent from
the angle variable 6. The new perturbation f contains all the rest and depends on the angle variable.
More precisely

3 4-35,, 3 1 »
(3.20) f= Vo Z erm + v Z mmfsns +v7 (Qa+ Rs 07+ Rg) 0 xp-
aleA leé
s€E

We can rewrite the new Hamiltonian h under the following form
(3'21) ho=Q-r+ Z Aa&aNas
acl

where Q = (Q)kea, and

3 1 4 — 30
(3.22) Qi = Qi(p, v )fwquywkfwarl/Q—)\—Zil’kpl,
Fiea N
(3.23) Ao = Au(p,v) = Aa + Ve = Ao +V——Z
IE.A
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for p € D.. We remark that for the internal frequencies, we have:

. 34—301
3.24 = M Mj = ————=
( ) Wk Z EPL k= o JYSY

M 1is an invertible matrix, since
det M = ( ) (H A ) (4n —3) (—=3)""", n = Card(A).
leA
Recall that p € [1,2]" and A C {a € Z% | |a| < N}. For p € D,, we have
3 438
D D M|
leA lGA

This proves estimations (3.6) and concludes the proof of the first and second points of Theorem 3.7.
We recall that ¢ = ((4)acc. The quadratic part of the Hamiltonian 4 is given by the following infinite

matrix:
. 0 Aa(p,
A(p,y)d1ag<< Au(pr) O (p,v) >7 a€£>.

We can put the Hamiltonian ~ under the following form

S0

3P

2(p) —w(p)| <v ,and [Aq(p) = Aa(p)| < v]a| ™

h:Q(p,I/)'T+

The Hamiltonian operator is given by:

iJA(p, u) = diag (( —iha(p, 1/3 iAa(p, 1/()) ) , a€ E).

The spectrum of the Hamiltonian operator is:
o(iJA) = {xiho(p,v), a € L}.

Let us study now the perturbation (3.20). Due to Proposition 3.15, the perturbation f is real holomor-
phic and belongs to 7*1/%(D, £, 4). Using estimations (3.10)-(3.12) and for z = (r,0,() € O~ (%, 4),
we have:

] < Cupt,
IVeflla < Crp,
IVeflije < Cop?,
|ng|1/2 < Cw?,

where C is a constant that depends on the admissible set A, the mass m and the nonlinearity g. So we
have:

1115747 < Cvu.
Let us study now the jet of the perturbation f. Recall that the jet function f7 is defined by:

fT = f(970’07p)+va(9’070’p>T+ <V<f(970’07p)7§> + %<vgcf(970’07p)<7c>'

We look for the terms of (3.20) which can contribute to f7. Clearly the first two terms do not contribute
to fT. The third term is indexed by J5 and does not contribute to f7. Let us now look at Rs o 7.
According to 3.15, R5 o 7 is of order 5. Moreover R5 o 7 depends on the action variable (of order 2), on
the angle 0, on & and 7 (of order 1). So Rs o 7 can contains terms like:

- I°/? will contribute to £(6,0,0, p) and V,£(6,0,0, p);

- I?¢, I*n will contribute to V¢ f(6,0,0,p) or V,,f(6,0,0, p);

- I32¢n, I32¢€, 132 will contribute to VE, £(6,0,0,),VZ:f(6,0,0,p) or V2, £(6,0,0,p).

So Rs o7 oY, will contribute to f7. A similar result holds for Rg o x,. We deduce that:

17 < O
To finish the proof of the third point of Theorem 3.7, we have to look at the derivative in p of the
perturbation f and its jet f7. Note that, according to (3.20), the dependence of the perturbation f on
p comes from the change of variable x, via the relation I = vp 4 v#. We can extend f holomorphically
on D, with the same estimates. Using a Cauchy estimate on D., we obtain

0011547 < ' G [Bpf 154 < I

ouD auD, auD auD

Then 9, f and 9, f7 satisfy the same estimates as f and f7.
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3.7. Real variables. In the normal form (3.5), the quadratic part is expressed in complex variables.
However, the KAM theorem is expressed in real variables. In order to remedy to this, we consider the
following symplectic change of variable:

Y(r,0,¢) = (r.0,0),
where ¢ = (p, q) = (55 = (ps,qs), S € E). Variables p and ¢ are given by:

Es = %(ps +’Lq6)a Ns = %(ps - ’Lqé)

Under the hypotheses of Theorem 3.7, consider ¥, = NG »0 Y. This change of variables is real holomorphic
and satisfies:

v,: 0 (%, g) — T, (v, 0,1, @).
It transforms the symplectic form —id¢ A dn into —dr A df — dp A dq. In the new variables, the normal
form (3.5) becomes:

h(r,0,(5p) = HoVU,

1 2 2 r X,
(3.25) = Q(P)'T+§§Aa(p)(pa+qa)+f( .0,C5p)

= )45 S AP+ 50,6 p),

acLl

A(p,y)diag« ga(p’”) %a(p’y) > a€£>.

In these new variables, the perturbation f satisfies the estimates of the third point of Theorem 3.7.

where

4. KAM FOR THE WAVE EQUATION

4.1. Abstract KAM theorem. In this section we state a KAM theorem and adapt the notations for
the cubic nonlinear wave equation on the circle.
Consider a real Hamiltonian h, on normal form and depends on a parameter p, given by:

(4.1) h(r,p,q;p) = Qp) -7 + % > Aalp) (02 +42)
acl
with
e p €D, a compact set of RP;
e Q:D — R" a C! internal frequency vector;
e [ a set of Z;
e for a € £, A, an external frequency of class C! on D.

The internal frequencies 2 and the external frequencies A satisfy certain hypotheses which will be stated
in the following paragraph. Let us fix two parameters 0 < §p < ¢ < 1 and consider A~ a finite set of L.
The set £\ A~ shall be denoted by £>.

Hypothesis Al: Separation condition. Assume that, for all p € D, we have:

* for all a € L,
(4.2) Aa(p) = cofa);
* for all a, b € £ and |a| # |b], we have
(4.3) [Aa(p) — As(p)| = c1l]al — [b]] .
Hypothesis A2: Transversality condition. Assume that for all ' € C!(D,R") that satisfies
1Q — Q' |c1(p) < do,
for all k € 7", there exists a unit vector zj, € RP, and all a, b € L with |a| > |b| the following holds:

*
k- (p)| =6, VYpeD,
or
(Op(k - Y(p)), 2x) > 6 Vp € D;

where k # 0

*
k-9 (p) £ Aa(p)| = 6(a), VYpeD,
or

(0p(k - (p) £ Aalp)),2k) =6 Vp € D;
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*
k- Q' (p) + Aalp) + As(p)| = 6((a) + (b)), Vp €D,
(0p(k - Q' (p) + Aalp) + Mo(p)), 2) > & Vp € D;
*
k- Q' (p) + Aalp) — Ap(p)| = 6(1 + [|a| — [bl]), Vp €D,

(0p(k - (p) + Nalp) — Mo(p)), zr) = 6 Vp € D;
Hypothesis A3: Second Melnikov condition. Assume that for all Q' € C'(D,R") that satisfies
1Q — e (py < dos

the following holds:
for each 0 < K < § and N > 1 there exists a closed set D' C D that satisfies

(4.4) mes(D\D') < C(6 k)" N
for some 7, ¢ > 0, such that for all p € D', all 0 < |k| < N and all a,b € £ with |a| # |b| we have:
(4.5) 1 (p) - k4 Nalp) — Ao(p)] > w(1 + ||a] — [0]]).

We denote Ay = diag{A.l2,a € L}. Now we are able to state the abstract KAM theorem proved in
[6]:

Theorem 4.1. Assume that h is a Hamiltonian given by (4.1) and satisfies hypotheses A1, A2 and A3
for fixed § and 69 and all p € D. Fiz o, > 0 and 0 < o,u < 1. Then there is €y depending on
avﬂv 0,1, Wy |w0|C1(D) and |AO|,8,CI(D) such that; Zf a}])f € TQ’B(Dv g, /’L) fOT Jj= 07 1) Zf

o,u,D o,u,D

[[fT]]a’ﬁ"“ = ¢ < min(ey, é(;o) and [[f]]a’ﬁ"n =0(e"),

for 0 <71 <1, then there is a Borel set D' C D with mes(D \ D’) < ce” such that for all p € D':

e there is a symplectic analytical change of variable

ag
o =®,:0%(5,5) = 0°(op)

e there is a new internal frequency vector Q(p) € R, a matriz A € Mg and a perturbation
feTY3(D /2, 11/2) such that
- 1 -
(hy+ 1)o@ =Qp) -+ 5(¢ AW)O) + F(O.7. G ),

where A : L x L — Mayxa(R) is a block diagonal symmetric infinite matriz in Mg (ie A{Z]] =0
if [a] # [b]). Moreover 8,f = 8<f = 8g<f = 0 for r = ¢ = 0. The change of variables
O = (Pg, D, ¢) is close to identity, and for all x € O%(5,%5) and all p € D', we have:

(4.6) [® — Id||, < Ce¥®.
For all p € D', the new frequencies @ and matriz A satisfy

(4.7) [A(p) — Ao(p)|o < Ce, [9(p) — Qp)lcrpr) < Ce,
where C' is a constant that depends on €.

4.2. Verification of the hypotheses of the KAM theorem.

4.2.1. Non resonance. In this section, we verify that the real normal form (3.25) satisfies the hypotheses
of Theorem 4.1. We start by verifying the separation hypothesis Al, then the transversality condition
A2 and finally the second Melnikov condition A3.

Lemma 4.2. For all p e D, and all a , b € L, we have
(1) Aa(p) = (a);

.. 1 .
(@) [Aa(p) = Ao(p)| = g llal = oI, with]a| # |b].
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Proof. Recall that, for a € £, the external frequencies are given by:

Estimation () is obvious. For (i7), we remark that, for v small enough, we have:

1 1 Cv 1
Crv|— — —|=—— 1 a— M| < = |ha — Nl
VIn T a | T A e el = g e
So
1 1
[Aa = Aol 2 51Aa = Ao| = Lllal = b,
which concludes the proof of the lemma. O

The non resonance hypothesis A2 will be verified in three steps. We begin by recalling the results
obtained in the Propositions 2.8 and 2.10. For x = /2, we have the following lemma:

Lemma 4.3. For v > 0 small enough, |k| < v~ and (a,b) € L* we have:

|w - k| > 2012,

except when k is Do resonant.

|w - k4 Ao > 20Y2(a),

except when (k,a) is Dy resonant.

Wk + Ao + Ny| > 2012((a) + (b)),

except when (k,a,b) when Do resonant.

Wk + Xa — | > 201 2(1 + [[a] — [b])),
where |a| # |b| and (k,a,b) is not D3 resonant.
Remark 4.4. In the previous lemma, we have applied the Propositions 2.8 and 2.10 with x = v'/2,
N =v"" and m € [1,2]\ C. The Lebesque measure of C satisfies:

mes (C) < Ck™N*,
1
where 7 = O(=) and ¢ = O(n?). With this choice of parameter, the Lebesgue measure of C still small, if
n
1
we assume that v < O(—).
n

Now we will verify the transversality hypothesis A2 for k small. Recall that the internal frequencies

are given by:
Q=w+vMp,
where M is the symmetric invertible matrix defined in (3.24). We denotes C4 = |[|[M 1| 2.
Lemma 4.5. For v > 0 small enough, k € Z™ with |k| < v, (a,b) € L2, consider 5y = %C;llu. Then
for all ' € CY(D,R"™) that satisfies
1 — e (py < dos

and all p € D, we have

|Q/ . k| > V1/2,

except when k is Do resonant.

|k + Ay > 1/2/3<a>,

except when (k,a) is Dy resonant.

|k + Ao + Ap| > 3 ((a) + (b)),

except when (k,a,b) is Do resonant.

|k + Aa — Ao = 2P (L + [lal = [b]]),
whith |a| # |b| and (k,a,b) is not D3 resonant.
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Proof. Let k € Z™ such that |k| < v~7 for v > 0 small enough. We begin with the first estimate. We
have

10 —w| <Y —Q|+[Q—w| < %C’Zlqucz/gCy.
So, for a € A
| —w| < Cv{a).

By the Cauchy-Schwarz inequality, for all (a,b) € £, we have:

|k —w-k| < CviTY <2

Q- k—w- k| < v a).

Q- k —w- k| < v2((a) + ().

1k —w- k| < V(1 + [lal — [bl]), Ja] £ bl
To conclude the proof of the first case, we use the fact that:

1 k| > jw- k| — |k —w- k| > 22— 2 =2
Let us now look at the second estimate. We note that for a € £, we have:
[Aa — Ao| < év(a).
So
1Q k4 Ao > [k + M| — |[Aa — Ad
>w-k+Xa| = | k—w- k| — |\ — A4l
> 2w2(a) — v %(a) — evla) > v*/3(a).
Consider now the third estimate. For (a,b) € £2, we have:
-k Ao+ Ay > [Q -k + Ao+ Xo| — [Xa — Ap| = [ — A
>w-k4+ A+ M| = |k —w- k| —|Aa — Aa| — [ Ao — Ay
> (2012 — M2 20)((a) + (b)) = 1v?3((a) + (B)).

Let us now look at the last small divisor. Using (3.23), we remark that, for (a,b) € £? with |a| # |b], we
have:
Ao —Ap— (Aa = N)| v AT =N
[la] + o]
Sl o Y
ot ol -
< &v(1 4+ [la] = [bl]).

(el

Which leads to
| k4 Ay — Ay > k4 Xa — M| — [Aa — Ap — (Ao — No)]
Slw-k4+ X =N = |k —w- k| —|Aa— Ay — (Mo — M)
> (202 =2 — @) (1 + |la] = [bl]) > v*/3(1 + [|a] — [b]]).
The proof is thus achieved. O

We have verified the non resonance hypotheses for [k| <v~7 , §o = 10 'v and § = v?/3. For large k,
ie. |k| > v~7, we verify the separation conditions A2 on the derivatives in p of the small divisors. More
precisely, we have:

Lemma 4.6. For v > 0 small enough, k € Z™ with |k| > v=7, (a,b) € L2, we consider &y = %C‘lu.
Then for all ' € C*(D,R™) that satisfies
1Q — 1Dy < dos

there exists a unit vector zy, such that for all p € D we have

(@) [0k - (p)), 21)| = Cv' ™7 > v,

(ii) [(0,(k - Q' (p) £ Aa(p)), zx)| > v foralla € L,

(i41) [(Dp(k - ' (p) + Aa(p) + Au(p), z)| > v for all (a,b) € L2,

(1) [(9p(k - ' (p) + Aalp) — Ao(p)), 20)| > v for all (a,b) € L2

The constant C depends on the admissible set A.
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Proof. Let us begin with (). First of all, we remark that:
(0p (kY (), 21) = (0 (k-Q(p)), 2k) + (Op (kLY (p)) — k), 2k)-

However )
(0 (k-2 (p) = k.Qp)). 21)]| < 5|KICZ v

Recall that the matrix M is symmetric and |k| > v~7. Assume that z; = ‘]]t% Then, we have:

Mk

Ok - (), 2| > v| (1, m>\ O,k (0) — k20, )]

1
= v |MEk| — §|k|C;‘1u

1
>v (CAI - §CA1> |K|

1
> 50211/177 > .

Let us now consider the second estimation (i7). For a, [ € £, we have:

3
|00 Ma(p)| =

v—

s )\a)\l

< cv.

Using the same unit vector zj, we get:

(0, (k- ' (p) £ Aa(p), 28)| = [(0p(K - ' (p)), z)| — |0p(Aa(p))| |2k]
> %C’;lyl*v —dv>w.

Applying the same principle for (ii7) and (iv), we obtain:
[(Op (k- 2 (p) + Nalp) £ Au(p)), i) = [(Dp(K - Q' (p)), 21)| — |0p(Aa(p))] |2
— 0o (Ab(p))| |2k|
> %C’;lyl_"y —2dv >,

and the proof is thus concluded. O

To finish the verification of the transversality condition, it remains to consider the cases where (k, a)
is Dy resonant and (k, a,b) is D2 or D3 resonant.

Lemma 4.7. Let k € Z™ and (a,b) € L. Consider 6y = iuéA, where C‘A s a constant that depends on
the admissible set A. Then for all Q' € C*(D,R") that satisfies

|2 — Q/|C1(D) < do,
and all p € D, we have:

1 -k + Ay| > Cavla),

if (k,a) is Dy resonant;

Ik + Ao+ Ag| > Cav((a) + (b)),
if (k,a,b) is Do resonant;
Q- k4 Ao — Ap| = Cav(1+ [[a] - [b]]),
where |a| # |b| and (k,a,b) is D3 resonant.
Proof. Consider a € A. From (3.22) and (3.23), we have

Assume that (k,a) is Dy resonant. Then we have
Q k4 Ay = (Q, — Q) — (@0 — ).
We remark that there exists a constant C, that depends on the admissible set A, such that:
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1 C 1 -
Consider §y < §VW1)2+2 = §V01, then we have:

1 1~

|Q/ -k +Aa| Z CIVA_ - §Cly
~ 1 -~

> Civ{a) — 5011/

1.

> 5011/((1}.

Let us consider now the case where (k, a,b) is Dy resonant. There is a constant Co, that depends on the
admissible set A, such that for all (a,b) € A2, we have:

- N - % 1 1
(@0 = Ra) + @~ 2)| 2 Cal5 + 1)
Aa N
> C((a) + (b)),
where Cy := @ So, if (k, a,b) is Ds resonant and dy < L/C' then we have:
2 = maX(A)2+2' ) y Uy 2 0_4 25 .

k4 Mg+ Ao = |(Q = Q) -k — v((@a — Xa) + (@ — X))
> V|(@a — Aa) + (@5 — M) — 2/ = Q|
1~
> 5021/((&} + (b))
It remains to look at the last small divisor in the case where (k,a,b) is D3 resonant. We note that there

exists a constant C3, which depends on the admissible set A, such that for all (a,b) € A2, we have:
1 1

)\a )\b
> Cy(1 + [|al — [b]]),

|(‘Da - :\a) - (‘:Jb - 5\b)| > CS

_ 1 .
where C3 := W. So, if (k,a,b) is D3 resonant and §y < ZVCg, then we have:
Q- k+ Mg = Ap| = [k (2 = Q) = V(@0 — Xa) = (@ — X))
> U|(@a — Aa) — (@b — Np)| = 2| — Q)
1.
> LCy(1 + [la] ~ [B]).
We conclude the proof by choosing C 4 = %min(él, Cy,C3). O

The last hypothesis to verify to apply the KAM theorem is the second Melnikov condition. Recall that
n = Card(A).

Lemma 4.8. Ford=v , 0y <0, 7= % and L =n + % + %, the second Melnikov condition is satisfied.

Proof. Consider v > 0 small enough and N > 0. If N < v~7, then, using Lemma 4.5, the second
Melnikov condition is satisfied for all p € D. If N > v~7, then from Lemma 4.5 and for |k| < v~7 the
second Melnikov condition is satisfied for all p € D. Assume now that |k| > v~7, then from Lemma 4.6
there is a unit vector z; such that:

{0 (k- ' (p) + Aa(p) — As(p)), 21)| = v.
For 0 < k < v, consider the set
J(k,a,b) ={peD[|(p) k+Aulp) — Ao(p)| < K}.
Then we have
mes J(k,a,b) < Crv 1,
where C' is a constant that depends on D. For p € Z and k € Z™, we consider the following set
W(k,p)={peD||Q k+p| <5s/3}.
By the first estimate (i) from Lemma 4.6, we have
mes W (k,p) < Cx'/3p71,
where C' is a constant that depends on D. Consider

W={peD|| k+p| <5s'/3}.
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We remark that |Q' - k + p| < 5s'/2 for |k| < N, so we have |p| < C|k| < CN. This leads to

mes (W) < Z Z W(k,p) < CN"t1gl/3,71,

keZr peZ
Ik <N |p|<CN

For a € L, we recall that A, (p) = Ay + vC(p)A\; . Consider v small enough, then for p € D, we have:

Clp) m Clp)| _ 2
Aulp) = |al| = _ _ <=
| a,(p) |a|| )\a(p) |a|—|—1/ >\a /\a+|a| +V Aa — |a|
If |a| > |b] > k~'/3, we obtain
4
[Aa(p) = Ao(p) — (la] = [b])] < o St 4!/,

So, if p € D\ W and |a| > |b| > x~1/3, we obtain
|k - (p) + Aalp) = Ms(p)l = k- Q' (p) + (la] = [b])] = [Aa(p) = As(p) = (laf — [B])]
> 5rl/3 _ gpl/3 — /3,
It remains to look at the cases where |a| < 5~/ or |b| < k~/3. Then, there is k € Z" such that
k- Q(p) + Aa(p) — Au(p)| < 1,
for v=7 < |k| < N. We remark that, in those cases, ||a| — |b|| < CN. Consider the set:

0= {(a,b) € 72 | min(|al, [b]) < x Y3 et ||a] — |b]| < CN}.

We have
Card (Q) < CNk~%/3,.
Let
=D\W |J Ik ab)).
(@b

Then for all p € D" we have:
k- Q' (p) + Malp) — As(p)| = k.
Moreover,

mes (D \ D’) < mes (W Z Z mes J(k, a,b)

kEZ™ (a,b)EQ
[k|<N

< CON" PR3y L ONP N2yt
< CN"Jrl(mV*l)l/g.
Recall that N > v~7. This leads to
mes (D \ D) < CN"HF2/37,7=2/3 (45~ 1)1/3,
Now it remains to show that for all p € D’ we have:
1Y (p) - k + Aa(p) = Ao(p)| > K(1 + |a] — [B]).

We will prove this estimation in two steps. Assume at first that ||a| — |b|| > 16| - k|. Then, using the
second separation condition from Lemma 4.2, we have:

19 (p) - k + Aalp) — As(p)| = |A — Ap| — |- K|

1

b 1 bl)
2 16IICLI [bll = 55 (1 + [lal = Jb]])
> r(1+la] = bl]),

forallogngg—gandallpED.
Assume now that ||a| — |b|| < 16]Q" - k| < 16C4N. Then for all p € D', 0 < |k| < N and a,b € £ with
|a| # |b], we have:

k4 Ay — Ap| > m( + [af — [b])
= R(1+ |a] — [b]),
where
mes (D \ D') < CN"3/2+2/37 (Fw_7/5)1/2’

which ends the proof and concludes the verification of the assumptions made on the frequencies. (I
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4.2.2. Application of KAM theorem 4.1. Using lemmas 4.2-4.8, the separation conditions, the Transver-
sality condition and the second Melnikov condition are satisfied for § = v and p < §. From Theorem 3.7,
for 0 < p <1, we have:

(4.8) 715 1/2 £ <20V,
Moreover we have: ,
3/2
iz =o (Umsss)™).

To use Theorem 4.1, we need that:

flgmp < 6=v"?

and
e =0 ((M134%))  for r e o1l

These last two conditions are indeed verified. We can therefore apply the Theorem 4.1.

5. PROOF OF THEOREM 1.3
Now we have all the tools to prove Theorem 1.3. For m € Y and p € (D \ D’), consider:
II,=%,0®0,=70x,0To0d,,
where

7 is the Birkhoff change of variable constructed in the Proposition 3.15.
Xp is the rescaling defined in 3.17;

T is the transition to real variables;

®, is the KAM change of variable from Theorem 4.1.

So II, is a real holomorphic symplectic change variable

II, OO‘<4 Z) = T,(v,0,p, ),

that transforms the perturbed Hamiltonian (1.5) into
1 .
Holl, = (p) -1+ (G A(p)C) + f(0,7,G p)-

where A : Lx L — Max2(R) is a block diagonal symmetric infinite matrix in Mg (ie AF;]] = 0if [a] # [b]).
Moreover 8, f = 9. f = agcf =0 for r = = 0. From (3.24) and (4.7), the internal frequencies are given
by

W' =w+vMp+OW?).
For the following, let I = vp and D = [v, 2v]"™. Then, for m € U, there is a Borel set D’ C [v, 2v]™ such
that:

mes ([v,2v]" \ D’) <

1/2
for v > 0 and depends on n. For X = (6,7,(), we denotes [X], = (Z |Ta€2i9“|) + ||<]|a-
acA
X eT" x {I} x {0}. So x, 0 T(X) € T,(v,[X]a,a), and we have:
dista(x, 0 T(X), X) < 20Y/2[X], < 4%/2.
Using (3.8), we obtain that
dista (T 0 x, 0 T(X), X) < 42 + dista(x, 0 T(X), X) < 505/2,

Then, thanks to (4.6) and (4.8), we have

dist, (T1,(X), X) < Cv*/®,

where C' is an absolute constant. For m € ([1, 2] \L{) and I € 7', consider (0,1,¢) = II-(X); and let
- ) + e p_o(2)
u(8,1,z ;‘\/ fwll 7 .

The function ¢ +— u(f + tw’, I,z) is a quasi-periodic solution of the wave equation (1.1). Let Cro =
(1,6,m1,0) where

(10), = V1€, (n10), = VIse ™, ifacA,
(€r0), = (Mrp), =0, ifseL.
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Then we have:

(1]

S @, 1) = urm(Bo, ) [l < [Hp(X) = Crofla < Cvt/e,
06 n
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