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Abstract We investigate droplet impact on a solid substrate in order to understand
the influence of the gas in the splashing dynamics. We use numerical simulations where
both the liquid and the gas phases are considered incompressible in order to focus on
the gas inertial and viscous contributions. We first confirm that the dominant gas effect
on the dynamics is due to its viscosity through the cushioning of the gas layer beneath
the droplet. We then exhibit an additional inertial effect that is directly related to the
gas density. The two different splashing mechanisms initially suggested theoretically are
observed numerically, depending on whether a jet is created before or after the impacting
droplet wets the substrate. Finally, we provide a phase diagram of the drop impact
outputs as the gas viscosity and density vary, emphasizing the dominant effect of the gas
viscosity with a small correction due to the gas density. Our results also suggest that gas
inertia influences the splashing formation through a Kelvin—Helmoltz like instability of
the surface of the impacting droplet, in agreement with former theoretical works.

1. Introduction

Droplet impact is involved in a large number of industrial applications and natural
phenomena from ink-jet printing to fuel atomization, surface treatment or soil erosion
(Rein 1993; Yarin 2006; Josserand & Thoroddsen 2016). Understanding the physics of
impacts, as well as predicting and/or controlling their outcome thus remains a major
challenge in fluid mechanics.

Droplets may impact on different substrates, solid surfaces, thin liquid films or deep
liquid pools in particular, and very different dynamics can be observed, from smooth de-
position to violent splashes (Marengo et al. 2011). Investigation of drop impact started
more than a century ago with the experimental studies of Worthington using pioneer-
ing photography techniques at the end of the 19th century (Worthington 1876). Since
then, drop impact has been an intensive subject of research particularly in these past
twenty years thanks to the parallel improvement of both high speed imagery (Thoroddsen
et al. 2008) and numerical simulations (Fuster et al. 2009; Agbaglah et al. 2011). How-
ever, despite these numerous works, a full understanding of droplet impact dynamics is
still lacking. It depends in fact on many physical parameters, the impact velocity, the
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drop radius, the liquid viscosity and the liquid gas surface tension in particular, usu-
ally characterized by the Reynolds and Weber numbers defined below. On the other
hand, although the gas influence on droplet impact has been noticed about thirty years
ago (Esmailizadeh & Mesler 1986), the surrounding gas was usually neglected because
the density and viscosity ratios between liquid and gas are always large in experiments.
However, theoretical, numerical and experimental works have first shown that the sur-
rounding gas was clearly influencing the dynamics. This influence is manifested at early
times by the formation of a dimple beneath the drop at impact that leads to the entrap-
ment of a gas bubble (Smith et al. 2003; Mehdi-Nejad et al. 2003; Purvis & Smith 2004;
Thoroddsen et al. 2005). More importantly, it has been observed experimentally that
the surrounding gas pressure can suppress the splash at low pressure (Xu et al. 2005).
Since then, numerous studies have investigated the mechanism by which gas pressure
influences the splash dynamics. These studies have involved and combined theoretical,
experimental and numerical approaches (Korobkin et al. 2008; Mandre et al. 2009; Mani
et al. 2010; Hicks & Purvis 2010; Duchemin & Josserand 2011; Driscoll & Nagel 2011;
Kolinski et al. 2012; Duchemin & Josserand 2012; Hicks et al. 2012; Mandre & Brenner
2012; Riboux & Gordillo 2014; Kim et al. 2014; Liu et al. 2015; Guo et al. 2016). It has
been demonstrated that splashing was closely linked with the dynamics of the thin film
of gas, either beneath the drop before impact but also during the fast spreading of the
drop after impact.

In particular, it has been explained that dimple formation leading to the bubble en-
trapment was due as a first approximation to the viscous cushioning of the gas beneath
the drop (Smith et al. 2003; Purvis & Smith 2004; Korobkin et al. 2008; Mandre et al.
2009; Mani et al. 2010; Duchemin & Josserand 2011). The lubrication pressure in the gas
deforms the drop before contact, forming a dimple, so that contact occurs along a circle
entrapping a gas bubble, as observed experimentally (Thoroddsen et al. 2005; Driscoll &
Nagel 2011; Bouwhuis et al. 2012; Kolinski et al. 2012; Tran et al. 2013).

However, these dynamics are far more complex than expected: although the cushion-
ing of such gas films is dominated by the lubrication dynamics, the usual incompressible
lubrication theory is not able to explain the splashing transition that occurs when the
gas pressure varies. Indeed, because of the Maxwell law for gases (Maxwell 1866), the
viscosity, that is the only gas parameter involved in the lubrication equation, remains
approximately constant when the gas pressure is varied because it is the (approximately
constant) product between the mean-free path and the density that determines the vis-
cosity. Therefore, additional parameters and physical mechanisms have to be considered
to explain the influence of the gas pressure on the dynamics. Essentially three different
physical effects have been suggested that depend on the gas pressure: the compressibil-
ity of the gas that is subjected to high pressure when the film is thin (Mandre et al.
2009; Mani et al. 2010), the inertial correction to the lubrication regime (Mandre &
Brenner 2012) with its purely inertial limit in the air cushioning that has also been con-
sidered (Moore et al. 2013; Moore & Oliver 2014), and the non continuum dynamics in
the thin gas layer when its thickness becomes of the order of the mean free path (quan-
tified by the Knudsen number) (Duchemin & Josserand 2011, 2012; Mandre & Brenner
2012). These effects may have also to be considered in the situation where the expanding
liquid layer wets the substrate thus involving a moving contact line (Yokoi et al. 2009;
Riboux & Gordillo 2014). For instance, the compressibility of the gas beneath the drop
clearly affects the dimple formation and the bubble entrapment (Mandre et al. 2009;
Mani et al. 2010; Mandre & Brenner 2012). Similarly, the non-continuum dynamics af-
fect the bubble entrapment dynamics and the expansion of the liquid lamella on the
substrate (Duchemin & Josserand 2012; Mandre & Brenner 2012; Riboux & Gordillo
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2014). However, a direct link between the bubble entrapment and the splashing is still
lacking, so that it is not clear how it could explain the pressure dependence on the splash-
ing. Inertial effects have been invoked through the Bernoulli pressure jump (Riboux &
Gordillo 2014, 2015) and/or a Kelvin—Helmholtz-like instability of the expanding liquid
sheet that could even be enhanced by the non-continuum correction (Kim et al. 2014; Liu
et al. 2015). In a recent paper, Riboux & Gordillo (2014) have gathered the contributions
to the wetting expanding liquid lamella of the lubrication pressure, taking into account
the non-continuum correction to the contact angle dynamics, with the suction pressure
due to the Bernoulli pressure on top of the lamella. Quantitative estimates based on rea-
sonable assumptions on the dynamics gave good agreement with experiments, suggesting
that the influence of the gas pressure is due to the sum of these different contributions,
although a direct measure of these different contributions would be interesting to per-
form (Riboux & Gordillo 2014, 2015). Finally, these different mechanisms have raised the
question whether the expanding lamella is formed before or after the droplet wets the
substrate, leading to qualitatively different splashing scenarii, as suggested by Mandre &
Brenner (2012). In fact, Riboux & Gordillo (2014) argue and develop their model assum-
ing that the bubble entrapment is independent from the splashing that is then clearly
a consequence of the rapidly expanding liquid rim that is wetting the substrate. In con-
trast, it has been argued that the liquid lamella could skate on a thin gas layer while
splashing (Duchemin & Josserand 2011; Driscoll & Nagel 2011; Kolinski et al. 2012).

Therefore, despite intense research, the final word on the influence of the surrounding
gas on the detailed mechanisms of splash formation has not been written. In particular, if
the various relevant effects involving the gas have been identified, namely compressibility,
inertia, contact-line dynamics and non-continuum effects, their quantitative contributions
still remain to be investigated and the interplay between the lamella formation and the
wetting of the substrate needs also to be clarified (Riboux & Gordillo 2014; Josserand &
Thoroddsen 2016).

In this paper, we investigate the influence of the gas inertia on the splashing dynamics
by performing numerical simulations of drop impact on a solid surface, solving the in-
compressible Navier-Stokes equations for each fluid, using the Gerris flow solver (Popinet
2006), as shown on figure 1. The goal here is to clearly identify and thus discriminate a
purely incompressible effect in the gas dynamics. Indeed, by varying only the gas density
and viscosity, we seek to isolate the gas inertia correction to the cushioning since nei-
ther compressibility nor non-continuum effects are taken into account by our numerics.
The key point of our approach lies in solving the full Navier—Stokes equations and not
a reduced model involving the lubrication approximation for the gas cushioning and the
inviscid dynamics for the liquid, as done by most of the numerical and analytical stud-
ies of this problem until now (Smith et al. 2003; Purvis & Smith 2004; Korobkin et al.
2008; Mandre et al. 2009; Duchemin & Josserand 2011; Hicks et al. 2012), which consist
of completely neglecting the gas inertia. Solving the full incompressible Navier—Stokes
equations for both the gas and the liquid phase remains nowadays a real challenge in
the context of drop impact in order to capture the dimple and the bubble entrapment
correctly (Guo et al. 2016; Josserand et al. 2016) which explains why reduced models
have been mostly used until now. Therefore our work will help to disentangle the in-
fluence of the different contributions in the splashing dynamics by focusing on purely
incompressible mechanisms.
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FIGURE 1. Snapshots of droplet impact on a solid substrate obtained by solving the axisymmetric
two-phase Navier-Stokes equations using the Gerris solver, for Re = 1000, We = 370, a = 0.003
and m = 0.15. The images correspond to the dimensionless times a) ¢ = —0.1, b) t = 0, ¢)
t=0.048, d) t =0.087, e) t = 0.2 and f) t = 0.6.

2. Problem and method
2.1. General description

We consider a spherical droplet of diameter D = 2R, of a liquid of density p; and
viscosity p; falling from a small height h between the droplet and the substrate, with an
initial velocity Uy normal to the substrate, surrounded by a gas of density p,, viscosity
g, the liquid-gas surface tension being 7 (see figure 2). The substrate is dry and flat
and a typical partially-wettable surface is considered with a contact angle § = 90° for
the sake of simplicity. We have also tested other contact angles (from § = 0 to 0§ =
180°) finding no qualitative changes in the mechanisms described below, so that we
only show here the results for # = 90°. It also indicates that the details of the moving
contact line does not play a significant role in the impact dynamics, because of the
rapid spreading, although it could be crucial in the receding dynamics of the drop as
observed experimentally (Bartolo et al. 2005). Notice however, that the full account of
the moving contact line dynamics can be implemented in numerical simulations using
specific boundary conditions (Afkhami et al. 2009; Legendre & Maglio 2015; Mahadi
et al. 2015; Mahady et al. 2016; Afkhami et al. 2017). Experiments are typically achieved
by releasing a pendant liquid droplet from a height H > D, that then falls under gravity,
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so that Uy ~ v/gH. If the Froude number (Fr = UZ/(gD) ~ H/D) is large, the liquid
inertia dominates the gravitational force so that gravity can be neglected during impact
itself. We assume a spherical droplet although its shape can sometimes be affected both
by the initial oscillations triggered by the dynamics of detachment (Thoraval et al. 2016;
Wang et al. 2013) and the gas drag (Thoroddsen et al. 2005). Indeed, we will focus here
on the short time dynamics that will be mostly determined by the radius of curvature
of the bottom of the drop that we suppose to be close to R. In general, drop impact is
characterized by two dimensionless numbers based on the liquid drop parameters: the
Reynolds number that compares inertials effects with viscous effects

UyD
Re — PiYo
i
and the Weber number which compares inertial effects with capillary effects
UZD
We = Pl
g

Here, since we neglect gravity, compressibility and non-continuum effects, only two addi-
tional dimensionless numbers are present in the problem: the density and viscosity ratio
a = pg/pr and m = pg/py respectively. Note that the incompressible lubrication of the
gas layer is controlled by the Stokes number alone:
Hg m
St = ponD N Re’

which is nothing more than the ratio between the viscosity ratio and the Reynolds num-
ber. Compressibility is often neglected for droplet impact problems as long as the impact
velocity is much below the speed of sound in both fluids (Lesser & Field 1983). In fact,
if this assumption is usually correct for most of the flow and in the liquid domain, it has
been shown that it is not the case in the small region beneath the drop just before the im-
pact if the gas pressure is small enough (Mandre et al. 2009). There, because of the high
pressure coming from the inertia of the drop cushioning the thin gas film, the lubrication
gas pressure can overcome the ambient pressure so that compressible effects have to be
taken into account. The potential influence of compressibility on the splashing dynamics
has been studied in great detail in the framework of the simplified model solving the
lubrication equation for the gas and an inviscid dynamics for the liquid drop approxi-
mated by a parabolic shape (Mandre et al. 2009; Mani et al. 2010; Mandre & Brenner
2012). Although it shows that changing the surrounding gas pressure, as done in the
pioneering experiments of Xu et al. (2005), can lead to different compressible regimes,
no clear relation between these dynamics and the suppression of the splash was deduced
beside qualitative arguments (Mandre & Brenner 2012). This is why in the present pa-
per we propose to investigate the dynamics omitting the compressibility of the gas in
order to isolate the different effects leading to the splash in the dynamics. In particular,
our approach will help to identify a purely incompressible inertial contribution favoring
the splashing at high gas pressure (in our case it corresponds then to high gas density),
explaining thus how a lower gas density could eventually suppress the splash.

Within this framework, the system obeys the Navier—Stokes equations for incompress-
ible flow with surface tension and sharp interfaces that read:

p(Opu+u-Vu) =—-Vp+ V- (2uD) + vkdsn (2.1)
V-u=0, (2.2)

where p and u are the pressure and velocity fields respectively. D = %(tVu + Vu) is
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Pg> Mg

Uy

FIGURE 2. Calculation domain. The domain is constituted of a square. A semi circular droplet
of diameter D, density p; and viscosity g falls from a height A with an initial velocity Uy. The
surrounding gas has a density pg, a viscosity pgy and a surface tension 7. The bottom boundary
(z = 0) is considered as a solid substrate with no-slip condition and a contact angle § = 90° is
defined.

the rate-of-strain tensor (D;; = (0;u; + J;u;)/2). The distribution function d, is a delta
function which insures the jump conditions at the interface, x the curvature and n the
normal vector to the interface. In this formulation the density p(x,t) and viscosity p(x,t)
are fields that take constant values (p; and p, for the density, 1 and p, for the viscosity).
Finally, since we are interested by short-time dynamics after impact, we can make the
assumption that the dynamics is axisymmetric, although the influence of 3D effects would
need to be investigated in the future.

2.2. Numerical method

The set of incompressible two fluids Navier—-Stokes equations (2.1) and (2.2) is solved in
dimensionless form using the free code Gerris (Popinet 2003, 2006, 2009) in 2D axisym-
metric geometry (using cylindrical space variable r and z). Rescaling the density, space,
time, velocity and pressure by p;, D, D /Uy, Uy and p,UZ respectively, the Navier—Stokes
equations become (using the * for dimensionless variables):

p* Ccl;;* =-V*p" + év* - (2u*D*) + %n*djn, (2.3)
involving the Reynolds and Weber numbers defined above. The density p* and viscos-
ity p* fields now take values 1 in the liquid phase and,  and m in the gas phase.
The dimensionless strain tensor now reads Dj; = (0;uj + 07u])/2. For the sake of sim-
plicity, we will drop the * in what follows. Gerris solves this set of equations using a
finite-volume method on an adaptive tree-structured (quadtree/octree) mesh. Momen-
tum and pressure are computed by a projection method and the velocity advection is
calculated by a second-order Bell-Collela-Glaz scheme. The interface is tracked by a
Volume-of-Fluid /Piecewise Linear Interface Calculation (VOF /PLIC) method (Li 1995)
with a Mixed Youngs-Centered Scheme (Tryggvason et al. 2011) to determine the normal
vector and a Lagrangian-Explicit scheme for VOF advection. Curvature is computed by
the Height-Function method and surface tension is estimated from curvature by a Bal-
anced Continuous-Surface-Force method (Popinet 2009). The density and viscosity fields
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FIGURE 3. Snapshots of the adaptive mesh refinement at two different instants of the impact:
left, just before impact where most of the refinement is concentrated on the interface and solid
surface. On the right figure, a zoom after the impact when a layer of liquid is skating above the
solid surface, the red curve representing the interface.

are computed based on the VOF fraction C' using an arithmetic mean. The adaptive
mesh refinement is controlled using the following criteria, as illustrated on figure 3:

e the gradient of the VOF function C' tracking the interface,

e the variation of the vorticity,

e the curvature in the meshes near the interface.

e the solid surface.

The refinement consists in dividing a square parent cell into four (eight in three dimen-
sion) square children cells of size half that of the parent one. Therefore, the level of
refinement n corresponds to a cell size 27" smaller than the computational unit size. Fi-
nally, a no-slip boundary condition is imposed on the solid substrate boundary (z = 0),
while free-slip is imposed on the other two boundaries (the last one, corresponding to
r = 0 comes from the axial symmetry). Because of the Navier—Stokes solver, this no-slip
boundary condition imposes in fact an effective slip length of the order of half of the grid
size at the substrate and a convergence study needs to be performed to investigate the
influence of such a condition on the results.

In this paper, since we want to characterize the influence of the gas properties (density
and viscosity) on the dynamics, we have kept all the other quantities constant, specifically
Re = 1000 and We = 370. In other words we are performing a parametric study by
varying only the ratios a and m (notice that the Stokes number also varies since the gas
viscosity does). These values of the Reynolds and Weber numbers have to be compared
with those of the original experiment of Xu et al. (2005), Re ~ 10000 and We ~ 1500 that
are significantly higher. In fact, numerical simulations at such high Reynolds and Weber
numbers are possible but may rapidly suffer from a lack of spatial resolution because of
the thin liquid layer formed at impact. The influence of the gas density is however present
for the values of the parameters chosen here so that a qualitative parametric study of
the mechanisms involved is possible. Furthermore, in the actual configuration, a typical
simulation run takes about 12 hours on one core of a powerful machine with a refinement
level n = 11 while it would take almost 5 days for n = 12, making the parametric
study done here difficult. Finally, our numerics can be understood as the impact of a
drop of smaller diameter than the original experiment, with a higher liquid viscosity,
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smaller velocity and smaller surface tension. For instance, considering the velocity and
the drop diameter both divided by two compared to the experiment, one would obtain
our numerical value by multiplying the liquid viscosity by 2.5 and dividing the surface
tension by 2, something that can easily be obtained experimentally. The initial distance
h between the droplet and the substrate has been set such that it has no influence on the
impact dynamics, leading to A = 0.1 in dimensionless unit. A typical impact obtained
by numerical simulations is shown on figure 1 for a = 0.003 and m = 0.15. The origin of
time is taken as the virtual time at which a perfectly spherical droplet falling at constant
speed would contact the solid providing the droplet does not deform. In other words,
the numerical simulation starts at dimensionless time ¢ = —h. As the droplet approaches
the solid substrate, the gas cushioning delays the contact between the droplet and the
substrate that happens slightly later than for ¢ = 0 and not at the droplet bottom
(r = 0) but rather at a positive radius: a small bubble of gas is subsequently entrapped
by the dynamics between the expanding liquid drop and the solid substrate. This bubble
cannot really be distinguished in figure 1 but its formation can be observed on the
refinement mesh of figure 3 b) which is taken before the bubble entrapment, and will
be characterized below. The drop then spreads on the substrate and a thin jet emerges
at some angle, forming the splash. The splash deforms with time and a characteristic
S-shape is created (Josserand et al. 2016).

Numerical convergence for drop impact simulation is a hard challenge because of the
small structures created by the impact (Josserand et al. 2016) but also due to the moving
contact-line dynamics that have to be accounted for in the present configuration. The
numerical convergence of our results has been tested by measuring the minimal film
thickness, which is one of the most sensitive quantities among those that depend on the
mesh-size and on the boundary condition on the substrate. Figure 4 shows this quantity
as a function of time for increasing mesh refinement demonstrating a good convergence
for refinement levels above n = 10. For the rest of this paper, all the results will be
computed using the same maximum refinement level n = 11. However, the convergence
for the dynamics of the moving contact line cannot be obtained in our numerics because
of the no-slip boundary conditions that leads to a singular behavior in the continuum
limit (Dussan 1979). Physically, the flow is regularized by small-scale effects, that can
be accounted for through an effective boundary slip condition at the solid surface, with
a slip length of the order of a few tens of nanometers (Bonn et al. 2009). To obtain
numerical convergence for these dynamics, complex boundary conditions at the moving
contact line involving the mesh size have to be introduced (Afkhami et al. 2009; Legendre
& Maglio 2015; Afkhami et al. 2017). Keeping a fixed maximum refinement level avoids
the question of the numerical convergence of the moving contact line dynamics, since it
corresponds then to a fixed slip length boundary condition at the solid substrate. For
instance, for a millimeter drop diameter, the slip length in our simulations is about 250
nanometers, clearly larger than the physical one, but with no expected qualitative change
in the dynamics.

2.3. Scaling analysis

Prior to performing a parametric study of the dynamics, it is useful to define and to
estimate some quantities related to the impact. In particular, a geometrical argument
based on the intersection of the impacting drop with the substrate shows that, at short
times, the vertical length of the intersection h(t) varies like ¢ while the horizontal one
follows 7.(t) ~ Vh ~ +/t. This simple argument has been used since Wagner (1932),
implying a self-similar dynamics of the impact at short times (Josserand & Zaleski 2003;
Smith et al. 2003). More precisely, a quantitative estimate can even be done for the foot
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FIGURE 4. Evolution with time of hmin(t), the minimal air thickness in the numerics, for different
maximum refinement levels n (numbers indicated bottom left of the figure) for m = 0.1 and
a = 0.001. The grid size is then proportional to 1/2" near the substrate. Although small
deviations can be observed between the different levels, we observe a rapid convergence of the
results. The straight line indicates the free fall of the drop and the inset shows a zoom of the
figure near the time where the bubble is entrapped.

of the jet following 1/3t/2 (Riboux & Gordillo 2015; Philippi et al. 2016) (notice that the
3/2 factor, in contrast with the 3 in the literature, comes from the rescaling by D used
here instead of R) but remarkably, the general square-root-of-time law (with possibly a
different prefactor) describes correctly all the horizontal scales at small times (Josserand
& Zaleski 2003). Figure 5 shows the spreading radius 7, (t), defined as the position where
the interface height is minimum, as a function of time for v = 0.001 and m = 0.1 as an
illustration of this evolution. In fact, it has been shown that the spreading radius varies
only slightly with the fluid viscosity and surface tension (Josserand & Zaleski 2003), so
that the curves obtained with other parameters will show the same overall aspect. The
curve is well fitted by the predicted law:

ru(t) ~ /3t —ta)/2,

where t4 is the time when the dimple starts to form beneath the drop. Remarkably, the
fit overestimates the spreading radius at very short time, probably because of a small
capillary correction when the dimple forms. Rapidly however, the predicted law gives a
very good approximation of the spreading radius.

Small discontinuities can be observed above t — t; ~ 0.03 corresponding to 7, ~
0.2. Above these values, the central bubble has been entrapped and the dynamics of
the numerical contact line induces a sequence of contact zone separated by bubbles as
illustrated on figure 6. There, 7, (¢) is defined as the largest value of the liquid in contact
with solid, explaining the discontinuities in the curve 5. These bubbles are formed by
an instability of the moving contact line but note that due to the cylindrical symmetry
of our calculations these bubbles are in fact tori that would be unstable in 3D. These
bubbles are similar to those observed in numerical simulations of drop impacts on a thin
liquid film (Josserand et al. 2016) and reminiscent of experimental observations by Li
et al. (2015b). How these bubbles would fare under refinement of the grid has not been
investigated but their size would likely vary.
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tq = 0.102 is the time at which the dimple beneath the drop appears, for « = 0.001 and m = 0.1.
The inset shows the relation between r,, and \/t — t4. Symbols denote the temporal evolution of

the r-coordinate of the hAmin-point and the dashed curve represents the law ry, = /3(t — ta)/2.
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FIGURE 6. The expanding lamella after bubble entrapment (¢ = 0.059) for the same parameters
as in figure 5. The liquid-gas interface is drawn while the solid surface is the dashed line plotted
at z = 0. Small bubbles are entrapped within the wetted area due to the rapid expansion of the
lamella, as displayed in the inset that shows a zoom of the wetted area.

This well-known bubble entrapment mechanism has been observed experimentally (Thoroddsen

et al. 2003, 2005) and numerically (Mehdi-Nejad et al. 2003; Smith et al. 2003; Korobkin
et al. 2008; Mandre et al. 2009; Duchemin & Josserand 2011) in many studies and con-
texts. It is usually explained using the lubrication equation framework in the gas (Smith
et al. 2003; Korobkin et al. 2008; Mandre et al. 2009; Mani et al. 2010) and we will
rephrase now the scaling arguments for the paper consistency. Indeed, when the drop
approaches the solid, the gas layer beneath the drop becomes very thin so that the gas
inertia can be neglected in the Navier—Stokes equations leading to the lubrication equa-
tion for the gas layer thickness h(r,t), involving the pressure py(r,t) in the gas, written
here in dimensionless form:

Oh 1 9 ( ,30p
ot~ 12rSt or (’"h or ) ' 24)

Using the scalings induced by the geometrical argument above and considering that
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Oth ~ 1, we obtain the following scaling for the lubrication pressure in the gas:

Str2 St St
Pom™ T T T

On the other hand the pressure in the liquid p; needed for the deformation of the drop at
impact can be estimated using the same self-similar argument by balancing the pressure
force p; x mr2 with the momentum variation in the half-sphere of radius r. (in dimen-
sionless form, the vertical velocity is U* = 1, and the liquid density is p* = 1, kept in
the first formula below to avoid confusion):

% (p*iﬂri’U*) = 2mp*r? az;c U~,
yielding (taking now p* = U* = 1 and using the fact that r.(t) = v/t so that dr./dt =
1/(2re))
27r, ~ pp X 7r7’3
which leads to the scaling for the pressure in the liquid near the impact zone:
2 2
n L

The entrapment of the bubble can be interpreted within this simplified scaling analysis:
when ¢ is small enough, the lubrication pressure p, is much bigger than the inertial one
p; needed to deviate the impacting drop so that the drop skates on a thin gas layer. On
the other hand, when t increases, the lubrication pressure decreases much more rapidly
than the inertial one so that at a critical time, the gas layer cannot any more deviate
the liquid that then enters in contact with the solid. This threshold, measured in term
of entrapment time ¢, or height h, = t., radius r. = /%, and volume V,  r2h, can be
estimated by balancing the two pressures p; ~ p, leading to:

h* ~t, x St2/3, re o< St'/% and V, o St /3

Measuring these quantities experimentally remains a difficult challenge because of the
small values of the Stokes numbers but this has been done eventually using complex
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optical techniques (Driscoll & Nagel 2011; Kolinski et al. 2012; Bouwhuis et al. 2012;
Klaseboer et al. 2014; Li et al. 2015a). The results are somehow puzzling since the the-
oretical predictions have not always been observed or only in a narrow range of Stokes
numbers. We have investigated numerically the radius of the entrapped bubble by mea-
suring the radius r, of the first contact between the droplet and the solid and the height
he of the gas film at that time taken at r = 0, for different Stokes numbers, by varying
the gas viscosity. As shown in figure 7 a), the scaling laws work well for a large range of
Stokes numbers, proving that the lubrication is clearly in action at first order. However
they fail for small or very large Stokes numbers: the finite size of the drop affects the
scaling for high Stokes numbers while one may expect inertia effects to dominate lubri-
cation theory at small Stokes numbers (Wilson & Duffy 1998; Luchini & Charru 2010),
as already observed numerically for the impact on a liquid surface (Jian et al. 2015;
Josserand et al. 2016). This variation of the entrapped bubble size with the gas density
at small Stokes numbers is a first manifestation of an effect related to the gas inertia
in the impact. This is shown on figure 7 b), where the volume is plotted as the density
ratio varies for a fixed Stokes number (St = 107°), exhibiting a decrease of the bubble
entrapped with decreasing gas density. There, while a monotonic increasing trend can
be seen, a high scattering of the data is also observed. This scattering comes from the
small gas density that enhances numerical instability. In particular, large velocity gradi-
ents form in this region where the maximum refinement level is reached, so that these
gradients are probably not resolved enough. Higher refinement, of important numerical
costs, should be performed in future studies to clarify this point. When comparing the
lubrication pressure with the Bernoulli pressure in this configuration, it has been shown
that the threshold between inertia and lubrication occurs for o ~ St?/3 (Josserand et al.
2016), in good qualitative agreement with the plateau observed at small density ratio on
figure 7 b). Even if it is tempting to associate this volume decrease to a smaller angle
of jet formation and thus to a weaker splash, the full dynamics need to be investigated
further to elucidate the splashing mechanisms.

3. Identification of two splashing mechanisms

In order to investigate the influence of the gas properties on the splashing mechanism,
we perform a collection of numerical simulations by varying only the gas density and
viscosity through the ratios a and m respectively. The results on the bubble entrapment
suggest that these dynamics are a priori dominated by the gas viscosity (through the
Stokes number, involving the viscosity ratio m) but with a small correction due to inertia
(involving then the density ratio r), as highlighted by the variation of the entrapped
bubble with the gas density. The variation of the impact dynamics with the viscosity ratio
can be observed on figure 8 where the temporal evolution of the interface profile at the
early stage of impact is shown for three different values of m for a fixed value of o« = 0.003.
As the gas viscosity decreases, the impact dynamics present three different regimes and
exhibit in particular two distinct splashing mechanisms: at the highest viscosity ratio
m = 0.15, figure 8a), a jet emerges from the drop just before the contact with the solid,
leading eventually to a splash forming rapidly a large angle with the substrate. We call
this mechanism the jet-splash. When the viscosity ratio is decreased, for m = 0.04 (figure
8b), a splash is still present but it is formed by the detachment of a jet from the rapid
spreading of the liquid already in contact with the substrate, leading eventually to a
splash forming firstly a small angle with the substrate (typically below 5° here). We
call this mechanism the detachment-splash. Then at even smaller gas viscosity (m =
0.01 figure 8c), no splash is observed, the rapid spreading of the drop on the substrate
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FIGURE 8. Interface evolution in time at the early stage of impact for o = 0.003 but differ-
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from left to right correspond to ¢ = 0.015,0.020, 0.025, 0.030, 0.035, 0.080 respectively; (c) spread-
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respectively. The line z = 0 represents the solid substrate.

remains stable. This regime is called the spreading. Such splashing jet angle variation has
already been observed when varying the Reynolds number (Thoraval et al. 2012) and it
is interesting to notice here that the gas density can similarly affect this angle.

Our numerics have thus helped to identify two different splashing mechanisms de-
pending on whether a jet is formed before or after the liquid wets the solid. Such distinct
behaviors have been in fact already suggested by Mandre & Brenner (2012) based on
qualitative arguments but it is to our knowledge the first time that they are observed in
numerical simulations. Although the two splashing mechanisms exhibit different behav-
iors for the jet formation at small times, their further evolution shows eventually similar
features for the jet deviation shape, as can be seen on figure 9 where the interface is
shown for the two splashing cases of figure 8 at the later time ¢ = 0.5. There, the two
interface shapes are similar forming a characteristic shape that resembles the letter ”S”.
In the lowest viscosity case the jet is only slightly closer to the horizontal than for the
higher viscosity case. To illustrate further on the two different splashing mechanisms, we
show on figure 10 the pressure and velocity fields at the onset of the jet formation for
m = 0.04 (detachment-splash, left) and m = 0.15 (jet-splash, right). Higher pressure is
observed in the detachment case because of the arrest of the liquid by the contact with
the solid substrate. By contrast, the velocity field clearly exhibits the skating of the liquid
jet on a thin gas layer in the case of the jet-splash.

The formation of the splash is even clearer on figure 11 where the evolution of the
positions of the rim of the expanding liquid sheet (defined as its maximum r-coordinate)
is drawn for different viscosity ratios. Two main behaviors can be observed at large
times/radius (for /D > 0.5 typically): a splash is formed for the highest values of m
(here for m > 0.04) while the rim remains attached to the substrate for the two lowest
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splashing mechanisms at o = 0.003. On the left the detachment splash for m = 0.04 and on the
right the jet splash for m = 0.15. In the latter case the liquid layer is skating on a thin gas film,
and the velocity field in the liquid is almost parallel, while on the left, the liquid is arrested by
the substrate, leading to a weaker and more complex velocity field, and higher pressure.

values. Since the position is taken at the edge of the expanding rim, it explains why
even for the no-splash regime the height is still slowly growing with time. Looking more
precisely at the short time evolution (around /D ~ 0.3 to be compared with the bubble
entrapment at 7/D ~ 0.2), one can observe the detachment-splash regime for m = 0.04
where the dynamics follow during a small time the evolution of the smaller viscosities
until they depart and then follow a splash dynamics.

These behaviors can also be observed when the gas density varies, as shown on figure
12 where the evolution of the position of the rim is plotted for varying density ratios «
for two different viscosity ratios m = 0.037 and m = 0.07. For the first case, the splash
is suppressed for low-enough density ratio (below v = 1073) and the detachment jet
dynamics are observed for a = 0.0015. When the viscosity ratio is increased to m = 0.07,
the splash threshold is lowered when the density ratio decreases but there no suppres-
sion is obtained for the lowest density ratio available in our numerics. These results are
particularly important since they show that even in incompressible gas dynamics the
density can influence the impact and eventually suppress the splash. Together with the
variation of the entrapped bubble size with gas density, it suggests that gas inertia does
influence the splashing threshold. However, this effect appears here as a correction to the
dominant incompressible lubrication mechanism.

4. Phase diagram

The influence of the gas properties on the impact dynamics can be summarized in
a phase diagram obtained by varying only the gas viscosity and density, through their
ratio with the liquid ones, all the other parameters kept constant. It corresponds thus
to fixed Reynolds and Weber numbers (the same as those used until now, Re = 1000
and We = 370). Figure 13 shows the phase diagram for the whole range of parameters
studied here, with a variation of the gas density and viscosity over about two orders
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of magnitude. In this phase diagram the regions leading to the different splash mecha-
nisms are marked using different symbols and colors. At first glance, one can see that
the splashing/spreading boundary, but also the detachment/jet splash boundary depend
almost only on the gas viscosity, as suggested by the previous results showing that the
incompressible lubrication dynamics was the dominant effect on the short time dynam-
ics of the impact. However, one can notice an effect of the gas density at small densities
showing that the low gas densities (corresponding thus to low pressure) tend to lower and
sometimes even suppress the splashing, in qualitative agreement with the experimental
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observation (Xu et al. 2005). Interestingly, the detachment splash regime always sepa-
rates the two main behaviors (spreading and jet-splashing) and can thus be considered
as a transition domain.

Finally, now that we have observed that gas density can influence the splashing of a
droplet on a solid substrate even in the incompressible flow limit, it is crucial to identify
the physical mechanisms involved in this dependency! Indeed, since the gas density in
this incompressible limit enters in the equations through the inertial term, we need to
understand its effect. In that framework, we should distinguish two different situations,
whether the splash is initiated before or after the contact and wetting with the solid. Since
the spreading dynamics after contact with the substrate involves the complex dynamics
of the moving contact line, we will focus first on the transition between detachment and
jet splash. In that situation, the main difference between the jet and the detachment
splashes comes from the observation that a jet is ejected from the drop prior to contact
for the jet-splash, in contrast with the detachment-splash. It suggests that an instability
mechanism involving gas inertia is enhanced by the gas density. When the jet is initiated
before the contact (jet-splash regime), we can consider that the droplet is spreading and
skating on a thin layer of air and it is tempting to draw an analogy with the atomization
of liquid jets (Boeck & Zaleski 2005; Fuster et al. 2013). In fact, it has been already
suggested and demonstrated experimentally that in this case, the rapid skating of the
liquid on a thin gas layer can develop a Kelvin—Helmholtz (KH) like instability that
generates the splash (Kim et al. 2014; Liu et al. 2015). In particular Liu et al. (2015) has
shown that the splash could be suppressed by draining the air layer beneath the drop near
the contact location, emphasizing the role of the skating of the liquid on the gas layer.
The KH instability involves the density ratio as well as the viscosity ratio in the growth
rate of the instability (Villermaux 1998; Yecko & Zaleski 1999; Yecko et al. 2002; Boeck
& Zaleski 2005; Fuster et al. 2013), and although the shear flow induced by the skating
has a complex structure, such an instability should be present in the dynamics prior to
the contact. To quantify the shear induced by the dynamics, we measure the vorticity



Two mechanisms of droplet splashing on a solid substrate 17

(w = d,u — 0,v) in the gas layer beneath the droplet. Figure 14 shows the evolution
of the maximum of this vorticity in the gas layer as a function of time for different
viscosity ratios (ranging from m = 0.01 to m = 0.15) and density ratios (o = 0.001 and
a = 0.004): as expected for the lubrication regime in the gas layer, we observe a strong
dependence of the vorticity following roughly w oc 1/p4 (this can be inferred from the
shear stress balance at the interface between the gas layer and the liquid spreading). On
the other hand, no dependency on the gas density is observed since for a fixed viscosity
ratio m (see in particular for m = 0.037 ~ 0.04 in the figure), we cannot distinguish the
curves for the three density ratios a = 0.001, 0.003 and 0.004). Then, even if the shear
flow here is more complex than in situations considered usually in theoretical studies,
we can argue that the KH instability for fixed m will be enhanced by the increase of
the gas density. Therefore, we expect the jet splash to form in this situation at higher
values of « than the detachment splash, as observed in the numerics. On the other hand,
the transition between the detachment splash and the spreading cannot be explained by
this KH instability of the liquid skating on a thin gas layer, since the expanding liquid
sheet wets the substrate. In that case, it has been suggested that the strong damping of
the spreading due to the contact of the liquid with the solid would generate the splash
and in that case the lift force that deviates the liquid jet needs to be identified (Mandre
& Brenner 2012). In a recent work Riboux & Gordillo (2014) proposed to decompose
this lift force in two contributions, one coming from the gas dynamics near the rapidly
moving contact line, the other being the suction due to the Bernouilli pressure acting on
top of the spreading liquid layer. The gas density is involved in these two contributions
in different ways, through the non-continuum effect for the force near the contact line
and through the gas inertia in the Bernoulli pressure. In our numerics, only the Bernoulli
pressure involves the gas density since the non-continuum effects are not accounted for.
Therefore, our approach can be seen as an illustration of the influence of the lift force
due to the Bernoulli suction on the detachment-splash/spreading transition .

Finally, quantitative comparaisons between our results and the experimental results of
Xu et al. (2005) and Riboux & Gordillo (2014) would be interesting to perform in order to
precisely separate the different effects involved in the splashing dynamics. Unfortunately,
such a quantitative study is not possible in the context of this paper because our impact
parameters (Reynolds and Weber numbers) are too different from the experimental ones.
Such work is thus postponed to a further investigation.

5. Conclusion

In this paper, we have performed a parametric numerical study of droplet impact on a
solid substrate in the incompressible limit both for the gas and the liquid flow, allowing
to identify the influence of the gas by varying the gas density and viscosity only. We have
shown that the dominant effect involved in the splashing/spreading transition comes
from the gas viscosity and is due to the lubrication regime holding beneath the drop
at the impact. However, the variation of the dimensions of the entrapped bubble with
the gas density at small Stokes numbers indicates that a correction due to gas inertia is
also present. This is confirmed when the splashing/spreading transition is investigated:
firstly we distinguish numerically for the first time two different splashing mechanisms,
depending on whether a jet is ejected from the drop prior to the contact with the sub-
strate or not, leading to the jet-splash and detachment splash regimes respectively. Then,
a phase diagram for the splashing/spreading transition is obtained by varying both the
gas density and viscosity in the region of interest. There, the first-order incompressible
lubrication dynamics are observed but with a clear correction due to the gas density, par-
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ticularly present for small density ratios. Finally, we interpret the gas density dependence
separating the two types of splash mechanisms as a Kelvin—Helmholtz-like instability, as
suggested earlier (Kim et al. 2014; Liu et al. 2015), that is enhanced when the gas den-
sity is increased, exhibiting a genuine splashing mechanism. For the transition between
spreading and splashing, our numerics are in agreement with the model proposed previ-
ously (Mandre & Brenner 2012; Riboux & Gordillo 2014): the Bernoulli pressure acting
on the rapidly spreading liquid jet induces the suction of the liquid that can lift up the
lamella when the gas density is big enough. Our results have thus helped to isolate purely
inertial mechanisms that are at play in the splashing transition. However, their quan-
titative contributions with respect to other contributions coming from compressibility
and/or non-continuum effects cannot be evaluated in the present study. Such numerical
investigations would still be difficult to do for two reasons: firstly, we are not aware of any
accurate numerical methods being able to deal simultaneously with two-phase flows with
resolved interfaces, compressible dynamics and non-continuum effects. The method of Li
(2016) could be useful in that respect. Second, even if we have obtained good qualita-
tive results, quantitative estimates of the different contributions to the splashing should
eventually be performed for realistic impact parameters, something that is probably not
too difficult to reach in the near future, given the rapid improvements of the numerical
methods and computational power (Agbaglah et al. 2011).
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