Units in model-based clustering 0000 000 00000 Units in model-based co-clustering 000 0000 0000 Conclusion 00 00

Unifying Data Units and Models in (Co-)Clustering

C. Biernacki

Joint work with A. Lourme

Classification Society Conference June 21-24, 2017, Silicon Valley campus in Santa Clara (USA)

Units in model-based clustering 0000 000 00000 Units in model-based co-clustering 000 0000 00000 Conclusion 00 00

Quizz!

$$y = \beta x^2 + e$$

- Is it a linear regression on co-variates (x^2) ?
- Is it a quadratic regression on co-variates x?

Both!

Units in model-based clustering 0000 000 00000 Units in model-based co-clustering 000 0000 00000 Conclusion 00 00

Take home message

Units are entirely interrelated with models

This part:

- Be aware that interpretation of ("classical") models is unit dependent
- Models should even be revisited as a couple units × "classical" models
- Opportunity for cheap/wide/meaningful enlarging of "classical" model families
- Focus on model-based (co-)clustering but larger potential impact

General (model-based) statistical framework

Data:

Whole data set composed by n objects, described by d variables

 $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ with $\mathbf{x}_i = (x_{i1}, \dots, x_{id}) \in \mathbb{X}$

- Each x_i value is provided with a unit id
- We note "id" since units are often user defined (a kind of canonical units)
- Model:
 - A pdf^1 family, indexed by $\mathbf{m} \in \mathbb{M}^2$

$$\boldsymbol{p}_{\boldsymbol{\mathsf{m}}} = \{ \cdot \in \mathbb{X} \mapsto \boldsymbol{p}(\cdot; \boldsymbol{\theta}) : \boldsymbol{\theta} \in \boldsymbol{\Theta}_{\boldsymbol{\mathsf{m}}} \}$$

With $p(\cdot; \theta)$ a (parametric) pdf and Θ_m a space where evolves this parameter

Target:

$$\widehat{\mathsf{target}} = \mathbf{f}(\mathbf{x},\mathsf{p}_{\mathbf{m}})$$

Unit id is hidden everywhere and could have consequences on the target estimation!

¹probability density function

 $^{^{2}}$ Often, the index **m** is confounded with the distribution family itself as a shortcut

Units in model-based clustering 0000 000 00000 Units in model-based co-clustering 000 0000 00000 Conclusion 00 00

Changing the data units

Principle of data units transformation u:

$$\begin{array}{rcccc} u: & \mathbb{X} = \mathbb{X}^{id} & \longrightarrow & \mathbb{X}^u \\ & x = x^{id} = id(x) & \longmapsto & x^u = u(x) \end{array}$$

- \blacksquare u is a bijective mapping to preserve the whole data set information quantity
- We denote by \mathbf{u}^{-1} the reciprocal of \mathbf{u} , so $\mathbf{u}^{-1} \circ \mathbf{u} = \mathbf{id}$
- Thus, id is only a particular unit u
- Often a meaningful restriction³ on **u**: it proceeds lines by lines and rows by rows

$$\mathbf{u}(\mathbf{x}) = (\mathbf{u}(\mathbf{x}_1), \dots, \mathbf{u}(\mathbf{x}_n)) \quad \text{with} \quad \mathbf{u}(\mathbf{x}_i) = (\mathbf{u}_1(x_{i1}), \dots, \mathbf{u}_d(x_{id}))$$

- Advantage to respect the variable definition, transforming only its unit
- **u**(\mathbf{x}_i) means that **u** applied to the data set \mathbf{x}_i , restricted to the single individual *i*
- **u**_j corresponds to the specific (bijective) transformation unit associated to variable j

³Possibility to relax this restriction, including for instance linear transformations involved in PCA (principal component analysis). But the variable definition is no longer respected.

Conclusion 00 00

Revisiting units as a modelling component

Explicitly exhibiting the "canonical" unit id in the model

 $\mathsf{p}_{\mathsf{m}} = \{ \cdot \in \mathbb{X} \mapsto \mathsf{p}(\cdot; \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta_{\mathsf{m}} \} = \{ \cdot \in \mathbb{X}^{\mathsf{id}} \mapsto \mathsf{p}(\cdot; \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta_{\mathsf{m}} \} = \mathsf{p}_{\mathsf{m}}^{\mathsf{id}}$

- Thus the variable space and the probability measure are embedded
- As the standard probability theory: a couple (variable space, probability measure)!
- Changing id into \mathbf{u} , while preserving \mathbf{m} , is expected to produce a new modelling

$$\mathsf{p}_{\mathsf{m}}^{\mathsf{u}} = \{ \cdot \in \mathbb{X}^{\mathsf{u}} \mapsto \mathsf{p}(\cdot; \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta_{\mathsf{m}} \}.$$

A model should be systematically defined by a couple (u,m), denoted by p_m^u

Conclusion 00 00

Interpretation and identifiability of p_m^u

Standard probability theory (again): there exists a measure $u^{-1}(m)$ s.t.⁴

$$u^{-1}(m)\in\{m'\in\mathbb{M}:p^{id}_{m'}=p^u_m\}$$

There exists two alternative interpretations of strictly the same model:

- p^u_m: data measured with unit u arise from measure m;
- **p** $_{u^{-1}(m)}^{id}$: data measured with unit id arise from measure $u^{-1}(m)$
- Two points of view:

Statistician

The model p_m^u is not identifiable over the couple (m, u)

Practitioner

Freedom to choose the interpretation which is the most meaningful for him

⁴This set is usually restricted to a single element

Units in model-based clustering 0000 000 00000 Units in model-based co-clustering 000 0000 00000 Conclusion 00 00

Opportunity for designing new models

Great opportunity to build easily numerous new meaningful models p_m^u!

- Just combine a standard model family $\{\mathbf{m}\}$ with a standard unit family $\{\mathbf{u}\}$
- New family can be huge! Combinatorial problems can occur...
- Some model stability can exist in some (specific) cases: $\mathbf{m} = \mathbf{u}^{-1}(\mathbf{m})$

Units in model-based clustering 0000 000 00000 Units in model-based co-clustering 000 0000 00000 Conclusion 00 00

Model selection

As any model, possible to choose between $p_{\textbf{m}_1}^{\textbf{u}_1}$ and $p_{\textbf{m}_2}^{\textbf{u}_2}$

However, caution when using likelihood-based model selection criteria (as BIC)

- Prohibited to compare m₁ in unit u₁ and m₂ in unit u₂
- But allowed after transforming in identical unit id
- Thus compare their equivalent expression: $p_{u_1^{-1}(m_1)}^{id}$ and $p_{u_2^{-1}(m_2)}^{id}$
- Example for abs. continuous x and differentiable u, the density transform in id is:

$$\mathsf{p}^{\mathsf{id}}_{\mathsf{u}^{-1}(\mathsf{m})} = \{ \cdot \in \mathbb{X}^{\mathsf{id}} \mapsto \mathsf{p}(\mathsf{u}(\cdot); \boldsymbol{\theta}) \ \times \ |\mathsf{J}^{\mathsf{u}}(\cdot)| : \boldsymbol{\theta} \in \Theta_{\mathsf{m}} \}$$

with $J^{u}(\cdot)$ the Jacobian associated to the transformation u

Units in model-based clustering 0000 000 00000 Units in model-based co-clustering 000 0000 00000 Conclusion 00 00

Focus on the clustering target

A current challenge is to enlarge model collection. . . and units could contribute to it!

Model: mixture model **m** of parameter $\boldsymbol{\theta} = \{\pi_k, \boldsymbol{\alpha}_k\}_{k=1}^{g}$

$$\mathsf{p}_{\mathsf{m}}(\boldsymbol{x};\boldsymbol{\theta}) = \sum_{k=1}^{g} \pi_k \mathsf{p}(\boldsymbol{x};\boldsymbol{\alpha}_k)$$

- g is the number of clusters
- Clusters correspond to a hidden partition $\mathbf{z} = (z_1, \ldots, z_n)$, where $z_i \in \{1, \ldots, g\}$
- $\pi_k = p(Z = k)$ and $p(\mathbf{x}; \alpha_k) = p(\mathbf{X} = \mathbf{x} | Z = k)$

■ Target: estimate z (and often g)

- Estimate $\hat{\theta}_{m}$ by maximum likelihood (typically)
- Estimate z by the MAP principle $\hat{z}_i = \arg \max_{k \in \{1,...,g\}} p(Z_i = k | X_i = x_i; \hat{\theta}_m)$
- Estimate g by BIC or ICL criteria typically (maximum likelihood based criteria)

Units in model-based clustering

Units in model-based co-clustering 000 0000 00000 Conclusion 00 00

Outline

1 Introduction

2 Units in model-based clustering

Scale units and parsimonious Gaussians

- Non scale units and Gaussians
- Units and Poissons

3 Units in model-based co-clustering

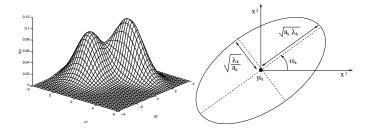
- Model for different kinds of data
- Units and Bernoulli
- Units and multinomial

4 Conclusion

- Summary
- Units and other distributions

14 spectral models on Σ_k

- $\mathbb{X} = \mathbb{R}^d$
- d-variate Gaussian model **m**: $p_m(\cdot; \alpha_k) = \mathcal{N}_d(\mu_k, \Sigma_k)$
- [Celeux & Govaert, 1995]⁵ propose the following eigen decomposition



⁵Celeux, G., and Govaert, G.. Gaussian parsimonious clustering models. Pattern Recognition, 28(5), 781-793 (1995).

Units in model-based clustering OOOO OOO OOOO Units in model-based co-clustering 000 0000 00000 Conclusion 00 00

Scale unit invariance

Consider scale unit transformation $\mathbf{u}(\mathbf{x}) = \mathbf{D}\mathbf{x}$, with diagonal $\mathbf{D} \in \mathbb{R}^{d \times d}$

■ Very current transformation: standard units (mm, cm), standardized units

- [Biernacki & Lourme, 2014] listed models where invariance holds (8 among 14)
 - The general model is invariant:

$$[\lambda_k \boldsymbol{S}_k \boldsymbol{\Lambda}_k \boldsymbol{S}'_k] = \boldsymbol{\mathsf{u}}^{-1}([\lambda_k \boldsymbol{S}_k \boldsymbol{\Lambda}_k \boldsymbol{S}'_k])$$

An example of not invariant model:

$$[\lambda_k \boldsymbol{S} \boldsymbol{\Lambda}_k \boldsymbol{S}'] \neq \boldsymbol{\mathsf{u}}^{-1}([\lambda_k \boldsymbol{S} \boldsymbol{\Lambda}_k \boldsymbol{S}'])$$

Do not forget to compare all models $\mathbf{m}' = \mathbf{u}^{-1}(\mathbf{m})$ in unit id for BIC / ICL validity

Use the Rmixmod package

Illustration on the Old Faithful geyser data set

- All models are with free proportions (π_k)
- All ICL values are expressed with the initial unit id=min×min
- We observe the effect of unit on the ICL ranking for some models
- Cheap opportunity to enlarge the model family!

	$\mathbf{id}=(min,min)$		$\mathbf{u}^{scale_1} = (sec, min)$		$\mathbf{u}^{scale_2} = (stand, stand)$	
family	m	ICL ^{id}	m	ICL ^{id}	m	ICL ^{id}
All mod.	$[\lambda_k \boldsymbol{S} \boldsymbol{\Lambda}_k \boldsymbol{S}']$	1 160.3	$[\lambda_k \boldsymbol{S} \boldsymbol{\Lambda}_k \boldsymbol{S}']$	1 158.7	$[\lambda_k S_k \Lambda S'_k]$	1 160.3
General mod.	$[\lambda_k \boldsymbol{S}_k \boldsymbol{\Lambda}_k \boldsymbol{S}_k']$	1 161.4	$[\lambda_k \boldsymbol{S}_k \boldsymbol{\Lambda}_k \boldsymbol{S}_k']$	1 161.4	$[\lambda_k \boldsymbol{S}_k \boldsymbol{\Lambda}_k \boldsymbol{S}_k']$	1 161.4

Units in model-based clustering

Units in model-based co-clustering 000 0000 00000 Conclusion 00 00

Outline

1 Introduction

2 Units in model-based clustering

Scale units and parsimonious Gaussians

Non scale units and Gaussians

Units and Poissons

3 Units in model-based co-clustering

Model for different kinds of data

- Units and Bernoulli
- Units and multinomial

4 Conclusion

Summary

Units and other distributions

Prostate cancer data of [Biar & Green, 1980]⁸

- Individuals: 506 patients with prostatic cancer grouped on clinical criteria into two Stages 3 and 4 of the disease
- Variables: d = 12 pre-trial variates were measured on each patient, composed by
 - Eight continuous variables (age, weight, systolic blood pressure, diastolic blood pressure, serum haemoglobin, size of primary tumour "SZ", index of tumour stage and histolic grade, serum prostatic acid phosphatase "AP")
 - Two ordinal variables (performance rating, cardiovascular disease history)
 - Two categorical variables with various numbers of levels (electrocardiogram code, bone metastases)
- Some missing data: 62 missing values ($\approx 1\%$)
- Two historical units for performing the clustering task:
 - Raw units id: [McParland & Gormley, 2015]⁶
 - Transformed data u: since SZ and AP are skewed, [Jorgensen & Hunt, 1996]⁷ propose

$$\mathbf{u}_{SZ} = \sqrt{\cdot}$$
 and $\mathbf{u}_{AP} = \ln(\cdot)$

 $^{^{6}\}text{McParland},$ D. and Gormley, I. C. (2015). Model based clustering for mixed data: clustmd. arXiv preprint arXiv:1511.01720.

⁷ Jorgensen, M. and Hunt, L. (1996). Mixture model clustering of data sets with categorical and continuous variables. In Proceedings of the Conference ISIS, volume 96, pages 375–384.

⁸Byar DP, Green SB (1980): Bulletin Cancer, Paris 67:477-488

Units in model-based co-clustering 000 0000 00000 Conclusion 00 00

Clustering with the MixtComp software [Biernacki et al., 2016]⁹

Model m in Mixtcomp: full mixed data x = (x^{cont}, x^{cat}, x^{ordi}, x^{int}, x^{rank}) (missing data are allowed also) are simply modeled by inter conditional independence

$$\mathsf{p}(\mathsf{x}; \boldsymbol{\alpha}_k) = \mathsf{p}(\mathsf{x}^{cont}; \boldsymbol{\alpha}_k^{cont}) \times \mathsf{p}(\mathsf{x}^{cat}; \boldsymbol{\alpha}_k^{cat}) \times \mathsf{p}(\mathsf{x}^{ordi}; \boldsymbol{\alpha}_k^{ordi}) \times \dots$$

In addition, for symmetry between types, intra conditional independence for each Results:

- New units u_{SZ} and u_{AP} are selected by ICL
- New units allow to select two groups and provides a lower error rate

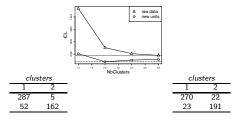


Table : MixtComp model on raw units: 11% misclassified

Table : MixtComp model on new units: 9% misclassified

 $^{^{9}\}mbox{MixtComp}$ is a clustering software developped by Biernacki C., lovleff I. and Kubicki V. and freely available on the MASSICCC web platform https://massiccc.lille.inria.fr/

Units in model-based clustering

Units in model-based co-clustering 000 0000 00000 Conclusion 00 00

Outline

1 Introduction

2 Units in model-based clustering

Scale units and parsimonious Gaussians

- Non scale units and Gaussians
- Units and Poissons

3 Units in model-based co-clustering

Model for different kinds of data

- Units and Bernoulli
- Units and multinomial

4 Conclusion

Summary

Units and other distributions

Which units for count data?

- Count data: $x \in \mathbb{N}$
- Standard model **m** is Poisson: $p(\cdot; \alpha_k) = \mathcal{P}(\lambda_k)$
- *d*-variate case $\mathbf{x} = (x^1, \dots, x^d) \in \mathbb{N}^d$ and conditional independence by variable
- Two standards unit transformations (by variable $j \in \{1, \ldots, d\}$):
 - Shifted observations: $\mathbf{u}(x^j) = x^j a_j$ with $a_j \in \mathbb{N}$
 - Scaled observations: $\mathbf{u}(x^j) = b_j x^j$ with $b_j \in \mathbb{N}^*$

Shifted example

- id: total number of educational years
- **u**_{shift} $(\cdot) = (\cdot) 8$: university number of educational years^a

^aEight is the number of years spent by english pupils in a secondary school.

Scaled example

- id: total number of educational years
- **u**_{scaled}(·) = 2 × (·): total number of educational semesters

Units in model-based clustering

Units in model-based co-clustering 000 0000 00000 Conclusion 00 00

Medical data

- R dataset rwm1984COUNT of [Rao *et al.*, 2007, p.221]¹⁰ and studied in [Hilbe, 2014]¹¹
- n = 3874 patients that spent time into German hospitals during year 1984
- Patients are described through eleven mixed variables
- **m**: a MixtComp model combining Gaussian, Poisson and multinomial distributions

	variables	type	model
1	number of visits to doctor during year	count	Poisson
2	number of days in hospital	count	Poisson
3	educational level	categorical	multinomial
4	age	count	Poisson
5	outwork	binary	Bernoulli
6	gender	binary	Bernoulli
7	matrimonial status	binary	Bernoulli
8	kids	binary	Bernoulli
9	household yearly income	continous	Gaussian
10	years of education	count	Poisson
11	self employed	binary	Bernoulli

¹⁰Rao, C. R., Miller, J. P., and Rao, D. C. (2007). Handbook of statistics: epidemiology and medical statistics, volume 27. Elsevier.

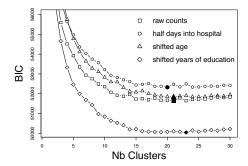
¹¹Hilbe, J. M. (2014). Modeling count data. Cambridge University Press.

Several units for count data

Four unit systems are sequentially considered differing over the count data

- u₁ = id: original unit
- u₂: the time spent into hospital is counted in half days instead of days
- \blacksquare u₃: the minimum of the age series is deduced from all ages leading to shifted ages
- \blacksquare $u_4:$ the min. of years of edu. is deduced from the series leading to shifted years of edu.

BIC selects 23 clusters obtained under shifted years of education



Specific transformation for RNA-seq data

- A sample of RNA-seq gene expressions arising from the rat count table of http://bowtie-bio.sourceforge.net/recount/
- 30000 genes described by 22 counting descriptors
- Remove genes with low expression (classical): 6173 genes finally
- Two different processes for dealing with data:
 - Standard [Rau *et al.*, 2015]¹²: $\mathbf{u} = \mathbf{id}$ and \mathbf{m} is Poisson mixture
 - "RNA-seq unit" [Gallopin et al., 2015]¹³:

 $\mathbf{u}(\cdot) = ln(scaled normalization(\cdot))$

is a transformation being motivated by genetic considerations and **m** is Gaussian mixture Experiment with 30 clusters (as in [Gallopin *et al.*, 2015])

model	data	BIC
Poisson	raw unit	2 615 654
Gaussian	transformed	909 190

¹²Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L. and Celeux, G. (2015). Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics, 31 (9), 1420-1427.

¹³Gallopin, M., Rau, A., Celeux, G., and Jaffrézic, F. (2015). Transformation des données et comparaison de modèles pour la classification des données rna-seq. In 47èmes Journées de Statistique de la SFdS.

Units in model-based clustering 0000 000 00000 Units in model-based co-clustering OO OOO OOOO OOOO Conclusion 00 00

Outline

1 Introduction

2 Units in model-based clustering

- Scale units and parsimonious Gaussians
- Non scale units and Gaussians
- Units and Poissons

3 Units in model-based co-clustering

- Model for different kinds of data
- Units and Bernoulli
- Units and multinomial

4 Conclusion

- Summary
- Units and other distributions

Introduction

Units in model-based clustering 0000 000 00000 Units in model-based co-clustering OOO OOOO OOOO Conclusion 00 00

Co-clustering framework

It corresponds to the following specific mixture model m [Govaert and Nadif, 2014]¹⁴:

$$\mathsf{p}(\mathbf{x}; \boldsymbol{\theta}) = \sum_{(\mathbf{z}, \mathbf{w})} \prod_{i, j} \pi_{z_i} \rho_{w_j} \mathsf{p}(x_i^j; \boldsymbol{\alpha}_{z_i w_j})$$

- **z**: partition in g_r rows
- w: partition in g_c columns
- **z** \perp **w** and $x_i^j | (z_i, w_j) \perp x_{i'}^{j'} | (z_{i'}, w_{j'})$
- Distribution $p(\cdot; \alpha_{z_i w_i})$ depends on the kind of data
 - Binary data: $x_i^j \in \{0, 1\}, p(\cdot; \alpha_{kl}) = \mathcal{B}(\alpha_{kl})$
 - **Categorical** data with *m* levels:
 - $\mathbf{x}_i^j = \{x_i^{jh}\} \in \{0,1\}^m \text{ with } \sum_{h=1}^m x_i^{jh} = 1 \text{ and } p(\cdot; \boldsymbol{\alpha}_{kl}) = \mathcal{M}(\boldsymbol{\alpha}_{kl}) \text{ with } \boldsymbol{\alpha}_{kl} = \{\alpha_k^{jh}\}$
 - Count data: $x_i^j \in \mathbb{N}$, $p(\cdot; \alpha_{kl}) = \mathcal{P}(\mu_k \nu_l \gamma_{kl})$
 - Continuous data: $x_i^j \in \mathbb{R}$, $p(\cdot; \alpha_{kl}) = \mathcal{N}(\mu_{kl}, \sigma_{kl}^2)$
- BlockCluster [Bhatia et al., 2015]¹⁵ is an R package for co-clustering

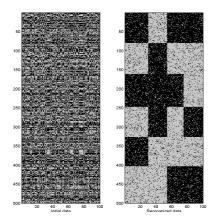
 $^{^{14}\}text{G}.$ Govaert and M. Nadif (2014). Co-clustering: models, algorithms and applications. ISTE, Wiley. ISBN 978-1-84821-473-6.

¹⁵P. Bhatia, S. Iovleff, G. Govaert (2015). Blockcluster: An R Package for Model Based Co-Clustering. *Journal of Statistical Software*, in press.

Units in model-based clustering 0000 000 00000 Units in model-based co-clustering OOO 0000 0000

Conclusion 00 00

Binary illustration



Units in model-based clustering 0000 000 00000 Units in model-based co-clustering OOO OOO OOOO Conclusion 00 00

Outline

1 Introduction

2 Units in model-based clustering

- Scale units and parsimonious Gaussians
- Non scale units and Gaussians
- Units and Poissons

3 Units in model-based co-clustering

- Model for different kinds of data
- Units and Bernoulli
- Units and multinomial

4 Conclusion

- Summary
- Units and other distributions

Conclusion 00 00

SPAM E-mail Database¹⁷

- n = 4601 e-mails composed by 1813 "spams" and 2788 "good e-mails"
- d = 48 + 6 = 54 continuous descriptors¹⁶
 - 48 percentages that a given word appears in an e-mail ("make", "you'...)
 - 6 percentages that a given char appears in an e-mail (";", "\$"...)
- Transformation of continuous descriptors into binary descriptors

$$x_i^j = \begin{cases} 1 & \text{if word/char } j \text{ appears in e-mail } i \\ 0 & \text{otherwise} \end{cases}$$

Two different units considered for variable $j \in \{1, \dots, 54\}$

■ id_j: see the previous coding

• $\mathbf{u}_j(\cdot) = 1 - (\cdot)$: reverse the coding

 $\mathbf{u}_j(x_i^j) = \left\{ egin{array}{cc} 0 & ext{if word/char } j ext{ appears in e-mail } i \ 1 & ext{otherwise} \end{array}
ight.$

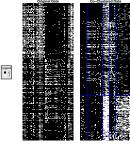
¹⁶There are 3 other continuous descriptors we do not use

¹⁷https://archive.ics.uci.edu/ml/machine-learning-databases/spambase/

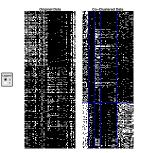
Units in model-based co-clustering OOOO OOOO OOOO Conclusion 00 00

Select the whole coding $\mathbf{u} = (\mathbf{u}_1, \dots, \mathbf{u}_d)$

- Fix $g_l = 2$ (two individual classes) and $g_r = 5$ (five variable classes)
- Use co-clustering in a clustering aim: just interested in indiv. classes (spams?)
- Use a "naive" algorithm to find the best u by ICL (2⁵⁴ possibilities)



initial unit id ICL=92682.54 error rate=0.1984



best unit u ICL=92524.57 error rate=0.2008

Units	in	model-based	co-clustering
000			
000			
000	00	5	

Conclusion 00 00

Result analysis of the e-mail database

- Just one variable (j = 19: "you") has a reversed coding in **u**
- Thus variable "you" has not the same coding as other variables in its column class
- Poor ICL increase with u

Conclusion for the e-mail database

- Here initial units id have a particular meaning for the user: do not change!
- In case of unit change, it becomes essentially technic (as Manly unit is)

Units in model-based clustering 0000 0000 00000 Units in model-based co-clustering OOO OOOO OOOO Conclusion 00 00

Outline

1 Introduction

2 Units in model-based clustering

- Scale units and parsimonious Gaussians
- Non scale units and Gaussians
- Units and Poissons

3 Units in model-based co-clustering

- Model for different kinds of data
- Units and Bernoulli
- Units and multinomial

4 Conclusion

- Summary
- Units and other distributions

Congressional Voting Records Data Set¹⁹

- Votes for each of the n = 435 U.S. House of Representatives Congressmen
- Two classes: 267 democrats, 168 republicans
- d = 16 votes with m = 3 modalities [Schlimmer, 1987]¹⁸:
 - "yea": voted for, paired for, and announced for
 - "nay": voted against, paired against, and announced against
 - "?": voted present, voted present to avoid conflict of interest, and did not vote or otherwise make a position known
 - 1. handicapped-infants
 - 2. water-project-cost-sharing
 - 3. adoption-of-the-budget-resolution
 - 4. physician-fee-freeze
 - 5. el-salvador-aid
 - 6. religious-groups-in-schools
 - 7. anti-satellite-test-ban
 - 8. aid-to-nicaraguan-contras

- 9. mx-missile
- 10. immigration
- 11. synfuels-corporation-cutback
- 12. education-spending
- 13. superfund-right-to-sue
- 14. crime
- 15. duty-free-exports
- 16. export-administration-act-south-africa

¹⁸Schlimmer, J. C. (1987). Concept acquisition through representational adjustment. Doctoral dissertation, Department of Information and Computer Science, University of California, Irvine, CA.

¹⁹http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records

Allowed user meaningful recodings

- "yea" and "nea" are arbitrarily coded (question dependent), not "?"
 Example:
 - 3. adoption-of-the-budget-resolution = "yes" \Leftrightarrow 3. rejection-of-the-budget-resolution = "no"
- However, "?" is not question dependent

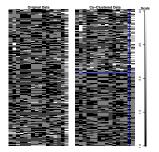
Thus, two different units considered for variable $j \in \{1, ..., 16\}$ **i** $\mathbf{i} \mathbf{d}_j$: $\mathbf{x}_i^j = \begin{cases} (1,0,0) & \text{if voted "yea" to vote } j \text{ by congressman } i \\ (0,1,0) & \text{if voted "nay" to vote } j \text{ by congressman } i \\ (0,0,1) & \text{if voted "?" to vote } j \text{ by congressman } i \end{cases}$ $\mathbf{u} = (\mathbf{u}_1, \dots, \mathbf{u}_d): \text{ reverse the coding only for "yea" and "nea"}$ $\mathbf{u}_j(\mathbf{x}_i^j) = \begin{cases} (0,1,0) & \text{if voted "yea" to vote } j \text{ by congressman } i \\ (1,0,0) & \text{if voted "nay" to vote } j \text{ by congressman } i \\ (0,0,1) & \text{if voted "nay" to vote } j \text{ by congressman } i \\ (0,0,1) & \text{if voted "?" to vote } j \text{ by congressman } i \end{cases}$

Units in model-based co-clustering

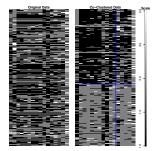
Conclusion 00 00

Select the whole coding $\mathbf{u} = (\mathbf{u}_1, \dots, \mathbf{u}_d)$

- Fix $g_l = 2$ (two individual classes) and $g_r = 2$ (two variable classes)
- Use co-clustering in a clustering aim: just interested in political party
- Use a comprehensive algorithm to find the best u by ICL ($2^{16} = 65536$ cases)



initial unit id ICL=5916.13 error rate=0.2850



best unit u ICL=5458.156 error rate=0.1034

Result analysis of the Congressional Voting Records Data Set

Five variables has a reversed coding in u:

- 3. adoption-of-the-budget-resolution
- 7. anti-satellite-test-ban
- 9. aid-to-nicaraguan-contras
- 10. mx-missile
- 16. duty-free-exports
- Thus be aware to change the meaning of them when having a look at the figure!
- Significant ICL and error rate improvements with u

Conclusion for the Congressional Voting Records

- Here initial units id where arbitrary fixed: make sense to change!
- In addition, good improvement...

Units in model-based clustering 0000 000 00000 Units in model-based co-clustering 000 0000 00000 Conclusion •O •O

Outline

1 Introduction

2 Units in model-based clustering

- Scale units and parsimonious Gaussians
- Non scale units and Gaussians
- Units and Poissons

3 Units in model-based co-clustering

- Model for different kinds of data
- Units and Bernoulli
- Units and multinomial

4 Conclusion

- Summary
- Units and other distributions

Units in model-based clustering 0000 000 00000 Units in model-based co-clustering 000 0000 00000 Conclusion O O

Summary

- Be aware that interpretation of ("classical") models is unit dependent
- \blacksquare Models should even be revisited as a couple units \times "classical" models
- Opportunity for cheap/wide/meaningful enlarging of "classical" model families
- But some units could be user meaningful, restricting this "technical enlarging"
- In counterpart, combinatorial problems may occur if the new family is huge

Units in model-based clustering 0000 000 00000 Units in model-based co-clustering 000 0000 00000 Conclusion OO OO

Outline

1 Introduction

2 Units in model-based clustering

- Scale units and parsimonious Gaussians
- Non scale units and Gaussians
- Units and Poissons

3 Units in model-based co-clustering

- Model for different kinds of data
- Units and Bernoulli
- Units and multinomial

4 Conclusion

- Summary
- Units and other distributions

Units in model-based co-clustering 000 0000 00000

Units and other data types (and related distributions)

- **Ordinal** data $x \in \{$ high grade, middle grade, low grade $\}$:
 - id: high grade > middle grade > low grade with ">"= greater in strength than
 - **u**: low grade > middle grade > high grade with ">"= greater in weakness than
 - Related distribution: see [Biernacki & Jacques, 2015]²⁰ and references therein
- **Ranking data** $x \in \{(car, bike), (bike, car)\}$:
 - id: (car,bike) ⇔ car is preferred to bike, (bike,car) ⇔ bike is preferred to car
 - **u**: (car,bike) \Leftrightarrow bike is preferred to car, (bike,car) \Leftrightarrow car is preferred to bike
 - Related distribution: see [Jacques & Biernacki, 2014]²¹ and references therein
- Other: directional data...

²⁰C. Biernacki and J. Jacques (2015). Model-Based Clustering of Multivariate Ordinal Data Relying on a Stochastic Binary Search Algorithm. Statistics and Computing, in press.

²¹ J. Jacques & C.Biernacki (2014). Model-based clustering for multivariate partial ranking data. Journal of Statistical and Planning Inference, 149, 201–217.