About Two Disinherited Sides of Statistics: Data Units and Computational Saving

C. Biernacki

8th ed. of the STATLEARN workshop "Challenging problems in Statistical Learning" April 6-7, 2017, Lyon (France)

Synopsis of the talk

$$\widehat{\text{target}} = \mathbf{f}(\underbrace{\text{data}}, \text{model}, \underbrace{\text{algo}})$$

2/56

Part I

Unifying Data Units and Models in Statistics Focus on (Co)-Clustering

Joint work with A. Lourme (Bordeaux University)

Quizz!

$$y = \beta x^2 + e$$

- Is it a linear regression on co-variates (x^2) ?
- Is it a quadratic regression on co-variates x?

Both!

Take home message

Units are entirely interrelated with models

This part:

- Be aware that interpretation of ("classical") models is unit dependent
- Models should even be revisited as a couple units × "classical" models
- Opportunity for cheap/wide/meaningful enlarging of "classical" model families
- Focus on model-based (co-)clustering but larger potential impact

General (model-based) statistical framework

■ Data:

■ Whole data set composed by *n* objects, described by *d* variables

$$\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$$
 with $\mathbf{x}_i = (x_{i1}, \dots, x_{id}) \in \mathbb{X}$

- Each **x**_i value is provided with a unit **id**
- We note "id" since units are often user defined (a kind of canonical units)

■ Model:

lacksquare A pdf 1 family, indexed by lacksquare \mathbb{M}^2

$$p_{\mathbf{m}} = \{ \cdot \in \mathbb{X} \mapsto p(\cdot; \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta_{\mathbf{m}} \}$$

- With $p(\cdot; \theta)$ a (parametric) pdf and Θ_m a space where evolves this parameter
- Target:

$$\widehat{\mathsf{target}} = f(x, \mathsf{p}_m)$$

Unit id is hidden everywhere and could have consequences on the target estimation!

¹probability density function

 $^{^{2}}$ Often, the index \mathbf{m} is confounded with the distribution family itself as a shortcut

Changing the data units

■ Principle of data units transformation u:

$$\begin{array}{cccc} u: & \mathbb{X} = \mathbb{X}^{id} & \longrightarrow & \mathbb{X}^u \\ & x = x^{id} = id(x) & \longmapsto & x^u = u(x) \end{array}$$

- u is a bijective mapping to preserve the whole data set information quantity
- We denote by \mathbf{u}^{-1} the reciprocal of \mathbf{u} , so $\mathbf{u}^{-1} \circ \mathbf{u} = \mathbf{id}$
- Thus, id is only a particular unit u
- Often a meaningful restriction³ on u: it proceeds lines by lines and rows by rows

$$\mathbf{u}(\mathbf{x}) = (\mathbf{u}(\mathbf{x}_1), \dots, \mathbf{u}(\mathbf{x}_n))$$
 with $\mathbf{u}(\mathbf{x}_i) = (\mathbf{u}_1(x_{i1}), \dots, \mathbf{u}_d(x_{id}))$

- Advantage to respect the variable definition, transforming only its unit
- $\mathbf{u}(\mathbf{x}_i)$ means that \mathbf{u} applied to the data set \mathbf{x}_i , restricted to the single individual i
- \mathbf{u}_j corresponds to the specific (bijective) transformation unit associated to variable j

³Possibility to relax this restriction, including for instance linear transformations involved in PCA (principal component analysis). But the variable definition is no longer respected.

Revisiting units as a modelling component

Explicitly exhibiting the "canonical" unit id in the model

$$\textbf{p}_{\textbf{m}} = \{\cdot \in \mathbb{X} \mapsto \textbf{p}(\cdot; \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta_{\textbf{m}}\} = \{\cdot \in \mathbb{X}^{\textbf{id}} \mapsto \textbf{p}(\cdot; \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta_{\textbf{m}}\} = \textbf{p}_{\textbf{m}}^{\textbf{id}}$$

- Thus the variable space and the probability measure are embedded
- As the standard probability theory: a couple (variable space, probability measure)!
- lacktriangle Changing id into u, while preserving m, is expected to produce a new modelling

$$p_{\mathbf{m}}^{\mathbf{u}} = \{ \cdot \in \mathbb{X}^{\mathbf{u}} \mapsto p(\cdot; \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta_{\mathbf{m}} \}.$$

A model should be systematically defined by a couple (u,m), denoted by p_m^u

Interpretation and identifiability of $\textbf{p}_{m}^{\textbf{u}}$

■ Standard probability theory (again): there exists a measure $\mathbf{u}^{-1}(\mathbf{m})$ s.t.⁴

$$u^{-1}(m)\in\{m'\in\mathbb{M}:p_{m'}^{id}=p_m^u\}$$

- There exists two alternative interpretations of strictly the same model:
 - $\mathbf{p}_{\mathbf{m}}^{\mathbf{u}}$: data measured with unit \mathbf{u} arise from measure \mathbf{m} ;
 - $\mathbf{p}_{\mathbf{u}-1(\mathbf{m})}^{id}$: data measured with unit id arise from measure $\mathbf{u}^{-1}(\mathbf{m})$
- Two points of view:

Statistician

The model p_m^u is not identifiable over the couple (m, u)

Practitioner

Freedom to choose the interpretation which is the most meaningful for him

⁴This set is usually restricted to a single element

Opportunity for designing new models

Great opportunity to build easily numerous new meaningful models p_m^u !

- Just combine a standard model family $\{m\}$ with a standard unit family $\{u\}$
- New family can be huge! Combinatorial problems can occur...
- Some model stability can exist in some (specific) cases: $\mathbf{m} = \mathbf{u}^{-1}(\mathbf{m})$

Model selection

As any model, possible to choose between $\mathsf{p}_{m_1}^{u_1}$ and $\mathsf{p}_{m_2}^{u_2}$

However, caution when using likelihood-based model selection criteria (as BIC)

- Prohibited to compare \mathbf{m}_1 in unit \mathbf{u}_1 and \mathbf{m}_2 in unit \mathbf{u}_2
- But allowed after transforming in identical unit id
- \blacksquare Thus compare their equivalent expression: $p_{u_1^{-1}(m_1)}^{id}$ and $p_{u_2^{-1}(m_2)}^{id}$
- Example for abs. continuous x and differentiable u, the density transform in id is:

$$p_{u^{-1}(m)}^{\text{id}} = \{\cdot \in \mathbb{X}^{\text{id}} \mapsto p(u(\cdot); \boldsymbol{\theta}) \ \times \ |J^u(\cdot)| : \boldsymbol{\theta} \in \Theta_m\}$$

with $J^{u}(\cdot)$ the Jacobian associated to the transformation u

Focus on the clustering target

A current challenge is to enlarge model collection... and units could contribute to it!

■ Model: mixture model **m** of parameter $\theta = \{\pi_k, \alpha_k\}_{k=1}^g$

$$p_{\mathbf{m}}(\mathbf{x}; \boldsymbol{\theta}) = \sum_{k=1}^{g} \pi_{k} p(\mathbf{x}; \boldsymbol{\alpha}_{k})$$

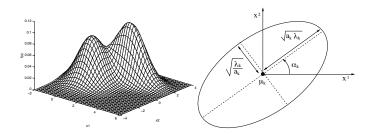
- g is the number of clusters
- Clusters correspond to a hidden partition $\mathbf{z} = (z_1, \dots, z_n)$, where $z_i \in \{1, \dots, g\}$
- $\pi_k = p(Z = k)$ and $p(\mathbf{x}; \alpha_k) = p(\mathbf{X} = \mathbf{x}|Z = k)$
- Target: estimate **z** (and often g)
 - Estimate $\hat{\theta}_{m}$ by maximum likelihood (typically)
 - Estimate z by the MAP principle $\hat{z}_i = \arg\max_{k \in \{1, \dots, g\}} p(Z_i = k | \mathbf{X}_i = \mathbf{x}_i; \hat{\theta}_{\mathbf{m}})$ Estimate g by BIC or ICL criteria typically (maximum likelihood based criteria)

Outline

- 1 Introduction
- 2 Units in model-based clustering
 - Scale units and parsimonious Gaussians
 - Non scale units and Gaussians
 - Units and Poissons
- 3 Units in model-based co-clustering
 - Model for different kinds of data
 - Units and Bernoulli
 - Units and multinomial

- $\mathbb{X} = \mathbb{R}^d$
- lacksquare d-variate Gaussian model lacksquare \mathbf{m} : $\mathbf{p}_{\mathbf{m}}(\cdot; oldsymbol{lpha}_k) = \mathcal{N}_d(oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)$
- [Celeux & Govaert, 1995]⁵ propose the following eigen decomposition

$$\mathbf{\Sigma}_k = \underbrace{\lambda_k}_{ ext{volume}} \cdot \underbrace{\mathbf{D}_k}_{ ext{orientation}} \cdot \underbrace{\mathbf{\Lambda}_k}_{ ext{shape}} \cdot \mathbf{D}_k'$$



⁵Celeux, G., and Govaert, G.. Gaussian parsimonious clustering models. Pattern Recognition, 28(5), 781–793 (1995).

Scale unit invariance

- Consider scale unit transformation $\mathbf{u}(\mathbf{x}) = \mathbf{D}\mathbf{x}$, with diagonal $\mathbf{D} \in \mathbb{R}^{d \times d}$
- Very current transformation: standard units (mm, cm), standardized units
- [Biernacki & Lourme, 2014] listed models where invariance holds (8 among 14)
 - The general model is invariant:

$$[\lambda_k \mathbf{S}_k \mathbf{\Lambda}_k \mathbf{S}_k'] = \mathbf{u}^{-1}([\lambda_k \mathbf{S}_k \mathbf{\Lambda}_k \mathbf{S}_k'])$$

An example of not invariant model:

$$[\lambda_k \mathbf{S} \mathbf{\Lambda}_k \mathbf{S}'] \neq \mathbf{u}^{-1}([\lambda_k \mathbf{S} \mathbf{\Lambda}_k \mathbf{S}'])$$

- lacksquare Do not forget to compare all models lacksquare = lacksquare u⁻¹(lacksquare) in unit lacksquare for BIC / ICL validity
- Use the Rmixmod package

Illustration on the Old Faithful geyser data set

- All models are with free proportions (π_k)
- All ICL values are expressed with the initial unit **id**=min×min
- We observe the effect of unit on the ICL ranking for some models
- Cheap opportunity to enlarge the model family!

	id = (min, min)		$\mathbf{u}^{scale_1} = (sec, min)$		$\mathbf{u}^{scale_2} = (stand, stand)$	
family	m	ICL ^{id}	m	ICL ^{id}	m	ICL ^{id}
All mod.	$[\lambda_k \mathbf{S} \mathbf{\Lambda}_k \mathbf{S}']$	1 160.3	$[\lambda_k \mathbf{S} \mathbf{\Lambda}_k \mathbf{S}']$	1 158.7	$[\lambda_k \mathbf{S}_k \mathbf{\Lambda} \mathbf{S}_k']$	1 160.3
General mod.	$[\lambda_k \mathbf{S}_k \mathbf{\Lambda}_k \mathbf{S}_k']$	1 161.4	$[\lambda_k \mathbf{S}_k \mathbf{\Lambda}_k \mathbf{S}_k']$	1 161.4	$[\lambda_k \mathbf{S}_k \mathbf{\Lambda}_k \mathbf{S}_k']$	1 161.4

00000

Outline

- 1 Introduction
- 2 Units in model-based clustering
 - Scale units and parsimonious Gaussians
 - Non scale units and Gaussians
 - Units and Poissons
- 3 Units in model-based co-clustering
 - Model for different kinds of data
 - Units and Bernoulli
 - Units and multinomial

Prostate cancer data of [Biar & Green, 1980]⁸

- Individuals: 506 patients with prostatic cancer grouped on clinical criteria into two Stages 3 and 4 of the disease
- lacktriangle Variables: d=12 pre-trial variates were measured on each patient, composed by
 - Eight continuous variables (age, weight, systolic blood pressure, diastolic blood pressure, serum haemoglobin, size of primary tumour "SZ", index of tumour stage and histolic grade, serum prostatic acid phosphatase "AP")
 - Two ordinal variables (performance rating, cardiovascular disease history)
 - Two categorical variables with various numbers of levels (electrocardiogram code, bone metastases)
- Some missing data: 62 missing values ($\approx 1\%$)
- Two historical units for performing the clustering task:
 - Raw units id: [McParland & Gormley, 2015]⁶
 - Transformed data u: since SZ and AP are skewed, [Jorgensen & Hunt, 1996] propose

$$\textbf{u}_\textit{SZ} = \sqrt{\cdot} \text{ and } \textbf{u}_\textit{AP} = \text{ln}(\cdot)$$

⁶McParland, D. and Gormley, I. C. (2015). Model based clustering for mixed data: clustmd. arXiv preprint arXiv:1511.01720

 $^{^7}$ Jorgensen, M. and Hunt, L. (1996). Mixture model clustering of data sets with categorical and continuous variables. In Proceedings of the Conference ISIS, volume 96, pages 375–384.

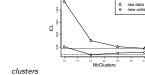
Clustering with the MixtComp software [Biernacki et al., 2016]9

■ Model m in Mixtcomp: full mixed data $\mathbf{x} = (\mathbf{x}^{cont}, \mathbf{x}^{cat}, \mathbf{x}^{ordi}, \mathbf{x}^{int}, \mathbf{x}^{rank})$ (missing data are allowed also) are simply modeled by inter conditional independence

$$p(\mathbf{x}; \boldsymbol{\alpha}_k) = p(\mathbf{x}^{cont}; \boldsymbol{\alpha}_k^{cont}) \times p(\mathbf{x}^{cat}; \boldsymbol{\alpha}_k^{cat}) \times p(\mathbf{x}^{ordi}; \boldsymbol{\alpha}_k^{ordi}) \times \dots$$

In addition, for symmetry between types, intra conditional independence for each

- Results:
 - New units u_{SZ} and u_{AP} are selected by ICL
 - New units allow to select two groups and provides a lower error rate



Ciusteis			
1	2		
287	5		
52	162		

Table: MixtComp model on new units: 9%

191

Table: MixtComp model on raw units: 11% misclassified

 $^{^9}$ MixtComp is a clustering software developped by Biernacki C., lovleff I. and Kubicki V. and freely available on the MASSICCC web platform https://massiccc.lille.inria.fr/

Outline

- 1 Introduction
- 2 Units in model-based clustering
 - Scale units and parsimonious Gaussians
 - Non scale units and Gaussians
 - Units and Poissons
- 3 Units in model-based co-clustering
 - Model for different kinds of data
 - Units and Bernoulli
 - Units and multinomial

Which units for count data?

- Count data: $x \in \mathbb{N}$
- Standard model **m** is Poisson: $p(\cdot; \alpha_k) = \mathcal{P}(\lambda_k)$
- d-variate case $\mathbf{x} = (x^1, \dots, x^d) \in \mathbb{N}^d$ and conditional independence by variable
- lacksquare Two standards unit transformations (by variable $j \in \{1,\dots,d\}$):
 - Shifted observations: $\mathbf{u}(x^j) = x^j a_j$ with $a_j \in \mathbb{N}$
 - Scaled observations: $\mathbf{u}(x^j) = b_j x^j$ with $b_j \in \mathbb{N}^*$

Shifted example

- id: total number of educational years
- **u**_{shift} $(\cdot) = (\cdot) 8$: university number of educational years^a

Scaled example

- id: total number of educational years
- $\mathbf{u}_{scaled}(\cdot) = 2 \times (\cdot)$: total number of educational semesters

^aEight is the number of years spent by english pupils in a secondary school.

Medical data

- R dataset rwm1984COUNT of [Rao et al., 2007, p.221] 10 and studied in [Hilbe, 2014] 11
- = n = 3874 patients that spent time into German hospitals during year 1984
- Patients are described through eleven mixed variables
- m: a MixtComp model combining Gaussian, Poisson and multinomial distributions

	variables	type	model
1	number of visits to doctor during year	count	Poisson
2	number of days in hospital	count	Poisson
3	educational level	categorical	multinomial
4	age	count	Poisson
5	outwork	binary	Bernoulli
6	gender	binary	Bernoulli
7	matrimonial status	binary	Bernoulli
8	kids	binary	Bernoulli
9	household yearly income	continous	Gaussian
10	years of education	count	Poisson
11	self employed	binary	Bernoulli

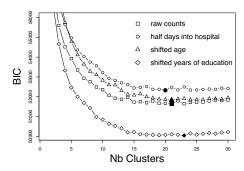
¹⁰Rao, C. R., Miller, J. P., and Rao, D. C. (2007). Handbook of statistics: epidemiology and medical statistics, volume 27. Elsevier.

¹¹Hilbe, J. M. (2014). Modeling count data. Cambridge University Press.

00000

Several units for count data

- Four unit systems are sequentially considered differing over the count data
 - $\mathbf{u}_1 = \mathbf{id}$: original unit
 - u₂: the time spent into hospital is counted in half days instead of days
 - u₃: the minimum of the age series is deduced from all ages leading to shifted ages
 - u₄: the min. of years of edu. is deduced from the series leading to shifted years of edu.
- BIC selects 23 clusters obtained under shifted years of education



Specific transformation for RNA-seq data

- A sample of RNA-seq gene expressions arising from the rat count table of http://bowtie-bio.sourceforge.net/recount/
- 30000 genes described by 22 counting descriptors
- Remove genes with low expression (classical): 6173 genes finally
- Two different processes for dealing with data:
 - Standard [Rau et al., 2015]¹²: $\mathbf{u} = \mathbf{id}$ and \mathbf{m} is Poisson mixture
 - "RNA-seq unit" [Gallopin et al., 2015]¹³:

 $u(\cdot) = \mathsf{In}(\mathsf{scaled}\ \mathsf{normalization}(\cdot))$

is a transformation being motivated by genetic considerations and \boldsymbol{m} is Gaussian mixture

Experiment with 30 clusters (as in [Gallopin et al., 2015])

model	data	BIC
Poisson	raw unit	2 615 654
Gaussian	transformed	909 190

¹²Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L. and Celeux, G. (2015). Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics, 31 (9), 1420-1427.

¹³Gallopin, M., Rau, A., Celeux, G., and Jaffrézic, F. (2015). Transformation des données et comparaison de modèles pour la classification des données rna-seq. In 47èmes Journées de Statistique de la SFdS.

Outline

- 1 Introduction
- 2 Units in model-based clustering
 - Scale units and parsimonious Gaussians
 - Non scale units and Gaussians
 - Units and Poissons
- 3 Units in model-based co-clustering
 - Model for different kinds of data
 - Units and Bernoulli
 - Units and multinomial

Co-clustering framework

■ It corresponds to the following specific mixture model m [Govaert and Nadif, 2014]¹⁴:

$$p(\mathbf{x};\boldsymbol{\theta}) = \sum_{(\mathbf{z},\mathbf{w})} \prod_{i,j} \pi_{z_i} \rho_{w_j} p(x_i^j; \boldsymbol{\alpha}_{z_i w_j})$$

- **z**: partition in g_r rows
- w: partition in gc columns
- $\mathbf{z} \perp \mathbf{w}$ and $\mathbf{x}_{i}^{j}|(z_{i},w_{j}) \perp \mathbf{x}_{i'}^{j'}|(z_{i'},w_{j'})$
- \blacksquare Distribution $\mathsf{p}(\cdot;\alpha_{z_iw_j})$ depends on the kind of data
 - Binary data: $x_i^j \in \{0,1\}$, $p(\cdot; \alpha_{kl}) = \mathcal{B}(\alpha_{kl})$
 - Categorical data with *m* levels:

$$\mathbf{x}_i^j = \{x_i^{jh}\} \in \{0,1\}^m \text{ with } \sum_{h=1}^m x_i^{jh} = 1 \text{ and } \mathbf{p}(\cdot; \boldsymbol{\alpha}_{kl}) = \mathcal{M}(\boldsymbol{\alpha}_{kl}) \text{ with } \boldsymbol{\alpha}_{kl} = \{\alpha_k^{jh}\}$$

- Count data: $x_i^j \in \mathbb{N}$, $p(\cdot; \alpha_{kl}) = \mathcal{P}(\mu_k \nu_l \gamma_{kl})$
- Continuous data: $x_i^j \in \mathbb{R}$, $p(\cdot; \alpha_{kl}) = \mathcal{N}(\mu_{kl}, \sigma_{kl}^2)$
- BlockCluster [Bhatia et al., 2015] 15 is an R package for co-clustering

¹⁴G. Govaert and M. Nadif (2014). Co-clustering: models, algorithms and applications. ISTE, Wiley. ISBN 978-1-84821-473-6.

¹⁵P. Bhatia, S. Iovleff, G. Govaert (2015). Blockcluster: An R Package for Model Based Co-Clustering. *Journal of Statistical Software*. in press.

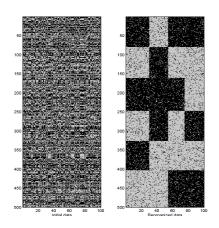
Units in model-based clusteri 0000 000 0000 Units in model-based co-clustering

○○●

○○○

○○○○

Binary illustration



Outline

- 1 Introduction
- 2 Units in model-based clustering
 - Scale units and parsimonious Gaussians
 - Non scale units and Gaussians
 - Units and Poissons
- 3 Units in model-based co-clustering
 - Model for different kinds of data
 - Units and Bernoulli
 - Units and multinomial

SPAM E-mail Database¹⁷

- \blacksquare n=4601 e-mails composed by 1813 "spams" and 2788 "good e-mails"
- d = 48 + 6 = 54 continuous descriptors¹⁶
 - 48 percentages that a given word appears in an e-mail ("make", "you'...)
- 6 percentages that a given char appears in an e-mail (";", "\$"...)
- Transformation of continuous descriptors into binary descriptors

$$\mathbf{x}_{i}^{j} = \left\{ \begin{array}{ll} 1 & \text{if word/char } j \text{ appears in e-mail } i \\ 0 & \text{otherwise} \end{array} \right.$$

Two different units considered for variable $j \in \{1, \dots, 54\}$

- \mathbf{id}_{j} : see the previous coding
- $\mathbf{u}_{j}(\cdot) = 1 (\cdot)$: reverse the coding

$$\mathbf{u}_j(\mathbf{x}_i^j) = \left\{ egin{array}{ll} 0 & ext{if word/char } j ext{ appears in e-mail } i \\ 1 & ext{otherwise} \end{array}
ight.$$

¹⁶There are 3 other continuous descriptors we do not use

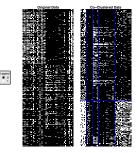
¹⁷https://archive.ics.uci.edu/ml/machine-learning-databases/spambase/

Select the whole coding $\mathbf{u} = (\mathbf{u}_1, \dots, \mathbf{u}_d)$

- Fix $g_l = 2$ (two individual classes) and $g_r = 5$ (five variable classes)
- Use co-clustering in a clustering aim: just interested in indiv. classes (spams?)
- Use a "naive" algorithm to find the best u by ICL (2⁵⁴ possibilities)



initial unit id ICL=92682.54 error rate=0.1984



best unit u ICL=92524.57 error rate=0.2008

Result analysis of the e-mail database

- lacksquare Just one variable (j=19: "you") has a reversed coding in $oldsymbol{u}$
- Thus variable "you" has not the same coding as other variables in its column class
- Poor ICL increase with u

Conclusion for the e-mail database

- Here initial units id have a particular meaning for the user: do not change!
- In case of unit change, it becomes essentially technic (as Manly unit is)

Outline

- 1 Introduction
- 2 Units in model-based clustering
 - Scale units and parsimonious Gaussians
 - Non scale units and Gaussians
 - Units and Poissons
- 3 Units in model-based co-clustering
 - Model for different kinds of data
 - Units and Bernoulli
 - Units and multinomial

Congressional Voting Records Data Set¹⁹

- Votes for each of the n = 435 U.S. House of Representatives Congressmen
- Two classes: 267 democrats, 168 republicans
- d = 16 votes with m = 3 modalities [Schlimmer, 1987]¹⁸:
 - "yea": voted for, paired for, and announced for
 - "nay": voted against, paired against, and announced against
 - "?": voted present, voted present to avoid conflict of interest, and did not vote or otherwise make a position known
 - 1. handicapped-infants
 - 2. water-project-cost-sharing
 - 3. adoption-of-the-budget-resolution
 - 4. physician-fee-freeze
 - 5. el-salvador-aid
 - 6. religious-groups-in-schools
 - 7. anti-satellite-test-ban
 - 8. aid-to-nicaraguan-contras

- 9. mx-missile
- 10. immigration
- 11. synfuels-corporation-cutback
- 12. education-spending
- 13. superfund-right-to-sue
- 14. crime
- 15. duty-free-exports
- 16. export-administration-act-south-africa

¹⁸Schlimmer, J. C. (1987). Concept acquisition through representational adjustment. Doctoral dissertation, Department of Information and Computer Science, University of California, Irvine, CA.

¹⁹http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records

Allowed user meaningful recodings

- "yea" and "nea" are arbitrarily coded (question dependent), not "?"
- Example:
 - 3. adoption-of-the-budget-resolution = "yes" \Leftrightarrow 3. rejection-of-the-budget-resolution = "no"
- However, "?" is not question dependent

Thus, two different units considered for variable $j \in \{1, \dots, 16\}$

■ id_j:

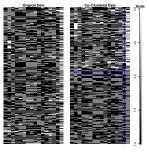
$$\mathbf{x}_{i}^{j} = \left\{ \begin{array}{ll} (1,0,0) & \text{if voted "yea" to vote j by congressman i} \\ (0,1,0) & \text{if voted "nay" to vote j by congressman i} \\ (0,0,1) & \text{if voted "?" to vote j by congressman i} \end{array} \right.$$

 $\mathbf{u} = (\mathbf{u}_1, \dots, \mathbf{u}_d)$: reverse the coding only for "yea" and "nea"

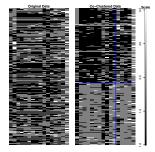
$$\mathbf{u}_j(x_i^j) = \left\{ \begin{array}{l} (0,1,0) & \text{if voted "yea" to vote j by congressman i} \\ (1,0,0) & \text{if voted "nay" to vote j by congressman i} \\ (0,0,1) & \text{if voted "?" to vote j by congressman i} \end{array} \right.$$

Select the whole coding $\mathbf{u} = (\mathbf{u}_1, \dots, \mathbf{u}_d)$

- Fix $g_l = 2$ (two individual classes) and $g_r = 2$ (two variable classes)
- Use co-clustering in a clustering aim: just interested in political party
- Use a comprehensive algorithm to find the best **u** by ICL ($2^{16} = 65536$ cases)



initial unit id ICL=5916.13 error rate=0.2850



best unit u ICL=5458.156 error rate=0.1034

Result analysis of the Congressional Voting Records Data Set

- Five variables has a reversed coding in u:
 - 3. adoption-of-the-budget-resolution
 - 7. anti-satellite-test-ban
 - 9. aid-to-nicaraguan-contras
 - 10. mx-missile
 - 16. duty-free-exports
- Thus be aware to change the meaning of them when having a look at the figure!
- Significant ICL and error rate improvements with u

Conclusion for the Congressional Voting Records

- Here initial units id where arbitrary fixed: make sense to change!
- In addition, good improvement. . .

Part II

Computation Time/Accuracy Trade-off Focus on Linear Regression

Joint work with M. Brunin & A. Célisse (Lille University & CNRS & Inria)

An unexpected behaviour...

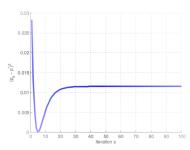
Standard idea

The larger is the iteration number, the better is the resulting estimate

Not so certain...

An early stopping rule could reduce computation time while increasing accuracy

Ex.: two Gaussian univariate mixture, just proportions unknown (convex), use EM



Take home message

Early stopping of some estimation algorithms could be statistically efficient while preserving computational time

This part:

- Identify bias/variance influence throughout the algorithm iterations
- Define an early stopping rule reaching the bias/variance trade-off
- Focus on linear regression but expected to be (much) more general

Outline

1 Introduction

- 2 Understanding the algorithm dynamic
- 3 First attempts for a stopping rule
- 4 Numerical simulations

Linear regression

Usual linear regression model:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\theta}^* + \boldsymbol{\epsilon},$$

with
$$\mathbf{X} \in \mathcal{M}_{n,d}(\mathbb{R})$$
, $\operatorname{rg}(\mathbf{X}) = d \ (n > d)$, $\boldsymbol{\theta}^* \in \mathbb{R}^d$, $\boldsymbol{\epsilon} \sim \mathcal{N}_n \left(\mathbf{0}, \sigma^2 \mathbf{I}_n \right)$

Usual Ordinary Least Squares (OLS) parameter estimate:

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \underbrace{\frac{1}{2n} \left\| \mathbf{Y} - \mathbf{X} \boldsymbol{\theta} \right\|_{2,n}^2}_{g(\boldsymbol{\theta})} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \mathbf{Y}$$

Usual OLS prediction estimate:

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\theta}}$$

■ Usual oracle predictive accuracies of $\hat{\theta}$ ($\mathbf{Y}^* = \mathbf{X}\theta^*$, MSE=Mean Squared Error):

$$\Delta\left(\hat{\mathbf{Y}}\right) = \frac{1}{n} \left\|\hat{\mathbf{Y}} - \mathbf{Y}^*\right\|_{2,n}^2 \quad \text{or} \quad \mathrm{MSE}\left(\hat{\mathbf{Y}}\right) = \mathrm{E}\left[\Delta\left(\hat{\mathbf{Y}}\right)\right]$$

Alternative estimate of the OLS

Find an estimator that performs better in terms of predictive accuracy than OLS $\hat{ heta}$

Use a gradient descent algorithm to minimise $g(\theta)$ (with fixed step α):

$$\forall k \geq 0, \quad \hat{\boldsymbol{\theta}}^{(k+1)} = \hat{\boldsymbol{\theta}}^{(k)} - \alpha \nabla g(\hat{\boldsymbol{\theta}}^{(k)})$$

New parameter estimate (this one obtained at iteration k):

$$\hat{\boldsymbol{\theta}}^{(k)} = \left(\mathbf{I}_d - \left(\mathbf{I}_d - \frac{\alpha}{n}\mathbf{X}'\mathbf{X}\right)^k\right)\hat{\boldsymbol{\theta}} + \left(\mathbf{I}_d - \frac{\alpha}{n}\mathbf{X}'\mathbf{X}\right)^k\boldsymbol{\theta}^{(0)} \qquad (\stackrel{k \to \infty}{\longrightarrow} \hat{\boldsymbol{\theta}})$$

■ New predictive estimate (this one obtained at iteration k):

$$\hat{\mathbf{Y}}^{(k)} = \mathbf{X}\hat{\boldsymbol{\theta}}^{(k)} \qquad (\stackrel{k \to \infty}{\longrightarrow} \hat{\mathbf{Y}})$$

Expected predictive gain of the new estimate

Stopping at $k < \infty$ can be better than the OLS $(k = \infty)!$

Result on MSE:

$$\overline{k} = \operatorname*{argmin}_{k \in \mathbb{N}} \left\{ \mathrm{MSE} \left(\hat{\mathbf{Y}}^{(k)} \right) \right\} \quad \Rightarrow \quad \mathrm{MSE} \left(\hat{\mathbf{Y}}^{(\overline{k})} \right) < \mathrm{MSE} \left(\hat{\mathbf{Y}} \right)$$

■ Result on △ (holds with high probability):

$$k^* = \operatorname*{argmin}_{k \in \mathbb{N}} \left\{ \Delta \left(\hat{\mathbf{Y}}^{(k)} \right) \right\} \quad \Rightarrow \quad \Delta \left(\hat{\mathbf{Y}}^{(k^*)} \right) < \Delta \left(\hat{\mathbf{Y}} \right)$$

How to estimate the optimal iteration \overline{k} or k^* ?

Scope of the current study

This is a toy study

Since the OLS is available in closed-form, its computational time is the best

But a prospective study

- Allows to mimic algorithm dependent estimates (numerous: closed-form is rare!)
- Allows to understand some fundamental factors acting in the estimate accuracy
- \blacksquare Allows to glimpse expected difficulties for estimating optimal values of k

Thus, a step before a future generic method for computational/accuracy trade-off...

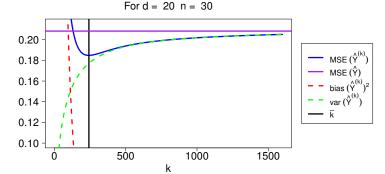
Outline

- 1 Introduction
- 2 Understanding the algorithm dynamic
- 3 First attempts for a stopping rule
- 4 Numerical simulations

Trade-off bias variance for the MSE

$$\operatorname{MSE}\left(\hat{\mathbf{Y}}^{(k)}\right) = \underbrace{\frac{1}{n} \left\|\mathbf{S}^{k}\mathbf{P}'\left(\mathbf{Y}^{(0)} - \mathbf{Y}^{*}\right)\right\|_{2,n}^{2}}_{\operatorname{bias}\left(\hat{\mathbf{Y}}^{(k)}\right)^{2}} + \underbrace{\frac{\sigma^{2}}{n} \operatorname{Tr}\left(\left(\mathbf{I}_{n} - \mathbf{S}^{k}\right)^{2}\right)}_{\operatorname{var}\left(\hat{\mathbf{Y}}^{(k)}\right)}$$

where
$$\mathbf{K} = \frac{1}{n}\mathbf{X}\mathbf{X}' = \mathbf{P}\mathbf{\Lambda}\mathbf{P}'$$
; $\mathbf{S} = \mathbf{I}_n - \alpha\mathbf{\Lambda}$; $\alpha = 0.01 \in \left]0, \frac{1}{\hat{\lambda}_1}\right[; \hat{\lambda}_1 = \left\|\mathbf{K}\right\|_2$



Something more on optimal values of k

There exists M_1 , M_2 , M_3 , $M_4 > 0$ such as, with high probability, for large n,

$$M_1 + M_2 \log(n) \le k^* \le M_3 + M_4 \log(n)$$
.

- Thus it suggests to perform "few" iterations for small samples sizes
- lacksquare Somewhat consistent with the fact that the OLS $(k=\infty)$ is a "large n" estimate
- But even for large n values, k^* has not to be too high
- And if we perform too many iterations, we have the following variance effect:

$$\forall k \in \mathbb{N}, \quad \mathrm{MSE}\left(\hat{\mathbf{Y}}^{(k)}\right) \geq \frac{\sigma^2}{4n} \sum_{i=1}^d \min\left\{1, \left(k\alpha \hat{\lambda}_j\right)^2\right\}$$

Outline

- 1 Introduction
- 3 First attempts for a stopping rule

Controlling bias/variance in Δ

Controlling Δ could be possible by (hopefully sharp) inequalities

Highlighting (squared) bias and variance in Δ : $\forall k > 0$

$$\Delta\left(\hat{\mathbf{Y}}^{(k)}\right) \leq \underbrace{\frac{2}{n} \left\| E\left[\hat{\mathbf{Y}}^{(k)}\right] - \mathbf{Y}^* \right\|_{2,n}^2}_{\mathcal{B}_k^2} + \underbrace{\frac{2}{n} \left\| \hat{\mathbf{Y}}^{(k)} - E\left[\hat{\mathbf{Y}}^{(k)}\right] \right\|_{2,n}^2}_{V_k}$$

We have now to control also B_k^2 and V_k ...

Controlling the squared bias B_k^2

If
$$\|oldsymbol{ heta}^*\|_{2,d} \leq 1$$
 and $oldsymbol{ heta}^{(0)} = 0$, $orall k \in \mathbb{N}$

$$B_k^2 \leq 2\hat{\lambda}_1 \mathrm{e}^{-2k\alpha\hat{\lambda}_d} := B_k^{2, \mathsf{sup}}$$

This upper bound seems to be sharp enough to capture the exponential algorithm dynamic of the (squared) bias observed on the figures!

Controlling the variance V_k

 $\exists C_1 > 0$, with probability at least $1 - e^{-y}$, $\forall k \in \{0 \dots k_{\mathsf{max}}\}$

$$V_k \le \underbrace{2 \mathbb{E} \left[V_k \right]}_{\text{main term}} + C_1 \frac{\left(y + \log \left(k_{\text{max}} + 1 \right) \right)}{n}$$

and

$$2\mathrm{E}\left[\left.V_{k}\right.\right] \leq \frac{4\sigma^{2}}{n}\sum_{j=1}^{d}\min\left\{1,\left(k\alpha\hat{\lambda}_{j}\right)^{2}\right\} := V_{k}^{\sup}$$

- This upper bound seems to be sharp enough to capture the quadratic then asymptote algorithm dynamic of the variance observed on the figures!
- k_{max}: not dangerous since it corresponds to the maximum iterations that the practitioner can perform in the real world and it is involved only through a logarithm scale

Stopping rule to estimate k^*

From previous results, we have with probability at least $1 - e^{-y}$, $\forall k \in \{0 \dots k_{\text{max}}\}$,

$$\Delta\left(\hat{\mathbf{Y}}^{(k)}\right) \leq B_k^{2,\sup} + 2\mathrm{E}\left[V_k\right] + C_1 \frac{\left(y + \log\left(k_{\mathsf{max}} + 1\right)\right)}{n}.$$

From it, we propose the two following estimates for k^* :

$$\hat{k}_{1} = \min \left\{ k \in \mathbb{N} : B_{k+1}^{2, \mathsf{sup}} + 2\hat{\mathbb{E}} \left[\left. V_{k+1} \right. \right] > B_{k}^{2, \mathsf{sup}} + 2\hat{\mathbb{E}} \left[\left. V_{k} \right. \right] \right\}$$

$$\hat{k}_2 = \min \left\{ k \in \mathbb{N} : B_{k+1}^{2, \mathsf{sup}} + \hat{\mathbf{E}} \left[\left. V_{k+1} \right. \right] > B_k^{2, \mathsf{sup}} + \hat{\mathbf{E}} \left[\left. V_k \right. \right] \right\}$$

where
$$\hat{\mathrm{E}}\left[V_{k}\right] = \frac{2\hat{\sigma}^{2}}{n} \sum_{j=1}^{d} \left(1 - \left(1 - \alpha \hat{\lambda}_{j}\right)^{k}\right)^{2}$$

Note: not completely satisfactory since estimate $\hat{\sigma}^2$ is required. . .

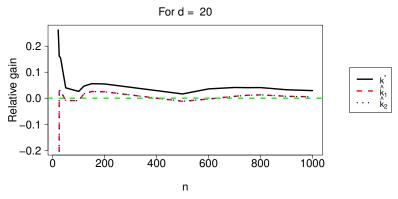
Numerical simulations

- 1 Introduction
- 3 First attempts for a stopping rule
- 4 Numerical simulations

Definition of the relative gain

GainRel
$$(\hat{\mathbf{Y}}^{(k)}) = \frac{\text{MSE}(\hat{\mathbf{Y}}) - \text{MSE}(\hat{\mathbf{Y}}^{(k)})}{\text{MSE}(\hat{\mathbf{Y}})}$$
.

Relative gain as a function of n for d=20



- Estimates \hat{k}_1 and \hat{k}_2 with confounded behaviour
- Strong correlation with the behaviour of k^*
- Potential gain higher for small n but not too small for (quite) large n
- n = 21: unexpected problem for \hat{k}_1 and \hat{k}_2 ($\hat{\sigma}^2$?)
- $n \ge 22$: not completely satisfactory but not so bad for a first attempt...

Thank's!