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Abstract Statisticians are already aware that any modelling process issue
(exploration, prediction) is wholly data unit dependent, to the extend that
it should be impossible to provide a statistical outcome without specifying
the couple (unit,model). In this work, this general principle is formalized with
a particular focus in model-based clustering and co-clustering in the case of
possibly mixed data types (continuous and/or categorical and/or counting
features), being also the opportunity to revisit what the related data units
are. Such a formalization allows to raise three important spots: (i) the couple
(unit,model) is not identifiable so that different interpretations unit/model of
the same whole modelling process are always possible; (ii) combining different
“classical” units with different “classical” models should be an interesting op-
portunity for a cheap, wide and meaningful enlarging of the whole modelling
process family designed by the couple (unit,model); (iii) if necessary, this cou-
ple, up to the non identifiability property, could be selected by any traditional
model selection criterion. Some experiments on real data sets illustrate in de-
tail practical benefits from the previous three spots.

Keywords Measurement units · Mixed data · Mixture models · Model
selection · Non identifiability

1 Introduction

Usually, statistical analysis relies on two coupled and fundamental materials:
data and models. This basic description can be further enriched by dividing
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data into two complementary parts [27,59,33]: the object features (namely
the variables) and the associated measurement units (namely the units). Sub-
stantially, data (variables and units) are expected to be provided by the prac-
titioner whereas models are the domain of the statistician but, in practice,
both of them are not completely unrelated as we illustrate now both in the
predictive and in the descriptive contexts.

In the predictive framework, data are composed by, for instance, one non-
negative predictor variable x provided in order to predict a real outcome vari-
able y, where variables x and y and their associated units are practitioner-
defined. In such a situation, the statistician could propose the standard linear
regression model [57] y = βx+ e, with β a real but unknown parameter and e
the realization of a standardized normal distribution. Alternatively, he could
propose two other models which are y = e and y = β ln(x) + e. The former
model equivalently corresponds either to a new regression model (β = 0), or
to a variable selection situation (variable x has been canceled). The latter
model equivalently corresponds either to a new regression model (a logarithm
regression model) with x still expressed in the initial practitioner-defined unit,
or to the initial linear regression model, where the unit of variable x is now
expressed on a logarithm scale. Thus, in this context, there exists a straightfor-
ward bridge between models and data (variables and units), leading in partic-
ular to non-identifiability situations from the interpretation point of view. As
a matter of fact, the practitioner may benefit from this link by using directly
any model selection paradigm (as BIC [56], cross-validation. . . ) for helping
him in his task.

In the descriptive framework, where the clustering task is emblematic,
[24,23] identified the following associated fundamental challenges, namely: (i)
“What is a cluster?”, (ii) “What features should be used?”, (iii) “Should the
data be normalized?”. Such challenges arise even before the so much discussed
in literature “selecting the number of clusters”, only numbered (vi) in [23]. We
recognized challenges (ii) and (iii) as being respectively the variable selection
and the unit definition problems we previously discussed. Mixture of distribu-
tions is now a classical way for answering (i), a cluster being itself modelled
by a homogeneous distribution. This approach met many successes from both
the practical and the theoretical point of views (see for instance a survey in
[19,43,41]). In addition, success of mixtures is also sensible on questionings
(ii) and (iii) thanks to their comprehensive modelling property, allowing to
reformulate them as particular mixture models. Thus, concerning (ii), sev-
eral attempts essentially focused in the Gaussian mixture setting exist, as the
SRUW modelling and related works [28,60,49,36,37,58,35] or also other ℓ1
penalization procedures combined with variable unit transformation (center-
ing) leading to so-called PS-Lasso [47,66] and Lasso-MLE [44,45] strategies.
Concerning (iii) now, the unit definition has been also recasted as a particular
mixture model, essentially in the Gaussian setting also [65,61,67,16].

However, such works aiming at embedding data units and models in clus-
tering are only early, albeit attractive, attempts failing to fully reveal all its
potential for clustering. In particular, we defend that a suitable formulation of
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data units as a couple (unit,model) is an opportunity to enlarge without any
effort and in a meaningful way the whole traditional model collection, with
benefits for both the practitioner and the statistician. From this key recast,
it becomes possible to extend straightforwardly these model families in the
case of non continuous data (categorical and counting data typically) and to
address also similarly the model-based co-clustering framework (see a review
of this topic in [20]).

The outline of this work is the following. In Section 2, notations, estimation
and model selection are fixed for model-based clustering and model-based co-
clustering by underlying also the case of various types of data (continuous,
categorical, counting). Section 3 introduces formalization of data units, its
fusional link with modelling and related gains that both the practitioner and
the statistician may expect from this new light. In Section 4 and 5, various real
data sets in clustering and co-clustering, respectively, and for different data
types, are involved to illustrate the practical interest of the previous concept
unifying units and models. Finally, Section 6 concludes this work by sketching
also some future prospects.

In the following, sets, sums and products on i, j, k and l stands for ranges
{1, . . . , n}, {1, . . . , d}, {1, . . . ,K} and {1, . . . , L} respectively. Also, capital let-
ters designate random variables/vectors.

2 Model-based (co-)clustering for multiple data kinds

2.1 Model-based clustering

Mixture hypothesis Cluster analysis is one of the main data analysis methods.
It aims at partitioning a data set x = (x1, . . . ,xn) = (xO ,xM ), composed
by n individuals xi = (xi1, . . . , xid) of dimension d, and lying in a space X,
into K classes G1, . . . , GK . Here the observed part of x has been denoted by
xO whereas the missing is denoted by xM . Moreover, X designates possibly a
mixed feature space, it means a space mixing features of different kinds like
continuous, categorical or integer.

The target partition is denoted by z = (z1, . . . , zn), lying in a space Z,
where zi = (zi1, . . . , ziK)′ is a vector of {0, 1}K such that zik = 1 if individual
xi belongs to the kth class Gk, and zik = 0 otherwise. Model-based clustering
allows to reformulate cluster analysis as a well-posed estimation problem both
for the partition z and for the number of classesK. It considers data x1, . . . ,xn

as n i.i.d. realizations of a mixture distribution p(·; θ) = ∑

k πkp(·;αk), where
p(·;αk) generically indicates the probability distribution function (pdf), pa-
rameterized by αk, associated to the class k, where πk indicates the mixture
proportion of this component (

∑

k πk = 1, πk ≥ 0), and where θ = {(πk,αk)}
indicates the whole mixture parameters.

Mixture parameter estimation From the observed data set xO it is then pos-
sible to obtain a mixture parameter estimate θ̂ by maximizing the observed
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log-likelihood ℓ(θ;xO) = ln p(xO
i ; θ), where

p(xO
i ; θ) =

∑

k

πkp(x
O
i ;αk) =

∑

k

πk

∫

xM
i

p(xO
i ,x

M
i ;αk)dx

M
i , (1)

provided that missing data xM are obtained by a missing at random (MAR)
process [31].

For optimizing ℓ(θ;xO), the EM (Expectation-Maximization) algorithm of
[15] is often performed, or some of its variants (see also [54]) like the SEM
(Stochastic EM) [13]. Indeed, a SEM algorithm can be used to maximize the
observed-data log-likelihood, described as follows for iteration q ≥ 1, when
starting from a parameter θ(0) selected at random:

– E-step: compute conditional probabilities p(xM
i , zi|xO

i ; θ
(q−1)),

– S-step: draw (x
M(q)
i , z

(q)
i ) from p(xM

i , zi|xO
i ; θ

(q−1)),
– M-step: maximize θ(q) = argmaxθ ln p(x

O,xM(q), z(q); θ).

Since the parameter sequence (θ(q)) generated by SEM does not punctually
converges, due to the S-step definition, the algorithm generally stops after a
predefined number of iterations. This sequence converges in distribution to-
wards the unique stationary distribution. Asymptotically on q, the mean of the
sequence (θ(q)) approximates θ̂ and thus provides a sensible local estimate of
the maximum likelihood. In addition, the variance of the sequence (θ(q)) gives
confidence intervals on θ. SEM has also advantage to be less dependent on the
initial value θ(0) than EM does if a “sufficient” iteration number is performed
and so avoids uninteresting local maxima. Finally, managing missing data is
easier than with EM thanks to its so-called stochastic S-step, while preserving
a classical M-step like EM.

Partition (and missing data) estimation Once θ̂ is obtained, a so-called SE
algorithm (a SEM without the M step) can be used to estimate partition z,
and simultaneously missing data xM . Its qth iteration is given by

– E-step: compute conditional probabilities p(xM , z|xO ; θ̂),

– S-step: draw (xM(q), z(q)) from p(xM , z|xO; θ̂).

After a given iteration number, the mean and/or mode of the sequence (xM(q), z(q))
estimates (xM , z), denoted by (x̂M , ẑ), with again the possibility to derive some
confidence intervals on these unknown quantities.

Estimation of the class number From the Bayesian model selection principle,
it is now possible to derive an estimate K̂ from an estimate of the observed con-
ditional probability p̂(K|xO) or also from the completed-partition conditional
probability p̂(K|xO, z). The first one leads to retaining K̂ which minimizes
the so-called BIC (Bayesian Information Criterion) criterion [56],

BIC =
D

2
lnn− ln p(xO; θ̂), (2)
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whereas the second one corresponds to minimizing the so-called ICL (Inte-
grated Completed Likelihood) criterion [7], defined by

ICL =
D

2
lnn− ln p(xO , ẑ; θ̂), (3)

D denoting the number of free (continuous) parameters in the model at hand.
Note that many other selection criteria exist in model-based clustering (see for
instance an overview in [5], Chap. 7 and 9), even if BIC and ICL are probably
some emblematic ones.

Continuous data and Gaussian distribution The multivariate mixture model
is certainly the most known and used model for continuous data. It has a long
history of use in clustering (see for instance [64], [11]). In that case, xi are
continuous variables (X = R

d) and the conditional density of components is
written p(·;αk) = N(µk,Σk) with αk = (µk,Σk), µk ∈ R

d the component
mean (or centre) and Σk ∈ R

d×d its covariance matrix. Since Σk requires to
estimate a quadratic number of parameters with D, there exists also many
parsimonious and meaningful constraints on it relying on the spectral decom-
position [14], on factor analyzers [17,39,40] or also on the so-called statistical
decomposition RTV [10]. For instance, the spectral family of [14] includes the
diagonal case assuming that all variables xij of xi are conditionally indepen-
dent knowing the latent classes. Thus,

p(xi;αk) =
∏

j

p(xij ;αkj), (4)

where αk = (αkj), p(·;αkj) denoting the univariate distribution associated to
the variable j in the class k, with p(·;αkj) = N(µkj , σ

2
kj). More information is

provided on this family in Section 4.1.

Other data types and related distributions It is also possible to easily extend
the previous diagonal case to all kinds of data types by assuming again condi-
tional independence (4) knowing the latent classes. Thus, only the univariate
distribution associated to the variable j in the class k has to be defined, de-
pending on the data type:

– Categorical: given variable j is categorical, xij = (xijh;h = 1, . . . , lj) has
lj response levels, where xijh = 1 if i has response level h for variable j
and xijh = 0 otherwise. The standard model for clustering observations
described through categorical variables is the so-called latent class model
(see for instance [18]), where p(·;αkj) = M(αkj) is the multinomial distri-
bution with αkj = (αkjh;h = 1, . . . , lj), αkjh denoting the probability that
variable j has level h for one individual in cluster k.

– Integer (also kown as counting data): given variable j is a count, each
xij ∈ N and p(·;αkj) = P(λkj), the Poisson distribution of parameter λkj .

– Other: xij could be also an ordinal data or a ranking data, for instance
(see respective univariate distributions in [9,8]).
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Mixed data type and related distribution It is frequent in practice to mix differ-
ent kinds of data types, for instance continuous, categorical and integer ones.
Thus the ith individual is composed by three parts, xi = (xcont

i ,xcat
i ,xint

i ),
xcont
i , xcat

i and xint
i designing the continuous, the categorical and the integer

ones respectively. In that case, the proposed solution for symmetry between
data types is to mix all types by inter-type conditional independence [46]:

p(xi;αk) = p(xcont
i ;αcont

k )× p(xcat
i ;αcat

k )× p(xint
i ;αint

k ) (5)

with αk = (αcont
k ,αcat

k ,αint
k ) being the obvious associated parameters by data

type.

2.2 Model-based co-clustering

Mixture hypothesis Simultaneous clustering of rows and columns, usually des-
ignated by bi-clustering, co-clustering or block clustering, is an important tech-
nique in two way data analysis allowing very simple models even with many
variables. They consider the two sets simultaneously and organize the data
into homogeneous blocks. Two partition representations are thus now needed.
First, as usual, a partition of n individuals (lines of the data matrix x) into K
clusters still noticed z. Second, and symmetrically, a partition of d variables
(columns of the data matrix x) into L clusters is denoted byw = (w1, . . . ,wd),
where wj = (wj1, . . . , wjL) with wjl = 1 if j belongs to cluster l and wjl = 0
otherwise. Both space partitions are respectively denoted by Z and W.

We refer to the book of [20] for providing more details on co-clustering
techniques, probabilistic or not. Here, we focus on model-based co-clustering
as being often a generalization of non-probabilistic methods and allowing co-
herent formulation from estimation to model selection. Block model-based
clustering can be seen as an extension of the traditional mixture model-based
clustering previously described in Section 2.1. The basic idea is to extend the
latent class principle of local (or conditional) independence expressed in (4):
each data point xij is assumed to be independent once zi and wj are fixed.
We note θ = (π,ρ,α) with α = (αkl), and where π = (πk) and ρ = (ρk) are
the vectors of probabilities πk and ρl that a row and a column belong to the
kth row component and to the lth column component, respectively. Assuming
also independence between all zi and wj , the latent block mixture model has
the global probability distribution

p(x; θ) =
∑

(z,w)∈Z×W

∏

i,j,k,l

(πkρlp(xij ;αkl))
zikwjl . (6)

Finally, the distribution p(·;αkl) depends on the data type of xij (continuous,
categorical, integer) and thus is similar to these ones defined in Section 2.1,
except that mixed data are not allowed this time. Such models can be very
parsimonious even when d is very large, provided that L is moderate. Indeed,
by comparison to a classical intra-type conditional independence model withD
parameters to be estimated (see Section 2.1), the corresponding co-clustering
model requires only D × L

d parameters.
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Mixture parameter estimation EM-based algorithms are the standard approach
to estimate model parameters by maximizing the observed log-likelihood. Here,
the complete data is represented as a vector (x, z,w), where unobservable
vectors z and w are the labels. Unfortunately, difficulties arise owing to the
dependence structure in the model, and more precisely in the combinatorial
difficulty for evaluating the terms p(Zik = 1,Wjl = 1|x; θ(q)) involved in the
E step (see details in [20]). Several solutions exist for skirting this difficulty,
including the so-called variational approach which constraints the problematic
joint probability to satisfy the relation p(z,w|x; θ) ≈ p(z|x; θ)p(w|x; θ). Al-
ternatively, the E-step can be replaced by a S-step by using a SEM algorithm
instead of EM (see details on SEM in Section 2.1). In the S-step, random
couples (z,w) (conditionnally to x) are drawn sequentially by the following
two-step Gibbs algorithm (see more details in [26]): Z|x,w; θ and W|x, z; θ.
Estimating the block membership designed by the pair (z,w) can then be
performed by a SE algorithm similar to this one described in Section 2.1.

Estimation of the block number In addition, a specific expression of the ICL
criterion (3) can be invoked for selecting the pair (K,L) (see [32] and [26] which
provide ICL expressions for the Gaussian situation and for the Bernoulli/multinomial
case, respectively).

3 Data units as a piece of model and associated properties

3.1 Formalization of data unit transformation

Data unit as a bijective mapping Data x, lying in a space X, are implicitly
provided by a practitioner measurement unit denoted by id which acts as a
kind of canonical unit from the practitioner point of view. Consequently, both
the data x and its measurement space X should be indexed by this unit id,
leading respectively to new notations xid and X

id, even if it should be more
convenient in practice to simplify them into more traditional, but equivalent,
notations x = xid and X = X

id.
We denote by u a new measurement unit for data x, being now expressed

as a data set xu lying in the corresponding new space X
u. Formally, such a

data unit transformation u acts as the following general bijective mapping:

u : X = X
id −→ X

u

x = xid = id(x) 7−→ xu = u(x).
(7)

The bijective assumption over u is important to preserve the whole data set
information quantity when performing unit transformations. We denote by
u−1 the reciprocal of u, so u−1 ◦ u = id. Moreover, in this setting, id is thus
only a particular unit u.

However, within this too general framework we add the two realistic con-
straints on u that it proceeds only both individual and variable wise, it means
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lines by lines and rows by rows in the whole data set x. Such constraints are
expressed respectively by

u(x) = (u(x1), . . . ,u(xn)), (8)

and
u(xi) = (u1(xi1), . . . ,ud(xid)). (9)

Notation u(xi) straightforwardly means that transformation u is applied to
the particular data set xi, it means the initial data set x restricted to the single
individual i. Notation uj corresponds to the specific (bijective) transformation
unit associated to variable j.

It is obviously possible to weaken these assumptions by cancelling the vari-
able wise hypothesis defined in (9). In particular, this relaxation would encom-
pass important transformations such that the linear ones involved in principal
component analysis (PCA), when all xij ∈ R. Nevertheless, restriction (9) has
advantage to respect the variable definition, transforming only its unit.

Categories of data units according to data types It is crucial to notice that
allowed units uj depend on the kind of variable j (continuous, binary, integer)
as we described now. In each case, all bijective mappings are possible while
respecting the space, where variable j is. Here are some typical situations (non
exhaustive) of unit tranformation in each case:

– Continuous variables: It corresponds to xij ∈ R, or a subset of R like R+.
The simplest and probably the most straightforward unit transformation
is the scaling and shifting one, namely

x
uj

ij = ajxij + bj , (10)

with aj ∈ R\{0} and bj ∈ R. It is the typical situation when transforming
feet (F ) unit into inches (I) unit (F = 12I, thus bj = 0), when convert-
ing Celsius (C) unit into Fahrenheit (F ) unit (C = 5F/9 − 160/9, thus
bj 6= 0), or when performing any standardization for being “unit-free”
(xstand

ij = xij/σ̂j − µ̂j/σ̂j , with µ̂j and σ̂j respectively the mean and the
standard deviation of the whole marginal sample). Also, other transforma-
tions are classical, for instance the logarithm scale, namely x

uj

ij = aj ln(xij),
when obtaining the decibel unit from the ratio of the two power levels unit
(measured power and reference power).

– Counting variables: It corresponds to integer values for counting, thus
xij ∈ N. Two common unit transformations (for variable j) can be the
shifted one ushift

j (xij) = xij − bj with bj ∈ N or the scaled one uscale

j (xij) =
ajxij with aj ∈ N\{0}. As an illustration of both units, consider xij to
be the total number of educational years (canonical unit idj) of student i.
Alternatively, it is possible to propose either ushift

j (xij) = xij − 8 as being

the university number of educational years1, or uscale

j (xij) = 2xij as being
the total number of educational semesters.

1 Eight is the number of years spent by English pupils in a secondary school.
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– Categorical variables: It corresponds to the lj dimensional vector of

binary values, thus xij ∈ {0, 1}lj with
∑lj

h=1 xijh = 1, lj denoting the level
number (see Section 2.1). In this situation, possible unit transformations
uj are exhaustively restricted to all permutations of level coding. It is
denoted by uperm

j ∈ Plj , where Plj is the standard symmetric permutation
group on {1, . . . , lj}. As a straightforward example, consider the following
binary case (lj = 2) with the canonical unit idj : xij = (0, 1) corresponds
to holidays in the mountains whereas xij = (1, 0) corresponds to holidays
at the sea. The (only) alternative unit is here the permuted (or reverse)
unit uperm

j (xij) = (1 − xij1, 1 − xij2). Concretely, the new unit uperm

j is as
follows: (0, 1) designates now holidays at the sea whereas (1, 0) corresponds
now to holidays in the mountains. Application for categorical non-binary
data (more than two levels) will be illustrated through a real data set of
Section 5.2.

– Other types of variables: Other situations should be approached case
by case. Some common types of variables are in fact particular categorical
variables, as ordinal variables are. For instance, consider the school level
(variable j) of pupil i among values {high grade,middle grade, low grade}.
A canonical unit idj can be expressed by: high grade > middle grade >
low grade, where “ >′′ means “greater in strength than”. Alternatively, the
(only) other unit uperm

j is expressed by: low grade > middle grade > high
grade , where “ >′′ means now “greater in weakness than”.

3.2 Revisiting units as a modelling component

Classically, the couple composed by the parametric pdf p(·; θ) and a space
Θm, where evolves this parameter defines a so-called model, denoted now by
pm:

pm = {· ∈ X 7→ p(·; θ) : θ ∈ Θm}. (11)

In practice it will be sometimes a convenient shortcut to confound the index
m ∈ M and the corresponding distribution parameterized by Θm. In model-
based clustering (see Section 2.1), a model is defined simultaneously by a num-
ber of clusters K and each component distribution p(·;αk), including eventual
constraints on π andα. In model-based co-clustering (see Section 2.2), a model
is defined simultaneously by a number of clusters in lines K and in columns
L and each block distribution p(·;αkl), including eventual constraints on π,
ρ and α.

However, model definition (11) can be equivalently rewritten by explicitly
expressing the canonical data units id (see Section 3.1)

pidm = {· ∈ X
id 7→ p(·; θ) : θ ∈ Θm}, (12)

enlightening that the space, where evolve the variables and the probabilistic
modelling are irrevocably embedded. This phenomenon is totally related to
the standard probability theory, where any probabilistic modelling explicitly
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gathers both a sample space and a probability measure. By pursuing this idea,
changing the previous units from id to u, while preserving the same proba-
bilistic distribution indexed by m, is expected to produce a new probabilistic
modelling expressed by

pum = {· ∈ X
u 7→ p(·; θ) : θ ∈ Θm}. (13)

As a matter of fact, a model should be now imperatively defined by a couple
of mesurement units u and a probabilistic distribution m. We will denote it by
pum.

3.3 Properties of models pum

Interpretation and identifiability From the standard probability theory again,
we know that there exists another probabilistic model index, designated here
by the (very) shortcut notation u−1(m), such that

u−1(m) ∈ {m′ ∈ M : pidm′ = pum}, (14)

this set being usually restricted to a single element. In other words, it means
that there exist two alternative interpretations of exactly the same model:

– pum: data measured with unit u arise from the probabilistic distribution
indexed by m;

– pid
u−1(m): data measured with unit id arise from the probabilistic distribu-

tion indexed by u−1(m).

From the statistician point of view, it means that the decomposition of a
model into unit vs. distribution is not identifiable. From the practitioner point
of view, it means that he has the freedom to choose the interpretation which
is the most meaningful for him.

Opportunity for designing new models Expressing a model as a combination
of a unit and a distribution can be in practice a great opportunity for the
statistician to build easily numerous new but meaningful models. Indeed, the
Cartesian product of, say, a set of Nuj

standard units {uj} for each variable j
and a set of Nm standard distribution families {m} straightforwardly leads to
potentially

∏

j Nuj
× Nm different models {pum}. The new family {pum} can

even be huge, since it could involve some combinatorics (we will discuss about
combinatorics in the discussion of Section 6). However, it should be underlined
again that all these by-product models are positively meaningful since their
interpretation is directly related to the interpretation of both the uj ’s and
m’s, themselves meaningful since standard.

Besides the latter model building process, note that there may exist some
situations, where m = u(m), meaning that some probabilistic distribution m
is invariant to the unit transformation u. It is for instance the case with the
scaling and shifting unit transformation (10) associated to the multivariate
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Gaussian mixture. Such a situation will be studied in detail in Section 4.1.
Invariance is also verified for the (unconstrained) latent class model with cat-
egorical variables (see Section 2) for any permutation transformation unit.

Model selection Among the set of proposed models by combining units and
distributions, the practitioner can let the statistician choose one of them by a
model selection principle like the BIC or the ICL criteria, respectively defined
in (2) and (3). Nevertheless, both criteria relying on the log-likelihood, it is
required to compute all of them with the same unit reference, say id. It means
that when using any model pu

m, the associated log-likelihood involved in BIC
or ICL has to be systematically converted into this one associated to the
equivalent model pid

u−1(m). For instance, for absolutely continuous variables x

and a differentiable unit u, the likelihood model conversion from pum to pid
u−1(m)

can be explicitly obtained from the relationship

pidu−1(m) = {· ∈ X
id 7→ p(u(·); θ) × |Ju(·)| : θ ∈ Θm}, (15)

with Ju(·) the Jacobian associated to the transformation u. We will note in
the following BICu

m and ICLu
m for criteria values BIC and ICL computed with

the model pum. Notice once more that every other model selection criterion
relying on the likelihood (see examples in [5], Chap. 7 and 9) would follow
exactly the same general principle.

About more complex units A much more complex transformation unit is pro-
posed in [67] for the multivariate Gaussian mixture situation. Its fundamental
purpose is to approach class normality, in order to match as possible with
the Gaussian hypothesis by clusters. Consequently, this unit depends both on
classes and on variables. In addition, it is also parameterized, its unit param-
eter (λ) having to be estimated by an EM algorithm simultaneously with the
mixture parameter (θ). More precisely, it corresponds to the Manly transfor-
mation unit [34] uλ = {uλkj

} defined by

uλkj
(xij) =







exp(λkjxij)− 1

λkj
, λkj 6= 0

xij , λkj = 0,
(16)

where λ = {λkj} gathers the unit parameters (λkj ∈ R). Technically, mod-
els, where λkj stands, among R\{0} and {0} are selected by a BIC criterion,
through a forward and backward algorithm for avoiding combinatorial diffi-
culties when the involved dimension d grows.

It is clear that the work of [67] produces very high flexible mixtures. How-
ever, it acts as a good “technical” transformation unit rather than a meaningful
practitioner unit for two reasons. Firstly, the Manly transformation was origi-
nally designed for turning skew unimodal distributions into nearly symmetric
normal distributions, thus conveying no particular interpretation as a “human”
or “physical” unit does. Secondly, its class dependent transformation seems to
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be inconsistent with the traditional definition that any practitioner should ex-
pect. Conversely, [67] defends invariance on the estimated partition resulting
from any scaling or shifting transformation of Manly as a desirable property,
whereas in the present work we argue that a non-invariant transformation unit
could be instead an opportunity for enlarging the model family.

“Technical” versus “meaningful” units Inevitably, the question of proposing
new candidate units has to be asked. But, contrary to the distributional part
of a model (often reserved for the statistician), many users can propose more
easily potential candidates for its unit part. For instance, it could be a scale
change in the units like centimeters towards decimeters for some variables, or
more complex changes as log scale in chemistry with PH values. It could be
seen as a set of “meaningful” units from the user point of view. Consequently,
the user has now a novel way to enlarge himself the model collection, and thus
to collaborate at his level with the statistician on this point.

However, the statistician can also propose new units in essentially a tech-
nical manner, it means by transforming initial data without the help of the
user. For instance, he can choose a logarithm or a square root transformation
only to reduce the skewness of data and make them close to normality. It is
what we can call a “technical” unit.

But, finally, such differences between “technical” and “meaningful” units
are quite artificial since we have seen that there is no identifiability of the
couple (unit,distribution). Indeed, the statistician could always transform a
“technical” unit into a “meaningful” unit by transforming adequately the cor-
responding distribution. Nevertheless, such a transformation may provide a
no-meaningful distribution for the statistician.

4 Real data sets experiments: the clustering case

4.1 Scaling units with parsimonious Gaussian models

Gaussian models are probably the most frequent mixture distributions and
scaling transformations (see (10) with bj = 0) are probably the most usual
unit transformations. We have already discussed in Section 3.2 that general
Gaussian models are invariant to any scaling transformation. However, it is not
always the case for some classical constrained Gaussian models. We propose
to identify them and to illustrate that it could be an opportunity for enlarging
easily the whole Gaussian mixture family on a real example.

Eigenvalue decomposition models (EIG) Initiated by [4], each covariance ma-
trix Σk can be decomposed as Σk = λkSkΛkS

′
k, where: (i) λk = |Σk|1/d

is the volume of the class k, (ii) Sk is an orthogonal matrix the columns of
which are the eigenvectors of Σk and corresponds to the orientation of the
class k, and (iii) Λk is a diagonal positive definite matrix with determinant 1
and with diagonal coefficients in decreasing order, corresponding to the shape
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of the class k. A combination of parsimonious hypotheses on λk, Sk and Λk

parameters provided by [14], allowing volume, shape or orientations to vary or
not between components, and also including two parsimonious families which
are the so-called spherical and diagonal models associated respectively to the
identity matrix for Λk and to a permutation matrix for Sk, leads to 14 different
models and we will now refer to them by the name EIG as in [10]. For instance,
the so-denoted [λSkΛS′

k] EIG model assumes that the Gaussian components
have identical shapes, same volumes and free orientations.

Statistical models (RTV) [10] proposes the statistical sensible decomposition
Σk = TkRkTk and µk = TkVk, on Σk and µk (centers) respectively, where
Tk is the corresponding diagonal matrix of conditional standard deviations,
where Rk is the associated matrix of conditional correlations, and where Vk

gathers standardized means. It is possible to combine meaningful constraints
on Tk (free, isotropic (∀ k : Tk = akT1, where ak > 0) or homogeneous (Tk =
T)), on Rk (free or homogeneous (Rk = R)) and on centers µk (vectors Vk =
T−1

k µk (k = 1, . . . ,K) are free or homogeneous (Vk = V)). It allows to obtain
11 parsimonious models that are straightforwardly denoted by [Rk,Tk,Vk],
[R,T,Vk], [Rk, akT,Vk]. . .

Scale unit-dependency illustration Considering the very current scale unit trans-
formation (10), corresponding to standard units (mm, cm, standardized. . . ),
[10] listed models in each family, where invariance holds: 8 EIG among 14
whereas all 11 RTV.

We consider n = 272 eruptions of the famous Old Faithful geyser, described
by two variables (d = 2): Duration (of an eruption) and Waiting (to the next
eruption) both measured in minutes, so id = (min,min) with notations of the
previous sections. This sample from [62] has been subject to many clustering
studies (see [3] for an example) and a widespread structure of Old Faithful
eruptions in the literature consists of two clusters (often interpreted as short
and long eruptions) thus, the number of groups is fixed to K = 2 through
this numerical illustration. Each model m of the two families (EIG and RTV),
with free mixing proportions πk, has been inferred on this data set with three
different units u: the original units id, new units uscale1 for Duration in seconds
(noted also sec) while Waiting is unchanged, and standardized (noted also
stand) units uscale2 for both Duration and Waiting. The following packages are
used: the Rmixmod r package [29] for EIG and the mixrtv Matlab package [10]
for RTV. To overcome the sensitivity of EM algorithm to initialization [38,
p.54-60] (EM is involved in both packages), five random starting points are
considered for each model inference.

Respectively to each situation, Table 1 displays the best model pum of each
family according to the ICLid

u−1(m) criterion value (thus ICL is expressed with

the unit reference id for the model pu
m). We retrieve the fact, demonstrated

in [10], that RTV models are invariant to scaling units whereas EIG models
[λkSΛkS

′] and [λkSkΛS′
k] are not. We observe here that this unit depen-

dency of some EIG models may be an opportunity to build new well suitable
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while meaningful models. In particular, the ICL criterion proposes to retain

the model pu
scale1

[λkSΛkS
′] instead of any other standard model of the EIG family

associated to the id units. This fact illustrates the cheap and meaningful en-
largement of the EIG family provided by the unit combination. Further, the
numerous models arising from the so enlarged EIG family may be compared
to the best RTV model as in any model selection procedure involving several
model sets. In the present example, criteria values associated to the best EIG
and RTV models are very close, preventing from taking a clear decision.

Table 2 provides in addition the same design as Table 1 but displaying now
the BIC values. We notice that conclusions are similar to these ones previously
obtained with ICL. In other clustering experiments of this paper, we will no
longer systematically display both values of BIC and ICL, but obviously any of
both criteria could be used, or other ones, depending on the user preferences.
Our aim is just to illustrate the ability of criteria to choose simultaneously
units and distributions.

From the partition point of view now, both families EIG, RTV lead here
to the same partition of this data set whatever system of units is considered
(u = id,uscale1 ,uscale2). However, we will see in other data sets of the paper
that data rescaling may obviously impact the estimated partition.

Table 1 The best model within each family (EIG and RTV), inferred on the Old Faith-
ful data (K = 2) when measurement units u ∈ {id,uscale1 ,uscale2} of the couple (Dura-
tion,Waiting) vary. For each unit case, the corresponding ICL value is expressed with the
id = (min,min) unit, noted below ICLid as a shortcut for ICLid

u−1(m)
.

family

EIG

RTV

id = (min,min)

m ICLid

[λkSΛkS
′] 1 160.3

[R,Tk,Vk] 1 158.8

uscale1 = (sec,min)

m ICLid

[λkSΛkS
′] 1 158.7

[R,Tk,Vk] 1 158.8

uscale2 = (stand, stand)

m ICLid

[λkSkΛS
′

k] 1 160.3

[R,Tk,Vk] 1 158.8

Table 2 This table is similar to Table 1, but displays the BIC values instead of the ICL
ones.

family

EIG

RTV

id = (min,min)

m BICid

[λkSΛkS
′] 1 160.4

[R,Tk,Vk] 1 158.6

uscale1 = (sec,min)

m BICid

[λkSΛkS
′] 1 158.4

[R,Tk,Vk] 1 158.6

uscale2 = (stand, stand)

m BICid

[λkSkΛS
′

k] 1 160.1

[R,Tk,Vk] 1 158.6



Unifying Data Units and Models in (Co-)Clustering 15

Comparison with more complex distributions The previous geyser data set
has been already widely studied in the past with Gaussian and non-Gaussian
mixtures. For instance, [67] performed such analyses using skewed Gaussian/t-
mixtures. In that case, around 150 models are fitted with recent r software:
SNI-SN, SNI-ST with mixsmsn [48], rMSN, rMST with EMMIXskew [63], uMST
with EMMIXuskew [30], tEIGENwith teigen [2], and 42 models with ManlyMix [67].
The BIC values obtained by [67] all range between 1 151.9 and 1 163.8.
Thus, the BIC values associated to our work (see Table 2) are finally in
the middle range of the BIC values associated to much more complicated
models, while all our proposed models (whatever are m ∈ {EIG,RTV} and
u ∈ {id,uscale1 ,uscale2}) strictly stay is a classical Gaussian mixture situation.
We think that this simple remark perfectly illustrates the opportunity to cre-
ate very flexible models by explicitly involving units in any modelling purpose.

4.2 Non-scaling units for continuous data in a mixed data case

Authors in [22] (see also [38] p. 139–142) considered the clustering of patients
on the basis of petrial variates alone for the prostate cancer clinical trial data
of [12] which is reproduced in [1] p. 261–274. This data set was obtained from
a randomized clinical trial comparing four treatments for n = 506 patients
with prostatic cancer grouped on clinical criteria into two Stages 3 and 4 of
the disease. As reported by [12], Stage 3 represents local extension of the dis-
ease without evidence of distance metastasis, while Stage 4 represents distant
metastasis as evidenced by elevated acid phosphatase, X-ray evidence, or both.
Twelve pre-trial variates were measured on each patient, composed by eight
continuous variables (age, weight, systolic blood pressure, diastolic blood pres-
sure, serum haemoglobin, size of primary tumour, index of tumour stage and
histolic grade, serum prostatic acid phosphatase) and four categorical variables
with various numbers of levels (performance rating, cardiovascular disease his-
tory, electrocardiogram code, bone metastases). There are 62 missing values,
so about 1% of the whole sample, and 475 patients have finally no missing
data.

The skewed variables “size of primary tumour” (denoted below as SZ) and
“serum prostatic acid phosphatase” (denoted below as AP) were considered
with two historical units for performing the clustering task. On the one hand,
[42] use initial raw units, denoted by id. On the other hand, [25] proposed
using a square root and a logarithm transformation, respectively uSZ =

√·
and uAP = ln(·), since both SZ and AP are skewed. Other variable unit than
SZ and AP of u is unchanged compared to id.

We propose now to infer which unit, among id and u, can be retained
when involving the model selection principle in model-based clustering. The
model m we consider is the latent class model for mixed data given by (4),
while dealing directly with missing data through the MAR mechanism (1).
The model m includes also the number of clusters K ∈ {1, . . . , 4}. Estimation
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is performed through the MixtComp software2. Since MixtComp involves a
SEM algorithm, this latter being less sensible to starting parameters than an
EM algorithm (see discussion in Section 2.1), only one random starting point
is considered for each model inference.

Results with the ICL criterion are displayed on Figure 1. It advocates in
favour of the transformed units u while retaining also two clusters. Note that
the raw unit id clearly fails to select this number of clusters. Exploring now
both two-clusters partitions, Table 2 also indicates that partition obtained
with u is more correlated to the medical partition (Stage 3 and Stage 4) than
the partition obtained with id is, by providing the confusion table, the error
rate and the adjusted rand index (ARI) criterion [50]. In this second example
involving prostate cancer data, the unit transformation improves the model
but also the matching between the inferred partition and the practitioner
partition according to the cancer stage.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
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Fig. 1 Selecting both the units and the number of clusters by the ICL criterion on the
prostate data set.

Table 2 Missclassification detail for the prostate data set with the two competitor units
id and u (K = 2).

Estimated ẑ with id Estimated ẑ with u

Medical z Cluster 1 Cluster 2 Cluster 1 Cluster 2

Stage 3 287 5 270 22
Stage 4 52 162 23 191

Missclassified / ARI 11% / 0.60 9% / 0.68

2 MixtComp is a clustering software developped by Biernacki C., Iovleff I. and Ku-
bicki V. and freely available on the MASSICCC web platform https://modal-research-
dev.lille.inria.fr/#/



Unifying Data Units and Models in (Co-)Clustering 17

4.3 Shifted and scaled count data in mixed data case

We consider the German health registry of the r dataset rwm1984COUNT for the
year 1984, provided by [51] and studied in [21]. It is composed by n = 3 874
patients that spent time into German hospitals during year 1984 and patients
are described through eleven mixed variables of different kinds. Clustering can
be performed by the latent class principle described in (4), involving univari-
ate Gaussian, Poisson and multinomial distributions according to the type of
variable. All details on this data set and implied distributions are displayed
in Table 3. The MixtComp software can still be used for performing related
estimation.

Table 3 Variable types and associated univariate distributions for the dataset
rwm1984COUNT.

Variables Type Distribution
1 number of visits to doctor during year count Poisson
2 number of days in hospital count Poisson
3 educational level categorical multinomial
4 age count Poisson
5 outwork binary Bernoulli
6 gender binary Bernoulli
7 matrimonial status binary Bernoulli
8 kids binary Bernoulli
9 household yearly income continous Gaussian
10 years of education count Poisson
11 self employed binary Bernoulli

Four unit systems are sequentially considered (among shifted and scaled
units; see Section 3.1) differing over the count data, described as follows:

– id: original units for all variables;
– u1: the time spent into hospital (variable number 2 in Table 3) is counted

in half days instead of days, other variables being with the original units;
– u2: the minimum of the age series (variable number 4 in Table 3) is deduced

from all ages leading to shifted ages, other variables being with the original
units;

– u3: the minimum of years of education (variable number 10 in Table 3) is
deduced from the series leading to shifted years of education.

Then, a BIC criterion is used for selecting the model pid
u−1(m), with u ∈

{id,u1,u2,u3} and m being the latent class model with K ∈ {1, . . . , 30}. Fig-
ure 2 displays the BIC values for each model. It selects 23 clusters obtained
under the shifted years of education units (u3). Since u3 provides a high BIC
value improvement in comparison to other units, the statistician could be mo-
tivated by showing the resulting partition to the practitioner for seeking a
potential interesting meaning. Note again that interpretation of model pu

3

m is
particularly simple by its decomposition into classical units u3 vs. classical
model m.
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Fig. 2 BIC values for different combinations of units and number of clusters for the German
health registry data set.

Table 4 BIC value associated to two combinations of different models and units for the
RNA-seq gene expressions data set.

Model Units BIC
Poisson (m1) raw unit (id) 2 615 654
Gaussian (m2) transformed (u) 909 190

4.4 Domain specific transformation for RNA-seq count data

We consider a sample of RNA-seq gene expressions arising from the rat count
table3, composed by 30 000 genes described by 22 counting descriptors. Genes
with low expression are removed with a classical technique of the domain,
leading finally to 6 173 genes. Two different processes are involved for dealing
with such data:

– Standard process: [53] use the initial count units (id) and use a Poisson
mixture (m1);

– “RNA-seq unit”: being motivated by genetic considerations, [16] use the
transformation uj(xij) = ln(scaled normalization(xij)) (see details about
the scaling in [16]; note that other scalings exist also in [52]) over which a
Gaussian mixture is used (m2).

As in [16], we compare both models pid
m1 and pu

m2 , with K = 30 clusters, while
still invoking the MixtComp software. The BIC value associated to both is
displayed in Table 4. We retrieve here results of [16] since the model pu

m2 is
clearly retained in our case also, demonstrated once more that a practitioner
driven unit, specific to the data domain, may highly contribute to improve the
modelling task.

3 http://bowtie-bio.sourceforge.net/recount/
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5 Real data sets experiments: the co-clustering case

5.1 A binary data set with natural initial units

We consider the SPAM e-mail database4 which gathers n = 4 601 e-mails
composed by 1 813 “spams” and 2 788 “good e-mails”. Each e-mail is described
by d = 54 continuous descriptors (three other continuous descriptors exist but
we do not use them), where 48 of them are percentages that a given word
appears in an e-mail (“make”, “you’. . . ) and the remaining 6 are percentages
that a given char appears in an e-mail (“;”, “$”. . . ). In fact, we do not use
this initial data set but a transformation of these continuous descriptors into
binary descriptors by noting xij = 1 if word/char j appears in e-mail i, xij = 0
otherwise. This data set is displayed on the left of both Figure 4 (a) and (b).
For each variable j, two different units are possible :

– idj : it corresponds to the previous coding;
– uj(·) = 1 − (·): it corresponds to the reverse coding, where xij = 0 if

word/char j appears in e-mail i, xij = 1 otherwise.

The whole coding is denoted by u = (u1, . . . ,ud) and 254 possibilities of dif-
ferent units for the whole data set exist.

We perform now a co-clustering process (see Section 2.2) essentially for
retrieving the initial partition of individuals into “spams” and “good e-mails”,
thus the partition of variables is just a technical way for reducing the dimen-
sion. We fix two individual clusters (K = 2) and five variable clusters (L = 5),
only units u being to be estimated. Obviously, the couple (K,L) could be
also estimated by a model selection process [26], but it would add here some
useless complexity on the model collection, whereas we have already many
models in competition just by introducing flexibility in units. We involve the
r BlockCluster package [6], available on the CRAN, for performing estimations
associated to all competing units. To overcome the sensitivity to starting val-
ues of the EM-like approach involved in this package (in a variational context),
five random starting points are considered for each model inference.

However, since the number of available units is particularly high (254), it
can not be exhaustively browsed. We then reduce the complexity of the unit
space, based on the following key idea: “the more two variables have similar
values (globally on lines), the more a similar optimal unit transformation could
be expected for both”. This principle is implemented through two successive
stages. The first stage consists in performing a clustering of the variables (thus
of the columns only, no clusters in line). It is performed equivalently by the
BlockCluster, the MixMod or the MixtComp packages, since it corresponds to
a classical clustering of binary individuals (here the columns), situation where
all three are equivalent. The ICL value for a number of cluster value between
1 and 20 is displayed in Figure 3, encouraging to retain 14 clusters (optimal

4 https://archive.ics.uci.edu/ml/machine-learning-databases/spambase/
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ICL value), or even only 6 clusters (first ICL value before a plateau)5. The
second stage consists in an exhaustive browse of candidate units, no longer for
each variable independently, but now with the same unit candidate for each
variable belonging to the same previous cluster in column. Thus, it corresponds
to 214 = 16 384 (case of 14 clusters) units transformations, or only 26 = 64
(case of 6 clusters), instead of 254.
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Fig. 3 ICL values for different number of column clusters (no clustering structure in lines)
of the SPAM e-mail database.

The co-clustered data set we obtained, associated to the initial unit id
and also to the unit u associated to the best ICL we found either with 14, or
with 6 clusters involved in the previous strategy, are displayed on the right
of Figure 4 (a), (b) and (c), respectively. In all cases, the ICL value and also
the empirical error rate (of individuals) are provided. We observe that the
best u we estimated in both cases (14 and 6 clusters) leads to very slightly
better ICL than the initial unit id and, moreover, it does not really improve
the partitioning result.

If we have now a closer look at these results, we observe that the best unit
u for 14 clusters in columns consists just in recoding one variable (j = 19:
“you”), all other corresponding to the initial coding. This variable was thus
alone in one of the 14 clusters. In addition, the best u for 6 clusters in columns
consists in recoding five variable (j = 3: “all”, j = 5: “our”, j = 12: “will”,
j = 19: “you”, j = 21: “your”), all other corresponding to the initial coding.
Moreover, having a closer look at this result highlights that these five variables
were linked since being in the same cluster among the six ones, thus indicating

5 Be careful: The number of clusters in column (14 or 6) at this clustering step is totally
unrelated to the number L = 5 of clusters involved in the co-clustering step which follows!
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Table 5 Variable meaning for the congressional voting records data set.

1. handicapped-infants 9. mx-missile
2. water-project-cost-sharing 10. immigration
3. adoption-of-the-budget-resolution 11. synfuels-corporation-cutback
4. physician-fee-freeze 12. education-spending
5. el-salvador-aid 13. superfund-right-to-sue
6. religious-groups-in-schools 14. crime
7. anti-satellite-test-ban 15. duty-free-exports
8. aid-to-nicaraguan-contras 16. export-administration-act-south-africa

that only one cluster has changed its unit. Thus, both the 14 and the 6 clusters
cases just have a unique cluster unit change, both being related through the
variable j = 19, indicating a certain consistency of the proposed strategy when
varying the number of clusters.

Thus, both results for 14 and 6 clusters globally indicate that the initial
coding should be preferred. This conclusion makes sense with the fact that the
initial coding acts as a natural coding for the practitioner (“appears”, “does
not appear”): each variable having the same meaning, it can be expected by
the practitioner to code them in an identical way. Our proposal to change units
just for some variables was quite artificial and technical but it was somewhat
reassuring that the ICL criterion tends to refuse it.

5.2 A categorical data set with artificial initial units

We consider now a categorical data set with three levels by variable (non-
binary variables). It corresponds to the congressional voting records data set6

composed by votes for each of the n = 435 U.S. House of Representatives
Congressmen. Congressmen are divided into two classes (267 are democrats,
168 are republicans), and d = 16 votes with l = 3 modalities each [55] are
provided with the following meaning:

– “yea”: voted for, paired for, and announced for;
– “nay”: voted against, paired against, and announced against;
– “?”: voted present, voted present to avoid conflict of interest, and did not

vote or otherwise make a position known.

Details on variables are displayed on Table 5. This data set is displayed on the
left of Figure 5 (a) and (b).

Contrary to the previous data set (spams), levels “yea” and “nea” are
arbitrarily coded between variables. Indeed, there is no longer a common level
reference having a common meaning like “appears” or “does not appear”. For
instance, variable 3 (see Table 5) could be arbitrarily coded as well with

3. adoption-of-the-budget-resolution = “yes” ⇔ 3. rejection-of-the-budget-resolution = “no”,

6 http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
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(a) Initial units id: ICL=92 682.54, error rate
of lines is 0.1984 and ARI=0.3602.
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(b) Best estimated units u (14 clusters case):
ICL=92 524.57, error rate of lines is 0.2008
and ARI=0.3548.
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(c) Best estimated units u (6 clusters case):
ICL=92 539.21, error rate of lines is 0.1999
and ARI=0.3568.

Fig. 4 Initial data set and co-clustered data set for the initial units id (a) and the best
estimated units u (b and c) by the ICL criterion for the SPAM e-mail database (K = 2 and
L = 5 are fixed). See text for more information about the difference between (b) and (c).

independently of all other variables. However, level “?” has the same meaning
for all variables are thus it should be similarly coded for all variables for avoid-
ing the artificial coding effect we have previously seen for spams. Consequently,
it is possible to consider the following different units for each variable j:

– idj : it corresponds to the initial units of the data set

xij =







(1, 0, 0) if voted “yea” to vote j by congressman i
(0, 1, 0) if voted “nay” to vote j by congressman i
(0, 0, 1) if voted “?” to vote j by congressman i
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– uj : it corresponds to reversing the coding only for “yea” and “nea”

uj(xij) =







(0,1,0) if voted “yea” to vote j by congressman i
(1,0,0) if voted “nay” to vote j by congressman i
(0, 0, 1) if voted “?” to vote j by congressman i

We perform now a co-clustering process (see Section 2.2) essentially for
retrieving the initial partition of individuals into a political party. Notice that
here co-clustering makes sense since both the number of categories is the same
for categorical data and also all the variables are of the same nature. We fix
two individual clusters (K = 2) and also two variable clusters (L = 2), only
units u = (u1, . . . ,ud) being to be selected. Since the number of available
units is not too high here, a comprehensive search to find the best u by ICL
(216 = 65 536 cases) can be performed with the BlockCluster package, without
invoking the previous column clustering stage as described in Section 5.1. The
co-clustered data set we obtained, associated to the initial unit id and also
to the unit u associated to the best ICL value, are displayed on the right of
Figure 4 (a) and (b), respectively. In both cases, the ICL value and also the
empirical error rate (of individuals) are provided. We observe that the best
u we estimated leads this time simultaneously to a huge improvement of the
ICL value (compared to the initial unit id) and of the partitioning result. This
improvement is wholly corroborated with a view at the co-clustered data set
associated to the id unit at the right of Figure 5 (a) and at the co-clustered
data set associated to the best u unit at the right of Figure 5 (b). If we have
also a closer look at these results, we observe that the best unit u consists in
recoding the following five variables: 3. adoption-of-the-budget-resolution, 7.
anti-satellite-test-ban, 8. aid-to-nicaraguan-contras, 10. mx-missile, 15. duty-
free-exports.

We have seen that the partition in lines obtained with this new unit wholly
leads to a good identification of the congressmen party (democrats and republi-
cans). We can now have a closer look at the corresponding partition of columns
as a summary of the voting behaviour of each party. Class 1 in columns cor-
responds to variables {1, 3̄, 4, 5, 7̄, 8̄, 9, 10, 11, 12,13}, where each number
corresponds to variable numbers displayed in Table 5, and where 3̄ means that
the question associated to variable 3 is now inverted. Class 2 in columns cor-
responds to variables {2,6,14,15,16}. The voting behaviour of each party can
now be summarized as follows: Democrats voted “yea” at (about) 75% (“nay”
at 20% and “?” at 5%) of questions in Class 1 and “yea” at 49% (“nay” at
39% and “?” at 12%) of questions in Class 2; Republicans voted “yea” at 27%
(“nay” at 70% and “?” at 3%) of questions in Class 1 and “yea” at 16% (“nay”
at 77% and “?” at 7%) of questions in Class 2. Consequently, we clearly dis-
tinguish strong differences in the voting directive of each party and it becomes
in addition easier to analyse them thanks to the column grouping (Class 1 and
Class 2). Note that this column grouping is a direct consequence of allowing
unit change, the traditional situation considering the units as fixed failing in
party recognition.
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As a concluding remark on this data set, here initial units id, where artifi-
cially fixed by the practitioner thus it could make sense to change, and selects,
units.

Original Data Co−Clustered Data

1.
0

1.
5

2.
0

2.
5

3.
0Scale

(a) Initial units id: ICL=5 916.13, error rate
of lines is 0.4229 and ARI=0.0234.

Original Data Co−Clustered Data

1.
0

1.
5

2.
0

2.
5

3.
0Scale

(b) Best estimated units u: ICL=5 458.15, er-
ror rate of lines is 0.1403 and ARI=0.5175.

Fig. 5 Initial data set and co-clustered data set for the initial units id and the best estimated
units u by the ICL criterion for the congressional voting records data set (K = 2 and L = 2
are fixed).

6 Concluding remarks

This work aims to alert on the fact that interpretation of (“classical”) models
is usually unit dependent. From this point of view, models should thus be
revisited as a couple (units,models) and it can be an opportunity for cheap,
wide and meaningful enlarging of “classical” model families. Several attempts
on this topic already exist in literature but this paper provides a formaliza-
tion of this principle while extending it to non-continuous types of data. We
focus on clustering and co-clustering but the idea is extensively valid for other
statistical tasks.

However, our proposal could lead to so high enlarging of model families that
some difficulties related to this new combinatorics can emerge. In particular,
it could be impossible to exhaustively browse the whole new model family
in a sane computing time, when the variable number and/or the number of
possible units increase. Face this problem, it could be possible to implement
a forward and backward algorithm similarly to [67]. Alternatively, we have
proposed a preprocessing column clustering step, implemented in Section 5.1
about co-clustering, aiming to authorize a unit change only for different sets
of variables instead of for individual variables. It appears to work pretty well
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but we are aware that this principle should be limited, as is, to situations
where variables are both of the same type and with the same unit candidates.
However, extending this column pre-clustering idea to more general situations
likely deserves more attention since it is fast and it also drastically reduces
the unit/model space to be explored. This direction should be specifically
addressed in future works.

Beyond this potentially attractive unification of measurements units and
classical models, the question to define new units is opened. We have discussed
the possibility for the user to propose so-called “meaningful” units and also
the possibility for the statistician to propose so-called “technical” units. In the
former case, the statistician should encourage the user to be a full player in
the modelling task, what is now more attainable by the unit way. In the latter
case, opportunities for the statistician are also numerous like parametrizing the
measurement unit transformation and also conditioning the units to the cluster
definition, similarly to the example provided by [67]. Thus, many opportunities
exist for enlarging the possible units and, consequently, the resulting models.
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