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We show that a group of diffeomorphisms D on the open unit interval I, equipped with the topology of uniform convergence on any compact set of the derivatives at any order, is non regular: the exponential map is not defined for some path of the Lie algebra. this result extends to the group of diffeomorphisms of finite dimensional, non compact manifold M.

Introduction

In the theory of compact Lie groups, the exponential map defines a chart around the neutral element. This map plays a central role in many aspects of the theory. In infinite dimensional Lie groups, the existence of the exponential map is not straightforward, mostly because of the lack of compact neighbourhood of the neutral element. For this reason we often work, in infinite dimensional Lie groups, only with regular Lie groups, which are Lie groups that have an exponential map, which is a map which integrates any smooth path v on the Lie algebra to a smooth path g on the Lie group via the equation on logarithmic derivatives dg.g -1 = v.

In easy examples, such as Banach Lie groups, the exponential map also defines a chart around the neutral element, but in some other examples such as groups of diffeomorphisms on a compact manifold, it is not the case. This last pathology generates technical difficulties [START_REF] Omori | Groups of diffeomorphisms and their subgroups[END_REF][START_REF] Omori | A remark on nonenlargeable Lie algebras[END_REF].

The notion of regular Lie group was first described by Omori, motivated by the discovery of non-enlargeable Lie algebras of vector fields [START_REF] Omori | A remark on nonenlargeable Lie algebras[END_REF] after a serie of works on the ILH structures of the group of diffeomorphisms of a compact manifold( see e.g. [START_REF] Omori | Groups of diffeomorphisms and their subgroups[END_REF]) The terminology of "regular Lie group" was introduced with a second class of examples: groups of Fourier-integral operators in a serie of papers . For an organized exposition, see [START_REF] Omori | Infinite Dimensional Lie Groups[END_REF]. Since these founding examples, despite of many efforts, there is still no known example of non-regular Fréchet Lie group. As quoted in [START_REF] Kriegl | The convenient setting for global analysis[END_REF], there exists many candidates, but it is quite uneasy to show that a differential equation on an infinite dimensional Lie group has no solution.

In addition, we have to precise that the universal setting for infinite dimensional geometry seems not to exist. Historically, various authors developped more and more general settings for infiniet dimensional "manifolds": Hilbert, Banach, then Fréchet and locally convex manifolds (equipped with atlas), and then raised the necessity to deal with "manifolds" without charts. This phenomenon was even so embarrassing that the precise setting for differential calculus on infinite dimensional setting has been skipped by several authors for applications, see e.g. [START_REF] Khesin | Geometry of infinite dimensional groups Springer[END_REF]. Several definitions and settings have been given by various authors, and the choice that we make to use diffeological spaces as a maximal category, and Frölicher spaces as an intermediate category for differential geometry [START_REF] Magnot | Difféologie du fibré d'Holonomie en dimension infinie[END_REF][START_REF] Watts | Diffeologies, differentiable spaces and symplectic geometry[END_REF], is still quite controversial but this setting becomes developped enough to raise applications. Moreover, historically, diffeological spaces have been developped by Souriau in the 80's with the motivation to deal with the precise objects of interest here, that is groups of diffeomorphisms on non compact, locally compact, smooth manifolds without boundary.

In this short communication, we describe an example of non regular group of diffeomorphisms D on the unit interval, which is in the setting of Frölicher Lie groups. The difference is that, in the Frölicher setting, existence of charts is not assumed. For basics on this setting, due to Frölicher and Kriegl, see [START_REF] Frölicher | Linear spaces and differentiation theory Wiley series in Pure and Applied Mathematics[END_REF][START_REF] Kriegl | The convenient setting for global analysis[END_REF] and e.g. [START_REF] Magnot | Difféologie du fibré d'Holonomie en dimension infinie[END_REF][START_REF] Magnot | Ambrose-Singer theorem on diffeological bundles and complete integrability of the KP equation Int[END_REF][START_REF] Watts | Diffeologies, differentiable spaces and symplectic geometry[END_REF] for a short exposition on Frölicher spaces and Frölicher Lie groups.

This example, which can appear as a toy example, acts as a preliminary result in order to show that the (full) group of diffeomorphisms Dif f (M ) of a non-compact, finite dimensional manifold M , equipped with the topology of uniform convergence of any partial derivative on any compact subset of M , called the smooth compactopen topology (or weak topology in [START_REF] Hirsch | Differential Topology[END_REF]), is non regular. This topology appears as quite natural, and quite minimal compared to the (much stronger) topologies described in [10, section 43.1] (similar to the classical C ∞ -Whitney topology) and in the more diversified [START_REF] Kriegl | An exotic zoo of diffeomorphism groups on R n[END_REF], which furnish examples of regular Lie groups (with atlas). In our example, no chart can be actually successfully constructed by the lack of adequate implicit functions theorem in this topology, and also because this example seems not locally homeomorphic to any open subset of a function space for the considered (smooth compact-open) topology. Of course, these considerations are still open questions, since from another viewpoint no-one can prove actually neither that this is impossible, nor that it is possible, to get these local homeomorphism properties for D.

Our method of proof is inspired by: -first the example of non integrable Lie subalgebra of V ect(S 1 ) due to Omori [START_REF] Omori | A remark on nonenlargeable Lie algebras[END_REF], where non integrability is due to the existence of translations, -secondly the non existence of horizontal lifts for connections on fiber bundles when the typical fiber is not compact, see [START_REF] Kolar | Natural operations in differential geometry[END_REF]. Moreover, if the typical fiber is compact, connections on the considered fiber bundle are in one-to-one correspondence with connections on a principal bundle with structure group a (regular) group of diffeomorphisms, see e.g. [START_REF] Kriegl | The convenient setting for global analysis[END_REF].

We need to precise that the example that we develop seems already known in the mathematical literature, but nowhere stated clearly to our knowledge so that we feel the need of a rigorous description of the announced phenomenon: a constant path on the Lie algebra is not integrable into a path of the group. This is done in three steps:

• first summarize the settings that have been developed to enable a rigorous differential geometry on groups of diffeomorphisms on non compact manifolds (section 1), namely diffeological paces and Frölicher spaces, applied to our example of group of diffeomorphisms on the open unit interval,

• secondly show that the constant map on the unit interval is in T Id ]0;1[ D, and that this element understood as a constant path cannot integrate in D by an argument of "translation semi-group" discovered by [START_REF] Omori | A remark on nonenlargeable Lie algebras[END_REF] for a different goal.

• finally embedding D into Dif f (M ), for a non compact manifold M, in a way such that the translation semi-group required on D cannot be described as a semi-group of transformations on M, we get a direct proof, new to our knowledge, of the following result :

Theorem 0.1. Let M be a locally compact, non compact manifold. Then the group Dif f (M ), equipped with its functional diffeology, is a diffeological Lie group which is non regular.

1. Preliminaries 1.1. Souriau's diffeological spaces and Frölicher spaces.

Definition 1.1. [START_REF] Souriau | un algorithme générateur de structures quantiques Astérisque[END_REF], see e.g. [START_REF] Iglesias-Zemmour | [END_REF]. Let X be a set.

• A p-parametrization of dimension p (or p-plot) on X is a map from an open subset O of R p to X.
• A diffeology on X is a set P of parametrizations on X, called plots of the diffeology, such that, for all p ∈ N, -any constant map R p → X is in P; -Let I be an arbitrary set of indexes; let {f i : O i → X} i∈I be a family of compatible maps that extend to a map f :

i∈I O i → X. If {f i : O i → X} i∈I ⊂ P, then f ∈ P.
-Let f ∈ P, defined on O ⊂ R p . Let q ∈ N, O an open subset of R q and g a smooth map (in the usual sense) from O to O. Then, f • g ∈ P.

• If P is a diffeology on X, then (X, P) is called a diffeological space. Let (X, P) and (X , P ) be two diffeological spaces; a map f : X → X is differentiable (=smooth) if and only if f • P ⊂ P . Remark 1.2. Any diffeological space (X, P) can be endowed with the weakest topology such that all the maps that belong to P are continuous. This topology is called D-topology, see [?].

We now introduce Frölicher spaces, see [START_REF] Frölicher | Linear spaces and differentiation theory Wiley series in Pure and Applied Mathematics[END_REF], using the terminology defined in [START_REF] Kriegl | The convenient setting for global analysis[END_REF].

Definition 1.3. • A Frölicher space is a triple (X, F, C) such that -C is a set of paths R → X, -F is the set of functions from X to R, such that a function f : X → R is in F if and only if for any c ∈ C, f • c ∈ C ∞ (R, R); -A path c : R → X is in C (i.e. is a contour) if and only if for any f ∈ F, f • c ∈ C ∞ (R, R).
• Let (X, F, C) and (X , F , C ) be two Frölicher spaces; a map f :

X → X is differentiable (=smooth) if and only if F • f • C ⊂ C ∞ (R, R).
Any family of maps F g from X to R generates a Frölicher structure (X, F, C) by setting, after [START_REF] Kriegl | The convenient setting for global analysis[END_REF]:

-

C = {c : R → X such that F g • c ⊂ C ∞ (R, R)} -F = {f : X → R such that f • C ⊂ C ∞ (R, R)}.
In this case we call F g a generating set of functions for the Frölicher structure (X, F, C). One easily see that F g ⊂ F. This notion will be useful in the sequel to describe in a simple way a Frölicher structure, see for instance Proposition ?? below. A Frölicher space (X, F, C) carries a natural topology, which is the pull-back topology of R via F. We note that in the case of a finite dimensional differentiable manifold X we can take F the set of all smooth maps from X to R, and C the set of all smooth paths from R to X. In this case the underlying topology of the Frölicher structure is the same as the manifold topology [START_REF] Kriegl | The convenient setting for global analysis[END_REF]. In the infinite dimensional case, there is to our knowledge no complete study of the relation between the Frölicher topology and the manifold topology; our intuition is that these two topologies can differ.

We also remark that if (X, F, C) is a Frölicher space, we can define a natural diffeology on X by using the following family of maps f defined on open domains D(f ) of Euclidean spaces (see [START_REF] Magnot | Difféologie du fibré d'Holonomie en dimension infinie[END_REF]):

P ∞ (F) = p∈N { f : D(f ) → X; F • f ∈ C ∞ (D(f ), R) (in the usual sense)}.
If X is a differentiable manifold, this diffeology has been called the nébuleuse diffeology by J.-M. Souriau, see [START_REF] Souriau | un algorithme générateur de structures quantiques Astérisque[END_REF], or nebulae diffeology in [START_REF] Iglesias-Zemmour | [END_REF]. We can easily show the following: Proposition 1.4. [START_REF] Magnot | Difféologie du fibré d'Holonomie en dimension infinie[END_REF] Let(X, F, C) and (X , F , C ) be two Frölicher spaces. A map f : X → X is smooth in the sense of Frölicher if and only if it is smooth for the underlying diffeologies P ∞ (F) and P ∞ (F ). Thus, we can also state: smooth manifold ⇒ Frölicher space ⇒ Diffeological space A deeper analysis of these implications has been given in [START_REF] Watts | Diffeologies, differentiable spaces and symplectic geometry[END_REF]. The next remark is inspired on this work and on [START_REF] Magnot | Difféologie du fibré d'Holonomie en dimension infinie[END_REF]; it is based on [10, p.26, Boman's theorem].

Remark 1.5. We notice that the set of contours C of the Frölicher space (X, F, C) does not give us a diffeology, because a diffelogy needs to be stable under restriction of domains. In the case of paths in C the domain is always R where as the domain of 1-plots can (and has to) be any interval of R. However, C defines a "minimal diffeology" P 1 (F) whose plots are smooth parameterizations which are locally of the type c • g, where g ∈ P ∞ (R) and c ∈ C. Within this setting, we can replace P ∞ by P 1 in Proposition 1.4.

We also remark that given an algebraic structure, we can define a corresponding compatible diffeological structure. For example following [7, p.66-68], a R-vector space equipped with a diffeology is called a diffeological vector space if addition and scalar multiplication are smooth. An analogous definition holds for Frölicher vector spaces.

Remark 1.6. Frölicher and Gateaux smoothness are the same notion if we restrict to a Fréchet context. Indeed, for a smooth map f : (F, P 1 (F )) → R defined on a Fréchet space with its 1-dimensional diffeology, we have that ∀(x, h) ∈ F 2 , the map t → f (x + th) is smooth as a classical map in C ∞ (R, R). And hence, it is Gateaux smooth. The converse is obvious.

Diffeologies on cartesian products, projective limits, quotients, subsets as well as pull-back and push-forward diffeologies are described in [7, Chapter 1]. The reader can refer also to [START_REF] Souriau | un algorithme générateur de structures quantiques Astérisque[END_REF] or [START_REF] Magnot | Ambrose-Singer theorem on diffeological bundles and complete integrability of the KP equation Int[END_REF][START_REF] Magnot | q-deformed Lax equations and their differential geometric background[END_REF] for faster exposition.

1.2. Functional diffeology. Let (X, P) and (X , P ) be two diffeological spaces. Let M ⊂ C ∞ (X, X ) be a set of smooth maps. The functional diffeology on S is the diffeology P S made of plots

ρ : D(ρ) ⊂ R k → S
such that, for each p ∈ P, the maps Φ ρ,p : (x, y) ∈ D(p) × D(ρ) → ρ(y)(x) ∈ X are plots of P . With this definition, we have the classical fundamental properties:

Proposition 1.7. [7] Let X, Y, Z be diffeological spaces, C ∞ (X × Y, Z) = C ∞ (X, C ∞ (Y, Z)) = C ∞ (Y, C ∞ (X, Z))
as diffeological spaces equipped with functional diffeologies.

1.3.

Tangent space. There are actually two main definitions, ( 2) and (3) below, of the tangent space of a diffeological space:

(1) the internal tangent cone [START_REF] Dugmore | On tangent cones of Frölicher spaces Quaetiones mathematicae[END_REF]. For each x ∈ X, we consider

C x = {c ∈ C ∞ (R, X)|c(0) = x}
and take the equivalence relation R given by

cRc ⇔ ∀f ∈ C ∞ (X, R), ∂ t (f • c)| t=0 = ∂ t (f • c )| t=0 .
The internal tangent cone at x is the quotient

i T x X = C x /R. If X = ∂ t c(t)| t=0 ∈ i T X , we define the simplified notation Df (X) = ∂ t (f • c)| t=0 .
(2) The internal tangent space at x ∈ X described in [START_REF] Christensen | Tangent spaces and tangent bundles for diffeological spaces[END_REF] (3) the external tangent space e T X, defined as the set of derivations on C ∞ (X, R). [START_REF] Kriegl | The convenient setting for global analysis[END_REF][START_REF] Iglesias-Zemmour | [END_REF].

It is shown in [START_REF] Dugmore | On tangent cones of Frölicher spaces Quaetiones mathematicae[END_REF] that the internal tangent cone at a point x is not a vector space in many examples. This motivates [START_REF] Christensen | Tangent spaces and tangent bundles for diffeological spaces[END_REF]. For finite dimensional manifold, definitions (1), ( 2) and (3) coincide. For more comparisons, see [10, section 28] for a comparison for infinite dimensional manifolds and also [START_REF] Christensen | Tangent spaces and tangent bundles for diffeological spaces[END_REF].

1.4. Regular Lie groups. Definition 1.8. Let G be a group, equiped with a diffeology P. We call it diffeological group if both multiplication and inversion are smooth.

The same definitions hold for Frölicher groups. Let us now recall [12, Proposition 1.6.], which shows that the distinction between internal tangent cone and internal tangent space is not necessary for diffeological groups.

Proposition 1.9. Let G be a diffeological group. Then the tangent cone at the neutral element T e G is a diffeological vector space.

Following Iglesias-Zemmour, [START_REF] Iglesias-Zemmour | [END_REF], who does not assert that arbitrary diffeological groups have a Lie algebra, we restrict ourselves to a smaller class of diffeological groups which have such a tangent space at the neutral element. Intuitively speaking, The diffeological group G is a diffeological Lie group if and only if the derivative of the Adjoint action of G on i T e G defines a Lie bracket. In this case, we call i T e G the Lie algebra of G, that we note generically g. One crucial question consists in giving a technical condition which ensures the classical properties of Adjoint and adjoint actions, e.g.:

• Let (X, Y ) ∈ g 2 , X + Y = ∂ t (c.d)(0) where c, d ∈ C 2 , c(0) = d(0) = e G , X = ∂ t c(0) and Y = ∂ t d(0). • Let (X, g) ∈ g × G, Ad g (X) = ∂ t (gcg -1 )(0) where c ∈ C, c(0) = e G , and X = ∂ t c(0). • Let (X, Y ) ∈ g 2 , [X, Y ] = ∂ t (Ad c(t) Y ) where c ∈ C, c(0) = e G , X = ∂ t c(0).
According to [START_REF] Magnot | Ambrose-Singer theorem on diffeological bundles and complete integrability of the KP equation Int[END_REF] (which deals with Frölicher Lie groups), one can assume only that the desired properties are fulfilled, leaving technicities for specific examples. One criteria has been given in [12, definition 1.13 and Theorem 1.14] but this is not necessary here since in the framework that we consider, the properties of the Lie bracket will rise naturally and directly. For these reasons, we give the following definition:

Definition 1.10. The diffeological group G is a diffeological Lie group if and only if the derivative of the Adjoint action of G on i T e G defines a smooth Lie bracket. In this case, we call i T e G the Lie algebra of G, that we note generically g.

Let us now concentrate on diffeological Lie groups, and in this case we note g = i T e G. The basic properties of adjoint, coadjoint actions, and of Lie brackets, remain globally the same as in the case of finite-dimensional Lie groups, and the proofs are similar: we only need to replace charts by plots of the underlying diffeologies (see e.g. [START_REF] Leslie | On a Diffeological Group Realization of certain Generalized symmetrizable Kac-Moody Lie Algebras[END_REF] for further details, and [START_REF] Batubenge | On the way to Frölicher Lie groups Quaestionnes mathematicae[END_REF] for the case of Frölicher Lie groups), as soon as one has checked that the Lie algebra g is a diffeological Lie algebra, i.e. a diffeological vector space with smooth Lie bracket. Definition 1.11. [START_REF] Leslie | On a Diffeological Group Realization of certain Generalized symmetrizable Kac-Moody Lie Algebras[END_REF] A diffeological Lie group G with Lie algebra g is called regular if and only if there is a smooth map

Exp : C ∞ ([0; 1], g) → C ∞ ([0, 1], G) such that g(t) = Exp(v(t)) is the unique solution of the differential equation (1.1) g(0) = e dg(t) dt g(t) -1 = v(t)
We define the exponential function as follows:

exp : g → G v → exp(v) = g(1) ,
where g is the image by Exp of the constant path v.

1.5. Groups of diffeomorphisms. Let M be a localy compact, non compact manifold, which is assumed Riemannian without restriction, equipped with its nébuleuse diffeology. We equip the groups of diffeomorphisms Dif f (M ) with the topology of convergence of the derivatives an any order, uniformly on each compact subset of M, usually called C ∞ -compact-open topology or weak topology in [START_REF] Hirsch | Differential Topology[END_REF].

Traditionnally, V ect(M ) is given as the Lie algebra of Dif f (M ), but [10, section 43.1] shows that this strongly depends on the topology of Dif f (M ). Indeed, the Lie algebra of vector fields described in [10, section 43.1] is the Lie algebra of compactly supported vector fields, which is not the (full) Lie algebra V ect(M ). In another context, when M is compact, V ect(M ) is the Lie algebra of Dif f (M ), which can be obtained by Omori's regularity theorems [START_REF] Omori | Groups of diffeomorphisms and their subgroups[END_REF][START_REF] Omori | Infinite Dimensional Lie Groups[END_REF] and recovered in [START_REF] Christensen | Tangent spaces and tangent bundles for diffeological spaces[END_REF]. What is well known is that infinitesimal actions (i.e. elements of the internal tangent space at identity) of Dif f (M ) on C ∞ (M, R) generates vector fields, viewed as order 1 differential operators. The bracket on vector fields is given by

(X, Y ) ∈ V ect(M ) → [X, Y ] = ∇ X Y -∇ Y X
where ∇ is the Levi-Civita connection on T M. This is a Lie bracket, stable under the Adjoint action of Dif f (M ). Moreover, the compact-open topology on Dif f (M ) generates a corresponding C ∞ -compact-open topology on V ect(M ). This topology is itself the D-topology for the the functional diffeology on Dif f (M ). Following [12, Definition 1.13 and Theorem 1.14], V ect(M ) equipped with the C ∞ compactopen topology is a Fr´chet vector space, and the Lie bracket is smooth. Moreover we feel the need to remark that the evaluation maps

T * M × V ect(M ) → R separate V ect(M ). Thus Dif f (M )
is a diffeological Lie group matching with the criteria of [12, Definition 1.13 and Theorem 1.14], and for the functional diffeology, with Lie algebra g ⊂ V ect(M ).

2.

A non regular group of diffeomorphims of the unit interval 2.1. Premilinaries. Let F be the vector space of smooth maps f ∈ C ∞ (]0; 1[; R). We equip F with the following semi-norms:

For each (n, k)

∈ N * × N, ||f || n,k = sup 1 n+1 ≤x≤ n n+1 |D k x f |.
This is a Fréchet space, and its topology is the smooth compact-open topology, which is the D-topology of the compact-open diffeology. Let

A = {f ∈ C ∞ (]0; 1[; ]0; 1[)| lim x→1 f (x) = 1 ∧ lim x→0 f (x) = 0}.
Finally, we set

D = {f ∈ A| inf x∈]0;1[ f (x) > 0}.
D is a contractible set of diffeomorphisms of the open interval ]0; 1[ which is an (algebraic) group for composition of functions. Composition of maps, and inversion, is smooth for the functional diffeology. Unfortunately, D is not open in A. As a consequence, we are unable to prove that it is a Fréchet Lie group. However, considering the smooth diffeology induced on D by A, the inversion is smooth. As a consequence, D is (only) a diffeological Lie group.

A non integrable path of the Lie algebra. Let us consider the standard mollifier

φ(u) = 1 K e 1 u 2 -1 defined for u ∈] -1; 1[, with K = 1 -1 e 1 u 2 -1 du > 0, 4 and extended smoothly to R setting φ(u) = 0 whenever u / ∈] -1; 1[. We set φ α (u) = 1 α φ x α .
Let us define, with 1 the standard characteristic function of a set,

c t (x) = x + t 1 [|t|;1-|t|] (x) * φ |t| (x) =      ∀x < 2|t|, c t = x + t |t| |t|-x φ |t| (u)du ∀x ∈ [2|t|; 1 -2|t|], c t (x) = x + t ∀x > 1 -2|t|, c t = x + t 1-|t|-x -|t| φ |t| (u)du
where * is the standard convolution in the x-variable, and -1/4 for which Im(e) is closed in M. We also assume that this embedding can be extended to a so-called "thick path", which image will be a tubular neighbourhood of Im(e). These are the main conditions that are needed, which are fulfilled when M is n-dimensional. Under these conditions, following the "smooth tubular neighbourhood theorem" (see e.g. [START_REF] Berger | A panoramic overview of Riemannian geometry Springer (2003) The D-topology for diffeological spaces[END_REF]) we can assume that there is a parametrization of the closed tubular neighbourhood under consideration via an embedding

E :]0; 1[×B n-1 → M
where B n-1 is the Euclidian n -1 dimensional unit ball and E(x, 0) = e(x). We set phi : R → R + a smooth function with support in [-1; 1] and such that φ = 1 on a neighbourhood of 0. We also parametrize B n-1 via spherical coordinates (r, θ 1 , ...θ n-1 ) Under these conditions, we consider the path

C t : R → Dif f (M )
defined by

C t (x) = x if x /
∈ Im(E) E(c φ(r).t (x ), r, θ 1 , ...θ n-1 ) if x = E(x , r, θ 1 , ...θ n-1 ) .

We have that ∂ t C t (x)| t=0 is a smooth vector field, which equals to e * (1) when r = 0. As a consequence, Thus the flow along Im(e) must be t → e(x + t). Since Im(e) is closed in M ; this flow does not extend to a flow in M.

Theorem 2 . 4 .

 24 The vector field ∂ t C t (x)| t=0 has no global flow on M and hence Dif f (M ) is a non regular diffeological Lie group with integral Lie algebra.Proof. We investigate the flow of ∂ t C t (x)| t=0 on Im(e) and we have thate * (∂ t C t (x)| t=0 ) = 1 × {0} ∈ e * T M = C ∞ (]0; 1[; R × R n-1 ).

  Theorem 2.2. There exists a smooth path v on T Id ]0;1[ D such that no smooth path g on D satisfies the equation∂ t g • g -1 == v. , ∂ t c t (y) = 1 and c o (y) = y.so that the only possible solution is the translation g t (x) = x + t. We have As a consequence, we get the announced result:Theorem 2.3. D is a non regular diffeological Lie group.2.3.Final remark: Dif f (M ) is a non regular diffeological Lie group. Let M be a smooth manifold, for which there is an embedding

	and by the way,									
	∀(t, y) ∈ ]-1/4; 1/4[ × ]0; 1[ ∀t > 0, g t / ∈ A
	so that									
					∀t > 0, g t / ∈ D.
											< t < 1/4. For
	t = 0, (t, x) → c t (x)) is smooth. Moreover, since
					sup φ <	1 0, 4e	< 1,
	x -α 2 ; x + α 2 . For t ∈ -α 4 ; α 4 , we have that	4 ; α 4 ×
						c t (u) = x + t
	whenever	u ∈ x -	α 2	; x +	α 2	⊂	α 2	; 1 -	α 2	⊂ ]2|t|; 1 -2|t|[ .
	By the way, (u, t) → c t (u) is smooth on -α 4 ; α 4 × x -α 2 ; x + α 2 and hence it is
	smooth everywhere. By direct differentiation,		
					∂ t c t (x)| t=0 = 1.
	Now, we get the following:						

for fixed t, one can easily check that ∂ x c t > 0, which shows that ∀t ∈] -

1/4; 1/4[, c t ∈ D. Theorem 2.1. The path t → c t is of class C ∞ (] -1/4; 1/4[, D). Moreover, ∂ t c t | t=0 = 1 ]0;1[ . is a constant map.

Proof. Let x ∈]0; 1[. Let us now check smoothness of (t, x) → c t (x) at (0; x). Let α = min{x, 1 -x} and let us restrict our study on the open subset -α Proof. Let v be the constant path equal to 1. Let t → g t be a solution of the last equation and let x ∈]0; 1[. Then we have, ∀y ∈]0; 1[, setting x = g t (y), ∂ t g t (y) = (∂ t g t ) • g -1 t (x) = 1, e :]0; 1[→ E
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