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A fast indirect method to compute 
functions of genomic relationships 
concerning genotyped and ungenotyped 
individuals, for diversity management
Jean‑Jacques Colleau1, Isabelle Palhière2, Silvia T. Rodríguez‑Ramilo2 and Andres Legarra2* 

Abstract 

Background: Pedigree‑based management of genetic diversity in populations, e.g., using optimal contributions, 
involves computation of the Ax type yielding elements (relationships) or functions (usually averages) of relationship 
matrices. For pedigree‑based relationships A, a very efficient method exists. When all the individuals of interest are 
genotyped, genomic management can be addressed using the genomic relationship matrix G; however, to date, the 
computational problem of efficiently computing Gx has not been well studied. When some individuals of interest 
are not genotyped, genomic management should consider the relationship matrix H that combines genotyped and 
ungenotyped individuals; however, direct computation of Hx is computationally very demanding, because construc‑
tion of a possibly huge matrix is required. Our work presents efficient ways of computing Gx and Hx, with applications 
on real data from dairy sheep and dairy goat breeding schemes.

Results: For genomic relationships, an efficient indirect computation with quadratic instead of cubic cost is 
x = Z

(

Z
′
x
)

/k, where Z is a matrix relating animals to genotypes. For the relationship matrix H, we propose an indirect 
method based on the difference between vectors Hx − Ax, which involves computation of Ax and of products such 
as Gw and A−1

22
w, where w is a working vector derived from x. The latter computation is the most demanding but can 

be done using sparse Cholesky decompositions of matrix A−1, which allows handling very large genomic and pedi‑
gree data files. Studies based on simulations reported in the literature show that the trends of average relationships 
in H and A differ as genomic selection proceeds. When selection is based on genomic relationships but management 
is based on pedigree data, the true genetic diversity is overestimated. However, our tests on real data from sheep and 
goat obtained before genomic selection started do not show this.

Conclusions: We present efficient methods to compute elements and statistics of the genomic relationships G and 
of matrix H that combines ungenotyped and genotyped individuals. These methods should be useful to monitor and 
handle genomic diversity.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Optimal contribution [1–3] is a method of choice for 
the management of genomic diversity. In this method, 
reproducers are chosen such that the expected genetic 
gain and expected increase in homozygosity are properly 

weighted. The increase in homozygosity is estimated 
based on average relationships between selected indi-
viduals, and in livestock these relationships are usually 
pedigree-based. Such measures of diversity can be repre-
sented as x′Kx where K is a matrix of relationships and 
x a vector of contributions to the next generation. Opti-
mizing contributions in x is a non-linear problem that 
requires repeated computation of x′Kx, where the most 
difficult part is the computation of Kx. In the case of 
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pedigree relationships, a very fast method exists for this 
computation [4]. Here we recall that, in genomic selec-
tion, genomic relationships must be included in matrix K 
[5], and we present computational strategies in the case 
of genomic selection where all, or part of, the animals 
have been densely genotyped.

Genomic evaluation considers several tens of thou-
sands of single nucleotide polymorphisms (SNPs) that 
are distributed across the whole genome, and in the 
most frequent implementation (genomic best linear 
unbiased prediction (GBLUP), or single-step GBLUP) it 
uses a so-called genomic relationship matrix. Following 
this approach, the accuracy in the evaluation of breeding 
values is improved compared to that of pedigree-based 
evaluation by exploiting existing linkage disequilibrium 
with neighboring quantitative trait loci (QTL) [6]. Con-
sequently, genomic selection affects gene transmission, 
directly for SNPs and indirectly for QTL.

However, because of linkage between these high-den-
sity SNPs, indirect hitch-hiking also affects gene trans-
mission at loci other than SNPs and QTL [7]. This fact 
impairs the conventional pedigree-based methods used 
for computing coancestry and inbreeding coefficients, 
where selection is assumed to be neutral, at any locus, 
concerning the gene transmission probabilities. Neu-
trality means that selection does not modify the prob-
abilities of gene transmission within a given pedigree. 
For instance, before selection proceeds, the genotype 
of an unselected individual at a given locus comes from 
any possible grandparent pair with a probability of 1/4. 
However, when genomic selection occurs, grandparent 
combinations have local selective values that depend on 
the direction of selection (generally a combination of 
traits), and some of these combinations are better than 
others. Then, genomic selection restricts variability faster 
than predicted by the conventional algorithms based on 
pedigrees.

Sonesson et  al. [5] illustrated by simulation that neu-
trality is impossible in a genomic selection scenario: 
they showed that the evolution of genomic relationship 
coefficients estimates the evolution of true inbreeding 
much more accurately than the evolution of pedigree-
based coefficients. For instance, if two close sibs are 
selected because they have inherited the same beneficial 
allele at a QTL, and if they have a genomic relationship 
of 0.6, pedigree relationships can account for only 0.5 of 
the relationship. This is logical as genomic relationships 
describe realized instead of expected relationships, and 
take into account Mendelian segregation and linkage 
due to the finite size of the genome [8]. Thus, genomic 
management of genetic variability is required in order to 
avoid detrimental trends. For instance, Sonesson et  al. 
[5] tried to maximize genetic gain when using genomic 

selection while restricting the rate of inbreeding per gen-
eration to 0.50% by using either genomic (each individual 
was genotyped) or pedigree-based coefficients. The true 
rate of inbreeding was 0.53% in the first case, which is in 
fairly good agreement with the restricted value. However, 
it reached a value as high as 2.26% when pedigree-based 
coefficients were used. In comparison, pedigree manage-
ment with pedigree-based evaluation yields a true rate of 
inbreeding of only 0.74%, due to lower selection pressure 
on the QTL.

When monitoring evolution of genetic variability over 
time, or even optimizing management of genetic diver-
sity at a given time, some individuals of interest may be 
ungenotyped (see “Appendix” for a comprehensive list of 
these situations). A simple example is when young geno-
typed rams are chosen, in which case these are genotyped 
whereas females are not. Estimating future inbreeding 
needs to consider both the genotyped rams and ungeno-
typed females.

Then, (ungenotyped, genotyped) and (ungenotyped, 
ungenotyped) relationships by combining pedigree and 
genomic information should be estimated. A natural 
approach is to use the matrix usually called H that was 
conceived to extend the information in genomic relation-
ships to all individuals in a pedigree, regardless of the 
genotyping status [9]. Extensions of the theory accom-
modate different origins (metafounders), selection and 
drift [9–11]. Although it is most often used for genetic 
evaluation in the single-step GBLUP [9, 12], its use for 
management of diversity is natural, even if the evaluation 
is not by single-step GBLUP e.g., for dairy cattle where 
multi-step methods are the most common.

The objective of our study was to develop an indirect 
method for computing genomic relationship coeffi-
cients and vector functions Gx and Hx, where the ped-
igree-based relationship matrix A may (or not) account 
for single or multiple origins. The method that we pre-
sent here is useful to expedite the computations needed 
when monitoring or optimizing management of diver-
sity in genomic selection, as already done by the indirect 
method for computing vectors Ax in the pedigree-based 
context [4].

The new approach was evaluated using data from dairy 
goat and dairy sheep breeding programs. We also dis-
cuss the issues that raise from using H instead of A in the 
world of practitioners and breeders and suggest methods 
to present genomic relationships at the classical pedigree 
scale via shift and scale conversion factors.

Methods
Computation of the matrix product Gx
Consider the genomic relationship matrix G = ZZ′/k 
[13], where Z is a matrix of genotypes for n animals and 
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m markers coded additively, and often “centered” locus-
wise with reference either to base or to observed allele 
frequencies, and k is a scale factor, typically the sum of 
heterozygosities at the markers. Weights for each locus 
can be introduced in the form G = ZDZ′, and methods 
in this paper extend easily to this case. Aguilar et al. [14] 
presented efficient methods to compute G. To compute 
products, it is more efficient to use Gx = Z(Z′x)/k (with-
out explicitly forming G) at a quadratic cost 2mn instead 
of the cubic cost of forming first G (cubic cost mn2) to 
later compute Gx (quadratic cost n2). The exception is 
when n is small compared to m, in which case it is easier 
to compute and store G.

Either of the matrix–vector products in Gx = Z(Z′x)/k 
can be programmed using public, already optimized, pos-
sibly parallel, subroutines such as DGEMV from BLAS 
[15]. Note that optimal contribution decisions are invari-
ant to the choice of the reference allele (which results in 
the same G) or to different estimates of base allelic fre-
quencies used in Z and k, because changing assumed 
allele frequencies only scale and sum constants to Gx but 
the optimum is the same.

Recalling the properties of the indirect computation of the 
matrix product Ax
Vectors Ax (where x is any vector) can be quickly 
obtained following [4] based on the well-known fact 
that the sparse matrix A−1 is the product of an upper 
sparse triangular matrix by its transpose [16, 17]. The fast 
method is very handy to compute portions or functions 
of A wihout explicitly setting it up. For instance, extract-
ing sections of A column-wise can be done by comput-
ing column i as the product Ax, where x contains 1 in 
position i and 0 elsewhere. After only a single run, it also 
allows the computation of average relationships within 
groups of individuals a = x′Ax or between two groups of 
individuals a = y′Ax, where x and y are vectors of indi-
vidual contributions. On the contrary, setting up explic-
itly matrix A by the tabular rule is prohibitive because it 
involves a number of operations equal to the square of 
the number of individuals in the pedigree of candidates, 
which can be very large.

Computation of the matrix product Hx
Matrix H expands genomic information contained in G 
to ungenotyped individuals via pedigree relationships as 
follows [9, 12]:

where subindexes 1 and 2 refer to ungenotyped and gen-
otyped individuals, respectively.

H = A +

[

A12A
−1
22 0

0 I

][

I
I

]

[G− A22]
[

I I
]

[

A−1
22 A21 0
0 I

]

The inverse of H is sparse and regularly used in single-
step GBLUP. However, computing Hx is more demanding 
than any of the two previous cases Ax or Gx, because it 
involves dense products and inverses that involve A22 and 
G. The first purpose of our paper is to show this complex-
ity and how this computation can be efficiently carried 
out.

An additional problem arises from the fact that the two 
terms forming H, i.e., G and A, should ideally refer to the 
same genetic base. Vitezica et  al. [11] and Christensen 
et  al. [18] suggested to compute G first using observed 
allele frequencies and then to convert it into matrix ˜G , 
following metrics of pedigree base. The conversion prin-
ciple was that the average of ˜G and its average diagonal 
should be equal to their counterparts in matrix A22 . 
Then, ˜G = αJ+ βG, where shift parameter α and scale 
parameter β were obtained from four means: the average 
terms A22 and G, and the average diagonal terms d(A22) 
and d(G). Based on the two constraints, β =

d(G)−G

d(A22)−A22
 

and α = A22 − βG. This can be understood as correct-
ing for drift of the overall mean (α) and reduction in 
variance (β) [19]. If the genotyped population is large 
enough and mating is approximately at random, then 
average inbreeding (in either G or A22) is the average half 
relationships and β ≈ 1− α

2
. These coefficients can also 

be interpreted as α = 2Fst and β = 1− Fst, where Fst is 
a measure of differentiation from the more recent geno-
typed population in G to the base population of A22 [11, 
19, 20].

However, considering the genomic base as the refer-
ence is preferable, i.e. modifying A, not G. Indeed, matrix 
A depends on pedigree recording and relies upon the 
assumption that pedigree founders are fully unrelated. 
This assumption can be removed using the metafounder 
approach [21], which postulates that the pedigree-based 
additive relationship between any pair of founders is 
equal to a positive parameter γ (from 0 to 2) that sum-
marizes the situation of the pedigree base in reference to 
the genomic base [10]. This parameter γ can be estimated 
from genomic data [22], and represents the homozygosity 
across founders in the pedigree that would yield observed 
genomic relationships in G, where G is computed as the 
cross-product G = ZZ′/(2/m) with Z containing {− 1, 0, 
1} values. Furthermore, Garcia-Baccino et al. [22] showed 
that the value of γ is relative to a theoretical genomic 
base that displays maximum variability at each marker 
locus (allelic frequencies 0.5), thus giving rise by drift 
to the pedigree base and to differentiation of frequen-
cies in the genotyped population. Then, γ is simply eight 
times the variance of the (unobserved) marker frequen-
cies in the pedigree founders. In this context, they inter-
preted γ as an Fst index [23] and they proposed several 



Page 4 of 11Colleau et al. Genet Sel Evol  (2017) 49:87 

estimation methods for parameter γ. The metafounder 
approach extends easily to several breeds or origins (e.g. 
genetic groups) by considering Ŵ, a matrix extension of γ, 
and this also provides an elegant solution to the problem 
of computing relationships including unknown parent 
groups [17], a case for which relationship is not a well-
defined concept. As a result, we considered the meta-
founder approach to be adequate for the monitoring and 
management of genetic variability.

Direct computation of matrix product Hx
The following algorithms to compute Hx use the pedi-
gree-based matrix A [24] and they are exactly the same 
when including metafounders in A[Γ ] [21].

Matrix H has the following components:

Let y = Hx =

(

y1
y2

)

=

(

H11 H12

H21 H22

)(

x1
x2

)

 be the 

product of matrix H by any vector x. The matrix expres-
sion of y2 = H21x1 +H22x2 = GA−1

22 A21x1 +Gx2 
is fairly simple compared to the expression  
of y1 = H11x1 +H12x2 =

(

A11 + A12A
−1

22
(G− A22)A

−1

22
A21

)

x1 + A12A
−1

22
Gx2 due to the complexity of H11. If w 

denotes a working vector, intermediate computations 
such as Gw, Aw (indirect method) and A−1

22 w (iterative 
or exact solving) are involved. The computation sequence 
that has to be carried out in order to obtain H11x1 is quite 
long. Fortunately, results can be obtained more efficiently 
by an indirect method as detailed below.

An indirect computation of matrix product Hx
The computation method is indirect for two reasons. 
First, because it uses the difference d = y − z between 
y = Hx and z = Ax. Second, the method exploits the 
very simple expression of the inverse matrix H−1 [12, 25]:

so that 

H11 = A11 + A12A
−1
22 (G− A22)A

−1
22 A21,

H12 = A12A
−1
22 G,

H21 = GA−1
22 A21,

H22 = G.

H−1
= A−1

+

(

0 0

0 G−1
− A−1

22

)

,

AH
−1

=I+ A

�

0 0

0 G
−1

− A
−1

22

�

= I+





0 A12

�

G
−1

− A
−1

22

�

0 A22

�

G
−1

− A
−1

22

�



.

To obtain d, note that x = H−1y. Then:

Consequently,

and

Then, we obtain d2 = y2 − z2.
From Eq. (1), we obtain z1 = y1 + A12

(

G−1
− A−1

22

)

y2 , 
whereas from Eq.  (2) we obtain 
(

G−1
− A−1

22

)

y2 = −A−1
22 d2, leading to:

Finally, y1 = z1 + d1. Then, computing y1 through the 
indirect method is as simple as for y2, in total contrast 
with the direct method.

To summarize, in order to compute y = Hx:

1. Compute z = Ax using [4],
2. Compute y2 = GA−1

22 z2 = G
(

A−1
22 z2

)

,
3. Compute d2 = y2 − z2,
4. Compute d1 = A12A

−1
22 d2,

5. Compute y1 = z1 + d1. This is the final step.

Efficient solving
Product GA−1

22 z2 can be obtained as G times vector A−1
22 z2 , 

using the fast method for Gx described before. The main 
numerical hurdle consists in solving linear equation sys-
tems that involve A22, a full matrix. Replacing these sys-
tems by others that involve matrix A11, a sparse matrix, is 
appropriate because A−1

22 = A22
− A21

(

A11
)

−1
A12. Fur-

thermore, it is less time-consuming to restrict this equa-
tion to the genotyped individuals and their ancestors [26, 
27]. If B denotes the relationship matrix corresponding to 
such a pedigree, then A−1

22 = B22
− B21

(

B11
)

−1
B12.

When programming, it can be handled as follows. For 
any working vector w, let function f (w) return A−1

22 w by 

extracting section  2 of vector B−1

(

−

(

B11
)

−1
B12w

w

)

 , 

where products by B−1 and B12 can be obtained by the 
indirect method, and the linear equations involving 
matrix B11 can be solved by sparse matrix techniques 
[26, 28, 29]. Finally, Eq.  (3) becomes y2 = Gf (z2) and 

(1)z = Ax = AH−1y = y +





0 A12

�

G−1
− A−1

22

�

0 A22

�

G−1
− A−1

22

�



y

(2)z2 = y2 + A22

(

G−1
− A−1

22

)

y2,

(3)y2 =
(

I+ A22

(

G−1
− A−1

22

))

−1

z2 = GA−1
22 z2.

(4)d1 = A12A
−1
22 d2.
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Eq.  (4) becomes d1 = A12f (d2) i.e., section  1 of vector 

A

(

0
f (d2)

)

.

Computations in practical conditions
The indirect method can be used for monitoring and 
optimization diversity in large livestock populations: its 
implementation areas are briefly described in the “Appen-
dix”. Usually, breeding organizations that are willing to 
control genetic variability consider at a given time an 
(possibly long) operational list. This list consists in male 
and/or female candidates for selection, possibly extended 
by the rest of the live population when generations are 
overlapping. Optimal contributions of candidates to the 
next generation, represented by vector x, must be found, 
minimizing a function of the type 0.5x′Hx + w′x [22]. If 
all individuals in this operational list are genotyped, then 
computations are simple (at quadratic cost), restricted to 
the section of G individuals pertaining to the operational 
list. However, if some individuals in the operational list 
are not genotyped, computation of Hx vectors is needed. 
In this case, all genotyped animals add information to the 
full matrix H and the full G matrix should be used.

The fast indirect method is only used to compute 
(and possibly store) matrix H∗, the section of H pertain-
ing to the operational list. Afterwards, direct computa-
tions considering matrix H∗ provide function derivatives 
and Lagrange multipliers when analytic optimisation 
methods are used [1, 3] or variations of functions for 
alternative contribution vectors when Monte-Carlo opti-
mization is used [30, 31]. In the first case, a small num-
ber of configurations is considered before obtaining the 
optimal one, whereas this number can be very high for a 
Monte-Carlo method such as simulated annealing.

Tayloring genomic relationship statistics to practitioners
In this section, we present elements to yield statistics in 
a scale that can be used by breeders. Genomic relation-
ship coefficients derive from a statistical construction 
that has been basically developed for genomic evaluation 
purposes [13] although these coefficients are similar to 
marker-based relationships developed for conservation 
genetics [32]. Breeders and breeding organizations easily 
understand the output of research in the area of genetic 
evaluation, but understanding the concept of genomic 
relationships is more demanding. Practitioners are often 
puzzled by the unusual values of the genomic relation-
ship coefficients (for instance negative genomic inbreed-
ing, negative or very high relationships) in comparison 
with pedigree-based coefficients. This might deter breed-
ers from implementing an effective genomic manage-
ment of diversity.

A pragmatic compromise consists in optimization 
based on genomic relationships, possibly with meta-
founders, while the results (e.g. average inbreeding) 
are converted into more conventional scales before 
editing in output files. Conversion into conventional 
(pedigree-based) coefficients is carried out via a shift 
factor αconversion and a scale factor βconversion. We use 
the superscript “conversion” because these factors have 
not the same meaning as the α and β in the section on 
“Computation of matrix product Hx”: these are essen-
tially operational factors. For instance, they cannot be 
interpreted as drift between pedigree founders and 
genotyped individuals in later generations [11]. These 
factors αconversion and βconversion should be computed 
“once for all” based on a reference set of individuals 
that are genotyped before the effective start of genomic 
selection. Estimation forces equality of diagonals and 
overall means of G or H (computed with metafound-
ers) and A (computed without metafounders), so that 
Hconverted

= αconversionJ+ βconversionH, and output files 
meet the familiar scale of probabilities of identity-by-
descent from unrelated founders. First, stability of con-
version factors is required to allow management and 
monitoring of genomic variability across cohorts over 
time, i.e. the average inbreeding in 2016 can be reliably 
compared to the average inbreeding in 2017.

Moreover, αconversion and βconversion need to be esti-
mated based on the animals genotyped before genomic 
selection proceeds. Otherwise, the shift factor αconversion 
would be biased negatively. This can be predicted from 
Sonesson et  al. [5], who showed that, in the case of 
genomic selection with pedigree management, the aver-
age pedigree-based relationship increases less than 
the average genomic relationship. Conversion is unbi-
ased if the rates (�F) of genomic inbreeding over time, 
either directly or based on converted values, are the 
same. At times t and t + 1, the average genomic rela-
tionship coefficients are ht and ht+1 with conversion 
formula h

converted

t = αconversion
+ βconversionht. If the 

asymptotic regime has already been reached, then the 
rate of inbreeding based on genomics is �F =

ht−ht−1

2−ht
. 

If the rate of inbreeding is evaluated based on converted 

values, then �Fconverted
=

βconversion
(

ht−ht−1

)

2−αconversion−βconversionht
. Both 

expressions are equal when βconversion
= 1− αconversion/2, 

which is usually the case if Hardy–Weinberg equilibrium 
holds in the genotyped population for which αconversion 
and βconversion have been estimated [19], i.e. if genotyping 
is at random or before genomic selection proceeds, but 
will possibly not hold if genotyped animals are selected 
based on genomic evaluation.
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Results
Application to real data
Pedigree and genomic data from dairy goat and dairy 
sheep breeding programs were used. The French dairy 
goat breed Alpine uses an optimized selection program 
where the average conventional relationship is minimized 
for desired genetic gains [2, 30, 31]. Genomic selec-
tion is under study [33] and is planned in a near future. 
The Manech Tête Rousse, (blonde faced Manech), MTR 
dairy sheep breed belongs to the genetic improvement 
schemes in the French Western Pyrenees that are tran-
sitioning towards genomic selection [34]. Management 
of diversity is carried out within paternal grand-sire 
families. The Alpine SNP file consists in 2069 individu-
als genotyped for 46,687 SNPs by the SNP50 Bead chip 
(Illumina Inc., San Diego, CA, USA). These individu-
als represented all the progeny-tested males born since 
1999, plus some favorably progeny-tested males born 
from 1985 to 1998, and 1200 females, born in 2008 
and 2009, from 11 sires involved in a QTL detection 
design. The size of the operational list in x for produc-
ing young bucks in 2016 was 1135 (129 genotyped and 
1006 ungenotyped): 44 genotyped male candidates, 769 
ungenotyped female candidates (the reason why the Hx 
methodology was considered), 322 reference individu-
als (85 genotyped and 237 ungenotyped). The size of the 
pedigree file of the 3075 individuals under investigation 
(i.e. 2069 + 1135 − 129) plus their ancestors was 33,117. 
In this part of the whole Alpine population, pedigree 
recording was satisfactory and as a result, the pedigrees 
of the youngest individuals were 10 to 11 equivalent gen-
erations long, on average, and this is why tracing back 
the 3075 individuals yielded 30,000 more individuals. All 
the sires and maternal grand-sires of the ungenotyped 
individuals of the operational list were genotyped. Then, 
these males provided the connection between the 1006 
ungenotyped individuals and the initial 2069 genotyped 
individuals. Sections of the A and H matrices corre-
sponding to these animals were obtained.

The MTR dataset consists of 2108 genotyped rams 
born between 1999 and 2009, and 500,626 pedigree 
records, corresponding to the whole pedigree of the 
breed. Rams were genotyped with the OvineSNP50 Bead 
chip (Illumina Inc., San Diego, CA, USA). After applying 
filtering criteria [34], 38,997 SNPs were retained. Table 1 
shows the number of genotyped rams and of females 
with all four grand-parents known (only these females 
are used as dams of rams) per year. With this MTR data-
set, we were not able to carry out the same studies as in 
Alpine goats because neither of the 2108 genotyped indi-
viduals had genotyped sire, dam or grandparents, and 
they did not constitute a clear operational list since they 
already had offspring, i.e., they were not candidates to 

selection. In this case, we computed average relationships 
per year to assess robustness of these statistics to using 
either A or H.

For both breeds, these datasets were not affected by 
genomic selection, which is planned only for the near 
future. The genotypic values in Z were coded as − 1, 0, 
1 and G obtained as G = ZZ′/(m/2) for m SNPs [10, 21, 
22]. The conventional relationship coefficients consid-
ered for constructing matrix H introduced a single meta-
founder with parameter γ, estimated by generalized least 
squares [22].

In both cases, using the indirect method and optimized 
computations of Gw, Aw (by the indirect method) and 
A−1
22 w, computations are inexpensive, taking a few sec-

onds on a laptop for any of the two datasets. To give a 
flavor of timing, in an Apple Macbook with 4 threads, 
computation of Gw = Z(Z′x)/k (2nm operations) with 
5000 simulated animals and 50,000 simulated SNPs took 
0.4  s, whereas computation of G itself (n2m operations) 
took 37 s.

Results for the Alpine breed
Parameter γ was estimated as 0.30. This means that the 
genetic variance in the pedigree base (the metafounder 
gene pool) was only 0.85 = 1− γ /2 times that in the 
conceptual genomic base [21].

The terms of A22 (pedigree-based and not account-
ing for γ) were sorted by ascending order and classified 
into 10 groups of equal size (deciles). Figure 1 shows for 
each decile the average a, the average h, the average dif-
ference between both a and h and the standard deviation 
of the difference over replicates (after multiplication by 
100 for clarity). Parameter γ was estimated to be equal to 

Table 1 Number of genotyped rams and females with four 
grandparents in each year of birth for the Manech Tête 
Rousse breed

Year of birth Males geno-
typed

Females with four grand-
parents known

Total

1999 91 5434 5525

2000 132 5469 5601

2001 128 5579 5707

2002 139 5724 5863

2003 130 5927 6057

2004 117 5757 5874

2005 135 6064 6199

2006 125 6250 6375

2007 186 6154 6340

2008 545 6307 6852

2009 380 5515 5895

Total 2108 64,180 66,288
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0.30, which explained the large average differences. The 
standard deviation of the difference was fairly constant 
irrespective of the decile considered. Differences in lower 
deciles were not less variable than in higher deciles: 
this meant that the relative impact of modifications was 
larger for lower pedigree-based coefficients. The order 
of magnitude of the standard deviation of the difference 
was 2. Expressed in usual terms (coancestry coefficient 
(%) in the classical pedigree base), this corresponded 
to 2×0.5

0.7
= 1.43, a very small value. Finally, relationship 

modifications revealed by genotyping were substantial.
Deciles of A were constructed for the ungeno-

typed  ×  genotyped section of the operational list (see 
Fig. 2) and for the ungenotyped × ungenotyped section 
(see Fig.  3). Basically, H-matrix genomic relationships 
involving ungenotyped individuals are estimated by 
regression and consequently, are intermediate between 
conventional relationships and true genomic relation-
ships. The standard deviation of the difference between 
pedigree-based and genomic coefficients substantially 
decreased from 2 to 1.1 (Fig.  2) and 0.8 (Fig.  3) for the 
(ungenotyped, genotyped) and (ungenotyped, ungeno-
typed) sections, respectively. Thus, H estimations of 
genomic relationships for ungenotyped animals by 
regression yielded shrunken relationships, which were 
intermediate between genomic and pedigree-based coef-
ficients in spite of the sires and maternal-grandsires of 
the ungenotyped individuals being genotyped. Conse-
quently, if some candidates (e.g. dams of young males) are 
not genotyped in the future as in our operational list, the 
efficiency of the selection optimization will be affected 
in comparison with full genotyping. If the objective is to 
maximize genetic gain while constraining for genomic 
inbreeding rate [1], ungenotyped individuals with good 
estimated breeding values (EBV) will not be sufficiently 
selected because they cannot be shown to be “original”, 

leading to a loss for EBV. If the objective is to minimize 
inbreeding rate while constraining for genetic gain [2], as 
for the Alpine breed, favorable ungenotyped individuals 
will also be neglected, leading to a weaker minimization 
of inbreeding rate. Due to this partial genomic inbreed-
ing control, targeted genetic gains are smaller than under 
full control.

From the 2069 genotyped individuals, 129 were in the 
operational list. The remaining 1940 genotyped individu-
als were reduced to 1500 or 1000 or 500 in order to check 
the effect of reducing the genomic information. These 
individuals were selected by considering the highest rela-
tionship with the 1006 ungenotyped individuals from the 
operational list to reduce the loss of genomic informa-
tion. Three different values were obtained for the opera-
tional section of H. These values were compared, term by 
term, with the values obtained with the complete matrix 
G. When the size of the working G decreased, the average 
term of the operational section of H was lower than the 
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Fig. 1 Average A, average H and difference between H and A for the 
genotyped × genotyped section in the Alpine breed. Values were 
sorted by ascending relationship and divided into 10 deciles. Bars 
indicate standard deviation. Relationship coefficients are multiplied 
by 100
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Fig. 2 Average A, average H and difference between H and A for the 
ungenotyped × genotyped section in the Alpine breed. Values were 
sorted by ascending relationship and divided into 10 deciles. Bars 
indicate standard deviation. Relationship coefficients are multiplied 
by 100
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Fig. 3 Average A, average H and difference between H and A for the 
ungenotyped × ungenotyped section in the Alpine breed. Values 
were sorted by ascending relationship and divided into 10 deciles. 
Bars indicate standard deviation. Relationship coefficients are multi‑
plied by 100
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reference average term (complete G). The average differ-
ence was −  0.135, −  0.162 and −  0.183 (after multipli-
cation by 100). Correspondingly, the standard deviation 
of the difference increased (0.180, 0.262 and 0.356). Thus, 
eliminating only 440 individuals out of 1940 (situation 
1500) has already an impact, which indicates that it is 
important to use the largest possible G, possibly includ-
ing animals that are not candidates to selection.

Conversion of genomic relationships into ped-
igree-based coefficients for animals of the opera-
tional list provided the following results: shift factor 
αconversion

= − 0.345 and scale factor βconversion
= 1.177. 

Then, βconversion was very close to 1− αconversion/2, which 
would be the result obtained under Hardy–Weinberg 
equilibrium. The absence of negative bias on αconversion 
might be due to the fact that data were obtained from a 
past breed history in conventional (not genomic) condi-
tions of genetic evaluation, selection and management 
of diversity. Figure 4 shows the statistics about the con-
verted values. Only a very small proportion of negative 
values was obtained in the lowest deciles (1–3).

Results for the Manech Tête Rousse breed
Parameter γ was estimated as 0.47. This means that the 
genetic variance in the pedigree base (the metafounder 
gene pool) was only 77% of that in the conceptual 
genomic base.

Figure  5 compares both alternative measures of over-
all relationship (both A and H include metafounders, 
thus they are comparable) and shows that, in general, 
both are very similar. The decrease in overall relationship 
observed from 2006 onwards is due to the larger number 
of rams genotyped (Table 1). Before this date, genotyped 
rams were only elite rams whereas from 2006 onwards, 
these were candidate rams, thus more diverse.

The mean value of the difference of relationships based 
on H or on A is represented in Fig.  6. Although very 

small, the trend seems to indicate that H detects more 
inbreeding than A.

Discussion
The analytic expressions of the relationship matrix H and 
its inverse are complex because the terms of H concern-
ing the ungenotyped individuals are estimated by regres-
sion, conditionally on the observed genomic matrix G. 
Managing or monitoring genomic variability when some 
of the individuals involved are not genotyped requires 
to be able to compute vectors Hx. Consequently, a naive 
extension of the indirect method used for computing 
conventional vectors Ax to compute Hx provides tedious 
expressions. However, the analytic expressions are rather 
simple after considering the difference Hx − Ax in two 
main computation steps. This makes the genomic indi-
rect method easy to implement and very efficient. In this 
method, the conventional indirect method is used several 
times and the main computation hurdle is linked to dense 
matrices G and A22 (the pedigree-based counterpart of 
G ). If w denotes a working vector, computations of vec-
tors Gw and A−1

22 w are needed, but they can be carried 
out by efficient methods. Using G−1, or an approximation 
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Fig. 4 Statistics about the converted values in the Alpine breed. 
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Fig. 5 Evaluation of average relationships based on A and based on 
H in the Manech Tête Rousse breed

Fig. 6 Mean value of the difference between H and A considering 
the 20 replicates in the Manech Tête Rousse breed
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as in the algorithm for the proven and young animals 
(APY) algorithm [35], is possible but has no opera-
tional advantage because it results in a larger number of 
operations.

In spite of the above-mentioned methodological 
improvements, computing estimated genomic relation-
ship coefficients when needed is quite demanding in 
terms of memory requirements and computation time. 
Although this does not pose a problem for national 
genetic evaluations, this might be a hurdle for some 
breeding companies that use local personal computers. 
First, all the genotyped individuals should be accounted 
for, even if they are little related or unrelated with the 
ungenotyped individuals under consideration (a fact 
confirmed by the study on the Alpine breed). This unfa-
vorable finding can be puzzling at first sight but is quite 
natural because pedigree founders (typically nominally 
‘unrelated’ individuals) exhibit substantial genomic rela-
tionships (the γ parameter). Then, it is easy to infer that 
every member of the population pedigree is linked to 
the genotyped population, even if nominally (through 
pedigree) “unrelated”. Second, many runs of the genomic 
indirect method should be carried out if the size of the 
operational list involved in managing procedures is large. 
This is also the case if monitoring procedures aim at esti-
mating the average genomic inbreeding per cohort: these 
averages require computing each individual coefficient by 
a specific run of the indirect method.

Converting genomic coefficients into pedigree-based 
coefficients, ideally through formulas that are established 
before starting genomic selection, was proposed and 
tested on the Alpine data. This might help breeders to 
really implement genomic management in parallel with 
genomic selection, a mind attitude imperiously needed 
[5]. In particular, if management continues to be based 
on pedigree relationships, the decrease in the actual 
(genomic) variability will be faster than its estimate based 
on pedigree, a warning signal for breeders.

Conclusions
We presented efficient computation methods of products 
Hx for the single-step relationship matrices, which com-
bine genotyped and ungenotyped individuals. Our meth-
ods are efficient and extend well to large datasets based 
on existing appropriate algorithms for computation of 
products Gw and A−1

22 w. These algorithms are useful for 
the management of genetic diversity in the genomic era.
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Appendix
The scope of the Ax and Hx methodologies 
concerning genetic diversity
The scope of Ax methodology (no genotyping)
This method allows fast computation of statistics con-
cerning the evolution of inbreeding and relationship 
coefficients over time (monitoring). Frequent implemen-
tations are computations of within and between cohorts 
(e.g. bulls born in the same year vs. cows born in the 
same year) average relationships. In the first case, the Ax 
methodology provides the average relationship very eas-
ily, e.g. within year of birth; in the second case, it provides 
the average coefficient for all possible pairs across the 
two cohorts.

The Ax method can also easily provide the average rela-
tionship of a group with a given individual. In all these 
cases, matrix A is never constructed, a useful property 
when very large commercial populations are considered.

Optimization of selection in nuclei and studs is a major 
field of implementation of breeding programs. Selection 
can be performed to maximize genetic gain while con-
straining the inbreeding rate or to minimize inbreeding 
rate while constraining the genetic gain. In both cases, 
the full A matrix pertaining to all candidates is needed, 
and possibly the vector of the average relationships of 
each candidate with a background group of non-candi-
date individuals. All these operations can be performed 
very easily with Ax. Afterwards, based on this basic 
material, optimization can be performed by deterministic 
or Monte-Carlo methods to determine optimal contribu-
tions of each candidate.
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When genomic selection has already started, but 
remains conventionally (pedigree) managed, an optimi-
zation akin to the previous one can be carried out for 
genotyping in selection nuclei, i.e., choosing which young 
candidates (especially females) deserve to be genotyped, 
for a given genotyping investment.

Another implementation is the optimization of insemi-
nation in large commercial populations, in order to deter-
mine the contribution of each candidate and the resulting 
mating design. This requires the full table of relationships 
between male candidates and females to be known. It can 
be constructed after computing as many vectors Ax as 
the number of male candidates (generally a few in com-
parison with commercial population size).

The scope of Hx methodology (partial genotyping)
In genomic selection, the same operations as described 
above need to be done by the breeders: monitoring and 
handling by optimal contribution or similar methods. 
Ideally, this can be carried out using genomic relation-
ships and the Gx methodology. However, it does happen 
that some individuals of interest are genotyped and oth-
ers are not. The probability of such an event depends on 
the kind of implementation.

The methodology Hx is useful for monitoring the evo-
lution of large commercial populations, where many 
females are ungenotyped. For selection nuclei with exten-
sive genotyping, e.g. in pigs or poultry, where all animals 
are genotyped, it allows a full description of the evolution 
of the population including generations with old ungeno-
typed animals. For instance, it allows the comparison of 
the increase in inbreeding in pedigreed generations ver-
sus genotyped generations.

Optimizing genotyping will be permanently useful 
with open nuclei, where some females (e.g. rams’ dams) 
originate from commercial herds, are not necessarily 
genotyped, and for which the Hx methodology will be 
necessary.

Optimization of insemination in large commercial pop-
ulations, with a large proportion of ungenotyped females 
will be always needed, which is an operation that requires 
the potential of the Hx methodology.
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