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Abstract

High dimensional data clustering is an increasingly interesting topic in the statistical analysis of heterogeneous
large-scale data. In this paper, we consider the problem of clustering heterogeneous high-dimensional data
where the individuals are described by functional variables which exhibit a dynamical longitudinal structure.
We address the issue in the framework of model-based co-clustering and propose the functional latent block
model (FLBM). The introduced FLBM model allows to simultaneously cluster a sample of multivariate
functions into a finite set of blocks, each block being an association of a cluster over individuals and a cluster
over functional variables. Furthermore, the homogeneous set within each block is modeled with a dedicated
latent process functional regression model which allows its segmentation according to an underlying dynamical
structure. The proposed model allows thus to fully exploit the structure of the data, compared to classical
latent block clustering models for continuous non functional data, which ignores the functional structure
of the observations. The FLBM can therefore serve for simultaneous co-clustering and segmentation of
multivariate non-stationary functions. We propose a variational expectation-maximization (EM) algorithm
(VEM-FLBM) to monotonically maximize a variational approximation of the observed-data log-likelihood
for the unsupervised inference of the FLBM model.
Keywords: Co-clustering; Mixture modeling; Latent block model; Functional data analysis; Curve cluster-
ing; EM algorithms; Variational EM

1 Introduction and related work

High dimensional data clustering is an increasingly interesting topic in the statistical analysis of heterogeneous
large-scale data. Many statistical studies involve observations issued from underlying entire functions (i.e.
curves). The most frequent case of functional representations is that in which the studied individuals have
a temporal variability (i.e. time series). This “functional” aspect of the data adds additional difficulties
in the analysis compared to the case of a classical multivariate (non functional) analysis, which ignores
the underlying structure of the variables. The adapted paradigm of analyzing such data is the increasing
framework of functional data analysis (FDA) [25]. The key tenet of FDA is to treat the data not just as
multivariate observations but as (discretized) values of underlying smooth functions (e.g. curves).
Here we consider the problem of the unsupervised analysis of heterogeneous high-dimensional functional
data via clustering. One of the most popular and successful approaches in cluster analysis is model-based
clustering (e.g. see [9]), that is the one based on the flexible and statistically sound framework of mixture
models [23], and the well-known desirable properties of the expectation-maximization (EM) algorithm [7, 22].
This flexible modeling framework in multivariate analysis is taking a growing investigation for FDA. See for
example [2, 8, 10, 15, 16, 17, 20].
In high-dimensional scenarios, one extended framework of model-based clustering framework to the cluster-
ing of individuals described by a large set of variables, is model-based co-clustering. While model-based
clustering techniques aim at providing a partition of the data into homogeneous groups of individuals, or
possibly in variables, model-based co-clustering [11, 13, 14], also called bi-clustering or block clustering, aim
at simultaneously co-clustering the data into homogeneous blocks, a block being a simultaneous association
of individuals and variables. They rely on latent block models [14] and have been developed for binary
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data [11, 13, 18], categorical data [19], contingency table [11, 12, 13] and continuous data [14, 21]. The
block-mixture can be estimated by a block classification EM (CEM) algorithm for maximum classification
likelihood and hard co-clustering [11, 12, 13], or a variational block EM (VBEM) for maximum likelihood es-
timation and fuzzy co-clustering [12, 13]. The block mixture models have also been examined from a Bayesian
prospective to deal with some problems encountered in the MLE approach. Recently, [18, 19] proposed in
the Bayesian formulation of the latent block mixture, for respectively binary data and categorical data, a
variational Bayesian inference and Gibbs sampling technique.
However, these statistical analyses in model-based co-clustering are designed for multivariate vectorial data.
For multivariate functional data issued from underlying continuous functions (e.g. curves), a standard clas-
sical multivariate co-cluster analysis is not well-adapted as it does not fully exploit the underlying structure
of the individuals. We therefore consider the model-based co-clustering of functional data, which is much
less explored compared to the previously described model-based clustering approaches. Indeed, it is only
very recently that we start having models dedicated to the co-clustering of multivariate functional data (see
for example [1]). Furthermore, we consider the problem in which each group of homogeneous curves itself is
governed by an unknown underlying dynamical process so that the group exhibits a segmentation property.
This is the co-clustering of heterogeneous and possibly dynamical multivariate functional data. We propose
the functional latent block model (FLBM) to simultaneously cluster a sample of multivariate functions into a
finite set of blocks, each block being an association of a cluster over individuals and a cluster over variables.
Furthermore, the homogeneous set within each block is modeled with a dedicated latent process functional
regression model which allows its segmentation according to an underlying dynamical process. The proposed
model allows thus to fully exploit the structure of the data, compared to classical latent block clustering
models for continuous non functional data, which ignore the functional structure of the data, to better ad-
dress the issue of high-dimension by co-clustering the variables together with the individuals, and, to further
take into account the dynamical structure of the data. The FLBM can therefore serve for simultaneous
co-clustering and segmentation of high-dimensional non-stationary functions. For the model inference, we
propose a variational expectation-maximization (EM) algorithm (VEM-FLBM) to monotonically maximize
a variational approximation of the observed-data log-likelihood. Then, we derive a stochastic version the EM
algorithm to the FLBM model (SEM-FLBM). The remainder of this paper is organized as follows. Section
2 presents the proposed FLBM model. Then, Section 3 presents the developed variational EM algorithm to
the unsupervised inference of the model parameters.

2 Functional Latent Block Model (FLBM)

The aim here is to cluster a sample of multivariate functions (e.g. curves, times series, signals, etc.) into a
finite number of homogeneous blocks. Let us denote by Y = (yij) the data sample matrix of n individuals
defined on a set I and d continuous functional variables defined on a set J . Each variable is an univariate
curve yij =

(
yij(t1), . . . , yij(tTij )

)
of Tij observations y(t) ∈ R issued from an underlying function at the

points (t1, . . . , tTij ), typically a sampling time.

2.1 Conditional independence and conditional data distribution

As in latent block models for binary, categorical, or continuous Gaussian data, we adopt a conditional
independence assumption. We assume that there exists a partition Z = (zik; i = 1, . . . , n, k = 1, . . . ,K) into
K clusters on I and a partition W = (wjℓ; j = 1, . . . , d, ℓ = 1, . . . ,M) into M clusters on J , such that the
univariate functions yij are conditionally independent given Z and W . The zik’s (resp. wjℓ’s) are binary
indicators of row i (resp. column j) belonging to row cluster k (resp. to column cluster ℓ). The conditional
probability density function (pdf) of a curve yij given the covariate vector xij ∈ Rp (typically a vector
depending on the time t), within block kℓ, that is, given that the ith row belongs to cluster k and the jth
column belongs to cluster ℓ, is a parametric pdf of the form f(yij |xij ;θkℓ), θkℓ being its parameter vector.
Thus, the conditional pdf of the data Y given Z and W , and the predictors X, can be expressed as

f(Y |Z,W ,X; {θkℓ}) =
∏

i,j,k,ℓ

{
f(yij |xij ;θkℓ)

}zikwjℓ . (1)
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Many choices are possible to model the block conditional pdf in this context of co-clustering of functional
data, which are here assumed to further exhibit an underlying dynamical structure, in addition to the
grouping aspect and the functional representation of the data. We propose to model this distribution by a
regression model, and hence the modeling of the conditional pdf in this FDA context is based on exploring the
relationship of the observed variable Yij given the covariate vector X via a regression model mean function of
the form f(y|x), rather than only exploring the unconditional distribution of Y , as in standard latent block
clustering of non-functional data. We assume that these observations, within each block kl, arise from an
underling parametric possibly non-linear regression function µ(x(t);β) parametrized by β. The observations
of each univariate curve have a functional structure of the form: yij(t) = µ(xij(t);β) + ϵ(t) where ϵ(.) is a
standard Gaussian variable representing and additive noise. Furthermore, here it is also assumed that these
functional observations are governed by a hidden process with a finite number of regimes or states so that
they exhibit a segmentation property in the temporal (or longitudinal) dimension.
To accommodate this further behavior for these functional data, we propose to model the conditional data
distribution with a particular dynamical regression model with a hidden process, which has been shown
to have more attractive properties compared to several regression models for functional data. This is the
regression model with hidden logistic process (RHLP) [5, 6, 26]. The RHLP as a model for each conditional
block distribution is particularly suited to approximate non-linear functions and to provide a partition of
each block into a finite number of segments.

2.2 Modeling with the Regression model with hidden logistic process

In the proposed functional latent block model, each block (1) is a regression model with a hidden logistic
process (RHLP). The RHLP for a block kl assumes that the observed function (a curve or a time series)
yij is governed by an R-state hidden process H = (h1, . . . , hTij ) with the categorical random variable
hij ∈ {1, . . . , R} representing the unknown (hidden) label of the state of the observation yij at time t, where
the conditional state distribution is the one of a Gaussian polynomial regression model. The polynomial
regressors are therefore governed by the latent categorical variable h whose distribution is assumed to be
a multinomial logistic that depends on t, and thus allows to smoothly switch from one regression model to
another at each point t. The conditional distribution for each block kℓ of a curve is thus defined by (see for
example [5][6] for more details):

f(yij |xij ;θkℓ) =

Tij∏

t=1

Skℓ∑

r=1

αkℓr(t; ξkℓ)N
(
yij(t);β

T
krxij(t),σ

2
kℓr

)
(2)

where the dynamical weights α′s are given by the multinomial logistic: αkℓr(t; ξkℓ) =
exp (ξkℓr0+ξkrℓ1t)∑Skℓ

r′=1
exp (ξkℓr′0+ξkℓr′1t)

·
This modeling allows to control the state transition points as well as their smoothness, and to segment each
function into Skℓ segments by maximizing the logistic weights. The parameter vector of the conditional block
distribution for the FLBM is θkl = (ξTkℓ,β

T
kℓ1, . . . ,β

T
kℓSkl

,σ2
kℓ1, . . . ,σ

2
kℓSkℓ

)T where ξkℓ = (ξTkℓ1, . . . , ξ
T
kℓSkℓ−1)

T ,

ξkℓr = (ξkℓr0, ξkℓr1)T being the 2-dimensional coefficient vector for the rth logistic component with ξkℓSkℓ

being the null vector.

2.3 The functional latent block model

The proposed functional latent block model (FLBM) assumes, as in standard latent block models, that the
label indicators zij and wij defining the partition Z over the individuals, and respectively the partition W
over the attributes, are hidden. The data pdf is then given by

f(Y |X;Ψ ) =
∑

(z,w)∈Z×W

P(Z,W )f(Y |X,Z,W ;θ) (3)

where Z and W denote the sets of possible labels z for I and w for J . Moreover, we assume that the
latent variables Z and W are independent, that is, P(Z,W ) = P(Z)P(W ) and are independently and
identically distributed according to the multinomial distribution: P(Z) =

∏
i P(zi) and P(W ) =

∏
j P(wj)

with zi ∼ M(π1, . . . ,πK) and wj ∼ M(ρ1, . . . , ρM ), where (πk = P(zik = 1), k = 1, . . . ,K) and (ρℓ =
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P(wjℓ = 1), ℓ = 1, . . . ,M) are the mixing proportions which sum to 1. An RHLP is used as a conditional
block distribution f(Y |X,Z,W ;θ) (1). We thus obtain the following functional latent block model:

f(Y |X;Ψ ) =
∑

(z,w)∈Z×W

P(Z;π)P(W ;ρ)f(Y |X,Z,W ;θ)

=
∑

(z,w)∈Z×W

∏

i,k

πzik
k

∏

j,ℓ

ρ
wjℓ

ℓ

∏

i,j,k,ℓ

f(yij |xij ;θkℓ)
zikwjℓ . (4)

where f(yij |xij ;θkℓ) is defined by (2). The model is parametrized by the parameter vector Ψ = (πT ,ρT ,θT )T ,

with π = (π1, . . . ,πK)T , ρ = (ρ1, . . . , ρM )T , and θ = (θT
11, . . . ,θ

T
kℓ, . . . ,θ

T
KM )T . The proposed FLBM model

can be represented by the following generative process:

z ∼ Multinomial(π1, . . . ,πK)

w ∼ Multinomial(ρ1, . . . , ρM )

y|x, z, w ∼ f(.|x;θz,w)

The next section is dedicated to the parameter estimation. We first propose a maximum-likelihood estimation
via a variational EM algorithm and then a MCMC sampling via a stochastic EM extension.

3 Parameter estimation by a variational EM algorithm

In this first approach, the unknown parameter vector Ψ is estimated from an independent sample of unlabeled
curves ((x1,y1), . . . , (xn,yn)) by monotonically maximizing the observed-data log-likelihood logL(Ψ ) =
log f(Y |X;Ψ ). As in classical mixture-model based clustering, this log-likelihood can not be maximized in
a closed form. The usual tool in such a context is the EM algorithm [7][22]. In order to derive the EM
algorithm for the FLBM model, we need to define the log-likelihood of Ψ given the complete-data, which are
composed of the observed data, the hidden cluster labels Z and W , and the hidden processes {H} governing
each block of the data. This is the FLBM complete-data log-likelihood, given by:

logLc(Ψ ) = log f(Y ,Z,W ,H|X;Ψ )

=
∑

i,k

zik log πk +
∑

j,ℓ

wjℓ log ρℓ +
∑

i,j,k,ℓ,t,r

zikwjℓhtr log
[
αkℓr(t; ξkℓ)N

(
yij(t);β

T
kℓrxij(t),σ

2
kℓr

)]
(5)

where (htr; t = 1, . . . , Tij , r = 1, . . . , Skℓ) is a binary variable indicating from which state each observation
yij(t) within the block cluster kℓ is originated at time t. The E-Step of the standard EM algorithm requires
namely the calculation of the posterior joint distribution P(zikwjℓ = 1|yij ,xij) of the missing labels z and
w due to the double missing structure over rows and over columns, which does not factorize due to the
conditional dependence on the observed curves of the row and the column labels. To tackle this problem,
[13] [14] proposed a variational approximation-based solution for latent block clustering, by relying on the
Neal and Hinton interpretation of the EM algorithm [24]. We adopt this variational approximation in this
context of model-based co-clustering of multivariate functional data. The resulting variational EM algorithm
for the FLBM (VEM-FLBM) model, starts from an initial solution at iteration q = 0, and then alternates at
the (q + 1)th iteration between the following variational E- and M- steps until convergence:

VE Step Estimate the variational approximated posterior memberships:

1. z̃(q+1)
ik ∝ π(q)

k exp
(∑

j,ℓ,t,r w̃
(q)
jℓ h̃(q)

tr log
[
αkℓr(t; ξ

(q)
kℓ )N

(
yij(t);β

T (q)

kℓr xij(t),σ
(q)2

kℓr

) ])

2. w̃(q+1)
jℓ ∝ ρ(q)ℓ exp

(∑
i,k,t,r z̃

(q)
ik h̃(q)

tr log
[
αkℓr(t; ξ

(q)
kℓ )N

(
yij(t);β

T (q)

kℓr xij(t),σ
(q)2

kℓr

) ])

3. h̃(q+1)
tr ∝ α(q)

kℓr(t; ξ
(q)
kℓ )N

(
yij(t);β

(q)T

kℓr xij(t),σ
(q)2

kℓr

)

where the tilde notations stand for the variational approximation z̃ik = P(zik = 1|yij ,xij), w̃jℓ = P(wjℓ =

1|yij ,xij), and we have h̃tr = P(htr = 1|zi, wj , yij(t), xij(t)).
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M Step update the parameters estimates θ(q+1) given the current estimated posterior memberships

1. π(q+1)
k =

∑
i z̃

(q+1)
ik
n

2. ρ(q+1)
ℓ =

∑
j w̃(q+1)

jℓ

d

The update of each block parameters θkℓ consists in a weighted version of the RHLP updating rules:

3. ξ(new)
kℓ = ξ(old)kℓ −

[
∂2F (ξkℓ)
∂ξkℓ∂ξ

T
kℓ

]−1

ξkℓ=ξ(old)
kℓ

∂F (ξkℓ)
∂ξkℓ

∣∣∣
ξkℓ=ξ(old)

kℓ

which is the IRLS maximisation of the function

F (ξkℓ) =
∑

i,j,t z̃
(q)
ik w̃(q)

jℓ h̃(q)
tr logαkℓr(t; ξkℓ) w.r.t ξkℓ.

The regression parameters updates consist in analytic weighted least-squares problems:

4. β(q+1)
kℓr =

[∑
i,j z̃

(q)
ik w̃(q)

jℓ XT
ijΛ

(q)
ijkrXij

]−1 ∑
i,j z̃

(q)
ik w̃(q)

jℓ XT
ijΛ

(q)
ijkryij

5. σ2(q+1)

kℓr =
∑

i,j z̃(q)
ik w̃(q)

jℓ ||
√

Λ(q)
ijkr(yij−Xijβ

(q+1)
kr )||2

∑
i,j z̃(q)

ik w̃(q)
jℓ trace(Λ(q)

ijkr)
where Xij is the design matrix for the ith curve, Λ(q)

ijkr is

the diagonal matrix whose elements are the posterior segment memberships {h̃(q)
ijtr; t = 1, . . . , Tij}.

3.1 The CEM and SEM algorithms for the FLBM

We also use another approximation fo the EM algorithm, that is the Classification EM (CEM) algorithm [4].
In the CEM framework, a maximum classification likelihood estimation is performed rather than a maximum
likelihood estimation. This is achieved by replacing the fuzzy memberships, which correspond to the posterior
component memberships in the previous scheme, by their binary allocations. The SEM algorithm [3] allows
to overcome some drawbacks of the EM algorithm, including its sensitivity to starting values and does not
use an approximation. It was used for for latent block models for categorical data [19] and more recently
for functional data [1]. For the proposed FLBM model, the SEM algorithm steps and those the VEM are
essentially the same; the SEM incorporates a stochastic step between the VE and the M steps where the
missing labels are simulated according to their posterior distribution given a current estimate of the model.

Compared to [1], the proposed FLBM is adapted for both functional data approximation and to deal with
dynamical functions by segmentation. Also from a perspective of model-selection, while the model in [1] uses
transformed data by functional PCA, which makes the use of information criteria not adapted, and thus can
not be compared, from this model selection point of view, to the the proposed FLBM model, which directly
models the original data.

4 Conclusion and discussion

The proposed FBLM is suited to the cluster analysis and segmentation of high-dimensional functional data
arising from a population of different groups where each group is governed by an underlying hidden process.
The model inference can be performed by a variational EM algorithm or an SEM algorithm, which does not
use approximation. The next problem which will be investigated is the one of model selection. In model-based
co-clustering approaches, the problem of model selection in general consists in selecting the best number of
blocks (co-clusters). The most commonly used penalized log-likelihood criteria such as BIC, AIC etc. can
not be directly used for the block mixture models. Approximations, namely variational ones, are needed
such as approximated ICL or BIC-like criteria as in [21]. In [19], the authors developed a Bayesian inference
technique using MCMC for the latent block model for categorical data, and an exact ICL for model selection.
These criteria might also be used for the proposed FLBM model.
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