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On the best constant in Ga¤ney inequality

We discuss the value of the best constant in Ga¤ney inequality namely

when either ^! = 0 or y ! = 0 on @ :

for every ! 2 W 1;2

Introduction

We start by recalling Ga¤ney inequality for vector …elds. Let R n be a bounded open smooth set and be the outward unit normal to @ : Then there exists a constant C = C ( ) > 0 such that for every vector …eld u 2 W 1;2 ( ;

R n ) kruk 2 L 2 C kcurl uk 2 L 2 + kdiv uk 2 L 2 + kuk 2 L 2
where, on @ ; either ^u = 0 (i.e. u is parallel to and we write then u 2 W 1;2 T ( ; R n )) or y u = 0 (i.e. u is orthogonal to and we write then u 2 W 1;2 N ( ; R n )). In the context of di¤erential forms (identifying 1 forms with vector …elds) this generalizes to (using the notations of [START_REF] Csató | The pullback equation for di¤ erential forms[END_REF] which are summarized in the next section) the following theorem (for references see below). : We refer to Mitrea [START_REF] Mitrea | Dirichlet integrals and Ga¤ney-Friedrichs inequalities in convex domains[END_REF] and Mitrea-Mitrea [START_REF] Mitrea | Finite energy solutions of Maxwell's equations and constructive Hodge decompositions on nonsmooth Riemannian manifolds[END_REF]; while for vector …elds in dimension 2 and 3; see Amrouche-Bernardi-Dauge-Girault [START_REF] Amrouche | Vector potentials in three-dimensional non-smooth domains[END_REF], Ben Belgacem-Bernardi-Costabel-Dauge [START_REF] Belgacem | Un résultat de densité pour les équations de Maxwell[END_REF], Ciarlet-Hazard-Lohrengel [START_REF] Ciarlet | Les équations de Maxwell dans un polyèdre: un résultat de densité[END_REF], Costabel [START_REF] Costabel | A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains[END_REF], Costabel-Dauge [START_REF] Costabel | Un résultat de densité pour les équations de Maxwell régularisées dans un domaine lipschitzien[END_REF] and Girault-Raviart [START_REF] Girault | Finite element approximation of the Navier-Stokes equations[END_REF].

Clearly Ga¤ney inequality for k = 1 is reminiscent of Korn inequality. The best constant in Korn inequality have been investigated by Bauer-Pauly [START_REF] Bauer | On Korn's …rst inequality for tangential or normal boundary conditions with explicit constants[END_REF] and Desvillettes-Villani [START_REF] Desvillettes | On a variant of Korn's inequality arising in statistical mechanics[END_REF]. Our results (cf. Corollary 32) allow us to recover the best constant found in [START_REF] Bauer | On Korn's …rst inequality for tangential or normal boundary conditions with explicit constants[END_REF].

We should end this introduction with a striking analogy with the classical Hardy inequality (cf., for example [START_REF] Marcus | On the best constant for Hardy's inequality in R n[END_REF] and the bibliography therein). Indeed, classically the best constant ; when the domain is convex (and in fact (n 1) convex, see [START_REF] Lewis | A geometric characterization of a sharp Hardy inequality[END_REF]), is independent of the dimension (in this case = 1=4) and the best constant is not attained; while for general non-convex domains the best constant is, in general, strictly less than 1=4: However the authors were not able to see if this connection is fortuitous or not.

Notations

We now …x the notations, for further details we refer to [START_REF] Csató | The pullback equation for di¤ erential forms[END_REF].

(i) A k form ! 2 k = k (R n ) is written as ! = X 1 i1< <i k n ! i1 i k dx i1 ^ ^dx i k
when convenient it is identi…ed to a vector in R ( n k ) : When necessary, we extend, in a natural way, the de…nition of ! i1 i k to any 1 i 1 ;

; i k n (see Notations 2.5 (iii) in [START_REF] Csató | The pullback equation for di¤ erential forms[END_REF]). (ii) The exterior product of 2 1 and ! 2 k is ^! 2 k+1 and is de…ned as

^! = X 1 i1< <i k n 2 4 n X j=1 j ! i1 i k 3 5 dx j ^dx i1 ^ ^dx i k = X 1 i1< <i k+1 n " k+1 X =1 ( 1) 1 i ! i1 i 1 i +1 i k+1 # dx i1 ^ ^dx i k+1 :
(iii) The interior product of 2 1 and ! 2 k is y ! 2 k 1 and is de…ned as

y ! = X 1 i1< <i k 1 n 2 4 n X j=1 j ! ji1 i k 1 3 5 dx i1 ^ ^dx i k 1 :
(iv) The scalar product of !; 2 k is de…ned as

h!; i = X 1 i1< <i k n ! i1 i k i1 i k = 1 k! X 1 i1; ;i k n ! i1 i k i1 i k the associated norm being j!j 2 = X 1 i1< <i k n ! i1 i k 2 = 1 k! X 1 i1; ;i k n ! i1 i k 2 :
When k = 1 the interior and the scalar product coincide.

(v) The Hodge operator associates to ! 2 k ; ! 2 n k via the operation ! ^ = h !; i dx 1 ^ ^dx n ; for every 2 n k :

The interior product of 2 1 and ! 2 k can be then written as

y ! = ( 1) n(k 1) ( ^( !)) :
We also use several times the identities ^( y !) + y ( ^!) = j j 2 ! and h ^ ; i = h ; y i :

(vi) The exterior derivative of ! 2 k is d! 2 k+1 and is de…ned as

d! = X 1 i1< <i k n 2 4 n X j=1 ! i1 i k xj 3 5 dx j ^dx i1 ^ ^dx i k = X 1 i1< <i k+1 n " k+1 X =1 ( 1) 1 ! i1 i 1i +1 i k+1 xi # dx i1 ^ ^dx i k+1 :
When k = 1 we can identify d! with curl !: (vii) The interior derivative (or codi¤erential) of ! 2 k is ! 2 k 1 and is de…ned as

! = X 1 i1< <i k 1 n 0 @ n X j=1 ! ji1 i k 1 xj 1 A dx i1 ^ ^dx i k 1 :
When k = 1 we can identify ! with div !:

(viii) The spaces W 1;2

T

; k and W 1;2

N

; k are de…ned as

W 1;2 T ; k = ! 2 W 1;2 ; k : ^! = 0 on @ W 1;2 N ; k = ! 2 W 1;2 ; k : y ! = 0 on @
where is the outward unit normal to @ : (ix) The sets H T ; k and H N ; k are de…ned as

H T ; k = n ! 2 W 1;2 T ; k : d! = 0 and ! = 0 in o H N ; k = n ! 2 W 1;2 N ; k : d! = 0 and ! = 0 in o :
3 Some generalities

Our …rst result is the following.

Proposition 2 Let R n be a bounded open set and 0 k n: Then

C T ( ; k) ; C N ( ; k) 1: Moreover C T ( ; 0) = C N ( ; 0) = C T ( ; n) = C N ( ; n) = 1 and C T ( ; k) = C N ( ; n k) : Remark 3 When k = 0 (respectively k = n), r! can be identi…ed with d! (respectively !).
Therefore, for any ! 2 W 1;2 ;

kr!k 2 = kd!k 2 (respectively kr!k 2 = k !k 2 ).
Hence the statements in the proposition when k = 0 or n are trivial.

Proof

Step 1. We …rst prove the main statement. Let

x = (x 1 ; ; x n ) 2 and 0 < r < R be such that B r (x) B R (x) : Choose a function 2 C 1 0 ( ) such that = 1 in B r and 0 1 in : We extend it to R n by 0: De…ne for every m 2 N ! m (x) = sin (mx 1 ) (x) dx 1 ^ ^dx k 2 C 1 0 ; k :
Since ! m vanishes on the boundary of B R ; we have, by Theorem 5.7 in [START_REF] Csató | The pullback equation for di¤ erential forms[END_REF] (see also [START_REF] Csató | An identity involving exterior derivatives and applications to Ga¤ney inequality, Discrete and Continuous Dynamical Systems[END_REF]),

Z B R jr! m j 2 = Z B R jd! m j 2 + j ! m j 2 ) Z jr! m j 2 = Z jd! m j 2 + j ! m j 2 :
To prove that

C T ; C N 1 it is su¢ cient to show that lim m!1 kd! m k 2 + k ! m k 2 + k! m k 2 kr! m k 2 = 1 + lim m!1 k! m k 2 kr! m k 2 = 1: Note that Z j! m j 2 meas :
On the other hand we have that

Z jr! m j 2 Z Br jr! m j 2 = m 2 Z Br cos 2 (mx 1 ) dx:
Since B r is open, there exists m su¢ ciently large so that

x 1 ; x 1 + 2 m B 0 r B r
where B 0 r = y = (y 2 ; ; y n ) 2 R n 1 : jy i x i j r n ; i = 2;

; n is independent of m: We thus obtain that

Z jr! m j 2 m 2 meas (B 0 r ) Z x1+2 =m x1 cos 2 (mx 1 ) dx 1 :
Use now the change of variables

x 1 = t=m to get Z jr! m j 2 m meas (B 0 r ) Z mx1+2 mx1 cos 2 (t) dt = m meas (B 0 r ) :
This shows that kr! m k 2 ! 1 and thus C T ; C N 1 as asserted.

Step 2. The fact that C T ( ; k) = C N ( ; n k) is immediate through the Hodge operator.

4

The main theorem

Statement of the theorem

We now turn to the main theorem that gives several equivalent properties of C T ( ; k) = 1 (or analogously C N ( ; k) = 1). We start with a de…nition (cf. for a similar one [START_REF] Ji-Ping | p convex Riemannian manifolds[END_REF]).

De…nition 4 Let

R n be an open smooth set and = @ be the associated (n 1) surface. Let 1 ; ; n 1 be the principal curvatures of :

Let 1 k n 1: We say that is k convex if i1 + + i k 0; for every 1 i 1 < < i k n 1:
Remark 5 (i) When k = 1; it is easy to show that convex implies that is 1 convex. The reverse implication is also true but deeper. The result is due to Hadamard under slightly stronger conditions and as stated to Chern-Lashof [START_REF] Chern | On the total curvature of immersed manifolds II[END_REF] (see also Alexander [START_REF] Alexander | Locally convex hypersurfaces of negatively curved spaces[END_REF]).

(ii) When 2 k n 1; the condition that is k convex is strictly weaker than saying that is convex. In particular when k = n 1 the condition means that the mean curvature of = @ is non-negative.

We will also use the following quantities.

De…nition 6 Let

R n be open and 2 C 1 ; 1 : We de…ne for every 0 k n the two maps

L ; K : k (R n ) ! k (R n ) by L (!) = 0 if k = 0 and K (!) = 0 if k = n; while L (!) = X 1 i1< <i k n ! i1 i k d y dx i1 ^ ^dx i k ; if k 1 K (!) = X 1 i1< <i k n ! i1 i k ^ dx i1 ^ ^dx i k ; if k n 1:
Remark 7 (i) If is the unit normal to a surface and is extended to a neighborhood of such that j j = 1 everywhere, then (see [START_REF] Csató | The pullback equation for di¤ erential forms[END_REF] Lemma 5.5)

L ( ^ ) = ^L ( ) and K ( y ) = y K ( ) :
The right-hand sides of these expressions do not depend on the chosen extension, see [START_REF] Csató | The pullback equation for di¤ erential forms[END_REF] Theorem 3.23. We will use this frequently henceforth.

(ii) In the remaining part of the article we will always assume that has been extended to a neighborhood of = @ so as to have j j = 1:

(iii) Note that L is linear in ! and : By de…nition it acts pointwise on !: In this way, identifying k (R n ) with vectors R ( n k ) ; the operator L can be seen as a matrix acting on !: But in ; on the contrary, L is a local (di¤erential) operator. The same holds true for K :

We then have the main result.

Theorem 8 Let

R n be a bounded open smooth set and 1 k n 1: Then the following statements are equivalent.

(i) C T ( ; k) = 1:

(ii) For every ! 2 W 1;2 T ; k e K (!) = hK ( y !) ; y !i 0; on @ : (iii)
The sharper version of Ga¤ ney inequality holds, namely

kr!k 2 kd!k 2 + k !k 2 ; 8 ! 2 W 1;2 T ; k : (iv) is (n k) convex. (v) The supremum in (1) is not attained. (vi) C T is scale invariant, namely, for every t > 0 C T (t ; k) = C T ( ; k) :
Remark 9 (i) Using the Hodge operation, we obtain immediately, from the theorem, the following equivalent relations.

-C N ( ; k) = 1:

e L (!) = hL ( ^!) ; ^!i 0; whenever y ! = 0 on @ : -The sharper version of Ga¤ney inequality holds, namely

kr!k 2 kd!k 2 + k !k 2 ; 8 ! 2 W 1;2 N ; k :
-is k convex.

-The supremum in (2) is not attained.

-C N is scale invariant.

(ii) The condition (ii) of the theorem can be equivalently rewritten (for any ! 2 W 1;2

T ; k ) as e K (!) = hK (!) ; !i 0; on @ since, recalling that ^! = 0 (since ! 2 W 1;2 T ), e K (!) = hK ( y !) ; y !i = h y K (!) ; y !i = hK (!) ; ^( y !)i = hK (!) ; ! y ( ^!)i = hK (!) ; !i :
Similar remarks hold for e L: (iii) Note that if C T ( ; k) = 1; then H T ; k = f0g : This follows at once from (iii) of the theorem, since non-zero constant forms cannot satisfy the boundary condition. A similar remark applies to H N :

Some algebraic results

Lemma 10 Let 1 k n 1 and 1 ;

; k 2 1 with i y j = 0; if i 6 = j:

Then i y ( 1 ^ ^ i 1 ^ i+1 ^ ^ k ) = 0; i = 1; ; k j 1 ^ ^ k j = j 1 j j k j :
Furthermore let

C jl = n X s2; ;s k =1 ( 1 ^ ^ k ) js2 s k ( 1 ^ ^ k ) ls2 s k : and c j = 1 ^ j 1 ^ j+1 ^ ^ k ; then C jl = ((k 1)!) k X =1 c 2 j l :
Proof Step 1. We …rst establish by induction that

k y ( 1 ^ ^ k 1 ) = 0
(and similarly for all the other i ). Indeed if k = 2; this is our hypothesis; so assume that the result has been proved for k and let us prove it for k + 1: We know from Proposition 2.16 in [START_REF] Csató | The pullback equation for di¤ erential forms[END_REF] that

k+1 y ( 1 ^ ^ k ) = ( k+1 y 1 ) ^( 2 ^ ^ k ) 1 ^( k+1 y ( 2 ^ ^ k ))
applying the hypothesis of induction we have the result.

Step 2. We also proceed by induction and show that

j 1 ^ ^ k j = j 1 j j k j :
When k = 2 we have still from Proposition 2.16 in [START_REF] Csató | The pullback equation for di¤ erential forms[END_REF] that

j 1 ^ 2 j 2 = j 1 j 2 j 2 j 2 j 1 y 2 j 2 = j 1 j 2 j 2 j 2
as wished. So let us assume that the result has been proved for k and let us establish it for k + 1: By the very same proposition as above we get

j 1 j 2 j 1 ^ 2 ^ ^ k ^ k+1 j 2 = j 1 ^ 1 ^ 2 ^ ^ k+1 j 2 + j 1 y ( 1 ^ ^ k+1 )j 2 = j 1 y ( 1 ^ ^ k+1 )j 2 :
Moreover since

1 y ( 1 ^ ^ k+1 ) = ( 1 y 1 ) ^( 2 ^ ^ k+1 ) 1 ^( 1 y ( 2 ^ ^ k+1 ))
using Step 1 and the hypothesis of induction, we infer that

j 1 y ( 1 ^ ^ k+1 )j 2 = j 1 j 4 j 2 ^ ^ k+1 j 2 = j 1 j 4 j 2 j 2 j k+1 j 2 :
Combining the results we have indeed proved our claim.

Step 3. Writing

( 1 ^ ^ k ) js2 s k = det h ( s r ) s=j;s2; ;s k r=1; ;k i we …nd that ( 1 ^ ^ k ) js2 s k = k X =1 ( 1) +1 j ( 1 ^ 1 ^ +1 ^ ^ k ) s2 s k = k X =1 ( 1) +1 j c s2 s k ( 1 ^ ^ k ) ls2 s k = k X =1 ( 1) +1 l ( 1 ^ 1 ^ +1 ^ ^ k ) s2 s k = k X =1 ( 1) 
+1 l c s2 s k :

Observing (using Steps 1 and 2) that

n X s2; ;s k =1 c s2 s k c s2 s k = ((k 1)!) D c ; c E = 8 < : (k 1)! c 2 if = 0 if 6 =
we …nd that

C jl = ((k 1)!) k X =1 c 2 j l :
as claimed.

We next give a way of computing the quantity K :

Lemma 11 Let 1 k n;
R n be a smooth (n 1) surface with unit normal and R n be a neighborhood of : Let ; 2 C 1 ; k be such that, on ;

^ = ^ = 0:
Then the following equation holds true, on ; hK ( y ) ; y i + hK ( y ) ; y i = h ; y i + h ; y i hr ( y ) ; i :

In particular if = ^ in with

= 1 ^ ^ k 1
where 1 ; ; k 1 2 C 1 ; 1 with, for every i; j = 1;

; k 1 and for every x 2 ; j (x)j = 1; (x) y i (x) = 0 and i (x) y j (x) = ij ; then, in ; hK ( ); i = h ( ^ ) ; i : 

Proof
) ; i = D r j j 2 ; E = 0:
The proof is therefore complete.

Calculation of sums of principal curvatures

In the sequel R n will always be a bounded open smooth set with exterior unit normal : When we say that E 1 ;

; E n 1 is an orthonormal frame …eld of principal directions of @ with associated principal curvatures 1 ;

; n 1 ; we mean that f ; E 1 ; ; E n 1 g form an orthonormal basis of R n and, for every

1 i n 1; n X j=1 E j i l xj = i E l i ) i = n X j;l=1 E l i E j i l xj : (5) 
Lemma 12 Let E 1 ; ; E n 1 be an orthonormal frame …eld of principal directions of @ with associated principal curvatures 1 ;

; n 1 : Assume that E 1 ; ; E n 1 are extended locally to a neighborhood of @ such that f ; E 1 ;

; E n 1 g form an orthonormal frame …eld of R n : Let

1 k n 1; = E i1 i k 1 = E i1 ^ ^Ei k 1 and = E j1 j k 1 = E j1 ^ ^Ej k 1 (for k = 1; = = 1). Then h ( ^ ) ; i = ( 1 + + n 1 ) i1 + + i k 1 while for 6 = h ( ^ ) ; i + h ( ^ ) ; i = 0:
Proof The case k = 1 is immediate. Indeed the …rst equation reads as

h ( ^ ) ; i = ( ) = div ( ) = 1 + + n 1 :
While nothing is to be proved for the second equation. So we discuss now the case k 2:

Step 1: k 2 (…rst equation). We now prove that if

= E i1 i k 1 = E i1 ^ ^Ei k 1 ; then h ( ^ ) ; i = ( 1 + + n 1 ) i1 + + i k 1 (i) We …nd that h ( ^ ) ; i = 1 (k 1)! n X s1; ;s k 1 =1 2 4 n X j=1 ( ^ ) js1 s k 1 xj 3 5 s1 s k 1 = A + B
where (recalling that j j = 1)

A = 1 (k 1)! n X j;s1; ;s k 1 =1 j s1 s k 1 xj s1 s k 1 = 1 (k 1)! n X j;s1; ;s k 1 =1 j xj ( s1 s k 1 ) 2 + 1 (k 1)! n X j=1 j n X s1; ;s k 1 =1 " s1 s k 1 2 2 # xj = div ( ) = 1 + + n 1 and B = 1 (k 1)! n X j;s1; ;s k 1 =1 " k 1 X r=1 ( 1) r sr js1 sr 1sr+1 s k 1 # xj s1 s k 1 = 1 (k 1)! n X j;s1; ;s k 1 =1 " k 1 X r=1 ( 1) r sr xj js1 sr 1sr+1 s k 1 # s1 s k 1 + 1 (k 1)! n X j;s1; ;s k 1 =1 " k 1 X r=1 ( 1) r sr js1 sr 1 sr+1 s k 1 xj # s1 s k 1 = B 1 + B 2 :
The result will be established once we prove that

B 1 = 1 (k 1)! n X j;s1; ;s k 1 =1 " k 1 X r=1 ( 1) r sr xj js1 sr 1sr+1 s k 1 # s1 s k 1 = i1 + + i k 1 and B 2 = 1 (k 1)! n X j;s1; ;s k 1 =1 " k 1 X r=1 ( 1) r sr js1 sr 1sr+1 s k 1 xj # s1 s k 1 = 0: (ii) Let us …rst prove that B 2 = 0 (recalling that = E i1 ^ ^Ei k 1 )
. We write

(k 1)! B 2 = k 1 X r=1 n X j;s1; sr 1;sr+1; ;s k 1 =1 n X sr=1 ( 1) 
r sr s1 s k 1 ! js1 sr 1 sr+1 s k 1 xj : Observe that, for every r = 1; ; k 1; n X sr=1 ( 1) r sr E i1 ^ ^Ei k 1 s1 s k 1 = y E i1 ^ ^Ei k 1 s1 sr 1sr+1 s k 1 = 0;
in view of Lemma 10, leading to the fact that B 2 = 0:

(iii) We …nally show that B 1 = i1 + + i k 1 : Note that, interchanging the positions of the indices s r and s r 0 ; we get (recalling that = E i1 ^ ^Ei k 1 )

B 1 = 1 (k 1)! n X j;s1; ;s k 1 =1 " k 1 X r=1 ( 1) r sr xj js1 sr 1sr+1 s k 1 # s1 s k 1 = 1 (k 2)! n X j;s1; ;s k 1 =1 h s1 xj E i1 ^ ^Ei k 1 js2 s k 1 E i1 ^ ^Ei k 1 s1 s k 1 i :
The result follows (cf. Lemma 10) since, for every 1 j; s 1 n;

k 1 X r=1 E j ir E s1 ir = 1 (k 2)! n X s2; ;s k 1 =1 E i1 ^ ^Ei k 1 js2 s k 1 E i1 ^ ^Ei k 1 s1 s k 1
and thus

B 1 = k 1 X r=1 0 @ n X j;s1=1 s1 xj E j ir E s1 ir 1 A = i1 + + i k 1
which is exactly what had to be proved.

Step 2: k 2 (second equation). We …nally establish that if

= E i1 i k 1 = E i1 ^ ^Ei k 1 and = E j1 j k 1 = E j1 ^ ^Ej k 1 : and 6 = ; then h ( ^ ) ; i + h ( ^ ) ; i = 0:
This amounts to showing that X = 0 where

X = n X s1; ;s k 1 =1 2 4 n X j=1 ( ^ ) js1 s k 1 xj 3 5 s1 s k 1 + n X s1; ;s k 1 =1 2 4 n X j=1 ( ^ ) js1 s k 1 xj 3 5 s1 s k 1 : (6)
We write X = A + B where

A = n X j;s1; ;s k 1 =1 j s1 s k 1 xj s1 s k 1 + n X j;s1; ;s k 1 =1 j s1 s k 1 xj s1 s k 1 = 2 n X j j xj n X s1; ;s k 1 =1 s1 s k 1 s1 s k 1 + n X j=1 j n X s1; ;s k 1 =1 [ s1 s k 1 s1 s k 1 ] xj = 0
(since h ; i = 0 by Lemma 10) and

B = n X j;s1; ;s k 1 =1 " k 1 X r=1 ( 1) 
r sr js1 sr 1sr+1 s k 1 # xj s1 s k 1 + n X j;s1; ;s k 1 =1 " k 1 X r=1 ( 1) 
r sr js1 sr 1sr+1 s k 1 # xj s1 s k 1 which leads to B = B 1 + B 2 where B 1 = n X j;s1; ;s k 1 =1 " k 1 X r=1 ( 1) 
r sr xj js1 sr 1 sr+1 s k 1 # s1 s k 1 + n X j;s1; ;s k 1 =1 " k 1 X r=1 ( 1) 
r sr xj js1 sr 1sr+1 s k 1 # s1 s k 1 B 2 = n X j;s1; ;s k 1 =1 " k 1 X r=1 ( 1) 
r sr js1 sr 1sr+1 s k 1 xj # s1 s k 1 + n X j;s1; ;s k 1 =1 " k 1 X r=1 ( 1) 
r sr js1 sr

1 sr+1 s k 1 xj # s1 s k 1 :
It remains to prove, in order to show that X = 0 where X is as in [START_REF] Chern | On the total curvature of immersed manifolds II[END_REF], that

B 1 = B 2 = 0: (i)
We start with the fact that B 2 = 0: We rewrite the de…nition as

B 2 = k 1 X r=1 n X j;s1; sr 1;sr+1; ;s k 1 =1 " n X sr=1 ( 1) 
r sr s1 s k 1 # js1 sr 1sr+1 s k 1 xj + k 1 X r=1 n X j;s1; sr 1;sr+1; ;s k 1 =1
" n X sr=1

( 1)

r sr s1 s k 1 # js1 sr 1sr+1 s k 1 xj : Since, for every r = 1; ; k 1; n X sr=1 ( 1) r sr s1 s k 1 = ( y ) s1 sr 1sr+1 s k 1 = 0 n X sr=1 ( 1) r sr s1 s k 1 = ( y ) s1 sr 1 sr+1 s k 1 = 0;
we …nd that indeed B 2 = 0: (ii) We …nally prove that B 1 = 0: Note that, interchanging the positions of the indices s r and s r 0 ; we obtain

B 1 = (k 1) n X j;s1; ;s k 1 =1 s1 xj js2 s k 1 s1 s k 1 + js2 s k 1 s1 s k 1 :
The result follows if we can show that, if 6 = where

= 1 ^ ^ k 1 and = 1 ^ ^ k 1 ; with i ; i 2 fE 1 ; ; E n 1 g ; then n X j;s1; ;s k 1 =1 s1 xj js2 s k 1 s1 s k 1 = n X j;s1; ;s k 1 =1 s1 xj js2 s k 1 s1 s k 1 = 0:
Since both identities are established similarly, we prove only the …rst one, namely

n X j;s1; ;s k 1 =1 s1 xj h ( 1 ^ ^ k 1 ) js2 s k 1 ( 1 ^ ^ k 1 ) s1s2 s k 1 i = 0: (7) 
Since 6 = we assume, up to reordering, that 1 6 = 1 : We claim that

C js1 = n X s2; ;s k 1 =1 h ( 1 ^ ^ k 1 ) js2 s k 1 ( 1 ^ ^ k 1 ) s1s2 s k 1 i = ((k 2)!) j 1 s1 1 h 2 ^ ^ k 1 ; 2 ^ ^ k 1 i : (8) 
which leads to

n X j;s1; ;s k 1 =1 s1 xj h ( 1 ^ ^ k 1 ) js2 s k 1 ( 1 ^ ^ k 1 ) s1s2 s k 1 i = ((k 2)!) h 2 ^ ^ k 1 ; 2 ^ ^ k 1 i n X j;s1=1 s1 xj j 1 s1 1 = ((k 2)!) h 2 ^ ^ k 1 ; 2 ^ ^ k 1 i 1 n X s1=1 s1 1 s1 1 = 0
(where 1 is the principal curvature corresponding to 1 ) which is exactly [START_REF] Ciarlet | Les équations de Maxwell dans un polyèdre: un résultat de densité[END_REF]. It remains to show [START_REF] Costabel | A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains[END_REF]. We have

( 1 ^ ^ k 1 ) js2 s k 1 = k 1 X r=1 ( 1) 
r+1 j r c r s2 s k 1 ( 1 ^ ^ k 1 ) s1s2 s k 1 = k 1 X t=1 ( 1) 
t+1 s1 t ( b t ) s2 s k 1 :
where

c r = 1 ^ r 1 ^ r+1 ^ ^ k 1 and b t = 1 ^ t 1 ^ t+1 ^ ^ k 1 :
We therefore have that Invoking Lemma 10 and the fact that 1 6 = 1 ; we obtain that, unless

C js1 = k 1 X r;t=1 ( 1) 
r+t j r s1 t n X s2; ;s k 1 =1 c r s2 s k 1 ( b t ) s2 s k 1 = ((k 2)!) k 1 X r;t=1 ( 1) 
r = t = 1; D c r ; b t E = 0
leading to [START_REF] Costabel | A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains[END_REF]. The proof is therefore complete.

Formulas for L and K in terms of principal curvatures

We …rst prove the symmetry of L and K ; which essentially follows from the symmetry of the second fundamental form of a hypersurface. We use Remark 7 (i)-(iii) in the following lemma and its proof. In particular, recall that we have extended in a neighborhood of such that for any ; [L ( ^ ) = ^L ( ) and K ( y ) = y K ( )] on :

Lemma 13 Let R n be a smooth n 1 dimensional hypersurface with unit normal and let 1 k n 1: Then at every point x 0 of and for every ; 2 k (R n ) the following two identities hold hL ( ^ ) ; ^ i = hL ( ^ ) ; ^ i hK ( y ) ; y i = hK ( y ) ; y i :

Proof We only prove the …rst one, the second one follows by duality ([14] Lemma 5.3).

Step 1. Note that since 2 k (R n ) ; i.e. has constant coe¢ cients, L ( ) = d ( y ) : Let us prove that we can assume Step 2. We now assume that (x 0 ) = e 1 : By linearity it is su¢ cient to show the claim for

(x 0 ) = (1; 0; ; 0) = e 1 : Choose A 2 O(n) such that A ( (x 0 )) =
= dx i1 ^ ^dx i k and = dx j1 ^ ^dx j k :
We distinguish two cases. Case 1: i 1 = 1 or j 1 = 1: We consider only the case i 1 = 1; the other one being handled similarly. Then ^ = 0 (which implies L ( ^ ) = 0) and therefore hL ( ^ ) ; ^ i = 0 = hL ( ^ ) ; ^ i and the symmetry is proved.

Case 2: i 1 ; j 1 > 1: We have to show that h ^d ( y ) ; ^ i = h ^d ( y ) ; ^ i :

Since j 1 > 1; we get at x 0 that = e 1 y (e 1 ^ ) and the same for : So we have to show that hd ( y ) ; i = hd ( y ) ; i :

Clearly we can assume that (i 1 ;

; i k ) 6 = (j 1 ; ; j k ) : By a direct calculation one obtains

d ( y ) = n X s=1 k X =1 ( 1) 
1 i xs dx s ^dx i1 ^ ^d dx i ^ ^dx i k ;
where b a means that a has been omitted. Two possibilities may then happen. Case 2.1. fi 1 ; ; i k g and fj 1 ; ; j k g di¤er in more than one index (considered as sets). Then for any s = 1;

; n

D dx s ^dx i1 ^ ^d dx i ^ ^dx i k ; dx j1 ^ ^dx j k E = 0:
It follows that hd ( y ) ; i = 0 and by symmetry (9) follows.

Case This last equality follows from the symmetry of the second fundamental form of the hypersurface at the point x 0 ; because e i and e j are tangent vectors. We now improve Lemma 13 (for a di¤erent proof of the next result see Lemma 37).

Lemma 14 Let

R n be a smooth n 1 dimensional hypersurface with unit normal and let 1 k n 1: Let E 1 ;

; E n 1 be an orthonormal set of principal directions of with associated principal curvatures 1 ;

; n 1 : Then, at every point x 0 2 and for every ; 2 k (R n ) ; the following two identities hold

hL ( ^ ) ; ^ i = X 1 i1< <i k n 1 h ; E i1 i k i h ; E i1 i k i X j2fi1; ;i k g j (10) hK ( y ) ; y i = X 1 i1< <i k 1 n 1 ; ^Ei1 i k 1 ; ^Ei1 i k 1 X j = 2fi1; ;i k 1 g j ( 11 
)
where

E i1 i k = E i1 ^ ^Ei k :
Remark 15 When k = n 1; the …rst formula reads as

hL ( ^ ) ; ^ i = h ; E 1 ^ ^En 1 i h ; E 1 ^ ^En 1 i n 1 X j=1 j
while, when k = 1; the second one reads as

hK ( y ) ; y i = h ; i h ; i n 1 X j=1 j :
Proof We only prove the second statement. The …rst one can be deduced from the other one by duality, using for instance [START_REF] Csató | The pullback equation for di¤ erential forms[END_REF] Lemma 5.3. Since both sides of the equation are bilinear in ( ; ) it is su¢ cient to show the identity for basis vectors of k (R n ) : We choose basis vectors of the type

(a) = E i1 ^ ^Ei k ; = E j1 ^ ^Ej k or of the type (b) = ^Ei1 ^ ^Ei k 1 ; = ^Ej1 ^ ^Ej k 1 :
If either one of or is of the type (a), then one immediately obtains that both sides of ( 11) are zero and the equation is trivially satis…ed (see Lemma 10 and ( 3)). So we only need to consider the case that and are both of type (b). We distinguish two cases. We also let x 0 2 : Case 1: (i 1 ;

; i k 1 ) = (j 1 ; ; j k 1 ) : In that case the right hand side of ( 11) is equal to X

1 l1< <l k 1 n 1 ; ^El1 l k 1 ; ^El1 l k 1 X j = 2fl1; ;l k 1 g j = X j = 2fi1; ;i k 1 g j :
We now use Lemma 11 with = E i1 ^ ^Ei k 1 : We can assume that f ; E 1 ; : : : ; E n 1 g are extended to an orthonormal basis in a neighborhood of x 0 : Note that from (3) and Lemma 10 we get that y ( ^ ) = ^( y ) = : So Lemma 11 gives hK ( y ) ; y i = hK ( ) ; i = h ( ^ ) ; i :

We get the result appealing to Lemma 12 namely

h ( ^ ) ; i = ( 1 + + n 1 ) i1 + + i k 1 = X j = 2fi1; ;i k 1 g j :
Case 2: (i 1 ; ; i k 1 ) 6 = (j 1 ; ; j k 1 ): The right hand side of ( 11) is now 0: So we have to show that hK ( y ) ; y i = 0

Let = E i1 ^ ^Ei k 1 and = E j1 ^ ^Ej k 1 :
It follows from Lemma 11 (using (3) as in Case 1) that hK ( y ) ; y i + hK ( y ) ; y i = h ( ^ ) ; i + h ( ^ ) ; i hr ( y ) ; i : Recall that f ; E 1 ; : : : ; E n 1 g are extended to an orthonormal basis in a neighborhood of x 0 and therefore r ( y ) = 0: Thus it follows from Lemmas 12 and 13 that hK ( y ) ;

y i = 1 2 (h ( ^ ) ; i + h ( ^ ) ; i) = 0;
which proves the claim of the present case.

Proof of the main theorem

For the equivalence (i) , (iv), we give below a proof which is elementary and self-contained. A second proof can be obtained from Theorem 28 and the remark following it. Still another proof, more in the language of di¤erential geometry, can be given using Theorem 35. These two other proofs are independent of the one given below and of the previous analysis.. Proof (Theorem 8). We know from Theorem 5.7 in [START_REF] Csató | The pullback equation for di¤ erential forms[END_REF] (see also [START_REF] Csató | An identity involving exterior derivatives and applications to Ga¤ney inequality, Discrete and Continuous Dynamical Systems[END_REF] or Theorem 33 for a slightly di¤erent way of expressing the identity) that, for every ! 2 W 1;2

T ; k [ W 1;2 N ; k ; Z jd!j 2 + j !j 2 jr!j 2 = Z @ (hL ( ^!) ; ^!i + hK ( y !) ; y !i) : (13) 
Step 1: (i) ) (ii). Assume that C T ( ; k) = 1: This means that, for every ! 2 W 1;2 T ; k ;

0 kd!k 2 + k !k 2 kr!k 2 + k!k 2 = k!k 2 + K (!)
where

K (!) = Z @ e K (!) = Z @ hK ( y !) ; y !i : Next let ' 2 W 1;2 T
; k be such that ' = ! on @ and ' 0 in outside an neighborhood of @ : Note that, since ' = ! on @ ; then

K ( y ') = K ( y !) on @ :
We thus have, by [START_REF] Csató | An identity involving exterior derivatives and applications to Ga¤ney inequality, Discrete and Continuous Dynamical Systems[END_REF] and since ' = ! on @ ;

0 k'k 2 + K (') = k'k 2 + K (!) :
Since k'k 2 is as small as we want, we deduce that

K (!) = Z @ e K (!) = Z @ hK ( y !) ; y !i 0; 8 ! 2 W 1;2 T ; k : (14) 
We now prove (ii) from the above inequality. Choose ! 2 W 1;2

T ; k ; 2 C 1 and = ! 2 W 1;2 T ; k : Invoking (14) we …nd that 0 K ( ) = Z @ e K ( ) = Z @ 2 e K (!) :
Since is arbitrary, we have the claim, i.e. e K (!) 0:

Step 2: (ii) ) (iii). From (13) we have

kd!k 2 + k !k 2 kr!k 2 = K (!) = Z @ e K (!)
and thus the result, since K (!) 0 (because e K (!) 0). Step 3: (iii) ) (i). This is trivial, once coupled with Proposition 2.

Step 4: (ii) ) (iv). We choose in (ii), for 1 i 1 < < i k 1 n 1;

! = ^ with = E i1 ^ ^Ei k 1
From the assumption and the second conclusion in Lemma 14, we then obtain 0 hK ( y !) ; y !i = X j = 2fi1; ;i k 1 g j :

Step 5: (iv) ) (ii). This follows from the second conclusion of Lemma 14.

Step 6: (iii) ) (v). The fact that the supremum is not attained follows from (iii), since, for every ! 2 W 1;2

T ; k ; kr!k 2 kd!k 2 + k !k 2 kd!k 2 + k !k 2 + k!k 2
hence the result.

Step 7: (v) ) (i). In order to prove the statement, we show that if C T > 1; then there exists a maximizer. We divide the proof into three substeps.

Step 7.1. Let ! s 2 W 1;2 T ; k nf0g be a maximizing sequence (and hence ! s is not a constant form), i.e.

lim s!1 kr! s k 2 kd! s k 2 + k ! s k 2 + k! s k 2 = C T :
Without loss of generality, up to replacing ! s by ! s = kr! s k ; we can assume that kr! s k = 1 and hence lim

s!1 h kd! s k 2 + k ! s k 2 + k! s k 2 i = 1 C T < 1: (15) 
In particular k! s k is bounded and thus, up to a subsequence that we do not relabel, there exists

! 2 W 1;2 T ; k such that ! s * ! in W 1;2 :
We prove in the next substeps that ! is a maximizer.

Step 7.2. We …rst show that ! 6 = 0: Suppose, for the sake of contradiction, that ! = 0; then from (15) we get

lim s!1 h kd! s k 2 + k ! s k 2 i = 1 C T < 1: (16) 
From ( 13), we infer that there exists

c 1 = c 1 ( ) such that kd! s k 2 + k ! s k 2 = 1 + Z @ hK ( y ! s ) ; y ! s i 1 c 1 Z @ j! s j 2 :
Since (cf. Proposition 5.15 in [START_REF] Csató | The pullback equation for di¤ erential forms[END_REF]) there exists c 2 = c 2 ( ) such that for every > 0

Z @ j! s j 2 kr! s k 2 + c 2 k! s k 2 = + c 2 k! s k 2 we deduce that kd! s k 2 + k ! s k 2 1 c 1 c 1 c 2 k! s k 2 :
Letting s ! 1 we …nd lim

s!1 h kd! s k 2 + k ! s k 2 i 1 c 1
and, since is arbitrary, we …nd a contradiction with (16).

Step 7.3. We may now conclude. In the sequel we will have to pass several times to subsequences in order that all limits are true limits but, for the sake of not burdening the notations, we do not relabel these subsequences.

1 which implies that kr!k 2 = C T kd!k 2 L 2 + k !k 2 L 2 + k!k 2 L 2
as wished.

Step 8: (i) ) (vi). Since (i) (and thus (iii)) holds, we …nd, for ! 2 W 1;2 T t ; k and setting

! (x) = u (x=t) ; kr!k 2 L 2 (t ) = Z t jr! (y)j 2 dy = t n 2 Z jru (x)j 2 dx = t n 2 kruk 2 L 2 ( ) t n 2 kduk 2 L 2 ( ) + t n 2 k uk 2 L 2 ( ) = kd!k 2 L 2 (t ) + k !k 2 L 2 (t )
which shows that C T (t ; k) = C T ( ; k) = 1:

Step 9: (vi) ) (i). Without loss of generality we can assume that t < 1: We reason by contradiction and assume that C T ( ; k) > 1: Invoking (v) we have that there exists u 2 W 1;2

T ; k such that C T ( ; k) = kruk 2 L 2 ( ) kduk 2 L 2 ( ) + k uk 2 L 2 ( ) + kuk 2 L 2 ( ) : Setting ! (x) = u (x=t) ; we obtain that ! 2 W 1;2 T t ; k and C T ( ; k) = kr!k 2 L 2 (t ) kd!k Since t < 1; we get C T ( ; k) < kr!k 2 L 2 (t ) kd!k 2 L 2 (t ) + k !k 2 L 2 (t ) + k!k 2 L 2 (t ) C T (t ; k)
which is our claim. Theorem 8 (combined with Remark 9) has as an immediate corollary the following.

Corollary 16 Let R n be a bounded open smooth set and k = 1: Then (i) C T ( ; 1) = 1 if and only if the mean curvature of @ is non-negative; (ii) C N ( ; 1) = 1 if and only if is convex.

Some examples

We now deal with some special cases where we can make C T ; C N arbitrarily large.

Proposition 17 Let 1 k n 1: Then there exists a set k B (a …xed ball of R n ) such that C T ( k ; k) ; C N ( k ; n k) are arbitrarily large.

Remark 18 Except for the case k = 1; the sets k that we construct are not smooth. However it is easy to modify slightly these sets so as to make them smooth, while preserving the proposition.

Proof Since C T ( ; k) = C N ( ; n k) ; it is su¢ cient to prove the result for C T ( ; k) : For the sake of clarity we deal with the case k = 1 separately.

Step 1 ( k = 1). We let, for x 2 R n ; jxj denote the usual Euclidean norm. Let 0 < r < 1 and 1 = fx 2 R n : r < jxj < 1g : We then choose 2 C 1 ([r; 1]) arbitrary and

! (x) = (jxj) n X i=1 x i dx i 2 W 1;2 T 1 ; 1 : Clearly ! j xi = ij + 0 x i x j jxj ; d! = 0 and ! = div (x ) = n + jxj 0 leading to j !j 2 = (n + jxj 0 ) 2 and jr!j 2 = n 2 + 2 jxj 0 + jxj 2 ( 0 ) 2 :
Choose (s) = s n (with this choice we have ! = 0). We therefore have (denoting by n the measure of the unit sphere of R n ) that

Z 1 jr!j 2 = n Z 1 r n 2 n s n 1 ds = n n 2 n s n n 1 r = n (n 1) r n 1 while Z 1 jd!j 2 + j !j 2 + j!j 2 = n Z 1 r s n+1 ds = ( n n 2 r n+2 1 if n > 2 n log r if n = 2:
Therefore, when r ! 0; we …nd (writing for the asymptotic behavior)

kr!k 2 kd!k 2 + k !k 2 + k!k 2 ( (n 2)(n 1) r 2 if n > 2 1 r 2 log r if n = 2:
Thus, for r su¢ ciently small, we deduce that C T ( 1 ; 1) is arbitrarily large as wished.

Step 2 ( 2 k n 1). We divide the proof into two parts.

Step 2.1. Let us introduce some notations. 1) We write for x = (x 1 ;

; x n ) 2 R n jxj k = q x 2 1 + + x 2 n k+1 : 2) Let 0 < r < 1: The set k R n is then chosen as k = fx 2 R n : r < jxj k < 1 and 0 < x n k+2 ; ; x n < 1g :
3) We …nally let 2 C 1 ([r; 1]) to be chosen below,

' k (x) = n k+1 X i=1 x i dx i and ! k (x) = (jxj k ) ' k (x) ^dx n k+2 ^ ^dx n 2 k :
Step 2.2. Observe the following facts.

(i) If is the outward unit normal to k ; then

^!k = 0 on @ :
Indeed one sees that this is the case by distinguishing between the lateral boundaries jxj k = r; 1 where = 1 jxj k (x 1 ; ; x n k+1 ; 0; ; 0) ) ^'k = 0 and the horizontal boundaries x s = 0; 1 (n k + 2 s n) where = e s ) ^dx n k+2 ^ ^dx n = 0:

(ii) We have, for

1 i 1 < < i k n; that ! i1 i k k (x) = 8 > < > : q x 2 1 + + x 2 n k+1 x i1 if 1 i 1 n k + 1 (i 2 ; ; i k ) = ((n k + 2) ; ; n) 0 otherwise.
and thus, if 1 i; j n k + 1;

@! i (n k+2) n k @x j = ij + 0 x i x j jxj k
and all the other partial derivatives are 0:

(iii) This leads to d! k = 0: Indeed if we set

0 (s) = s (s) and (x) = (jxj k )
we see that

(jxj k ) ' k (x) = d (x) ) d! k = 0: (iv) We now prove that j ! k j 2 = ((n k + 1) + jxj k 0 ) 2 :
Indeed, since

( ! k ) i1 i k 1 = k X =1 ( 1) 1 X i 1<j<i @! i1 i 1ji i k 1 k @x j ; we have ( ! k ) i1 i k 1 = 0 unless (i 1 ; ; i k 1 ) = ((n k + 2) ; ; n) ; while ( ! k ) (n k+2) n = n k+1 X j=1 @! jn k+2 n k @x j = n k+1 X j=1 @ ( (jxj k ) x j ) @x j = (n k + 1) + jxj k 0 : (v) We next observe that jr! k j 2 = (n k + 1) 2 + 2 jxj k 0 + jxj 2 k ( 0 ) 2 :
(vi) Finally choose (s) = s (n k+1) (with this choice we have ! k = 0). We therefore have ( n k+1 denoting the measure of the unit sphere of R n k+1 ) that

Z k jr! k j 2 = n k+1 Z 1 r (n k + 1) (n k) s n+k 2 ds = n k+1 (k n) s n+k 1 1 r = n k+1 (n k) r n+k 1 1 while Z k jd! k j 2 + j ! k j 2 + j! k j 2 = n k+1 Z 1 r s n+k ds = ( n k+1 n k 1 r n+k+1 1 if n > k + 1 n k+1 log r if n = k + 1:
Therefore, when r ! 0; we …nd (writing for the asymptotic behavior)

kr! k k 2 kd! k k 2 + k ! k k 2 + k! k k 2 ( (n k 1)(n k) r 2 if n > k + 1 1 r 2 log r if n = k + 1:
Thus, for r su¢ ciently small, we deduce that C T ( k ; k) is arbitrarily large as wished.

The case of polytopes De…nition 19

R n is said to be a generalized polytope, if there exist 0 ; 1 ;

; M bounded open polytopes such that, for every i; j = 1;

; M with i 6 = j;

i 0 ; i \ j = ; and = 0 n M S i=1 i :
In this case i ; i = 1; ; M; are called the holes.

Theorem 20 Let R n be a generalized polytope. Then the following identity holds

kr!k 2 = kd!k 2 + k !k 2 ; 8 ! 2 C 1 T ; k [ C 1 N ; k :
Remark 21 (i) Note that we do not make any assumption on the topology of the domain and that holes are allowed. The identity shows that there are no non-trivial harmonic …elds with vanishing tangential (or normal) component which are of class C 1 : However, in presence of holes, there are non-trivial harmonic …elds with weaker regularity (this is, of course, a problem only on the boundary, since harmonic …elds are C 1 in the interior).

(ii) In the case k = 1; see also [START_REF] Csató | On the boundary conditions in estimating r! by div ! and curl ![END_REF].

Before proceeding with the proof, we need to introduce a few notations that would help us keep track of the signs in the proof.

Notation 22 (i) For 1 6 k 6 n; we write

T k = f(i 1 ; ; i k ) 2 N k : 1 6 i 1 < < i k 6 ng:
For I = (i 1 ; ; i k ) 2 T k ; we write dx I to denote dx i1 ^ ^dx i k :

(ii) For i 2 I; we write I b i = (i 1 ; ; b i; ; i k ); where b i denotes the absence of the named index i: Note that, I b ip 2 T k 1 ; for all 1 6 p 6 k: Similarly, for i; j 2 I; i < j; we write

I b ij = (i 1 ; ; b i; ; b j; ; i k ):
(iii) Given I 2 T k and i; j = 2 I; i 6 = j; we write [iI] to denote the increasing multiindex formed by the index i and the indices in I: In other words [iI] is the permutation of the indices such that [iI] 2 T k+1 : Furthermore, we de…ne the sign of [i; I] ; denoted by sgn [i; I] ; as

dx [iI] = sgn [i; I] dx i ^dx I :
Similarly, [ijI] is the permutation of the indices such that [ijI] 2 T k+2 and sgn [i; j; I] is given by dx [ijI] = sgn [i; j; I] dx i ^dx j ^dx I :

We need a few lemmas for the theorem. 

jd!j 2 + j !j 2 jr!j 2 = X I2T k+1 X i;j2I i6 =j sgn i; I b i sgn h j; I b j i @! I b i @x i @! I b j @x j @! I b j @x i @! I b i @x j ! ( 17 
) jd!j 2 + j !j 2 jr!j 2 = X I2T k 1 X i;j = 2I i<j sgn [i; I] sgn [j; I] @! [iI] @x i @! [jI] @x j @! [jI] @x i @! [iI] @x j : (18) 
Remark 26 When k = 1 the lemma reads as

jd!j 2 + j !j 2 jr!j 2 = 2 X i<j @! i @x i @! j @x j @! j @x i @! i @x j while for k = 2 jd!j 2 + j !j 2 jr!j 2 = 2 X i<j<k @! ij @x j @! ik @x k @! ij @x k @! ik @x j + @! ij @x k @! jk @x i @! ij @x i @! jk @x k + @! ik @x i @! jk @x j @! ik @x j @! jk @x i : Proof We calculate d! = X I2T k+1 X i2I sgn i; I b i @! I b i @x i ! dx I and ! = X I2T k 1 X i = 2I sgn [i; I] @! [iI] @x i ! dx I :
We start by evaluating jd!j 2 ; we …nd

jd!j 2 = X I2T k+1 X i2I @! I b i @x i 2 + 2 X I2T k+1 X i;j2I i<j sgn i; I b i sgn h j; I b j i @! I b i @x i @! I b j @x j :
Rewriting the terms in two di¤erent ways, we obtain,

jd!j 2 = X I2T k X i = 2I @! I @x i 2 + 2 X I2T k+1 X i;j2I i<j sgn i; I b i sgn h j; I b j i @! I b i @x i @! I b j @x j (19) jd 
!j 2 = X I2T k X i = 2I @! I @x i 2 + 2 X I2T k 1 X i;j = 2I i<j sgn [i; [jI]] sgn [j; [iI]] @! [jI] @x i @! [iI] @x j : (20) 
We next evaluate j !j 2 ; we get

j !j 2 = X I2T k 1 X i = 2I @! [iI] @x i 2 + 2 X I2T k 1 X i;j = 2I i<j sgn [i; I] sgn [j; I] @! [iI] @x i @! [jI] @x j :
Rewriting the terms in two di¤erent ways, we …nd

j !j 2 = X I2T k X i2I @! I @x i 2 + 2 X I2T k 1 X i;j = 2I i<j sgn [i; I] sgn [j; I] @! [iI] @x i @! [jI] @x j (21) j !j 2 = X I2T k X i2I @! I @x i 2 + 2 X I2T k+1 X i;j2I i<j sgn h i; I b ij i sgn h j; I b ij i @! I b j @x i @! I b i @x j : (22) 
Appealing to [START_REF] Ga¤ney | The harmonic operator for exterior di¤erential forms[END_REF] and ( 22), we infer that

jd!j 2 + j !j 2 jr!j 2 = 2 X I2T k+1 X i;j2I i<j sgn i; I b i sgn h j; I b j i @! I b i @x i @! I b j @x j + sgn h i; I b ij i sgn h j; I b ij i @! I b j @x i @! I b i @x j ! :
Invoking ( 20) and ( 21), we …nd

jd!j 2 + j !j 2 jr!j 2 = X I2T k 1 X i;j = 2I i<j sgn [i; I] sgn [j; I] @! [iI] @x i @! [jI] @x j + sgn [i; [jI]] sgn [j; [iI]] @! [jI] @x i @! [iI] @x j :
Using Lemma 23, the last two identities establish ( 17) and ( 18), respectively.

Lemma 27 Let R n be a bounded open Lipschitz set and ! 2 C 1 ; k : Then

kd!k 2 + k !k 2 kr!k 2 = Z @ h ^!; d!i Z @ X I2T k+1 X i;j2I sgn i; I b i sgn h j; I b j i ! I b j i @! I b i @x j ( 23 
)
kd!k 2 + k !k 2 kr!k 2 = Z @ h y !; !i Z @ X I2T k 1 X i;j = 2I sgn [i; I] sgn [j; I] ! [iI] j @! [jI] @x i : (24) 
Proof We divide the proof in three steps.

Step 1. Integrate the equations of Lemma 25 to get

kd!k 2 + k !k 2 kr!k 2 = Z X I2T k+1 X i;j2I i6 =j sgn i; I b i sgn h j; I b j i @! I b i @x i @! I b j @x j @! I b j @x i @! I b i @x j ! ( 25 
) kd!k 2 + k !k 2 kr!k 2 = Z X I2T k 1 X i;j = 2I i<j sgn [i; I] sgn [j; I] @! [iI] @x i @! [jI] @x j @! [jI] @x i @! [iI] @x j : (26) 
Step 2. Noting that (the following argument uses the fact that ! 2 C 2 but by density the identity ( 27) is valid for ! 2 C 1 )

@! I b i @x i @! I b j @x j @! I b j @x i @! I b i @x j = @ @x j ! I b j @! I b i @x i @ @x i ! I b j @! I b i @x j
we integrate by parts [START_REF] Lewis | A geometric characterization of a sharp Hardy inequality[END_REF], bearing in mind that is Lipschitz, to obtain

kd!k 2 + k !k 2 kr!k 2 = Z @ X I2T k+1 X i;j2I i6 =j sgn i; I b i sgn h j; I b j i ! I b j j @! I b i @x i ! I b j i @! I b i @x j : (27) 
Step 3. Since is Lipschitz, is de…ned for a.e. x 2 @ : Thus, for a.e. x 2 @ ; we …nd

^! = X I2T k+1 0 @ X j2I sgn h j; I b j i j ! I b j 1 A dx I :
But, since ! 2 C 1 ; k ; for every x 2 ; we have

d! = X I2T k+1 X i2I sgn i; I b i @! I b i @x i ! dx I :
We therefore deduce the pointwise identity, for a.e. x 2 @ ;

h ^!; d!i = X I2T k+1 X i;j2I sgn i; I b i sgn h j; I b j i ! I b j j @! I b i @x i = X I2T k+1 X i2I ! I b i i @! I b i @x i + X I2T k+1 X i;j2I i6 =j sgn i; I b i sgn h j; I b j i ! I b j j @! I b i @x i :
We then have

X I2T k+1 X i;j2I i6 =j sgn i; I b i sgn h j; I b j i ! I b j j @! I b i @x i = h ^!; d!i X I2T k+1 X i2I ! I b i i @! I b i @x i : (28) 
Substituting ( 28) in [START_REF] Mitrea | Dirichlet integrals and Ga¤ney-Friedrichs inequalities in convex domains[END_REF], we obtain [START_REF] Iwaniec | Geometric function theory and non-linear analysis[END_REF]. Analogous calculations yield [START_REF] Iwaniec | Nonlinear Hodge on manifolds with boundary[END_REF], starting from integration by parts of [START_REF] Marcus | On the best constant for Hardy's inequality in R n[END_REF]. We now prove a theorem for piecewise C 2 Lipschitz domains, which can be viewed as a generalization of Theorem 3.1.1.2 in [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF] valid for k = 1: ; E n 1 be an orthonormal frame …eld of principal directions of [ N s=1 s with associated principal curvatures 1 ;

Theorem 28 Let R n be
; n 1 : Then

kd!k 2 + k !k 2 kr!k 2 = N X s=1 Z s n 1 X l=1 l jE l ^!j 2 ! for every ! 2 C 1 T ; k (29) kd!k 2 + k !k 2 kr!k 2 = N X s=1 Z s n 1 X l=1 l jE l y !j 2 ! for every ! 2 C 1 N ; k : (30) 
Remark 29 (i) By standard regularization, the theorem is valid for ! 2 W 1;2

T ; k (respectively ! 2 W 1;2 N ; k ) if @ is (fully) C 2 :
(ii) Note that the two identities above are the same as those appearing at the end of Theorem 33.

Proof

Step 1. We …rst show [START_REF] Morrey | A variational method in the theory of harmonic integrals II[END_REF]. Since @ n [ N s=1 s has zero surface measure, we obtain from ( 23)

kd!k 2 + k !k 2 kr!k 2 = Z @ h ^!; d!i N X s=1 Z s X I2T k+1 X i;j2I sgn i; I b i sgn h j; I b j i ! I b j i @! I b i @xj : (31) 
We argue on each of the s : Since E 1 ; ; E n 1 denote a frame of tangent vectors at each point of s ; we can write e j = P n 1 l=1 E j l E l + j : Thus, for any j = 1;

; n;

@! I b i @x j = n 1 X l=1 E j l @! I b i @E l + j @! I b i @ : (32) 
Step 1.1. We set

A = X I2T k+1 X i;j2I sgn i; I b i sgn h j; I b j i ! I b j i @! I b i @x j
and note, in view of [START_REF] Raulot | A Reilly formula and eigenvalue estimates for di¤erential forms[END_REF], that A = B + C where

B = X I2T k+1 X i2I sgn i; I b i i @! I b i @ ! 0 @ X j2I sgn h j; I b j i j ! I b j 1 A C = X I2T k+1 X i;j2I sgn i; I b i sgn h j; I b j i ! I b j i n 1 X l=1 E j l @! I b i @E l ! : (i) We …rst observe that B = X I2T k+1 ^@! @ I ( ^!) I = ^!; ^@! @ : (ii) We next prove that C = n 1 X l=1 E l ^!; @ @E l ( ^!) n 1 X l=1 l jE l ^!j 2 :
Indeed note that, for any I 2 T k+1 and any l = 1;

; n 1;

@ @E l ( ^!) I = @ @E l X i2I sgn i; I b i i ! I b i ! = X i2I sgn i; I b i i @! I b i @E l + X i2I sgn i; I b i ! I b i @ i @E l :
For any j 2 I; multiplying by sgn h j; I b j i ! I b j E j l and summing over l = 1;

; n 1 and j 2 I; we deduce (recalling that l E i l = @ i =@E l ) that

C I = X i;j2I sgn i; I b i sgn h j; I b j i ! I b j i n 1 X l=1 E j l @! I b i @E l ! = X j2I n 1 X l=1 sgn h j; I b j i ! I b j E j l @ @E l ( ^!) I X i;j2I sgn i; I b i sgn h j; I b j i ! I b i ! I b j n 1 X l=1 E j l @ i @E l ! = n 1 X l=1 (E l ^!) I @ @E l ( ^!) I X i;j2I sgn i; I b i sgn h j; I b j i ! I b i ! I b j n 1 X l=1 l E j l E i l !
and thus

C I = n 1 X l=1 (E l ^!) I @ @E l ( ^!) I n 1 X l=1 l X i2I sgn i; I b i E i l ! I b i ! 0 @ X j2I sgn h j; I b j i E j l ! I b j 1 A = n 1 X l=1 (E l ^!) I @ @E l ( ^!) I n 1 X l=1 l (E l ^!) I (E l ^!)
I which is our claim, since C = P I2T k+1 C I : Combining (i) and (ii) we have obtained that

A = ^!; ^@! @ + n 1 X l=1 E l ^!; @ @E l ( ^!) n 1 X l=1 l jE l ^!j 2 :
Step 1.2. Combining (31) and Step 1.1, we just proved that

kd!k 2 + k !k 2 kr!k 2 = N X s=1 Z s " h ^!; d!i ^!; ^@! @ n 1 X l=1 E l ^!; @ @E l ( ^!) + n 1 X l=1 l jE l ^!j 2 # :
Thus, if ^! = 0 on s for each s = 1;

; N; we obtain (29).

Step 2. Analogous calculations, starting from [START_REF] Iwaniec | Nonlinear Hodge on manifolds with boundary[END_REF], establishes the identity

kd!k 2 + k !k 2 kr!k 2 = N X s=1 Z s " h y !; !i y !; y @! @ n 1 X l=1 E l y !; @ @E l ( y !) + n 1 X l=1 l jE l y !j 2 # :
Using that y ! = 0 on s for each s = 1;

; N; this yields [START_REF] Morrey | Multiple integrals in the calculus of variations[END_REF]. This …nishes the proof. We …nally are ready to prove the theorem. Proof (Theorem 20). By Theorem 28, the result is immediate since for a generalized polytope, the principal curvatures on every face are 0:

Theorem 28 also immediately implies the following. 

kd!k 2 + k !k 2 ; 8 ! 2 C 1 T ; k [ C 1 N ; k :
Remark 31 Note that unlike the case of smooth domains, here the hypothesis of all principal curvatures being non-negative does not imply that the domain is convex. For example, the domain given in polar coordinates by

= f(r; ) : 0 < < 2 0 ; r 2 [0; 1)g R 2 ;
for some 0 < 0 < =2; is a piecewise C 2 Lipschitz domain which satis…es the property, but is neither convex, nor can be approximated from the inside by smooth 1 convex domains since smooth 1 convex domains are necessarily convex. Hence, the result for such domains is not covered by the result in [START_REF] Mitrea | Dirichlet integrals and Ga¤ney-Friedrichs inequalities in convex domains[END_REF].

For k = 1; Theorem 28 also immediately implies, as a corollary, the following variant of Korn inequality with the precise constant, which was already observed in Bauer-Pauly [START_REF] Bauer | On Korn's …rst inequality for tangential or normal boundary conditions with explicit constants[END_REF]. 

; 8 u 2 C 1 T ; 1 [ C 1 N ; 1 ;
where the symmetric gradient r sym u is de…ned by (r sym u) ij = 1 2 @u i @x j + @u j @x i ; for i; j = 1;

; n: Proof Theorem 28 in this case implies,

kruk 2 kcurl uk 2 + kdiv uk 2 ; 8 u 2 C 1 T ; 1 [ C 1 N ; 1 :
Integrating the pointwise identity

jruj 2 = jr sym uj 2 + 1 2 jcurl uj 2
and combining with the inequality above gives,

kr sym uk 2 1 2 kruk 2 = 1 2 kruk 2 kcurl uk 2 1 2 kdiv uk 2 0:
This completes the proof.

7 Appendix: an integral identity for di¤erential forms

We recall that R n is a bounded open smooth set with exterior unit normal : When we say that E 1 ;

; E n 1 is an orthonormal frame …eld of principal directions of @ with associated principal curvatures 1 ;

; n 1 ; we mean that f ; E 1 ; ; E n 1 g form an orthonormal frame …eld of R n and, for every

1 i n 1; n X j=1 E j i l xj = i E l i ) i = n X j;l=1 E l i E j i l xj :
The following proposition was used only implicitly and is another version of the identity obtained in [START_REF] Csató | An identity involving exterior derivatives and applications to Ga¤ney inequality, Discrete and Continuous Dynamical Systems[END_REF] (see also Theorem 5.7 in [START_REF] Csató | The pullback equation for di¤ erential forms[END_REF]). We …rst state and prove it in the Euclidean setting and then for general Riemannian manifolds, using then the notation of di¤erential geometry and referring to [START_REF] Csató | On an integral formula for di¤erential forms and its applications on manifolds with boundary[END_REF].

Theorem 33 Let 0 k n: Let E 1 ; ; E n 1 be an orthonormal frame …eld of principal directions of @ with associated principal curvatures 1 ;

; n 1 : Then every ; 2 C 1 ; k satisfy the equation Z (hd ; d i + h ; i hr ; r i) = Z @ (h ^d ( y ) ; ^ i + h y ( ^ ) ; y i)

+ Z @ X 1 i1< <i k n 1 h ; E i1 i k i h ; E i1 i k i X j2fi1; ;i k g j + Z @ X 1 i1< <i k 1 n 1 ; ^Ei1 i k 1 ; ^Ei1 i k 1 X j = 2fi1; ;i k 1 g j ;
where E i1 i k = E i1 ^ ^Ei k : In particular the following two identities hold. For every 2 W 1;2 T ; k Z jd j 2 + j j Proof The theorem follows from Theorem 5.7 in [START_REF] Csató | The pullback equation for di¤ erential forms[END_REF] and Lemma 14. The last two identities also follow from [START_REF] Morrey | A variational method in the theory of harmonic integrals II[END_REF], respectively [START_REF] Morrey | Multiple integrals in the calculus of variations[END_REF], of Theorem 28 and the remark following it. We now discuss the more general version of the identity. We assume that is an n dimensional compact orientable smooth Riemannian manifold with boundary @ : We also adopt the following abbreviations T k n 1 = I = (i 1 ; ; i k ) 2 N k : 1 i 1 < < i k n 1

E I = (E i1 ; ; E i k ) for I 2 T k n 1
I c is the complement of I in f1;

; n 1g :

In the next theorem the quantity F k is the linear 0 th order (not di¤erential) operator given by the Bochner-Weitzenböck formula, see [START_REF] Csató | On an integral formula for di¤erential forms and its applications on manifolds with boundary[END_REF] Section 2.2 for more details. On a ‡at manifold, for instance R n ; the operator F k is equal to 0 (which explains its absence in Theorem 33). ( ; E I ) ( ; E I ) X j2I c j :

Remark 36 In the case = a similar form of this identity is known as Reilly formula, see Theorem 3 in [START_REF] Raulot | A Reilly formula and eigenvalue estimates for di¤erential forms[END_REF] and the references there. In that case the identity simpli…es: using partial integration twice one obtains, see Remark 3.8 (iv) in [START_REF] Csató | On an integral formula for di¤erential forms and its applications on manifolds with boundary[END_REF], Z @ (h ^d ( y ) ; ^ i + h y ( ^ ) ; y i) = 2 Z @ h y ( ^ ) ; y i :

Proof The theorem follows from [START_REF] Csató | On an integral formula for di¤erential forms and its applications on manifolds with boundary[END_REF] Theorem 3.7 and Remark 3.8 (ii) and from Lemma 37 below.

The following Lemma is the analogue of Lemma 14. N ( T ) denotes the normal (respectively tangential) component of (see [START_REF] Csató | On an integral formula for di¤erential forms and its applications on manifolds with boundary[END_REF]).

Lemma 37 Let S k be de…ned as in De…nition 3.3 in [START_REF] Csató | On an integral formula for di¤erential forms and its applications on manifolds with boundary[END_REF]. Then the following identities hold (i) Proof Step 1. We …rst prove (i). Since E 1 ; ; E n 1 are principal directions of @ they satisfy that r Ei = i E i and hE i ; E j i = ij :

hS k ; N i = X I2T k 1
We now choose ( ; E 1 ; ; E n 1 ) as an orthonormal basis of R n to evaluate the scalar product hS k ; N i : Tuples (E i1 ;

; E i k ) have no contribution in hS k ; N i ; because N is normal (actually S k too). We therefore obtain where II is the second fundamental form. We have also used that (E r ) T = E r for any r = 1;

hS k ; N i = X 1 i1< <i k
; n 1; since they are tangent vectors. We therefore get for any r; s 

II

Theorem 1 ( 2 T 2 TW d; ; 2 T: 2 T; k = W 1 ; 2 T 2 T 6 =

 122221226 Ga¤ney inequality) Let 0 k n and R n be a bounded open C 2 set. Then there exists a constant C = C ( ; k) > 0 such that kr!k (and similarly with T replaced by N ) where ! 2 W d; ;condition has to be understood in a very weak sense. Clearly W 1;This stronger inequality is, in fact, a regularity result and is valid for smooth or convex Lipschitz domains leading, a posteriori, to W d; ;; k : However, for non-convex Lipschitz domains one has, in general, W 1;W d; ;2 T

  e 1 and set = A ( ): It has the property that A 1 x 0 = e 1 : Set ~ = A ( ) and ~ = A ( ) : It now follows from Theorem 3.10 (note that A = A ] if A 2 O (n)) and Proposition 2.19 in [14] that h ^L ( ) ; ^ i = A ( ) ^d A ] ( ) y A ( ) ; A ( ) ^A ( ) = D ^d ( y ~ ) ; ^~ E : Since also ~ 2 k (R n ) ; i.e. has constant coe¢ cients, d ( y ~ ) = L (~ ) : This proves the claim of Step 1.

Lemma 23 1 :

 231 Let n 2 and 1 k n 1 be integers. Then for any I 2 T k+1 and every i; j 2 I with i 6 = j; i; I b i sgn h j; I b j i and for any I 2 T k 1 and every i; j = 2 I with i 6 = j; sgn [i; [jI]] sgn [j; [iI]] = sgn [i; I] sgn [j; I] : Remark 24 When k = 1 both equations read as sgn [i; j] sgn [j; i] = Indeed elements I 2 T k 1 are as if they were absent, i.e. [jI] = j and sgn [i; I] = 1: Proof Since I b i = This proves the …rst identity. The second one is just the …rst one, where I 2 T k 1 plays the role of I b ij : This …nishes the proof. The next lemma gives a pointwise identity. Lemma 25 Let U R n be open and let ! 2 C 1 U ; k : Then, for any x 2 U;

i1< <i k 1 n 1 ; ^Ei1 i k 1 2 Xi1< <i k n 1 jh ; E i1 i k ij 2 Xj2fi1; ;i k g j : Remark 34 n 1 ) jh ; ij 2 if 2 W 1 ; E i ij 2 if 2 W 1 ; 2 N ; 1 :

 12123412122121 If k = 0 or k = n; then the the right hand side has to be understood as 0 by de…nition. If k = 1; the theorem reads as Z (hd ;d i + h ; i hr ; r i) = Z @ (h ^d ( y ) ; ^ i + h y ( ^ ) ; y i) E i i h ; E i i +

Theorem 35

 35 Let 0 k n: Then every ; 2 C 1 ; k satisfy the equation Z (hd ; d i + h ; i hr ; r i) Z hF k ; i = Z @ (h ^d ( y ) ; ^ i + h y ( ^ ) ; y i)

n 1 2 4 (

 14 ; E I ) ( ; E I ) X

  a bounded open Lipschitz set with piecewise C 2 boundary, i.e. @ = [ N s=1 s ; where the s are C 2 and relatively open subset of @ and @ n [ N s=1 s has zero surface measure. Let E 1 ;

  Theorem 30 Let R n be a bounded open Lipschitz set with piecewise C 2 boundary, i.e. @ = [ N s=1 s ; where the s are C 2 and relatively open subset of @ and @ n [ N s=1 s has zero surface measure. If the principal curvatures are all nonnegative at every point on [

	N s=1 s ; then
	kr!k 2

  Corollary 32 Let R n be a bounded open Lipschitz set with piecewise C 2 boundary, i.e. @ = [ N s=1 s ; where the s are C 2 and relatively open subset of @ and @ n [ N s=1 s has zero surface measure. If the principal curvatures are all nonpositive at every point on [ N s=1 s ; then

	kruk 2	2 kr sym uk 2

  1 n 1 i k 1 by de…nition of the normal component. By de…nition of S k ; we …nd ; E i1 ; ; E i l 1 ; II (E j ; E i l ) ; E i l+1 ; E i k 1

	S k	; E i1 ;	; E i k 1	; E i1 ;	; E i k 1 ;	(33)
	where we have used that N ; E i1 ; ; E S k ; E i k 1 = ; E i1 ; ; E i1 ; ; E i k 1 = n 1 X k 1 X			
	j=1					
	n 1 X					

l=1 E j j=1 II (E j ; E j ) ; E i1 ; ; E i k 1 = A (i1; ;i k 1 ) + B (i1; ;i k 1 ) ;

  (E s ; E r ) = hr Es E r ; i = hE r ; r Es i =

r rs :

This shows that

B (i1; ;i k 1 ) = ; E i1 ; ; E i k 1 n 1 X j=1 j :
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In the same way we get

So we obtain that

From this last equation and (33) the …rst identity (i) follows.

Step 2. We now deduce (ii) from (i) in the following way

Note that the Hodge operator computes on k forms ! as

We apply this to X = ( ; E I ; E I c ) : Thus we obtain that for each

This leads to, renaming the summation index I ! I c ;

4 (E I ) (E I ) X which proves (ii).