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Abstract

We associate a Lie ∞-algebroid to every resolution of a singular foliation, where we con-
sider a singular foliation as a locally generated, O-submodule of vector fields on the underlying
manifold closed under Lie bracket. Here O can be the ring of smooth, holomorphic, or real
analytic functions. The choices entering the construction of this Lie ∞-algebroid, including
the chosen underlying resolution, are unique up to homotopy and, moreover, every other
Lie ∞-algebroid inducing the same foliation or any of its subfoliations factorizes through
it in an up-to-homotopy unique manner. We thus call it the universal Lie ∞-algebroid of
the singular foliation. It can be chosen, locally, to be a Lie n-algebroid for real analytic or
holomorphic singular foliations.

We show that this universal structure encodes several aspects of the geometry of the
leaves of a singular foliation. In particular, it contains the holonomy algebroid and groupoid
of a leaf in the sense of Androulidakis and Skandalis. But even more, each leaf carries
an isotropy Lie ∞-algebra structure that is unique up to isomorphism and that extends a
minimal isotropy Lie algebra that can be associated to each leaf by higher brackets containing
additional invariants of the foliation. As a byproduct, we construct an example of a foliation
generated by r vector fields for which we show by these techniques that it cannot be generated
by the image through the anchor map of a Lie algebroid of the minimal rank r.
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Introduction

Regular foliations, i.e. a partition of a manifold into embedded submanifolds of a given
dimension, are familiar objects of interest in differential geometry, see e.g. [20]. According
to the Frobenius theorem they are equivalent to involutive distributions.

Singular foliations, on the other hand, are much less understood while, at the same time,
they appear much more frequently. Typical Lie group actions have orbits of different dimen-
sions. Similarly, the symplectic leaves of a Poisson manifold change dimension whenever the
rank of the bivector jumps. Both of these two classes of singular foliations are an example
of what one obtains on the base manifold of a Lie algebroid. It is therefore natural to ask if
any singular foliation arises in this way.

To make this question more precise, we first need to clarify, what we mean by a singular
foliation. One way of viewing them would be a partition of the given manifold into embedded
submanifolds of possibly different dimensions. While in the case of regular foliations, the
description in terms of generating vector fields mentioned above is completely equivalent,
here such a characterization contains more information. Consider, for example, vector fields
on a line vanishing at the origin up to order k. While the corresponding partition of R into
leaves consists of R+, R−, and the origin 0, the generating module of functions is in addition
invariantly characterized by the integer k ∈ N. We will thus define a singular foliation as an
involutive submodule F ⊂ Γ(TM), where as usual, involutivity means [F ,F ] ⊂ F .

Defined like this, it is, however, even not guaranteed that the vector fields F generate a
subdivision of M into leaves such that at each point F evaluated at this point would agree
with the tangent of the leaf containing this point. Also, if we do not restrict F further, the
answer to the question if it is generated by a Lie algebroid A is definitely negative: The image
of A with respect to the anchor ρ : A → TM gives an involutive module F = ρ

(
Γ(A)

)
, but

evidently this is locally finitely generated. Adding this additional condition on F , namely
to be locally finitely generated, Hermann’s theorem establishes that M is indeed partitioned
by immersed submanifolds, called leaves [21].

Thus in this paper, we define a singular foliation of a manifold M to be a locally finitely
generated involutive O-submodule of vector fields on M . This perspective seems to also
become more and more the prevailing one these days [1, 3]. Here O can be chosen to be the
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ring of smooth functions C∞(M), or, in the case that M is a real analytic or a complex
manifold, the ring of real analytic and holomorphic functions, respectively.

So, now we are in the position to again pose the question about the existence of a finite
rank Lie algebroid over M that would induce a given singular foliation on this manifold. This
question can be split into a global and a local one. While it is easy to see that the answer to
the global problem posed as such is negative—the maximal number of local generators of F
does not need to be finite—the local problem is much more intricate and still open—although
implicitly, after shifting our focus, we will be able to give partial answers to this question in
the present article as well (we will come back to this below).

Another interesting and probably in fact more important question in the context of
singular foliations is to find invariants characterizing them, also locally. In the example of
vector fields on R, we see that even a complete knowledge of the partition of M into leaves
is not sufficient for this.

In the present paper we will address a question that is related to both of the above
ones and, at least for what concerns the first question, to our mind probably even a better
question: is there a Lie ∞-algebroid generating a given singular foliation? And, if so, can
it be used to find invariants of the foliation? Both of these latter two questions will be
answered in the positive in our paper: For example, in the case of O being real analytic, we
show that every singular foliation F is locally generated by a Lie ∞-algebroid. Even more
importantly, there is such a Lie ∞-algebroid whose homotopy class is unique and universal:
the one constructed on a resolution of the singular foliation. This is in sharp contrast to the
Lie algebroid story: not only is a Lie algebroid A over M for a given singular foliation F far
from unique, if it exists at all, also its homotopy class cannot be unique since homotopies of
Lie algebroids do not change the rank of the underlying vector bundle A.

If we take any other Lie ∞-algebroid whose induced foliation is F , or even only a sub-
module of F , and whose underlying complex is now not necessarily a resolution, there exists
a morphism into every Lie ∞-algebroid with the complex being a resolution and this mor-
phism itself is unique up to homotopy (see Theorem 1.8). So, considering the category of
Lie ∞-algebroids up to homotopy, i.e. the category where objects are Lie ∞-algebroids over
M inducing a sub-singular foliation of F and where arrows are homotopy classes of Lie ∞-
algebroids morphisms), Lie ∞-algebroids constructed on resolutions are a terminal object.
This justifies to call them universal Lie ∞-algebroids over a singular foliation F .

The universal Lie ∞-algebroid over a singular foliation F turns out to be an efficient
tool for the construction of invariants associated to a singular foliation, like different types
of cohomology classes associated to a Lie ∞-algebroid representing its universal class. Let
us explain the construction a bit further, starting first with the case that O is real analytic
or holomorphic. Then by Syzygy theorems in the neighbourhood of any point m ∈ M the
O module F admits resolutions of finite length by free modules, which we can reinterpret as
sections of trivial vector bundles over the neighbourhood:

0 Γ(E−n−1) . . . Γ(E−1) F 0
ρ

where n is the dimension of M . The Lie ∞-algebroid is then constructed over the cor-
responding complex of vector bundles E−n−1 → . . . → E−1 by showing the existence of
s-brackets for s = 2, . . . , n + 1 so that together with the differential of the complex they
satisfy the required higher Jacobi identities. Certainly, the above resolution is not unique;
in particular, the ranks of the bundles are far from being fixed. These individual ranks can
now be changed by homotopies in the category of Lie ∞-algebroids, only their total index

Ind(E•) :=
∑
i=1

(−1)i+1rk(Ei) (0.1)

remains invariant. This index, on the other hand, is nothing but the highest possible di-
mension of the leaves in the neighbourhood of m. There are, however, much more subtle
invariants associated to the foliation and coming from our construction, since we can prove
that for any two resolutions as above and for whatever choices of higher brackets the resulting
Lie ∞-algebroid is unique up to homotopies, which will make all its induced cohomologies
depend only on the singular foliation. For instance, restricting the universal Lie∞-algebroids
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over a singular foliation F to a point m, and taking its cohomology, we get a Lie ∞-algebra,
that we call the isotropy Lie ∞-algebra of F at the point m ∈ M . This Lie ∞-algebra has
by construction no 1-ary bracket, i.e. no differential. Therefore, its 3-ary bracket is a class
in the Chevalley-Eilenberg cohomology for the isotropy graded Lie algebra bracket given by
the 2-ary bracket. We show that there cannot be a generating Lie algebroid of minimal rank
in the neighbourhood of a point m where this class does not vanish. An explicit example of
such a foliation will be provided in Example 25 below: the vector fields on C4 3 (x, y, z, t)
preserving the function x3 + y3 + z3 + t3 form a singular foliation of rank 6, i.e. they need at
least six generating vector fields to be defined by means of generators and relations. Since
its above 3-class is shown to be non-zero, it follows that this particular singular foliation
cannot be defined as the image through the anchor map of a Lie algebroid of rank 6. Notice
that the problem of finding, given a singular foliation of rank r, a Lie algebroid or rank r
that induces it, has a priori no relation with higher structures. It is interesting to see that
it can be answered through the use of those.

The structure of the paper is as follows. Chapter 1 contains the main results about the
construction of the universal Lie ∞-algebroid. In particular, we concentrate all important
definitions and results in its first section, Section 1.1. An ordered list of examples of sin-
gular foliations and some useful lemmas are presented in Section 1.2. Section 1.3 recalls
classical results about Lie ∞-algebroids, in particular the useful perspective as a differential
positively graded manifold, equivalently known under the name of an NQ-manifold. We put
particular emphasis on homotopies between Lie ∞-algebroids morphisms, where precision
about boundary conditions is required; we believe that the point of view presented about
homotopies will be of interest also in other contexts. In Section 1.4 we address the question
of whether and when a singular foliation F admits a resolution as a module over functions.
Here we do not just mean a projective resolution, but a resolution by sections of vector
bundles. Around a point, it is equivalent to require the existence of a resolution of F by
free finitely generated O-modules. In general, the answer is no, and a counter-example is
given, but classical results, called syzygy theorems, imply that the answer is yes in the real
analytic, algebraic, and holomorphic cases in a neighborhood of a point. Moreover, in the
real analytic case, the real-analytic resolution can be proved to be also a smooth resolution
by classical results of Malgrange and Tougeron. This part then is followed by examples of
such resolutions in Section 1.5. Only then, in Section 1.6, we turn to the proof of the main
theorems, Theorem 1.6 about equipping any such a resolution with a Lie ∞-algebroid struc-
ture and Theorem 1.8 about its uniqueness up to homotopy and its universality property.
We prove all these theorems by careful step-by-step constructions of brackets, morphisms,
and homotopies. We conclude this chapter by providing examples in Section 2.4.

Chapter 2 is devoted to the geometrical meaning of the previously found structures.
Since the universal Lie∞-algebroid over a singular foliation is unique up to homotopy, most
cohomologies constructed out of it do not depend on the choices made in the construction
and are thus associated to the initial foliation. In particular, as argued in Section 2.1, the
cohomology of the degree 1 vector field Q describing the universal Lie ∞-algebroid over
a singular foliation is canonical, i.e. it depends only on the singular foliation. In Section
2.2 we derive even more interesting cohomological spaces by restricting the universal Lie
∞-algebroid structure to a point x ∈ M . This is analogous to the familiar situation for
Lie algebroids, where the Lie algebroid bracket induces a Lie algebra bracket on the kernel
of the anchor map at a given point, called the isotropy Lie algebra of the point or its leaf
(since for different points on a given leaf these Lie algebras are isomorphic). Essentially the
same construction applies here and allows us to induce a Lie ∞-algebra bracket on a graded
vector space which coincides with the fiber over x of the resolution of the foliation in degree
−2,−3, . . . and to the kernel of the anchor map in degree −1. If the resolution is chosen
to be minimal at x—the ranks of the vector bundles that define the resolution are as small
as they can be—we obtain a Lie ∞-algebra that we call the isotropy Lie ∞-algebra of F at
the point x ∈ M . It has several interesting features: First, its differential or 1-ary bracket
vanishes, so that its 2-ary bracket defines an honest graded Lie algebra. But it may still
have k-ary brackets for k ≥ 3. Second, this structure is unique up to isomorphism, its 2-ary
bracket being even unique on the nose, cf. Proposition 2.8 below. In Section 2.3 we then
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prove that, like for isotropy Lie algebras of Lie algebroids, the isotropy Lie ∞-algebras of
Lie ∞-algebroids only change by isomorphisms along any leaf of F . Section 2.4 contains
examples of these isotropy algebras.

In Section 2.5 we show that our structure induces the holonomy algebroid and groupoid
of Androulidakis and Skandalis [1] by an appropriate truncation (and integration), cf. , in
particular, Proposition 2.15 below.

In Section 2.6 we return to the issue of Lie ∞-algebroid versus Lie algebroid. Evidently,
we can always add a non-acting Lie algebra to every Lie algebroid, which increases its isotropy
Lie algebras at each point accordingly while not changing the induced foliation. In contrast
to the isotropy Lie ∞-algebras of a singular foliation and its graded Lie algebra introduced
in this paper, the isotropy Lie algebras induced from Lie algebroids are far from unique.
Moreover, as we will prove, a Lie algebroid inducing a given singular foliation, even if it
exists, may in some cases need more generators than the initial singular foliation does. More
precisely, we will show that the 3-ary bracket of the isotropy Lie ∞-algebra of F at every
point x ∈M is a Chevalley-Eilenberg cocycle with respect to the 2-ary bracket and that this
cocycle is exact if there exists a Lie algebroid of rank r defining the singular foliation (with
r being the rank of the foliation). Example 25 then presents a singular foliation for which
this Chevalley-Eilenberg class does not vanish.

Section 2.7 concludes the paper with a side remark that every singular foliation admitting
a resolution of finite length is the image through the anchor map of a Leibniz algebroid.

Remark: Several results of the present work were also presented in the Ph-D thesis of S.L.
[31], defended under the supervision of Henning Semtleben and T.S. in November 2016.
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1 Existence and unicity of the universal Lie∞-algebroid
over a singular foliation

Definitions and basic facts about Lie ∞-algebroids are given in Section 1.3, and singular
foliations are defined in Section 1.2. We assume for the moment that the reader is familiar
with those and we state the main results of the article. Then we go back to the definitions
of these two objects.

1.1 The main results: Theorems 1.6 and 1.8

We intend to state results that are true in the smooth, algebraic, real analytic and holomor-
phic settings altogether, sometimes with adaptations.

Definition 1.1. Let F ⊂ X(M) be a singular foliation on a manifold M . A resolution
(E,d, ρ) of the foliation F is a triple consisting of:

1. a collection of vector bundles E =
(⊕

E−i
)
i≥1

over M ,

2. a collection d = (d(i))i≥2 of vector bundle morphisms d(i) : E−i → E−i+1 over the
identity of M ,

3. a vector bundle morphism ρ : E−1 → TM over the identity of M called the anchor of
the resolution,

such that the following sequence of sections of O-modules is an exact sequence of sheaves:

. . . Γ(E−2) Γ(E−1) F 0d(3) d(2) ρ

A resolution is said to be of length n if E−i = 0 for i ≥ n+ 1.
We shall speak of a resolution by trivial bundles when all the vector bundles (E−i)i≥1

are trivial vector bundles.
We shall say that a resolution is minimal at a point m ∈ M if, for all i ≥ 2, the vector

bundle morphisms d
(i)
m : E−i|m → E−i+1|m is equal to zero1 at the point m.

Since sections of vector bundles over M are projective O-modules by the Serre-Swan
theorem, resolutions of smooth singular foliations are projective resolutions of F in the
category of O-modules. It is a classical result that such resolutions always exist. But the
projective modules of a projective resolution may not correspond to vector bundles - they
may not be locally finitely generated. By the Serre-Swan theorem [37], however:

Lemma 1.2. For smooth compact manifolds, resolutions of a singular foliation F are in
one-to-one correspondence with resolutions of F by locally finitely generated projective O-
modules.

In the smooth, holomorphic, algebraic or real-analytic cases, resolutions by trivial vec-
tor bundles are in one-to-one correspondence with resolutions by free finitely generated O-
modules.

There are several contexts in which such resolutions always exist, at least locally, and are
of finite length. For instance, for singular foliations generated by polynomial vector fields on
Cn, the existence is due to the fact that the ring of polynomial functions is Noetherian, and
finiteness is due to the Hilbert’s syzygy theorem. Moreover, a real analytic resolution is also
a smooth resolution. This is not an trivial result: the proof uses theorems due to Malgrange
and Tougeron [38]. In short:

Proposition 1.3. The following items hold:

1. Any holomorphic (resp. real analytic) singular foliation on a complex (resp. real an-
alytic) manifold M of dimension n admits, in a neighborhood of a point, a resolution
by trivial vector bundles whose length is less or equal to n + 1 (i.e. E−i = 0 for all
i ≥ n+ 2).

1This of course does not mean that it is zero in a neighborhood of m: it means simply that the ranks of the
vector bundles (E−i)i≥2 is as small as can be.
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2. Moreover, a real analytic resolution of a real analytic singular foliation F is also a
smooth resolution of F (seen as a smooth singular foliation).

3. Any algebraic singular foliation on a Zarisky open subset of Cn admits a resolution by
trivial vector bundles whose length is less or equal to n+ 1.

4. There exists a smooth singular foliation on R that does not admit resolutions.

5. If a resolution of finite length exists, then for any point x ∈ M , a resolution of finite
length and minimal at x exists in a neighborhood of x.

Recall that we say that a leaf is regular when all leaves in a neighborhood are of the same
dimension, and singular otherwise. The dimension of singular leaves is always strictly less
than the dimension of the regular ones, and the union of all regular leaves is a dense open
subset. On a connected complex or real analytic manifold, all regular leaves are of the same
dimension. On a smooth manifold, it is in general not the case (see Example 15). We are
thankful to Marco Zambon for leading us to the following result:

Proposition 1.4. If a singular foliation F on a connected manifold M admits resolutions
of finite length in a neighborhood of all points in M , then all its regular leaves have the same
dimension r. Moreover, for every resolution of finite length (E,d, ρ) of F over an open
subset of M :

r =
∑
i≥1

(−1)i−1rk(E−i).

Above rk stands for the rank of a vector bundle.

We refer to Section 1.4 for a proof of this proposition (the first part of which is obvious
in the real analytic or holomoprphic cases, as already mentionned). We now introduce the
main object and the two main theorems of the present article. We assume that the reader is
familiar with L∞-structures, and understands that a Lie ∞-algebroid (E,Q) (with grading
going from −1 to −∞) admits a linear part, which is a complex (E,d) of vector bundles over
M , and an anchor map ρ : E−1 → TM). All these properties are explained in Section 1.3.

Definition 1.5. Let F be a singular foliation on a manifold M . We say that a Lie ∞-
algebroid (E,Q) over M is a universal Lie ∞-algebroid over F if the linear part of (E,Q)
is a resolution2 of F .

When E−k = 0 for all k ≥ n+ 1, we speak of a universal Lie n-algebroid over F .

Here is the first main result:

Theorem 1.6. Let F be a singular foliation of a smooth or real analytic or complex manifold
M . A universal Lie ∞-algebroid over F exists:

1. in the smooth case, when a resolution (E,d, ρ) of F exists, (and, moreover, its linear
part can be chosen to be the resolution (E,d, ρ)),

2. in a neighborhood of every point in M in the real analytic and complex cases.

Together with item 1 and 3 in Proposition 1.3, the previous theorem implies:

Corollary 1.7. Let F be a singular foliation of a real analytic or complex manifold M of
dimension n. Every point in M admits a neighborhood on which a universal Lie n-algebroid
over F exists.

The use of the word ‘universal’ is justified by the first item in the next theorem:

Theorem 1.8. Let (E,Q) be a universal Lie ∞-algebroid over a singular foliation F on a
smooth manifold. Then,

1. for any Lie ∞-algebroid (E′, Q′) defining a sub-singular foliation of F (i.e. such that
ρ′
(
Γ(E′−1)

)
⊂ F), there is a Lie ∞-algebroid morphism from (E′, Q′) to (E,Q) over

the identity of M and any two such Lie ∞-algebroid morphisms are homotopic.

2. in particular, two universal Lie ∞-algebroids over the singular foliation F are isomor-
phic up to homotopy and two such isomorphisms are homotopic.

2 In particular, F is the foliation associated to (E,Q), i.e. ρ
(
Γ(E−1)

)
= F , with ρ the anchor map of (E,Q).
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The same results hold in the complex or real-analytic settings in a neighborhood of any point.

Item 1. means that in the category where objects are Lie ∞-algebroids whose induced
singular foliation is included in F and arrows are homotopy classes of morphisms, any uni-
versal Lie∞-algebroid over F is a terminal object. This justifies the name ”universal”, since
terminal objects satisfy what is called a ”universal property”. It is automatic that item
1. implies item 2.: it is a general fact that two terminal objects are related by a unique
invertible arrows. Of course, in most well-known cases (the universal enveloppingt algebra
for instance), this invertible unique arrow is bijective, while here it is only a homotopy class
of invertible-up-to-homotopy morphisms.

By item 1. in Theorem 1.8, in particular, for every Lie algebroid A defining a singular
foliation F , a Lie ∞-algebroid morphism from A to any universal Lie ∞-algebroid (E,Q)
over F exists and any two such morphisms are homotopic. To our point of view, this explains
why the universal Lie ∞-algebroid (E,Q) over F is more important than a Lie algebroid
(maybe not unique) defining the foliation.

Let us say a few words about the proofs of the previous results. A crucial result is Lemma
1.29, that states that vertical vector fields on a resolution E, seen as a graded manifold, have
little cohomology. The proofs are mainly based on step-by-step constructions using that
Lemma. For clarity, we have dedicated different sections to the proofs of these various
results. Theorem 1.6 is proven in Section 1.6.3, Theorem 1.8 is proven in Section 1.6.4.

As mentioned in the introduction, several invariants and geometric properties of the sin-
gular foliation can be derived out of these two theorems: they are to be studied in Section 2.

1.2 Singular foliations: definitions and examples

Let M be a manifold that may be smooth, real analytic or complex. It may also be Zarisky
open subset U ⊂ Cn. Generalizing to affine or projective varieties would be an interesting
topic by itself.

Denote by O(U), with U ⊂ M an open subset, the algebra of polynomials, smooth, real
analytic or holomorphic functions over U and by X(U) the O(U)-module of vector fields over
U . The assignment X : U 7→ X(U) is a sheaf of Lie-Rinehart algebras (that is, a sheaf of Lie
algebras compatible in an obvious sense with the sheaf of algebras O : U 7→ O(U)), see [22].
We say that a sheaf Γ : U 7→ Γ(U) is locally finitely generated if for every x ∈M there exists
an open neighborhood Ux of x and a finite number of sections X1, . . . , Xp ∈ Γ(U) such that
for every open neighborhood V of x such that V ⊂ U , X1|V , . . . , Xp|V span Γ(V ). We call
rank at a point x of a finitely generated sheaf the minimal number of local generators.

We define singular foliations in the smooth, complex, real analytic or algebraic contexts
as follows:

Definition 1.9. A singular foliation is a subsheaf F : U 7→ F(U) of the sheaf a vector
fields X, which is locally finitely generated as an O-submodule and closed under Lie bracket
of vector fields.

For smooth compact manifolds, this definition matches exactly the definition in [1, 4,
13]. There is however a difference, since the previously cited works consider compactly
supported vector fields. For non-compact smooth manifolds, A. Garmendia and R. Wang [42]
simultaneously showed that singular foliations in the sense of Definition 1.9 is an equivalent
to singular foliations in the sense of [1, 4, 13].

The restriction of F at a point x is given by the evaluation of all the sections of F at
the point x and is denoted by Fx. A singular sub-foliation of a singular foliation F is a
singular foliation F ′ such that F ′(U) ⊂ F(U) for all open subsets U ⊂ M . A singular
foliation on a manifold M will be said to be finitely generated when there exist k vector
fields X1, . . . , Xk ∈ X(M), globally defined on the whole of M , that generate F , i.e., such
that, for every open subset U ⊂M , F(U) is generated over O(U) by the restrictions to U of
X1, . . . , Xk.

When there exists a (smooth, real analytic or holomorphic) vector bundle A over M and
a vector bundle morphism ρ : A → TM over the identity of M such that3 F = ρ

(
Γ(A)

)
,

3i.e. the sheaf F is obtained by sheafifying the presheaf ρ
(
Γ(A)

)
, which means in this context that every point
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where Γ(A) : U 7→ ΓU (A) is the sheaf of sections of A, we say that F is covered by (A, ρ).
Notice that for a singular foliation, the Lie bracket of vector fields cannot necessarily be
lifted to a Lie bracket on the sections of A, because there is no guarantee that the Jacobi
identity is satisfied. This is another argument for the necessity of studying the universal Lie
∞-algebroid associated to F .

Singular foliations are generally defined in the smooth category. It is obvious, however,
that real analytic or holomorphic singular foliations induce a smooth singular foliation, so
that the result that we now describe still hold true in their respective categories.

We call leaves of a singular foliation F the connected submanifolds N of M whose tangent
space is, at every point x ∈ N , obtained by evaluating at x all the local sections of the sheaf
F , and which is maximal, with respect to inclusion, among such submanifolds. The following
result, now classical, is due to R. Hermann in 1962:

Proposition 1.10. [21] A singular foliation F on a manifold M induces a partition of M
into leaves.

Remark 1. Unlike the case of regular foliations, singular foliations are not characterized
by their leaves, and two different singular foliations may have the same leaves but differ as
sheaves of vector fields. For instance, as noticed in [4], for M a real or complex vector space
(supposed, in the real case, to be of dimension greater than or equal to 2) and for each integer
k ≥ 1, consider Fk to be the module of all smooth, real analytic, or holomorphic vector fields
vanishing to order k at the origin. This is clearly a singular foliation for all k, and all such
singular foliations have exactly the same two leaves: the origin and the complement of the
origin. They are not, however, identical as sub-modules of the module of vector fields.

We would like to convince the reader of the interest of the notion of singular foliations by
giving an ordered but wide list of examples of those. The first example of a singular foliation
comes as the image of a vector bundle morphism:

Example 1. For A a (smooth or holomorphic [30]) Lie algebroid over M with anchor
ρ : A→ TM , the O-module ρ

(
Γ(A)

)
is a singular foliation. It is a finitely generated foliation

when Γ(A) is a finitely generated O-module, which is always true when the vector bundle A
is trivial, or when, at least, there exists a vector bundle B such that the direct sum A ⊕ B
is trivial.

In particular, regular foliations, orbits of a connected Lie group action, orbits of a Lie
algebra or a Lie algebroid action, symplectic leaves of a Poisson manifold and foliations
induced by Dirac structures, are singular foliations covered by a vector bundle. Example 1
can be enlarged, by generalizing the notion of Lie algebroids.

Definition 1.11. [22] An almost-Lie algebroid over M is a vector bundle A→M , equipped
with a vector bundle morphism ρ : A → TM called the anchor map, and a skew-symmetric
bracket [ . , . ]A on Γ(A), satisfying the Leibniz identity:

∀ x, y ∈ Γ(A), f ∈ C∞(M) [x, fy]A = f [x, y]A + ρ(x)[f ] y, (1.1)

together with the Lie algebra homomorphism condition:

∀ x, y ∈ Γ(A) ρ
(
[x, y]A

)
=
[
ρ(x), ρ(y)

]
. (1.2)

We do not require that the bracket [ . , . ]A be a Lie bracket: it may not satisfy the
Jacobi identity. However, the Jacobi identity being satisfied for vector fields, Condition (1.2)
imposes that the Jacobiator takes values in the kernel of the anchor map at all points. These
Marco Zambon mentioned the following result, which seems well-known, although we can
not give a precise reference:

Proposition 1.12. Let M be a smooth, or real analytic or complex manifold, and let (A, ρ)
be an anchored vector bundle, where A→M is a vector bundle and ρ : A→ TM is a vector
bundle morphism called the anchor map.

x ∈M admits a neighborhood U such that F(U) = ρ
(
ΓU (A)

)
.
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1. For every almost-Lie algebroid structure on A → M , the image of the anchor map
ρ : Γ(A)→ X(M) is a singular foliation.

2. Every finitely generated foliation on M is the image under the anchor map of an almost-
Lie algebroid, defined on a trivial bundle.

3. In the smooth case, every anchored vector bundle (A, ρ) over M that covers a singular
foliation F can be equipped with an almost-Lie algebroid structure with anchor ρ.

Proof. The first item follows from Conditions (1.1) and (1.2). Let us prove the the second
item. Let X1, . . . , Xr be generators of a singular foliation F . Since F is closed under the
Lie bracket of vector fields, there exist functions ckij ∈ O(M) satisfying:

[Xi, Xj ] =

r∑
k=1

ckij Xk, (1.3)

for all indices i, j ∈ {1, . . . , r}. Upon replacing ckij by 1
2 (ckij− ckji) if necessary, we can assume

that the functions ckij ∈ O(M) satisfy the skew-symmetry relations ckij = −ckji for all possible
indices. Define A to be the trivial bundle A = Rr ×M → M . Denote its canonical global
sections by e1, . . . , er and define:

1. an anchor map by ρ(ei) = Xi for all i = 1, . . . , r,

2. a skew-symmetric bracket by [ei, ej ]A =
∑r
k=1 c

k
ijek for all i, j = 1, . . . , r,

then extend these structures by, respectively, O-linearity and Leibniz property. This bracket
and anchor define by construction an almost-Lie algebroid structure on A that covers F .

Let us now prove the third item. Unlike Lie algebroid brackets, almost-Lie algebroid
brackets can be glued using partitions of unity. More precisely, let (ϕi)i∈I be a partition of
unity subordinate to an open covering (Ui)i∈I by open sets trivializing the vector bundle A.
By the proof of item 2., we can define an almost-Lie algebroid structure with anchor ρ on
the restriction of A to Ui, that is, a bracket [ . , . ]Ui

that satisfies (1.1) and (1.2). for all
sections in ΓUi

(A). The bracket:

[ . , . ]A =
∑
i∈I

ϕi [ . , . ]Ui
(1.4)

still satisfies (1.1) and (1.2), hence defines an almost-Lie algebroid structure on A with
anchor ρ.

It has been conjectured (see [3]) that, even locally, not every smooth singular foliation is
of the type described in Example 1, i.e. is the image under the anchor map of a Lie algebroid.
As far as we know, the question remains open to this day. There are quite a few singular
foliations for which the underlying Lie algebroid, if any, is not obvious to find in a natural
manner.

Example 2. Consider, for K = R or C:

1. Let P := (P1, . . . , Pk) be a k-tuple of polynomial functions in d variables over K = R
or C. The symmetries of P , i.e. all polynomial vector fields X ∈ X(Kd) that satisfy
X[Pi] = 0 for all i ∈ {1, . . . , k}, form a singular foliation. An interesting case, that
appears in the Batalin-Vilkovisky context [17], occurs when considering the symmetries
of a polynomial function S, which represents the classical action.

2. Symmetries of W i.e. all polynomial vector fields X such that X[IW ] ∈ IW , IW being
now assumed to be the ideal of polynomial functions vanishing on some affine variety
W ⊂ Kd.

3. Vector fields vanishing at all points of an affine variety W .

All the previous spaces of polynomial vector fields are closed under the Lie bracket, and
form a sub-module (over the ring of polynomial functions on Kd) of the module of algebraic
vector fields. Since the latter is finitely generated over the ring of polynomial functions
on Kd, and since the ring of polynomial functions is Noetherian, each of these spaces is a
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finitely generated module over the polynomial functions. The O(Kd)-module generated by
these polynomial vector fields (with O standing here for smooth, real analytic or holomorphic
functions) is therefore also a singular foliation.

Below, we list various singular foliations, which seem not to be of any of the previous
types.

Example 3. Vector fields on a manifold M which are tangent to a submanifold L form
an example of a singular foliation. Of course, L is the only singular leaf, while connected
components of M/L are the regular ones.

Example 4. Let k and d be integers greater than or equal to 1. Vector fields vanishing to
order k at the origin of Rd form a singular foliation. For k = 1, it is the singular foliation
associated to the action of the group GL(d) of invertible d×d-matrices on Rd. It is therefore
the image through the anchor map of a transformation Lie algebroid.

Example 5. In [39], a bivector field π ∈ Γ(∧2TM) on a manifold M is said to be foliated
when the space of vector fields of the form π#(α) with α = Γ(T ∗M) a 1-form, is closed under
the Lie bracket of vector fields. Such vectors define therefore a singular foliation. When π
is a Poisson bivector, or at least a twisted Poisson bivector (sometimes also referred to as
‘Poisson with background’ [24, 33, 35]), it is known that T ∗M comes equipped with a Lie
algebroid structure [11] with anchor π# : T ∗M → TM , but for ‘generic’ foliated bivector
fields, no such formula seems to exist, as discussed in [39].

Example 6. For a Leibniz algebroid (see Section 2.7 and [36] for a definition), the image
of the anchor map is obviously also a singular foliation. Recall that Courant algebroids [34]
are examples of Leibniz algebroids.

For instance, for S a function on M , a Leibniz algebroid structure on the bundle ∧2TM
is given by the anchor P 7→ PS := P#(dS) together with the Leibniz bracket:

(P,Q) 7→ LPS
Q,

for P and Q two sections of ∧2TM , i.e., bivector fields. Note that for M a vector space and
S a polynomial function, the associated singular foliation is a sub-foliation of the foliation
of symmetries of S described in Example 14.

Now we give an example of a sub-sheaf of the sheaf of vector fields, which is closed under
the Lie bracket, but which is not a singular foliation.

Example 7. On M = R, smooth vector fields vanishing on R− are closed under the Lie
bracket but are not locally finitely generated (see [15]), hence are not a singular foliation.
On M = R2 with variables (x, y), the C∞(M)-module generated by the vector field ∂

∂x and

vector fields of the form ϕ ∂
∂y where ϕ is a smooth function vanishing on the half-plane x ≤ 0

is closed under the Lie bracket but it is not locally finitely generated. This counter-example
is interesting, since Proposition 1.10 does not hold in that case.

1.3 Lie ∞-algebroids, their morphisms and homotopies of those

In this article, we think and prove results with the NQ-manifold point of view, which we
think to be the most natural here, but we state theorems with Lie ∞-algebroids, since it
seems nowadays to be the notion which is easier to grasp, and therefore the most popular.
We define these objects in the smooth, real analytic or holomorphic settings altogether. We
first recall the definition of Lie ∞-algebroids [41]:

Definition 1.13. Let M be a smooth/real analytic/complex manifold whose sheaf of func-
tions we denote by O. Let E be a sequence E = (E−i)i≤1≤∞ of vector bundles over M , then
a Lie ∞-algebroid structure on E, is defined by:

1. a degree 1 vector bundle morphism ρ : E−1 → TM called the anchor of the Lie ∞-
algebroid,

2. and a family, for all k ≥ 1, of graded symmetric k-multilinear maps
(
{. . .}n

)
n≥1

of

degree +1 on the sheaf of graded vector spaces Γ(E),
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satisfying a set of constraints. The first ones are the Leibniz conditions:

1. the unary bracket d := { . }1 : Γ(E) → Γ(E) is O-linear, i.e. forms a family d(i) :
E−i → E−i+1 of vector bundle morphisms, with i ≥ 2;

2. for all n ≥ 3, the bracket {. . .}n is O-linear in each of its n arguments;

3. the binary bracket obeys different rules, depending on its arguments: for all x ∈ Γ(E−1)
and y ∈ Γ(E) it satisfies

{x, fy}2 = f{x, y}2 + ρ(x)[f ] y, (1.5)

whereas {x, fy}2 = f{x, y}2 for all x ∈ Γ(E−i) with i ≥ 2.

The second ones are the compatibility conditions of the anchor:

1. ρ ◦ d(2) = 0,

2. ρ
(
{x, y}

)
=
[
ρ(x), ρ(y)

]
for all x, y ∈ Γ(E−1),

The third assumptions are the higher Jacobi identities:

1. d(i−1) ◦ d(i) = 0 for all i ≥ 3

2. for all n ≥ 2, and for every homogeneous elements x1, . . . , xn ∈ Γ(E):

n∑
i=1

∑
σ∈Un(i,n−i)

ε(σ)
{
{xσ(1), . . . , xσ(i)}i, xσ(i+1), . . . , xσ(n)

}
n−i+1

= 0. (1.6)

where ε(σ) is the sign induced by the permutation of the elements x1, . . . , xn:

x1 � . . .� xn = ε(σ)xσ(1) � . . .� xσ(n) (1.7)

where � is the symmetric product on Γ
(
Sn(E)

)
.

A Lie ∞-algebroid structure over M is said to be a Lie n-algebroid when E−i = 0 for all
i ≥ n+ 1.

Remark 2. This definition relies on the symmetric convention of the L∞ algebras found
e.g. in [23]. The original definition of L∞ algebras involved graded skew-symmetric brackets
[28]. However, they are in one-to-one correspondence, see [32]. In particular, under such
conventions, a Lie algebroid A→M can be equivalently seen as a vector bundle A[1] whose
sections have degree −1, and are equipped with a graded symmetric bracket { . , . } that
satisfies the usual identities.

We observe that for degree reasons, if n <∞ there is no bracket of arity higher than or
equal to n + 2. Moreover, we notice that the fact that the differential d is O-linear implies
that the graded vector bundles (E−i)i≤1≤n form a chain complex of vector bundles. For every
Lie ∞-algebroid E over M , it follows from items 1. and 2. in the higher Jacobi identities
that the following sequence:

. . . E−3 E−2 E−1 TM,d(4) d(3) d(2) ρ

is a complex of vector bundles that we call its linear part.
Also, for every Lie ∞-algebroid E over M , the binary bracket restricts to a skew-

symmetric bilinear bracket on Γ(E−1). Together with the anchor map, it defines an almost-
Lie algebroid structure on E−1. Therefore, by using the first item of Proposition 1.12, we
obtain:

Proposition 1.14. For every Lie ∞-algebroid E over M with anchor ρ, the O-module
F := ρ

(
Γ(E−1)

)
is a singular foliation.

We call this singular foliation the singular foliation of the Lie ∞-algebroid structure on E.
The definition of Lie ∞-algebroids above, although elementary, is quite cumbersome and

often hard to use - especially when dealing with morphisms. For the sake of clarity, Q-
manifolds with purely positive degrees, the so-called NQ-manifolds, are much more efficient
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objects and are in one-to-one correspondence with the Lie ∞-algebroids [41]. Let us define
them.

By a N -manifold E → M , we mean a sequence E := (E−i)i≥1 of vector bundles (all of
finite rank) over M , indexed by negative numbers. An element x ∈ E−i is said to be of degree
−i and the degree of x is written |x| = −i. We call functions on the N -manifold E →M the
graded commutative O-algebra sheaf E of (smooth, real analytic or holomorphic) sections
of the symmetric algebra S(E∗) (with the understanding that E∗ =

⊕
i≥1E

∗
−i and E∗−i is

considered to be of degree +i).
By construction, E is a sheaf of graded commutative O-algebras. For every k, n ≥ 1,

sections of ∑
i1+···+ik=n

E∗−i1 � . . .� E
∗
−ik ⊂ S(E∗)

(with � the symmetric product) will be said to be of degree n and of arity k and are denoted

by E(k)
n .The sheaf O of functions on M can be identified with the sub-sheaf of functions of E

which are of degree 0.
Vector fields on the graded manifold E →M are graded derivations of E . A vector field

Q is said to be of arity k when, for all functions F ∈ E of arity l, the arity of Q[F ] is l + k.
Any vector field Q can be decomposed as an infinite sum:

Q =
∑
k≥−1

Q(k)

with Q(k) being a vector field of arity k. For a vector field of degree i ≥ 0, the sum above
goes from 0 to +∞ for degree reasons. A vector field Q of odd degree commuting with itself,
i.e. satisfying Q2 := 1

2 [Q,Q] = 0, is said to be homological.

Definition 1.15. A NQ-manifold is a pair (E,Q) with E → M an N -manifold with base
M and Q a homological degree +1 vector field.

By construction, for every NQ-manifold (E,Q) with sheaf of functions E , we have an
isomorphism of sheaves E0 ' O, while E1 ' Γ(E∗−1), so that the derivation Q maps O to
Γ(E∗−1). By the derivation property, there exists a unique morphism of graded vector bundles
ρ : E−1 → TM such that〈

Q[f ], x
〉

= ρ(x)[f ] for all f ∈ O, x ∈ Γ(E−1). (1.8)

Above, 〈 . , . 〉 stands for the duality pairing between sections of a vector bundle and sections
of its dual. We call the vector bundle morphism ρ the anchor map of the NQ-manifold
(E,Q). The next result is classical [41], and describes the duality between Lie ∞-algebroids
and NQ-manifolds.

Theorem 1.16. Let E = (E−i)i≥1 be a sequence of vector bundles over a manifold M .
There is a one-to-one correspondence between NQ-manifolds (E,Q) with anchor ρ and Lie
∞-algebroid structures on E with anchor ρ. Under this correspondence:

1. the differential d of the linear part of the Lie ∞-algebroid structure is obtained by
dualizing the component Q(0) of arity 0 of Q, i.e. for all α ∈ Γ(E∗) and x ∈ Γ(E):〈

Q(0)[α], x
〉

= (−1)|α|
〈
α,d(x)

〉
, (1.9)

2. the binary bracket {. , .}2 and the component Q(1) of arity 1 are related by:〈
Q(1)[α], x� y

〉
= ρ(x)

[
〈α, y〉

]
− ρ(y)

[
〈α, x〉

]
−
〈
α, {x, y}2

〉
, (1.10)

for all homogeneous elements x, y ∈ Γ(E) and α ∈ Γ(E∗), with the understanding that
ρ vanishes on E−i for i 6= 1,

3. for every n ≥ 3, the n-ary brackets {. . .}n : Γ
(
Sn(E)

)
7→ Γ(E) and the component

Q(n−1) : Γ(E∗) 7→ Γ(SnE∗) of arity n− 1 of Q are dual one to the other.

This theorem justifies the following convention:
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Convention. We will denote Lie ∞-algebroids as a pair (E,Q), with Q the homological
vector field of the corresponding NQ-manifold with sheaf of functions E = Γ

(
S(E∗)

)
.

When dealing with morphisms, NQ-manifold are much more practical than Lie ∞-
algebroids. By a morphism from a N -manifold E → M to a N -manifold E′ → M ′, we
mean a degree 0 morphism Φ of sheaves of graded commutative algebra from the graded
commutative algebras E ′ of functions on E′ → M ′ to the graded commutative algebra E of
functions on E →M . The notion is then adapted to NQ-manifolds:

Definition 1.17. A Lie ∞-algebroid morphism from a Lie ∞-algebroid (E′, Q′) to a Lie
∞-algebroid (E,Q), with sheaves of functions E ′ and E respectively, is an algebra morphism
Φ of degree 0 from E to E ′ which intertwines Q and Q′:

Φ ◦Q = Q′ ◦ Φ. (1.11)

When Φ is an algebra isomorphism, we may speak of a strict isomorphism.

Every Lie ∞-algebroid morphism Φ induces a smooth map φ from M ′ to M that we call
the base morphism, and, for each i ≥ 1, vector bundle morphisms φi : E′−i → E−i over φ.
The condition that Φ : E → E ′ is an algebra morphism implies:

Φ(fG) = φ∗(f) Φ(G), (1.12)

for every f ∈ O and G ∈ E . When M = M ′, we say that a Lie ∞-algebroid morphism Φ is
over M if Φ is O-linear, i.e. if the base morphism φ is the identity map.

Remark 3. Equation (1.11), restricted to terms of arity 0, implies that the induced graded
vector bundle morphism (φi)i≥1 is a chain map between their respective linear part struc-
tures:

. . . E′−3 E′−2 E′−1 TM ′.

. . . E−3 E−2 E−1 TM

d′ d′

φ3 φ2

d′

φ1

ρ′

φ∗

d d d ρ

We call this chain map the linear part of Φ.

A O-linear map (not necessarily now a Lie∞-algebroid morphism) Φ from E := Γ
(
S(E∗)

)
to E ′ := Γ

(
S(E′∗)

)
is said to be of arity k (resp. degree k) if it sends functions of arity l in

E (resp. degree l) to functions of arity l + k (resp. degree l + k) in E ′. The arity of such
a map is necessarily positive, for it has to send smooth functions on M (of arity zero) to
elements of Γ

(
S(E′∗)

)
(of positive arity). In particular, any Lie ∞-algebroid morphism Φ

over M from (E′, Q′) to (E,Q) can be decomposed into components according to their arity,
which allows us to consider Φ as a formal sum:

Φ =
∑
k≥0

Φ(k) (1.13)

Since Φ is O-linear, and since it is determined by its restriction to functions of arity 1 , i.e.
sections of E∗, the component of arity k, namely Φ(k), can be identified with an element in
Γ
(
Sk+1(E′∗) ⊗ E

)
that we denote by Φ̂(k). When Φ is a morphism between N -manifolds,

taking the arity into account, the morphism condition Φ(FG) = Φ(F )Φ(G) (valid for any
F,G ∈ E) becomes:

Φ(n)(F1 � · · · � Fk) =
∑

i1+···+ik=n

Φ̂(i1)(F1)� · · · � Φ̂(ik)(Fk), (1.14)

for all F1, . . . , Fk ∈ Γ(E∗).
Beyond strict isomorphisms (see Definition 1.17) between Lie ∞-algebroids, there is a

broader notion of morphisms ‘invertible up to homotopy’. To begin with, it is not that
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easy to define what homotopy of Lie ∞-algebroid morphisms are. There has been several
attempts to define them [5]. We make this definition very precise in the coming lines.

We proceed step-by-step. Let (E,Q) and (E′, Q′) be two Lie ∞-algebroids over M with
sheaves of functions E and E ′ respectively. We define an operator [Q, . ] on the space of maps
Map(E , E ′) from E to E ′ by:

[Q, . ] : Map(E , E ′) → Map(E , E ′)
α 7→ Q′ ◦ α− (−1)|α|α ◦Q

for every map of graded manifolds α : E → E ′ of homogeneous degree |α| ∈ Z, and we
extend it by derivation. It squares to zero because both vector fields are homological. Then
it defines a differential on the space of maps between the graded manifolds E′ and E.

Definition 1.18. Let Φ be a Lie ∞-algebroid morphism from (E′, Q′) to (E,Q). A Φ-
derivation of degree k is a O-linear homogeneous map δ of degree k from E to E ′ satisfying:

δ(FG) = δ(F )Φ(G) + (−1)k|F |Φ(F )δ(G), (1.15)

for all functions F,G ∈ E.

Notice that a Φ-derivation can be decomposed as a sum δ =
∑∞
k=0 δ

(k) according to the

arity. By O-linearity, we can again identify δ(k) with an element δ̂(k) ∈ Γ
(
Sk(E′∗)⊗E

)
. It is

easy to check that for every Φ-derivation δ of degree k, the linear map [Q, δ] is a Φ-derivation
again, but is of degree k + 1. Of course, the relation

[
Q, [Q, δ]

]
= 0 holds true, so that:

Lemma 1.19. For every Lie ∞-algebroid morphism Φ over M from (E′, Q′) to (E,Q), the
space of Φ-derivations forms a complex when equipped with the differential [Q, . ].

Now let us define what we mean by piecewise-C1 paths valued in Lie ∞-algebroid mor-
phisms from (E′, Q′) to (E,Q). Recall that a piecewise-C1 (resp. piecewise continuous)path
valued in Γ(B), with B a vector bundle over M , is a continuous map ψ : M × I → B to the
manifold B (with I = [0, 1]) such that for all fixed t ∈ I, the map m 7→ ψ(m, t) is a section
of B and there exists a subdivision a = x0 < · · · < xk = b of I = [a, b] such that for every
m ∈M , the map ψ : M×]xi, xi+1 → B is of class C1 (resp. continuous).

Definition 1.20. Let (E,Q) and (E′, Q′) be Lie∞-algebroids over M . A path t 7→ Φt valued
in Lie ∞-algebroid morphisms from E′ to E is said to be piecewise-C1 when for all k ∈ N,

its component t 7→ Φ̂
(k)
t of arity k is a piecewise-C1 path valued in Γ

(
Sk+1

(
(E′)∗

)
⊗ E

)
.

Given a piecewise-C1 path t 7→ Φt valued in Lie ∞-algebroid morphisms from (E′, Q′)
to (E,Q), we say that a path t 7→ δt, with δt a Φt-derivation, is piecewise continuous if its

component t 7→ δ̂
(k)
t of arity k is a piecewise-continuous path valued in Γ

(
Sk+1

(
(E′)∗

)
⊗E

)
.

Remark 4. A subtle point in this definition is that the subdivision of I for which Φ̂
(k)
t is

C1 may depend on k. Notice that the derivative d
dtΦt is well-defined for all t ∈ I except

on the countable set of the points delimiting these subdivisions. For Lie n-algebroids, since(
S(E′∗)⊗E

)
0

is a vector bundle of finite rank, this finite subdivision of [0, 1] can be chosen to

be the same for all values of k ≥ 0. Also, notice that, for us, piecewise-C1 implies continuous
- even a the junction points.

It is routine to check that d
dtΦt is a Φt-derivation of degree 0 for each value of t for which

it is defined, that satisfies
[
Q, d

dtΦt
]

= 0, i.e. it is a cocycle for the complex of Lemma 1.19.
This justifies the following definition, whose rough idea is that homotopies are families of Lie
∞-algebroid morphisms whose derivatives are coboundaries for the complex of Φ-derivations:

Definition 1.21. Let Φ and Ψ be two Lie ∞-algebroid morphisms from (E′, Q′) to (E,Q)
covering the identity morphism. A homotopy between Φ and Ψ is a pair (Φt, Ht) consisting
in:

1. a piecewise-C1 path t 7→ Φt valued in Lie ∞-algebroid morphisms between E′ and E
such that:

Φ0 = Φ and Φ1 = Ψ,
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2. a piecewise continuous path t 7→ Ht valued in Φt-derivations of degree −1, such that
the following equation:

dΦ
(k)
t

dt
= [Q,Ht]

(k) (1.16)

holds for every k ∈ N and every t ∈ [0, 1] where it is defined.

Remark 5. Although presented here for singular foliations only, Theorems 1.6 and 1.8 can
be adapted to any locally finitely generated sheaf of Lie-Rinehart algebras over the ring of
smooth functions on a manifold M .

Remark 6. Although it may seem different at first look, Definition 1.21 is in fact almost
similar to a more classical and natural definition of homotopy given by [8, 40]. It consists
in defining homotopies between two morphisms as being Lie ∞-algebroid morphisms of
differential graded algebras from E to the tensor product E ′ ⊗ Ω•

(
[0, 1]

)
(where Ω•

(
[0, 1]

)
stands for forms on [0, 1] equipped with de Rham differential) whose restrictions to 0 and 1
are the two given Lie ∞-algebroid morphisms.

Both definitions match when the data (Φt, Ht) in Definition 1.21 depend smoothly on
the parameter t, as we will show below. There is, however, a technical issue in the proof of
Theorem 1.8 that imposes to make use of continuous piecewise C1-paths.

Let us explain the correspondence between both definitions. Let (E,Q), (E′, Q′), and
(Φt, Ht) be as in Definition 1.21. Let us equip the tensor product E ′ ⊗ Ω•

(
[0, 1]

)
with the

differential given for all F ∈ E ′i and ω ∈ Ω•
(
[0, 1]

)
by

D : F ⊗ ω 7→ Q′(F )⊗ ω + (−1)|i|F ⊗ ddRω.

Elements in E ′ ⊗ Ω•
(
[0, 1]

)
can be seen as sums Ft ⊗ 1 + Gt ⊗ dt with Ft, Ht families of

functions in E depending smoothly on the parameter t ∈ [0, 1]. The previous operator D
then reads:

D
(
Ft ⊗ 1 +Gt ⊗ dt

)
=
(
Q′(Ft)

)
⊗ 1 +

dFt
dt
⊗ dt+

(
Q′(Gt)

)
⊗ dt. (1.17)

Consider the map of degree 0 given by:

Φ̃ := E 7→ E ′ ⊗ Ω•
(
[0, 1]

)
F → t 7→ Φt(F )⊗ 1 + (−1)iHt(F )⊗ dt

This map is a graded algebra morphism if and only if Φt is an algebra morphism and Ht is
a Φt-derivation for all t. This point follows from the following direct computation, valid for
all F ∈ Ei, G ∈ Ej :

Φ̃(FG) = Φt(FG)⊗ 1 + (−1)i+jHt(FG)⊗ dt

= Φt(F )Φt(G)⊗ 1 +
(
(−1)iHt(F )Φt(G) + (−1)jΦt(F )Ht(G)

)
⊗ dt

=
(
Φt(F )⊗ 1 + (−1)iHt(F )⊗ dt

)
·
(
Φt(G)⊗ 1 + (−1)jHt(G)⊗ dt

)
= Φ̃(F ) · Φ̃(G).

Now let us show that Φ̃ is a chain map if and only if Φt is a chain map and Equation (1.16)
holds. On the one hand, we have

Φ̃ ◦Q(F ) = Φt ◦Q(F )⊗ 1 + (−1)iHt ◦Q(F )⊗ dt = Q ◦ Φt(F )⊗ 1 + (−1)iQ ◦Ht(F )⊗ dt

and on the other hand, a direct computation gives:

D ◦ Φ̃(F ) = Q ◦ Φt(F )⊗ 1 +
dΦt(F )

dt
⊗ dt+ (−1)iQ ◦Ht(F )⊗ dt.

This gives the result and proves the equivalence of both definitions. For a more enhanced
discussion about homotopy of Lie ∞-algebroid morphisms, we refer to Norbert Poncin [9] or
Bruno Vallette [40].
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The following fact is obvious:

Proposition 1.22. Homotopy of Lie ∞-algebroid morphisms is an equivalence relation,
denoted by ∼, which is compatible with composition.

Proof. Let us show that homotopy defines an equivalence relation ∼ between Lie∞-algebroid
morphisms:

• reflexivity : Φ ∼ Φ, as can be seen by choosing Φt = Φ and Ht = 0 for every t ∈ [0, 1].

• symmetry : Φ ∼ Ψ implies that Ψ ∼ Φ by reversing the flow of time, i.e. by considering
the homotopy (Φ1−t, H1−t).

• transitivity : if Φ ∼ Ψ and Ψ ∼ Ξ then there exists a homotopy (Θ1 t, H1 t) between Φ
and Ψ and a homotopy (Θ2 t, H2 t) joining Ψ and Ξ. It is then sufficient to glue Θ1 and
Θ2 and rescale the time variables, so that the new time variable takes values in the
closed interval [0, 1]. (Notice that the resulting data will be continuous at the junction,
but not differentiable in general at that point.)

Now assume that Φ,Ψ : E → E ′ are homotopic Lie ∞-algebroid morphisms between
(E′, Q′) and (E,Q), and that α, β : E ′ → E ′′ are homotopic Lie ∞-algebroid morphisms
between (E′′, Q′′) and (E′, Q′). Let us denote by (Φt, Ht) the homotopy between Φ and
Ψ, and (αt,Θt) the homotopy between α and β. Then α ◦ Φ and β ◦ Ψ are homotopic via(
αt ◦ Φt,Θt ◦ Φt + αt ◦Ht

)
. This completes the proof.

We now give an important example, that shall be used in the sequel:

Example 8. Let (E,Q) and (E′, Q′) be Lie ∞-algebroids over M and let i ≥ −1. Let δ be
a section of Γ

(
Si+1(E′∗)⊗E

)
. Let us consider δ as a map from Γ(E∗) to Γ

(
Si+1(E′∗)

)
. For

every Lie ∞-algebroid morphism Ξ : E → E ′ from (E′, Q′) to (E,Q), we denote by δ(Ξ) the
O-linear Ξ-derivation whose restriction to Γ(E∗) is δ. For any Lie ∞-algebroid morphism Φ
from (E′, Q′) to (E,Q), the differential equation:

dΦt
dt

=
[
Q, δ(Φt)

]
and Φ0 = Φ,

has solutions defined for all t ∈ R. This follows from the simple observation that
dΦ

(0)
t

dt is

equal to 0 if i ≥ 0 and to Q(0) ◦ δ − δ ◦Q′(0) for i = −1, so that Φ
(0)
t is therefore constant in

the first case and affine in the second case. Now, δ(Φt)
(k), in all cases above, depends only

on δ and Φ
(k′)
t for k′ = 0, . . . , k − 1. In view of the relation:

dΦ
(k)
t

dt
=

k∑
j=0

Q′(k−j) ◦ δ(Φt)(j) − δ(Φt)(j) ◦Q(k−j),

an immediate recursion proves that δ(Φt)
(k) is a polynomial in t. For all k ∈ N, Φ

(k)
t is

therefore polynomial in t, and therefore defines an homotopy between the Lie ∞-algebroid
morphisms Φ and Φ1.

The importance of Definition 1.21 relies on the following result, which says that two
homotopic Lie ∞-algebroid morphisms are related by a [Q, . ]-exact term:

Proposition 1.23. Let (E,Q) and (E′, Q′) be Lie ∞-algebroids over M . For any two
homotopic Lie ∞-morphisms Φ,Ψ from (E′, Q′) to (E,Q), there exists a O-linear map H :
E → E ′ of degree −1 such that:

Ψ− Φ = [Q,H] (1.18)

Proof. The variation of piecewise-C1 paths are equal to the integral of their derivatives
(recall that, for us, piecewise-C1 paths are also continuous by definition). From the relation
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d
dtΦt = [Q,Ht] and from the fact that the path t 7→ Φ̂

(k)
t is a continuous piecewise-C1 for all

k ∈ N, we therefore obtain:

Ψ− Φ =

∫ 1

0

[Q,Ht] dt

=

∫ 1

0

(
Q ◦Ht +Ht ◦Q′

)
dt

= Q ◦
(∫ 1

0

Ht dt

)
+

(∫ 1

0

Ht dt

)
◦Q′

Hence H =
∫ 1

0
Ht dt satisfies Condition (1.18). Also, H is O-linear because so is Ht for all

t ∈ [0, 1].

It deserves to be noticed that the operator H introduced in the previous proposition is
neither an algebra morphism, nor a derivation of any sort.

Remark 7. By isolating the components of arity 0 of Φ and Ψ in the above equations, we
find that their respective linear parts (φi)i≥1 and (ψj)j≥1 are homotopic in the usual sense:

. . . E′−3 E′−2 E′−1

. . . E−3 E−2 E−1

d d

φ3ψ3
h

φ2ψ2

d

h
φ1ψ1

d′ d′ d′

where h is the dual map of the component of arity 0 of H.

We can then define what we precisely mean when we say that two Lie ∞-algebroids are
isomorphic up to homotopy:

Definition 1.24. Let (E,Q) and (E′, Q′) be two Lie ∞-algebroids over M , and let Φ : E ′ →
E and Ψ : E → E ′ be Lie ∞-algebroid morphisms between (E,Q) and (E′, Q′). We say that
Φ and Ψ are isomorphisms up to homotopy if:

Φ ◦Ψ ∼ idE and Ψ ◦ Φ ∼ idE′ .

When such Φ,Ψ exist, we say that the Lie ∞-algebroids (E,Q) and (E′, Q′) are isomorphic
up to homotopy.

1.4 Existence of resolutions of a singular foliation

This section is devoted to the proof of several results of Section 1.1 related to the existence
and the properties of resolutions of singular foliations. We start with Proposition 1.3. We
address our special thanks to François Petit, whose knowledge of the matter was a crucial
help.

Proof. The first and third item simply come from Hilbert’s syzygy theorem, which is valid
for finitely generated O-modules, with O being the ring of holomorphic functions in a neigh-
borhood of a point in Cn, or the ring of polynomial functions on Cn. See for references
Theorem 4 page 137 in [19] for the holomorphic case or [16] for the algebraic case.

Also, any real analytic manifold admits a complexification, such that the original manifold
is the fixed point of some anti-holomorphic involution. A real-analytic singular foliation on
a real analytic manifold induces a holomorphic singular foliation on the complexification.
Then Hilbert’s syzygy theorem applies to that complexification. Restricting on the initial
manifold, the henceforth obtained resolution is still a resolution with the same length. This
proves the claim.

Now, we have to prove the second item. According to Theorem 4 in [38], germs of smooth
functions at a given point are a flat module over germs of real analytic functions at the same
point. By definition of flatness, it means that given a complex E−k−1 → E−k → E−k+1
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of vector bundles on the base manifold such that germs of real analytic functions have no
cohomology at degree −k, the sheaf of germs of smooth sections also has no cohomology at
degree −k. Let us choose e ∈ ΓU (E−k) be a local smooth section of E−k defined on an open
subset U which is in the kernel of d(k) : E−k → E−k+1 at every point of U . According to
the previous discussion, for every point x ∈ U , and for any neighborhood Ux ⊂ U of x, there
exists a smooth section fx ∈ ΓUx

(E−k−1) such that d(k+1)(fx) = e. A locally finite open
cover (Uxi

)i∈I indexed by I admitting a partition of unity (χi)i∈I can be extracted from the
family (Ux)x∈U . Since d(k+1) is O-linear f :=

∑
i∈I χifi is a section over U of E−k−1 that

satisfies d(k+1)(f) = e by construction. The proves the item.
The fourth item is proved in Example 15 below.
For the last item, one can proceed as follows. Let (E,d, ρ) a resolution of F , and let

x ∈ M be a point. Let e1, . . . , ek ∈ E−1|x be a basis of d(2)(E−2|x). Denote by ẽ1, . . . , ẽk
local sections of E−2 whose image through d(2) goes through e1, . . . , ek. In a neighborhood
U1 of x, the sections ẽ1, . . . , ẽk, as well as their ithe neighborhood of x in the last step does
not have empty interiormages d(2)ẽ1, . . . ,d

(2)ẽk are independent at every point, and therefore
define sub-vector bundles F−2 ⊂ E−2 and F−1 ⊂ E−1 respectively. It is easy to check that

(E′,d′, ρ′) is again a resolution of F , where E′−i := E−i for i 6= 1, 2 and E′−i := E−i
/
F−i

for i = 1, 2 and where d′ and ρ′ are the unique induced map on these quotient spaces. For
this new resolution, d(2) is zero at the point x. The operation can then be repeated for
the indices i = 2 to find a new resolution such that d(3) is zero at the point x and can be
continued by recursion. Each step may require to schrink the neighborhood of x on which
the resolution is defined, but since the resolution is of finite length, only finitely many such
operations are required, and the procedure gives a resolution defined in a neighborhood of x
and which is minimal at x by construction.

Let us now prove Proposition 1.4:

Proof. Let x ∈ M be a point and let (E,d, ρ) be a resolution of finite length F , defined
on a neighborhood U of x. Let y be a regular point of F contained in U and V ⊂ U a
neighborhood of y on which the foliation is regular.

Let r be its rank on V . By definition, if V is small enough, the restriction of F to V is
generated by r vector fields X1, . . . , Xr.

The restriction of the foliation F to V admits therefore two different resolutions: one is
given by the restriction of (E,d, ρ) to V , and the other one is given by E′−1 := Rr, E′−i = 0
for i 6= 1 and ρ′ : (λ1, . . . , λr) 7→

∑r
i=1 λiXi for all sections of E′−1, sections that we consider

as an r-tuple of functions on V . Since two resolutions of the same O-module are isomorphic
up to homotopies, the alternate sum of the ranks of the vector bundles of both resolutions
are equal. In particular, the relation r =

∑
i≥1(−1)i−1rk(E−i) holds.

Since y is an arbitrary regular point of U , this proves that the ranks of all regular leaves
of F contained in U are equal. The manifold M being connected, the dimensions of all the
regular leaves of F have to be equal to that integer r. This completes the proof.

1.5 Examples of resolutions of singular foliations

We give several examples of resolutions of singular foliations:

Example 9. Regular foliations are singular foliations. For a regular foliation F , the tangent
space of the foliation E−1 = TF is a resolution, when equipped with the inclusion map as
anchor. It is a Lie algebroid called the foliation Lie algebroid associated to F .

Example 10. Quasi-graphoids (as defined by C. Debord [13]), that is: singular foliations
which are projective O(M)-modules, are precisely singular foliations that admit, around each
point, resolutions of length 1, i.e. such that E−i = 0 for all i ≥ 2. According to Proposition
2 in [13], they can be seen as Lie algebroids whose anchor map is injective on an open subset.

Example 11. The Lie algebra sl2 (with its canonical generators h, e, f) acts on R2 (equipped
with coordinates x, y) through the vector fields:

h = x
∂

∂x
− y ∂

∂y
, e = x

∂

∂y
, f = y

∂

∂x
. (1.19)
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Since [h, e] = 2e, [h, f ] = −2f and [e, f ] = h, the O(R2)-module generated by h, e, f is a
singular foliation (that can be seen as smooth or real-analytic). The vector fields in (1.19)
are not independent over C∞(R2), since:

xyh+ y2e− x2f = 0. (1.20)

We use this equation to define a resolution by the following elements:

1. E−1 is the trivial vector bundle of rank 3 generated by 3 sections that we denote by
ẽ, f̃ , h̃,

2. then we define an anchor by

ρ(ẽ) = e, ρ(f̃) = f, ρ(h̃) = h, (1.21)

3. E−2 is the trivial vector bundle of rank 1, generated by a section that we call 1,

4. and we define a vector bundle morphism from E−2 to E−1 by:

d(1) = xyh̃+ y2ẽ− x2f̃ , (1.22)

5. and we set E−i = 0 and d = 0 for i ≥ 3.

The triple (E,d, ρ) is a resolution of the singular foliation given by the action of sl2 on R2.

Example 12. We owe this conjectural example to a discussion with Rupert Yu. The adjoint
action of a Lie algebra g on itself defines a singular foliation Fad on the manifold M := g
that can be seen as smooth, real analytic, holomorphic or algebraic.

Let P1, . . . , Pl be generators of S(g)g, i.e. the algebra of polynomial functions on g
invariant under adjoint action. According to Chevalley’s theorem, these generators can be
chosen to be independent (and l coincides with the rank of g). Let E−1 be the trivial bundle
over M = g with typical fiber g, and E−2 to be the trivial bundle over M with typical fiber
Rl. The map ρ : E−1 → TM is, at a point m ∈M = g, obtained by mapping a ∈ (E−1)m ' g
to [a,m] ∈ TmM ' g, while d(2) is the vector bundle morphism mapping, for all m ∈ M ,

an l-tuple (λ1, . . . , λl) ∈ (E−2)m to
∑l
i=1 λi gradm(Pi) ∈ (E−1)m ' g, where grad stands for

the gradient computed with the help of the Killing form.
It is clear that ρ

(
Γ(E−1)

)
= Fad. It is clear that ρ ◦ d(2) = 0 and that the image of d(2)

coincides with the kernel of ρ at all points on regular orbits. We conjecture that the previous
complex is a resolution of Fad, but we have not been able to prove it.

Example 13. Let F be the singular foliation of all vector fields vanishing at the origin 0 of
a vector space V of dimension n. A resolution of F is given by choosing the following data:

1. for all i ∈ Z, E−i is the trivial bundle over V with fiber ∧iV ∗ ⊗ V ,

2. at a given point e ∈ V , the anchor map V ∗ ⊗ V → TeV ' V is given by ρ(α ⊗ v) =
〈α, e〉 v,

3. at a given point e ∈ V , the differential d(i+1) : E−i−1 → E−i is given by:

d(i+1)(α⊗ u) := (ieα)⊗ u, (1.23)

for all α ∈ ∧i+1V ∗, u ∈ V.
This sequence is isomorphic to dim(V ) copies of a Koszul resolution, hence it is a resolution.

Example 14. Let ϕ be weight homogeneous polynomial function on M := Cn with an
isolated singularity at the origin 0. Let Xi := Γ(ΛiTM) stand for the sheaf of i-multivector
fields on M . It is classical that multivector fields on M , equipped with the differential given
by the contraction by dϕ:

. . . X3 X2 X1 O,
ιdϕ ιdϕ ιdϕ ιdϕ
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form an exact complex except in degree 0, where the image of the map X1(M) 7→ O(M) is

the ideal generated by
(
∂ϕ
∂x1

, . . . , ∂ϕ∂xn

)
. We call Koszul complex the previous complex.

The Koszul complex can be seen as a resolution of two different singular foliations. Ten-
soring the previous resolution with the sheaf X1 of vector fields on M , one can see it as being
a resolution of the singular foliation of vector fields vanishing on the singular locus of ϕ, that
is to say the singular foliation generated by{

∂ϕ

∂xi

∂

∂xj
, with i, j = 1, . . . , n

}
.

But the Koszul complex can also be truncated in degree 1 to get a resolution of the
singular foliation Fϕ of all vector fields X on M with X[ϕ] = 0, that is the singular foliation
generated by the vector fields:

Fϕ =

{
∂ϕ

∂xi

∂

∂xj
− ∂ϕ

∂xj

∂

∂xi
, with 1 ≤ i < j ≤ n

}
In the first case, Γ(E−i) ' Xi⊗OX1 and d := ιdϕ⊗id, while in the second case Γ(E−i) ' Xi+1

and d := ιdϕ.

Example 15. The following example, that we owe to Jean-Louis Tu, provides a smooth
singular foliation that does not admit smooth resolutions. Let χ be a smooth real-valued
function on M := R vanishing identically on R− and strictly positive on R∗+. Consider the
singular foliation F generated by the vector field V on R defined by:

V := χ(t)
d

dt
.

Assume that a smooth resolution of F exists. By (an obvious adaptation of) the last item
in Proposition 1.3, we can replace it on a neighborhood of 0 by a resolution (E,d, ρ) such

that d
(2)
0 = 0. Since ρ

(
Γ(E−1)

)
= F , in a neighborhood U of 0 ∈ R, E−1 admits a nowhere

vanishing section et such that ρ
(
et(s)

)
= Vs for every s. Since an open interval of R is

a contractible manifold, each of the vector spaces (E−i)i∈N must be trivial. Denote by ni
the rank of E−i. In particular, Γ(E−1) is generated by n1 canonical generators e1, . . . , en1

.
Without any loss of generality, we can assume that e1 = e. Moreover, since the image of
the anchor map is V , we have for every 1 ≤ k ≤ n1: ρ(ek) = gkV = gkρ(e1) for some
function gk ∈ C∞(U). It implies that ρ(ek − gke1) = 0. Since Im

(
d(2)

)
= Ker(ρ), there

exist sections f2, . . . , fn1
E−2 such that d(2)(fk) = ek − gke1 for all k = 2, . . . , n1. But this

contradicts the fact that d(2) vanishes at 0, unless n1 = 1. But if n1 = 1, then the kernel of
ρ : ΓU (E−1)→ X(U) is made of all real-valued functions vanishing on R+ ∩ U , which is not
finitely generated. As a conclusion F does not admit smooth resolutions.

1.6 Proof of Theorems 1.6 and 1.8

1.6.1 Arity and linear part

The notion of arity will be at the core of most of the proofs of Theorems 1.6 and 1.8, and
as such it deserves to be studied separately. Let E be a positively graded manifold, that is
a family of vector bundles (E−i)i≥1 over a base manifold M (positively graded means that
coordinate functions on E have positive degree). Recall that, by a vector field, we mean a
derivation of the sheaf of functions E over E and by a vertical vector field we mean a O-linear
derivation of E (which geometrically means that the vector field is tangent to the fibers of
E →M).

Recall from Section 1.3 that a function F ∈ E is of arity n and degree k if F ∈ Γ
(
Sn(E∗)k

)
,

i.e. if it is a section of
∑
i1+···+in=k E

∗
−i1�· · ·�E

∗
−in , where � denotes the graded symmetric

product. Recall that a vector field is said to be of arity n and of degree k ∈ Z when, seen as
a derivation of E , it increases the arity by n and the degree by k. The following proposition
states the main properties of the arity of a function and of a vector field:

Proposition 1.25. Let E →M be a positively graded manifold.
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1. The allowed values of arity of a function range from 0 to +∞, and that of a vector field
range from −1 to +∞.

2. The arity of a function is less than or equal to its degree.

3. Vector fields of arity −1 are vertical and of negative degree.

4. Vector fields of arity 0 and of non zero degree are vertical.

5. Vector fields of arity n 6= 1 and of degree +1 are vertical.

6. The Lie bracket of vector fields of arity n and n′ is of arity n+ n′.

Now, assume that a homological vector field Q of degree +1 is given on E, and let us
decompose it as:

Q =

∞∑
i=0

Q(i)

with Q(i) its component of arity i. The component of arity 0 is O-linear. It corresponds
therefore to a degree +1 linear endomorphism of E, that is to say, to a collection of maps:

d(i) : E−i −→ E−i+1,

for all i ≥ 2. For any ξ ∈ E∗−i+1 and u ∈ E−i, the action of d(i) is defined as:〈
ξ,d(i)(u)

〉
= (−1)i−1

〈
Q(0)(ξ), u

〉
. (1.24)

The component of arity zero in the relation [Q,Q] = 0 gives [Q(0), Q(0)] = 0, which, in turn,
proves that d(i−1) ◦ d(i) = 0. We deduce the following Lemma:

Lemma 1.26. Let E = (E−i)i≥1 be a positively graded manifold over a manifold M . There
is a one-to-one correspondence between homological vertical vector fields of arity 0 and col-
lections of maps d =

(
d(i) : E−i → E−i+1

)
i≥2

making E a complex.

Now let us say a few words about vertical vector fields. Vertical vector fields form a
graded Lie subalgebra of the graded Lie algebra of vector fields (the grading being given by
the degree). The following proposition is an easy generalization of Batchelor [7] or Kotov-
Strobl [26]. This result that will be used for the proof of the main theorem:

Proposition 1.27. Let A be a vector bundle over M . There is a one-to-one correspondence
between almost-Lie algebroid structures on A → M and vector fields Q of degree +1 on the
graded manifold A∗[1] whose self-commutator [Q,Q] is vertical.

1.6.2 A fundamental lemma on vertical vector fields

Let E be a positively graded manifold, with base manifold M . Recall that a vertical vector
field on E is a vector field which is O-linear, which geometrically means that it is parallel to
the fibers of the projection from E onto its base M . Identifying the tangent space of E at
each point with the fiber E, we obtain that for every n ≥ 1, there is an isomorphism between
the vector space of vertical vector fields of arity n− 1 and elements of the direct sum:

U(n−1) =

+∞⊕
k=−∞

⊕
i−j=k
i,j≥1

Γ
(
Sn(E∗)i ⊗ E−j

)

Sections of Sn(E∗)i⊗E−j are said to be of height i and depth j. Since homogeneous elements
of E∗ have at least degree one, the height is valued in {n, n + 1, . . .}, whereas the depth is
valued in {1, 2, . . .}, so that vertical vector fields of arity n−1 and degree k can be represented
as infinite sums of elements in the anti-diagonals i − j = k (‘height − depth = k ’) in the
sections of the bicomplex:
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· · · Sn(E∗)n ⊗ E−3 Sn(E∗)n ⊗ E−2 Sn(E∗)n ⊗ E−1

· · · Sn(E∗)n+1 ⊗ E−3 Sn(E∗)n+1 ⊗ E−2 Sn(E∗)n+1 ⊗ E−1

· · · Sn(E∗)n+2 ⊗ E−3 Sn(E∗)n+2 ⊗ E−2 Sn(E∗)n+2 ⊗ E−1

· · · · · · · · ·

0

0

0

0 0 0

The horizontal lines correspond to the action of id⊗d, whereas the vertical lines correspond
to the action of Q(0)⊗ id. Summing the vertical and the horizontal differentials gives a total
differential:

∂ = Q(0) ⊗ id + id⊗ d, (1.25)

on the total bicomplex U(n−1).
The depth (resp. height) of a vertical vector field of a fixed degree is the minimum of

the depths (resp. heights) of all its non zero components. In the diagram above it would
coincide with the depth and height of the lowest non-zero element of the anti diagonal which
symbolizes the given vector field of degree k. The root of a vertical vector field of degree k
is its component of depth 1 − the root of X is denoted by rt(X). It can be zero, and in that
case the depth of X is strictly higher than 1. A root-free element is a vertical vector field
whose root is zero (in particular it means that its depth is strictly higher than 1), otherwise
it is said to be rooted. For degree reason, any vertical vector field of arity n and degree less
than or equal to n− 1 is root-free.

Now, it is clear that, when (E,Q) is a Lie ∞-algebroid, and Q(0) is the component of
arity 0 of Q whose dual differential we denote by d (as in Lemma 1.26), then X 7→ [Q(0), X]
squares to zero and therefore makes vertical vector fields a complex. This complex restricts
to vertical vector fields of a given arity. Moreover, upon decomposing vertical vector fields
of a arity n− 1 with respect to their height and depth, we obtain this operator is the total
differential ∂ defined in Equation (1.25). the following lemma:

Lemma 1.28. For every n ≥ 0, the space of vertical vector fields of arity n, equipped with
the adjoint action X 7−→ [Q(0), X], is, as a complex, isomorphic to the bicomplex (U(n), ∂).

The vertical lines in this bicomplex may not be exact, whereas the exactness of the
sequence:

. . . Γ(E−2) Γ(E−1) F 0d d ρ

implies that the horizontal lines are exact, except maybe at depth 1. More precisely, by

exactness of the short sequence Γ(E−2)
d−→ Γ(E−1)

ρ−→ F , a rooted element is a coboundary
if and only if its image under id⊗ ρ is zero. By diagram chasing, this leads to the following
fundamental lemma.

Lemma 1.29. Let n ≥ 1 be an integer, and consider the bicomplex
(
U(n), [Q(0), . ]

)
of

vertical vector fields of arity n.

1. A root-free cocycle is a coboundary.

2. A cocycle whose root is in the kernel of id⊗ ρ is a coboundary.

Remark 8. The first item implies that the cohomology of this bicomplex is zero in degree
less than or equal to n− 1.

1.6.3 Construction of Lie ∞-algebroid structures on a resolution

We now intend to prove Theorem 1.6. We present a proof for the case of smooth resolutions
over smooth manifolds, but the arguments below also work when working in the real analytic
or holomorphic case in a neighborhood of a point.
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dd+ 1

depth

h

height

X

Y

[Q(0), X]

Figure 1: A root-free cocycle of depth d is actually a coboundary: X = [Q(0), Y ].

We have to prove that, given a resolution (E,d, ρ) of F , there is a homological degree +1
vector field Q on the graded manifold E whose linear part is the given resolution of F . The
proof of the theorem consists in finding a homological degree +1 vector field Q on E → M
with the following arity decomposition:

Q = Q(0) +Q(1) +Q(2) + . . . (1.26)

where Q(i) is a vector field on E → M of degree 1 and arity i. The homological condition
[Q,Q] = 0 gives the following set of equations:

[Q(0), Q(0)] = 0 (1.27)

[Q(0), Q(1)] = 0 (1.28)

∀ n ≥ 2 [Q(0), Q(n)] = −1

2

∑
1≤i,j≤n−1
i+j=n

[Q(i), Q(j)] (1.29)

We define Q(0) by dualizing the differential d defined on the resolution (E,d, ρ) associ-
ated to the singular foliation F as in Equation (1.24). The assumption that d squares to
zero implies dually that Q(0) is a cohomological vector field on the graded manifold E, i.e.
[Q(0), Q(0)] = 0.

The proof will then develop in three steps: 1) find Q(1) (= the binary bracket + the
anchor map), 2) find Q(2) (= the 3-ary bracket), 3) find Q(n) (= the n-ary bracket) for every
n ≥ 3. We have to separate the cases n = 1 and 2 because the methods are different. We
shall define at each step a degree 1 vector field Qn as:

Qn =
∑

0≤i≤n

Q(i) = Qn−1 +Q(n) (1.30)

which has the following property: the commutator [Qn, Qn] is a sum of vector fields of arity
higher than or equal to n + 1. The direct sum Q =

∑
n≥0

Q(n) is then a vector field of degree

+1 such that [Q,Q] = 0, hence defining a Lie ∞-algebroid structure on E.

According to Proposition 1.12, there exists an almost-Lie algebroid structure on E−1

whose anchor is ρ. According to Proposition 1.27, this almost-Lie almost algebroid structure
corresponds to a vector field X on the graded manifold E−1, which can be extended to a
vector field of arity 1 and degree 1 on E that we still denote by X.

Remark 9. Considering a vector field X of arity 1 and degree 1 on the graded manifold E−1

as a vector field of arity 1 and degree 1 on E is an operation which is possible over a smooth
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manifold or in the real-analytic and holomorphic case in a neighborhood of a point. Indeed,
X can be completed by choosing a local trivialization of E−i for all i ≥ 2, and defining
X to be zero on the dual sections. In the smooth case, such local extensions can be glued
together using partitions of unity. But this operation can not be completed globally in the
holomorphic or real analytic cases.

The vector field [Q(0), X] is vertical and is a coboundary in the space of vertical vector
fields. By Proposition 1.27, the vector field [X,X] is vertical. Hence,

[
Q(0), [X,X]

]
is vertical

as well. Applying this vector field to a function f ∈ O we have:

0 =
1

2

[
Q(0), [X,X]

]
(f) =

[
[Q(0), X], X

]
(f) = [Q(0), X] ◦ ρ∗(ddRf). (1.31)

Equation (1.31) is equivalent to the following condition (recall that rt stand for the root of
a vertical vector field, see Section 1.6.2):

(id⊗ ρ) ◦
(
rt[Q(0), X]

)
= 0. (1.32)

As a consequence, the vertical vector field [Q(0), X] satisfies the assumptions of item 2 of
Proposition 1.29. Hence there exists a vertical vector field Y of arity 1 and depth greater
than or equal to 2 such that:

[Q(0), X] = −[Q(0), Y ] (1.33)

The vector field Q(1) = X + Y , satisfies Equation (1.28).

Remark 10. Condition (1.32) is equivalent to the fact that the kernel of ρ is stable under
the adjoint action:

∀ x ∈ Γ(E−2), y ∈ Γ(E−1) ρ
(
{d(x), y}E−1

)
= 0. (1.34)

From now on we write Q1 = Q(0)+Q(1) and we are interested in the commutator [Q1, Q1].
By Equation (1.28), it is naturally equal to [Q(1), Q(1)]. In the decomposition Q(1) = X+Y ,
the vector field Y is vertical. Hence [Y, Y ] is vertical. Also, Y [α] = 0 for every α ∈ Γ(E∗−1)
(because the depth of Y is greater than or equal to 2), so [X,Y ](f) = 0 for every function
f on the base manifold M , and [X,Y ] is vertical. Since [X,X] is vertical, this implies that
[Q(1), Q(1)] is vertical.

The Jacobi identity for graded vector fields implies that the vector field [Q(1), Q(1)] is a
cocycle: [

Q(0), [Q(1), Q(1)]
]

= 2
[
[Q(0), Q(1)], Q(1)

]
= 0. (1.35)

We show that it is in fact a coboundary in the bicomplex U(2). Recall that for every odd
vector fields, the relation

[
[U,U ], U

]
= 0 holds. For U = Q(1) and for every function f ∈ O,

this relation gives:

0 =
[
[Q(1), Q(1)], Q(1)

]
(f) = [Q(1), Q(1)] ◦ ρ∗(ddRf). (1.36)

The above equation means (cf Remark 11):

(id⊗ ρ) ◦
(
rt[Q(1), Q(1)]

)
= 0. (1.37)

Being a cocycle whose root is the kernel of the anchor map, [Q(1), Q(1)] is a coboundary by
item 2. in Lemma 1.29. Hence there exists a degree 1 element Q(2) ∈ U(2) such that:

1

2
[Q(1), Q(1)] = −[Q(0), Q(2)]. (1.38)

Equation (1.29) is therefore satisfied for n = 2.

Remark 11. The commutator [Q(1), Q(1)] corresponds by duality to the Jacobiator of the
2-bracket. In particular it may not identically vanish (this is why Q(2) is needed). However
the Jacobi identity of the bracket [ . , . ]E−1

on the sections of E−1 should lie in the kernel
of the anchor map:

∀ x, y, z ∈ Γ(E−1) ρ
(
Jac(x, y, z)

)
= 0, (1.39)

where Jac(x, y, z) is the Jacobiator of the bracket on E−1. The above relation is equivalent
to Equation (1.37) (by duality).
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123

3

4

5

0

[Q(1), Q(1)]

Q(2)

Figure 2: The commutator [Q(1), Q(1)] is a cocycle in the space of vertical vector fields, whose root lies
in the kernel of the anchor map. As such it is a coboundary, i.e. there exists Q(2) ∈ U(2) such that:
1
2 [Q(1), Q(1)] = −[Q(0), Q(2)].

Now assume that we have built all Q(i) satisfying Equations (1.29) up to some order
n ≥ 2. Let Dn+1 :=

∑
1≤i,j≤n

i+j=n+1

[Q(i), Q(j)] A routine computation gives that Dn+1 commutes

with Q(0). Also, it is a vertical vector field: [Q(i), Q(j)] is vertical for i 6= 1 and j 6= 1 because
both Q(i) and Q(j) are, and [Q(1), Q(n)] is vertical because the depth of Q(n) is greater than
of equal to 2. Moreover the bracket [Q(i), Q(n+1−i)] has height n+2 and degree 2 then Dn+1

is a root-free element of the bicomplex U(n+1) of vecrtical vector fields depth at least n.
Thus this cocycle is automatically a coboundary by the first item in Lemma 1.29 (cf. Fig-

ure 1). Then there exists an element Q(n+1) of arity n + 1 and depth at least n + 1 such
that:

1

2

∑
1≤i,j≤n
i+j=n+1

[Q(i), Q(j)] = −[Q(0), Q(n+1)] (1.40)

that is precisely Equation (1.29) for n + 1. The result then follows by induction. This
completes the proof of Theorem 1.6.

1.6.4 Universality of the Lie ∞-algebroid over a foliation

In this section, we prove the first item of Theorem 1.8. The second item is a simple corollary
of the first one. We prove the theorem in the smooth case. The real analytic and holomorphic
cases are similar, upon restricting to a neighborhood of a point, as can be checked step-by-
step.

Assume that we are given a singular foliation F that admits a resolution (E,d, ρ). By
Theorem 1.6, the resolution (E,d, ρ) can be endowed with a Lie ∞-algebroid structure with
linear part (E,d, ρ). Let (E′, Q′) be a Lie ∞-algebroid whose induced singular foliation F ′
is a sub-foliation of F , that is:

ρ′
(
Γ(E′−1)

)
⊂ ρ
(
Γ(E−1)

)
= F ,

and let (E′,d′, ρ′) be its linear part.
By definition, the complex

. . . Γ(E−2) Γ(E−1) F 0d(3) d(2) ρ

is a resolution of F in the category of O-modules. By a classical theorem of algebraic topology,
given a complex of O-modules, for instance:

. . . Γ(E′−2) Γ(E′−1) F ′ 0d′(3) d′(2) ρ′
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there exists a family of vector bundle morphisms φi : E′−i → E−i forming a chain map

. . . E′−3 E′−2 E′−1 TM

. . . E−3 E−2 E−1 TM

d′(4)

φ3

d′(3)

φ2

d′(2)

φ1

ρ′

id

d(4) d(3) d(2) ρ

This classical result of algebraic topology is summarized in the following Lemma:

Lemma 1.30. Let (E,d, ρ) be a resolution of a singular foliation F . Let (E′, Q′) be a Lie
∞-algebroid whose associated singular foliation is a subfoliation of F . Then there exists a
chain map φ = (φi)i≥1 from (E′,d′, ρ′) to (E,d, ρ) such that ρ ◦ φ1 = ρ′.

The proof of the existence part of the first item of Theorem 1.8 relies on a variation of
Lemma 1.29. For all n ≥ 2, there is a natural bicomplex structure on Γ

(
Sn(E′∗)⊗ E

)
:

· · · Sn(E′∗)n ⊗ E−3 Sn(E′∗)n ⊗ E−2 Sn(E′∗)n ⊗ E−1

· · · Sn(E′∗)n+1 ⊗ E−3 Sn(E′∗)n+1 ⊗ E−2 Sn(E′∗)n+1 ⊗ E−1

· · · Sn(E′∗)n+2 ⊗ E−3 Sn(E′∗)n+2 ⊗ E−2 Sn(E′∗)n+2 ⊗ E−1

· · · · · · · · ·

0

0

0

0 0 0

where the horizontal lines correspond to the action of id ⊗ d and the vertical lines to the
action of Q′(0) ⊗ id. Their sum ∂̃ = Q′(0) ⊗ id + id ⊗ d is a differential, and we denote by(
V(n−1), ∂̃

)
this complex. We say again that an element in Sn(E′∗)l⊗E−k is of depth k and

height l. Lemma 1.29 can be adapted:

Lemma 1.31. For any n ≥ −1, let V(n) = Γ
(
Sn+1(E′∗)⊗ E

)
. Then:

1. for all i ≥ 2, any cocycle in V(i) of degree 1 is a coboundary,

2. a cocycle in V(1) := Γ
(
S2(E′∗)⊗E

)
of degree 1 whose component in Γ

(
S2(E′∗−1)⊗E−1

)
is in the kernel of id⊗ ρ is a coboundary.

and also:

3. for all i ≥ 1, any cocycle in V(i) of degree 0 is a coboundary,

4. a cocycle in V(0) = Γ(E′∗⊗E) of degree 0 whose component in Γ(E′∗−1⊗E−1) is in the
kernel of id⊗ ρ is a coboundary.

Proof. Since (E,d, ρ) is a resolution, since Si(E′∗) is a projective O-module for all i ≥ 0,
and since tensoring over O preserves exactness, all lines in the bicomplex above are exact
except maybe in depth 1, where exact elements are given by the kernel of id⊗ ρ.

Now, for degree reasons, cocycles of degree 1 (resp. 0) have no components in sections
of Si+1(E′∗) ⊗ E−1 when i ≥ 2 (resp. i ≥ 1). Hence, such a cocycle takes only values in
a sub-bicomplex of V(i) where all lines are exact, i.e. the bicomplex of elements of depth
greater than or equal to 2, hence it is a coboundary by simple diagram chasing. This proves
the first and third item. The second item comes from the simple observation that a cocycle
in Γ

(
S2(E′∗)⊗E

)
of degree 1 may only have one term of depth 1 , and this term is a section

of S2(E′∗−1)⊗E−1. If this term lies in the kernel of id⊗ ρ, it is in the image of id⊗ d(2) and
the result then follows by diagram chasing. This proves the second item. The proof of the
fourth item is similar.
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Let us now give the meaning of this bicomplex. Consider a linear map Θ : E → E ′. We
say that Θ is of arity i ∈ Z when it increases the arity by i, i.e. if F ∈ E is of arity j ∈ N,
then Θ(F ) is of arity i+ j. More generally, a linear map Θ : E → E ′ decomposes as a direct
sum:

Θ =
∑
i∈Z

Θ(i)

where Θ(i) is a O-linear map of arity i for all i ∈ Z. Of course, the following relation holds
for any two linear maps Θ1 : E → E ′ and Θ2 : E ′ → E ′′ and all n ∈ Z:

(Θ1 ◦Θ2)(n) =
∑
i∈Z

Θ
(i)
1 ◦Θ

(n−i)
2 (1.41)

The previous infinite sum is of course finite when applied to a particular element of E , since
there is no element of negative arity.

Remark 12. Two O-linear graded commutative algebra morphisms: Φ,Ψ : E → E ′ satisfy
Φ(i) = Ψ(i) for all i = 0, . . . , n if and only if the linear operators Φ(i) and Ψ(i) coincide on
functions of arity 1 , i.e. on Γ(E∗) ⊂ E , for all i ∈ {1, . . . , n}.

Consider a chain map φ from (E′,d′, ρ′) to (E,d, ρ) and let Φ(0) : E → E ′ be the corre-
sponding dual graded algebra morphism, i.e. the unique algebra morphism whose restriction
to a map Γ(E∗) → Γ(E′∗) is the dual of φ : E′ → E. By construction, Φ(0) is of arity 0.
Since Φ(0)-derivations are determined by their restrictions to sections of E∗ and are O-linear,
they can be identified with sections of S(E′∗)⊗E. Under this identification, Φ(0)-derivations
of arity i are in one-to-one correspondence with elements of Si+1(E′∗)⊗E. In other words,
they are in one-to-one correspondence with sections of V(i).

Moreover, since Φ(0) : E → E ′ arises from a chain map from the complex (E′,d′, ρ′) to
the complex (E,d, ρ), Φ(0) is a chain map with respect to Q(0) and (Q′)(0), i.e. with respect
to the components of arity 0 of Q and Q′. Now, a simple computation gives that if δ is a
Φ(0)-derivation of degree d and arity i, then

∆(δ) := Q′(0) ◦ δ − (−1)dδ ◦Q(0) (1.42)

is a Φ(0)-derivation of degree d + 1 and arity i again. A straightforward calculation shows
that ∆2 = 0. Hence, the differential ∆ turns the space of Φ(0)-derivations of arity i into a
complex. The following lemma is a simple computation.

Lemma 1.32. Let Φ(0) : E → E ′ be the graded algebra morphism dualizing a chain map φ
from (E′,d′, ρ′) to (E,d, ρ). Then the space of Φ(0)-derivations of arity i, equipped with the

differential ∆ coincides, as a complex, with the bicomplex
(
V(i), ∂̃

)
.

To prove the first item of Theorem 1.8, we have to show that there exists a Lie ∞-
algebroid morphism from (E′, Q′) to (E,Q) over M , that is: a graded commutative algebra
morphism Φ : E → E ′ whose term of arity 0 coincides with Φ(0) and which intertwines the
homological vector fields Q and Q′:

Q′ ◦ Φ− Φ ◦Q = 0. (1.43)

It is sufficient for that purpose to construct a sequence (Φn)n∈N of O-linear algebra morphisms
Φn : E → E ′ whose first term is Φ0 = Φ(0) and that satisfy the following properties:

1. The linear map Q′ ◦ Φn − Φn ◦Q has no components of arity i for i = 0, . . . , n,

2. The components (Φn)(i) of arity i = 0, . . . , n− 1 of Φn coincide with those of Φn−1,

3. The restriction to Γ(E∗) of the component (Φn)(n+1) of arity n+ 1 is vanishing.

The morphism Φ : E → E ′ is then defined to be the ‘limit’ of the Φn. By ‘limit’, we mean
precisely the following: for all n ∈ N and for all F of arity k ∈ N, Φ(F ) is defined to be
the element of E ′ whose component Φ(F )(n+k) of arity n + k is defined to be Φm(F )(n+k),
with m being any integer greater than of equal to n. The second item of the definition of
the sequence (Φn)n∈N implies that m 7→ Φm(F )(n+k) is constant for m ≥ n and justifies this
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definition. Such a morphism Φ is a graded algebra morphism that satisfies Equation (1.43)
by construction.

We construct this sequence by recursion. First, we choose Φ0 := Φ(0), the dual of the
chain map φ from (E′,d′, ρ′) to (E,d, ρ) as in Lemma 1.30. The latter being the dual of a
chain map, Q′ ◦Φ(0) −Φ(0) ◦Q has no component of arity 0, so the required property holds
at n = 0.

Assume now Φi constructed for i = 0 to n. Let us construct Φn+1. Consider the linear
operator from E to E ′ given by:

∆Φn
:= Q′ ◦ Φn − Φn ◦Q. (1.44)

An easy computation gives the following relation:

∆Φn
(FG) = ∆Φn

(F )Φn(G)− (−1)|F |Φn(F )∆Φn
(G), (1.45)

for all degree-homogeneous F,G ∈ E . Let us prove that the operator ∆Φn
is O-linear. In

view of (1.45), it is sufficient to prove that it vanishes when applied to any f ∈ O. Now, the
relation that Φ(0) ◦Q(f) = Q′(f) holds for all f ∈ O, since, by Lemma 1.30, it dualizes the
relation ρ ◦ φ1 = ρ′. Recall that Q(f) = ρ∗ ◦ ddR(f) takes values in Γ(E∗−1). Now for every
operator Ψ : E → E ′ of degree 0 and every F ∈ Γ(E∗−1), Ψ(F ) has to be in Γ(E′∗−1), hence

Ψ(F ) = Ψ(0)(F ). As a consequence:

Φn ◦Q(f) = Φ(0)
n ◦Q(f) = Φ(0) ◦Q(f) = Q′(f). (1.46)

Since f = Φ0(f) by definition, and that Φ0(f) = Φn(f) by induction, we have that Q′(f) =
Q′ ◦Φn(f) and thus the relation Φn ◦Q(f) = Q′ ◦Φn(f) holds true for all f ∈ O, and proves
that ∆Φn is O-linear.

Equation (1.45), applied to elements F,G ∈ E of arities i and j, implies, when considering
the component of arity n+ 1 + i+ j:(
∆Φn(FG)

)(n+1+i+j)
=
(
∆Φn(F )

)(n+1+i)(
Φn(G)

)(j) − (−1)|F |
(
Φn(F )

)(i)(
∆Φn(G)

)(n+1+j)
,

(1.47)
while the remaining terms disappear in view of the recursion assumption. By definition of
the components of arity n+ 1 and 0 of an operator, this implies:

∆
(n+1)
Φn

(FG) = ∆
(n+1)
Φn

(F )Φ(0)(G)− (−1)|F |Φ(0)(F )∆
(n+1)
Φn

(G). (1.48)

In other words, ∆
(n+1)
Φn

is a O-linear Φ(0)-derivation. Applied to a function F ∈ Γ(E∗), the

map ∆
(n+1)
Φn

decomposes as:

∆
(n+1)
Φn

(F ) =

n∑
i=0

Q′(n+1−i) ◦ Φ(i)
n (F )− Φ(i)

n ◦Q(n+1−i)(F ), (1.49)

because the restriction to Γ(E∗) of Φ
(n+1)
n is vanishing.

Moreover, by definition of ∆Φn , and since Q and Q′ square to zero, the following relation
holds:

Q′ ◦∆Φn
+ ∆Φn

◦Q = 0. (1.50)

Taking the component of arity n+1 in the previous relation, and using the recursion assump-
tion that ∆Φn

has no components of arity i for i = 0 to n, we obtain by Equation (1.41):

Q′(0) ◦∆
(n+1)
Φn

+ ∆
(n+1)
Φn

◦Q(0) = 0. (1.51)

In other words, the Φ(0)-derivation ∆
(n+1)
Φn

is a ∆-cocycle. In view of Lemma 1.32, this

cocycle can be seen as a cocycle of the bi-complex
(
V(n+1), ∂̃

)
.

For n ≥ 1, this cocycle is a coboundary in view of the first item in Lemma 1.31. For
n = 0, this cocycle is also a coboundary in view of the second item of Lemma 1.31. This
deserves some justification: it is routine to check that the component in S2(E′∗−1 ⊗ E−1) of

∆
(1)
Φ0

= Q′(1) ◦ Φ0 − Φ0 ◦Q(1) (1.52)
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is given by
{
φ1(x), φ1(y)

}
− φ1

(
{x, y}′

)
for all x, y ∈ Γ(E′−1), where φ1 : E′−1 → E−1 is the

first component of the chain map φ dual to Φ(0) and { . , . } and { . , . }′ are the almost Lie
algebroid brackets on E−1 and E′−1 dualizing Q(1) and Q′(1). This element is in the kernel
of ρ because ρ ◦ φ1 = ρ′ by construction of φ1. The condition in the second item of Lemma

1.31 is satisfied, and gives that ∆
(1)
Φ0

is a coboundary.

For every value of n therefore, there exists a Φ(0)-derivation δn+1 of degree 0 and of arity
n+ 1 such that:

∆
(n+1)
Φn

= −∆(δn+1). (1.53)

Now, we construct a O-linear graded algebra morphism Φn+1 by requiring that its restrictions
to Γ(E∗) ⊂ E has components of arity 0, . . . , n that coincide with those of Φn and a term
of arity n + 1 that coincides with δn+1. We extend these restrictions to all of E by using
Equation (1.14). The henceforth defined graded algebra morphism Φn+1 has all components
of arity 0, . . . , n that coincide with those of Φn by Remark 12. Hence the second assumption
of the recursion is satisfied at rank n + 1. By Equation (1.41), it implies in turn that the
operator:

∆Φn+1 := Q′ ◦ Φn+1 − Φn+1 ◦Q (1.54)

has no components of arity 0, . . . , n, and that the restriction to Γ(E∗) of the component of
arity n+ 1 is:

∆
(n+1)
Φn+1

= ∆
(n+1)
Φn

+Q′(0) ◦ Φ
(n+1)
n+1 − Φ

(n+1)
n+1 ◦Q(0), (1.55)

because the restriction to Γ(E∗) of the component of arity n + 1 of Φn is vanishing, see

Equation (1.49). Since Φ
(n+1)
n+1 (F ) = δn+1(F ) for all F ∈ Γ(E∗), ∆

(n+1)
Φn+1

vanishes on this
space. It also vanishes on O. Now, ∆Φn+1

satisfies a derivation relation of the type of
Equation (1.45) - upon replacing n by n+1. If the components of ∆Φn+1 of arity 0, . . . , n+1
are zero when applied to elements in Γ(E∗) ⊂ E , they have to vanish on the whole graded

algebra E . Finally, the restriction to Γ(E∗) of the component Φ
(n+2)
n+1 is vanishing, hence all

three items in the recursion relation are therefore satisfied at rank n + 1, which completes
the proof of the first point: there exist a Lie ∞-algebroid morphism from (E′, Q′) to (E,Q)
whose linear part is an arbitrary chain map from (E′,d′, ρ′) to (E,d, ρ).

We now have to show that any two such morphisms are homotopic. Let Φ and Ψ be
O-linear Lie ∞-algebroid morphisms from (E′, Q′) to a universal Lie ∞-algebroid (E,Q) of
a singular foliation F . Let us first show that there exists a Lie∞-algebroid morphism which
is homotopic to Φ and has the same linear part a Ψ. Since (E,d, ρ) is a resolution of F in
the sense of Definition (1.1), the complex

. . . Γ(E−2) Γ(E−1) F 0d(3) d(2) ρ

is a resolution of F in the category of O-modules (as already stated in Lemma 1.2). It is
classical that two chain maps from the chain complex (E′,d′, ρ′) valued in E in the category
of O-modules are homotopic. In particular, the linear parts of Φ and Ψ are homotopic
through an homotopy h : Γ(E′)→ Γ(E):

. . . E′−3 E′−2 E′−1

. . . E−3 E−2 E−1

d d

φψ
h

φψ

d

h
φψ

d′ d′ d′

Since h is O-linear of degree −1, it comes from a vector bundle morphism, from E′ to E
which is also of degree −1. The dual map h∗ : Γ(E∗)→ Γ(E′∗) satisfies by construction:

Ψ(0)(F )− Φ(0)(F ) = Q′(0) ◦ h∗(F ) + h∗ ◦Q(0)(F ) (1.56)

for all F ∈ Γ(E∗).
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Consider the differential equation4:

dΦt
dt

=
[
Q, h∗(Φt)

]
and Φ0 = Φ,

where h∗(Φt) is the unique Φt-derivation whose restriction to Γ(E∗) is the dual h∗ of h.
It admits a solution according to Example 8. By construction, (Φt, h

∗(Φt)) is a homotopy
between Φ and Φ1. Moreover, since the restriction of h∗(Φt) to the linear part of Φt is h∗

for all t, the following differential equation is satisfied:

dΦ
(0)
t

dt
(F ) = Q′(0) ◦ h∗(F ) + h∗ ◦Q(0)(F )

= Ψ(0)(F )− Φ(0)(F )

and Φ0 = Φ(0), (1.57)

for all F ∈ Γ(E∗). In particular, the map
dΦ

(0)
t

dt does not depend on t and coincides with the

component of arity 0 of Ψ − Φ. In view of the initial condition, Φ
(0)
t is therefore equal to

Φ(0) + t(Ψ(0) − Φ(0)) and the component of arity 0 of Φ1 is equal to Ψ(0).
In view of this first point, we are left with the task of finding a homotopy between Φ1

and Ψ, which are Lie ∞-algebroid morphisms that have the same linear part ψ whose dual
we shall simply denote by Ψ(0). We are now going to build a sequence (Φn)n≥1 of Lie
∞-algebroid morphisms from (E′, Q′) to (E,Q) such that:

1. Φn and Ψ have components of arity k that coincides for all k ≤ n− 1.

2. Φn and Φn+1 are homotopic through homotopies (Φt)t∈[n,n+1] obtained out of Φt-
derivations (δt)t∈]n,n+1[ whose components of arity less or equal to n vanish.

The construction of such a sequence of homotopies completes the proof, since then the pair
t 7→ Φf(t) and t 7→ δf(t) with f : [0, 1[→ [1,+∞[ a strictly increasing surjective C1-function is
a homotopy between Φ1 and Ψ. And since homotopy is an equivalence relation by Proposition
1.22, then Φ and Ψ are homotopic.

Let us explain this point carefully. Due to the first assumption, it is easy to see that the

component t 7→ Φ
(n)
f(t) of arity n is constant (that is, does not depend on t) in a neighborhood

of 1 , and coincides with Ψ(n) in that neighborhood. Also, it is continuous and piecewise-
C1. For the same reason, components of a given fixed arity of t 7→ δf(t) are equal to 0 in
a neighborhood of 1 , hence are piecewise continuous. A homotopy between Φ1 and Ψ is
therefore constructed. Since Φ1 and Φ are homotopic as well, a homotopy between Φ and
Ψ exists. Now, the following lemma allows to construct the family of homotopies as above
linking Φ1 and Ψ as above and completes the proof of Theorem 1.8.

Lemma 1.33. Let Φ,Ψ : E → E ′ be two Lie ∞-algebroid morphisms from (E′, Q′) to (E,Q)
such that Φ(i) = Ψ(i) for every 0 ≤ i ≤ n for some n. Then there exists a Lie ∞-algebroid
morphism Ξ which is homotopic to Φ and which satisfies Ξ = Ψ up to arity n+ 1.

Proof. For all F,G ∈ E , one has:

(Ψ− Φ)(FG) = (Ψ− Φ)(F )Φ(G) + Ψ(F )(Ψ− Φ)(G). (1.58)

In view of Equation (1.14), this relation implies, when F,G are of arity i, j respectively, and
when only the component of arity n+ 1 + i+ j of the previous relation is considered, that:

(Ψ− Φ)(n+1)(FG) = (Ψ− Φ)(n+1)(F )Φ(0)(G) + Φ(0)(F )(Ψ− Φ)(n+1)(G). (1.59)

Above, we have used the assumption that Φ and Ψ coincide up to arity n. The previous
relation means that (Ψ− Φ)(n+1) : E → E ′ is a Φ(0)-derivation. Moreover, since Φ(i) = Ψ(i)

for every i = 0, . . . , n, the relation:

(Ψ− Φ) ◦Q = Q′ ◦ (Ψ− Φ), (1.60)

4We recall that [Q,L] is a shorthand for Q′ ◦ L− (−1)lL ◦Q for all linear maps L : E → E ′ of degree l ∈ Z
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evaluated at arity n + 1 implies (Ψ − Φ)(n+1) ◦ Q(0) = Q′(0) ◦ (Ψ − Φ)(n+1), i.e. that the
Φ(0)-derivation (Ψ− Φ)(n+1) is a ∆-cocycle. This implies by the third item in Lemma 1.31
that it is a coboundary, i.e. that there exists a Φ(0)-derivation δn+1 of arity n+1 and degree
−1 such that:

(Ψ− Φ)(n+1) = ∆(δn+1). (1.61)

Now, for every Lie ∞-algebroid morphism Ξ : E → E ′, let us denote by δn+1(Ξ) the unique
Ξ-derivation whose restriction to Γ(E∗) ⊂ E coincides with δn+1. Then consider the solution
of the following initial value problem (it admits a solution defined on R in view of Example
8):

dΦt
dt

=
[
Q, δn+1(Φt)

]
and Φ0 = Φ.

The pair (Φt, δn+1(Φt)) is by construction a homotopy between Φ and Ξ = Φt=1, and it
is obtained through a family of Φt-derivations t 7→ δn+1(Φt) whose components of arity k
vanish for all k = 0, . . . , n. In particular, for every k = 0, . . . , n:

dΦ
(k)
t

dt
=
[
Q, δn+1(Φt)

](k)
= 0 and Φ

(k)
0 = Φ(k).

Hence Ξ(k) = Φ(k) = Ψ(k) for all k = 0, . . . , n. In arity n+ 1, the previous relation gives:

dΦ
(n+1)
t

dt
=
[
Q, δn+1(Φt)

](n+1)
= ∆

(
δn+1(Φt)

)(n+1)
and Φ

(n+1)
0 = Φ(n+1).

Since δn+1(Φt) is a Φt-derivation, since the component of arity 0 of Φt is constant and equal
to Φ(0) for all t ∈ [0, 1], and since the restriction to Γ(E∗) of δn+1(Φt) coincides with the
Φ(0)-derivation δn+1 = δn+1(Φ(0)), we have:

dΦ
(n+1)
t

dt
= Q′(0) ◦ δn+1 + δn+1 ◦Q(0) and Φ

(n+1)
0 = Φ(n+1).

By definition of δn+1 therefore:

dΦ
(n+1)
t

dt
= ∆(δn+1) = (Ψ− Φ)(n+1) and Φ

(n+1)
0 = Φ(n+1),

so that Ξ(n+1) = (Ψ−Φ)(n+1) +Φ(n+1) = Ψ(n+1). The proof then continues by recursion.

1.7 Examples of universal Lie ∞-algebroid structures over a singu-
lar foliation

In this section, we give examples of universal Lie∞-algebroid structures over a given singular
foliation.

Example 16. For a regular foliation F on a manifold M , it is clear that the tangent space
TF is a resolution of F , when equipped with inclusion map as an anchor map. The Lie
algebroid TF is a universal Lie ∞-algebroid over F .

Example 17. More generally, when a foliation is Debord (see Proposition 2.14), then a
resolution of length 1 exists and comes equipped with a Lie algebroid structure. This Lie
algebroid is a universal Lie ∞-algebroid over F .

Example 18. In Example 11, we gave a resolution of length 2 of the singular foliation
coming from the action of sl2 on R2. Let us compute now the Lie ∞-algebroid structure on
that resolution. We define the bracket between two constant sections of E−1 ' sl2 as being
their bracket in sl2. Then we extend it to every section of E−1 by the Leibniz identity (1.5).
To define the bracket between sections of E−1 and E−2, we notice that:

{ẽ, dr} = xy{ẽ, h̃}+ ρ(ẽ)(xy)h̃+ ρ(ẽ)(y2)ẽ− x2{ẽ, f̃} = 0. (1.62)

Since d is injective on a dense open subset, this imposes {ẽ, r} = 0. The same argument also

gives [f̃ , r] = [h̃, r] = 0. We then extend these brackets to a bracket between sections of E−1

and E−2 by the Leibniz property (1.5). There is no k-ary bracket for k ≥ 3.

32



Example 19. Let F be the singular foliation of all vector fields vanishing at the origin 0.
Let us consider the resolution given in Example 13.

The Lie ∞-algebroid structure on that resolution can be described explicitly. We let
all k-ary brackets to vanish for k ≥ 3. Let us then define the binary bracket on constant
sections. For all α ∈ ∧iV ∗, β ∈ ∧jV ∗, and u, v ∈ V , we define a (graded symmetric) Lie
algebra bracket by: {

α⊗ u, β ⊗ v
}

2
= α ∧ iuβ ⊗ v + (−1)ijβ ∧ ivα⊗ u (1.63)

and then extend it to all sections with the help of the anchor map. This bracket is graded
symmetric by construction, and the Jacobi identity is a direct computation (since the Lie
bracket previously defined preserves constant sections, it suffices to check it on constant
sections). The compatibility with the differential is also a matter of computation:

d(i+j−1)
{
α⊗ u, β ⊗ v

}
2

= ie
(
α ∧ iuβ ⊗ v + (−1)ijβ ∧ ivα⊗ u

)
= (ieα) ∧ iuβ ⊗ v + (−1)ij+j+1β ∧ iv(ieα)⊗ u

+(−1)i+1α ∧ iuieβ ⊗ v + (−1)ij(ie)β ∧ ivα⊗ u
=

{
d(i) (α⊗ u) , β ⊗ v

}
2
− (−1)i

{
α⊗ u,d(j) (β ⊗ v)

}
2

The computation above implies that the compatibility holds for two sections of E−i and E−j
with i, j ≥ 2. For i = 1 or j = 1, the computation above has to be done differently, because
the differential is zero on E−1, but the anchor map enters then into the computation and
makes the formula valid again: we leave it to the reader.

Example 20. This is a continuation of Example 14, where we explain that the Koszul
complex is a resolution of the singular foliation Fϕ of all algebraic vector fields X on Cn
satisfying X[ϕ] = 0 for some weight homogeneous function ϕ with isolated singularities.

By example 14, there is a resolution (E,d, ρ) such that Γ(E−i) is the sheaf of i + 1-
multivector fields on Cn. We describe the brackets giving the Lie ∞-algebroid structure as
follows:

{∂I1 , . . . , ∂Ik}k :=
∑

i1∈I1,...,ik∈Ik

ε(i1, . . . , ik)ϕi1,...,ik ∂ I1
{i1}
∪···∪ Ik

{ik}
, (1.64)

where:

1. ϕ is a function on Cn,

2. for all I = {i1, . . . , ik} a sub-list of elements in {1, . . . , n}, the set I
{ip} , where 1 ≤ p ≤ k,

is the sub-list {i1, . . . , ip−1, ip+1, . . . , ik}, and ∂I is a shorthand for ∂
∂xi1
∧ · · · ∧ ∂

∂xik
,

3. ε(i1, . . . , ik) ∈ {−1, 1} is the signature of the permutation of the list I1, . . . , Ik which
sends i1, . . . , ik, in that order, in front of the list,

4. ϕi1,...,ik is a shorthand for ∂kϕ
∂xi1

...∂xik
.

The brackets (1.64) are then defined for any multivector fields by O-linearity for k 6= 2. For
k = 2, it extends with the help of the anchor map ρ which is given by:

ρ (δij) := ϕi
∂

∂xj
− ϕj

∂

∂xi
. (1.65)

A brutal computation that we leave to the reader gives that (1.64) is a Lie∞-algebroid. For
ϕ weight homogeneous with isolated singularities, we saw in Example 14 that the previous
Lie ∞-algebroid structure is built on a resolution of the foliation Fϕ of all vector fields X
on M = Cn such that X[ϕ] = 0.

Notice that in this example, the k-ary brackets for k = 3, 4, . . . are in general not zero.
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2 The geometry of a singular foliation through its uni-
versal Lie ∞-algebroid

The purpose of this section is to exploit the universal Lie∞-algebroid over a singular foliation
to understand its geometry. For this purpose we must associate objects to the latter structure
which do not depend on the many choices made into the construction. In the next sections,
we shall study first the global invariants, and then turn to local ones, attached to the leaves.

2.1 Universal foliated cohomology

We refer to [27] for an insight about the importance of Q-manifold cohomology in relation
with characteristic classes. (e.g. an interpretation of Chern-Weyl maps with the help of
Q-manifolds).

Let F be a singular foliation, and (E,Q) a universal Lie ∞-algebroid over it, with sheaf
of functions E =

⊕
k≥0 Ek. The homological vector field Q makes E =

⊕
k≥0 Ek a complex,

whose cohomology is the Q-manifold cohomology.
This cohomology makes sense, i.e. does not depend on the choice of a universal Lie

∞-algebroid over F , in view of the following corollary of Theorem 1.8:

Corollary 2.1. Let F be a singular foliation on M . Let (E,Q) and (E′, Q′) be universal
Lie ∞-algebroids over F with sheaves of functions E and E ′. The cohomologies of (E , Q) and
(E ′, Q′) are canonically isomorphic as graded commutative algebras.

Proof. By Theorem 1.8, there exist Lie ∞-algebroid morphisms Φ : E ′ → E and Ψ : E → E ′
whose compositions are homotopic to the identity maps of E and E ′ respectively. Any two
choices of morphisms are moreover homotopic.

Proposition 1.23 implies that Φ̃ and Ψ̃ are inverse to one another at the level of coho-
mology, and that any two choices for Φ and Ψ give the same morphisms at the level of
cohomology.

By Corollary 2.1, the following definition therefore makes sense (i.e. does not depend on
the choice of a universal Lie ∞-algebroid (E,Q) over F):

Definition 2.2. Let F be a singular foliation on M that admits at least a universal Lie
∞-algebroid over it. We call universal foliated cohomology of F and denote by HU(F) the
cohomology of the complex (E , Q), where E is the sheaf of functions on any universal Lie
∞-algebroid (E,Q) over F .

Remark 13. It is clear that the first quotient space H0
U(F) consists in smooth functions on

M constant along the leaves of F .

Let us give some interpretations of the universal foliated cohomology of F . Let us call
forms on F and denote by Ω(F) the space of O-multi-linear skew-symmetric assignments
from F to O:

Ω(F) := HomO

(
∧O F ,O

)
=
⊕
k≥0

Hom
(
∧kO F ,O

)
Note that 0-forms on F are just functions on M . Also, a k-form α on F induces a k-form αL
on each regular leaf L, but maybe not on singular ones. A foliated de Rham operator ddR

on Ω(F) is defined by the usual formula:

ddR(α)(X0, . . . , Xk) =

k∑
i=0

(−1)iXi

[
α(X0, . . . , X̂i, . . . , Xk)

]
(2.1)

+
∑

0≤i<j≤k

(−1)i+jα
(

[Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk

)
,

with the understanding that X̂i means that the term Xi is omitted. We call the cohomology
of this operator the foliated de Rham cohomology of F and denote it by HdR(F).
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Let F be a singular foliation on M and let (E,Q), with sheaf of functions E , be a universal
Lie ∞-algebroid over F . There is a natural map ρ∗ from Ω(F) to E given by associating to
each α ∈ Ωk(F) the element ρ∗α ∈ Γ

(
Sk(E∗−1)

)
⊂ Ek such that for all x1, . . . , xk ∈ Γ(E1):

ρ∗α(x1, . . . , xk) = α
(
ρ(x1), . . . , ρ(xk)

)
. (2.2)

It is routine to check that α 7→ ρ∗(α) is a chain map and a graded commutative algebra
morphism, inducing therefore an algebra morphism, still denoted by ρ∗, from HdR(F) (the
foliated de Rham cohomology of F) to HU(F) (the universal foliated cohomology of F).

Proposition 2.3. Let F be a singular foliation on M that admits a universal Lie∞-algebroid
over it. The algebra morphism ρ∗ from the foliated de Rham cohomology of F to the universal
foliated cohomology of F given by Equation (2.2) is canonical. In other words, for every two
universal Lie ∞-algebroids (E,Q) and (E′, Q′) over the singular foliation F , the following
diagram is commutative:

H•dR(F)

H•(E , Q) H•(E ′, Q′)

ρ∗ ρ′∗

ΦE,E′

where ΦE,E′ is the canonical isomorphism given in Corollary 2.1.

Proof. Let (E,Q) and (E′, Q′) be two universal Lie ∞-algebroids over F , and denote by E
and E ′ their sheaves of graded functions.

Let ΦE,E′ : E ′ → E be a Lie ∞-algebroid morphism from (E,Q) and (E′, Q′) as in
Theorem 1.8. Let φ1 : E−1 → E′−1 be the linear part of ΦE,E′ . The relation ρ′ ◦φ1 = ρ holds,
with ρ and ρ′ the respective anchors of the Lie ∞-algebroids (E,Q) and (E′, Q′), which in
turn implies that the relation Φ∗E,E′ ◦ (ρ′)∗ = ρ∗ holds at the chain level. Together with
Corollary 2.1, this proves the claim.

2.2 The isotropy Lie ∞-algebra at a point

In [1,3], the isotropy Lie algebra of a singular foliation at a point x is defined. In this section,
we show that this Lie algebra is the first component (in degree −1) of a Lie ∞-algebra with
no differential, which is canonically associated to the singular foliation.

Let F be a singular foliation on a manifold M and (E,Q) be a universal Lie∞-algebroid
over it. Choose an arbitrary point x ∈ M . Denote by i∗xE−i the fiber of E−i at x, and
consider the complex:

. . . i∗xE−3 i∗xE−2 Ker(ρx)d(4) d(3) d(2)

where ρx stands for the anchor map ρx : i∗xE−1 → TxM at the point x. The previous
sequence may have cohomology: the exactness of the complex in Definition 1.1 at the level
of sections does not imply that it is exact at all points. The resolutions constructed in
Examples 11-14-13 for instance have cohomology at the origin of the vector space on which
they are constructed.

The linearity properties of the brackets defining a Lie ∞-algebroid (E,Q) in Definition
1.13, and the fact that the kernel of the anchor map is an ideal with respect to the 2-bracket,
imply that the Lie ∞-algebroid structure (E,Q) restricts to yield a Lie ∞-algebra structure
on the graded vector space:

Vx = Ker(ρx)⊕
⊕
i≥2

i∗xE−i
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We call this Lie ∞-algebra the isotropy Lie ∞-algebra at x ∈ M of the universal Lie ∞-
algebroid (E,Q). The following lemma is an obvious consequence of the second item of
Theorem 1.8: it suffices to restrict the morphisms described in that item to the point x.

Lemma 2.4. Let (E,Q) and (E′, Q′) be two universal Lie ∞-algebroids over a singular
foliation F . For every point x ∈ M , the isotropy Lie ∞-algebra at x ∈ M of the universal
Lie ∞-algebroid (E,Q) and (E′, Q′) are isomorphic up to homotopy. Moreover, there is a
distinguished homotopy class of isomorphisms up to homotopy relating them.

Taking the cohomology of the isotropy Lie ∞-algebra of (E,Q) at a point x ∈ M , we
obtain a graded Lie algebra. By the previous lemma, different choices of universal Lie ∞-
algebroids over F lead to canonically isomorphic graded Lie algebra.

Proposition 2.5. Let F be a singular foliation on M that admits two universal Lie ∞-
algebroids (E,Q) and (E′, Q′) over it. The isotropy graded Lie algebras of F at x ∈ M ,
computed with respect to these structures, are canonically isomorphic.

The following definition therefore makes sense:

Definition 2.6. We call isotropy graded Lie algebra of F at the point x the graded Lie
algebra described in Proposition 2.5 and denote it by HF (x) =

⊕
i≥1H

F
−i(x).

Remark 14. Notice that in this article, graded Lie algebras are considered in their sym-
metric version, due to the conventions established in Definition 1.13. See also Remark 2.

Now, we claim that we can have much more structures that just a graded Lie algebra.
Recall that for a singular foliation F that admits a resolution of finite length, any point
x ∈M admits a neighborhood of x in M on which a resolution minimal at x exists by item
5. in Proposition 1.3. The following lemma is then an obvious result of Abelian categories:

Lemma 2.7. For any resolution (E,d, ρ) of a singular foliation F which is minimal at x and
all i ≥ 2, the vector space i∗xE−i is canonically isomorphic to HF−i(x) and Ker(ρx) ⊂ i∗xE−1

is canonically isomorphic to HF−1(x).

It follows from the previous lemma that the isotropy Lie ∞-algebra structure at x ∈ M
of a universal Lie ∞-algebroid (E,Q) over F is, when the resolution (E,d, ρ) is minimal
at x, constructed on a graded vector space which is canonically isomorphic to HF (x) =⊕

i≥1H
F
−i(x). It can therefore be transported on that space.

By definition of a resolution minimal at x, this Lie ∞-algebra has no unary bracket, i.e.
its differential is the zero map. Since the differential is zero, its binary bracket induces a
graded Lie algebra structure (i.e. satisfies the graded Jacobi identity). By construction, it
coincides with the bracket of the isotropy graded Lie algebra at x. But it may still have k-
ary brackets for k ≥ 3 that may depend on the construction. Let us study this dependence.
A morphism of Lie ∞-algebras from (V,Q) to (V ′, Q′) is by definition a graded algebra
morphism Φ : S

(
(V ′)∗

)
→ S(V ∗). Its linear part is the dual of the linear part of Φ: it is a

graded morphism from V to V ′. When Φ : S
(
(V ′)∗

)
→ S(V ∗) is a strict isomorphism, we

shall speak of a strict isomorphism of Lie∞-algebras. It is routine to check that a morphism
is a strict isomorphism if and only if the linear part is a graded vector space isomorphism.
Now:

Proposition 2.8. Let F be a singular foliation on M that admits a resolution of finite
length. Then the graded cohomological spaces HF (x) obtained by restricting an arbitrary
resolution of F to a point x ∈M :

1. comes equipped with a Lie ∞-algebra structure for every choice of universal Lie ∞-
algebroid (E,Q) over F ,

2. this Lie ∞-algebra admits a trivial 1-ary bracket (that is, the differential is zero) and
its binary bracket is the Lie bracket of the isotropy graded Lie algebra (in particular, it
satisfies the graded Jacobi identity),

3. its k-ary brackets, for k ≥ 3, depend on the choice of a universal Lie∞-algebroid (E,Q)
constructed on a resolution (E,d, ρ) minimal at x, but any two such Lie ∞-algebras
are strictly isomorphic, with respect to a Lie ∞-algebra isomorphism whose linear part
is the identity map.
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Proof. Items 1. and 2. follow from Lemma 2.7, Definition 2.9 and the discussion before
Proposition 2.8. Item 3. is a consequence of Lemma 2.4 (which is itself a consequence of
Theorem 1.8) when used at a point where the differential d of the resolution of F vanishes.

Item 3. in Proposition 2.8 implies that the Lie ∞-algebra obtained by considering res-
olutions minimal at x is not unique: it is only unique up to a Lie ∞-algebra isomorphism
whose linear part is the identity. By contrast with the ”isotropy Lie ∞-algebra of (E,Q) at
x ∈ M”, which depends on the choice of (E,Q), its class up to isomorphisms whose linear
part is the identity depends only on the foliation F .

Definition 2.9. We call isotropy Lie ∞-algebra of F at the point x the isomorphism class
of Lie ∞-algebra structures on HF (x) described in Proposition 2.8.

Since HF (x) comes equipped with a canonical graded Lie algebra structure, HF−1(x) is
in particular a Lie algebra. We show that it is isomorphic to the isotropy Lie algebra gx
constructed by I. Androulidakis and G. Skandalis in [1], defined to be the quotient gx of the
Lie algebra F(x) of local sections in F vanishing at x ∈ M by the Lie ideal IxF (here Ix
stands for the ideal of local functions vanishing at x). It is equipped with a quotient Lie
algebra structure.

Proposition 2.10. Let F be a singular foliation that admits a universal Lie ∞-algebroid
over it. For every x ∈M , the isotropy Lie algebra gx of the singular foliation at x as defined
by Androulidakis and Skandalis is isomorphic to the component HF−1(x) of degree −1 in the
isotropy graded Lie algebra of F at x.

Proof. The isomorphism τ is defined as follows. For all e ∈ i∗xE−1 in the kernel of ρx, let ẽ
be a local section through e. Then ρ(ẽ) is a local section of F that vanishes at x. Its class
modulo the Lie ideal IxF is well-defined, since another choice for ẽ would differ from the
first one by a section in IxΓ(E−1). If e = d(2)(h) for some h ∈ i∗xE−2, then ẽ can be chosen
to be d(2)(h̃) with h̃ any section through h, so that ρ(ẽ) = ρ ◦ d(2)(h̃) = 0.

This defines a well-defined Lie algebra morphism τ from HF−1(x) to gx. It is clear that
τ is surjective, since any local section of F vanishing at x ∈ M is of the form ρ(ẽ) with ẽ a
local section of E−1 whose value at x is in the kernel of ρ. Now, let us prove injectivity. Let
e ∈ i∗xE−1 with τ(e) = 0. Then for any local section ẽ of E−1 through e, we have that ρ(ẽ)
is in the ideal IxF , i.e. it is a finite sum of the form

∑r
i=1 fiXi, with Xi ∈ F and fi ∈ Ix

for all i = 1, . . . , r. This implies ρ(ẽ −
∑
i fiẽi) = 0, where ẽi is, for every i = 1, . . . , n, a

local section of E−1 mapped to Xi through ρ. By definition of the resolution (E,d, ρ), there
exists a local section h̃ ∈ Γ(E−2) such that:

ẽ−
∑
i

fiẽi = d(2)h̃. (2.3)

Evaluating this last relation at x ∈ M gives that ẽ|x = e is in the image of d(2) : i∗xE−2 →
i∗xE−1. This proves the injectivity of τ and completes the proof.

2.3 The isotropy Lie ∞-algebra along a leaf

We let F be a singular foliation on a smooth, real analytic or holomorphic manifold M
with sheaf of functions O. Assume that F comes equipped with a universal Lie ∞-algebroid
(E,Q) over it. Let us consider a leaf L of F . We start with a proposition:

Proposition 2.11. Let F be a singular foliation on a manifold M and (E,Q) be a universal
Lie ∞-algebroid over it. The isotropy Lie ∞-algebras of (E,Q) associated to two points x
and y in the same leaf are isomorphic.

Proof. It suffices to prove this relation for all points y that lie in some neighborhood of x, in
the same leaf. Let x ∈ M and let y be a point in a neighborhood of x that can be reached
from x as the time-1 flow of a time-dependent section t 7→ Xt of F . (We want to present
a proof valid in the real-analytic or holomorphic case, hence we can not extend this vector
field Xt to the whole manifold as in the smooth case.)
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Upon restricting this neighborhood if necessary, one can assume that there exists a time-
dependent section et of E−1 such that ρ(et) = Xt for all t ∈ [0, 1].

For all t ∈ [0, 1], let ∂et stand for the (vertical) vector field of degree −1 on the graded
manifold E defined by contraction by et. Said otherwise, let ∂et be the derivation of the
graded algebra E of functions on the graded manifold E defined on generators by:

∂et [ξ] = 〈ξ, et〉, (2.4)

for every ξ ∈ Γ(E∗−1) ⊂ E and ∂et [ξ] = 0 for all ξ ∈ Γ(E∗−k) with k ≥ 2.
For all t ∈ I = [0, 1], consider the vector field Vt = [Q, ∂et ]. The family (Vt)t∈[0,1] is a

1-parameter family of vector fields of degree 0 on the graded manifold E. The 1-parameter
family (Φt)t∈I of endomorphims of E obtained by solving for all F ∈ E the differential
equation:

dΦt(F )

dt
= Vt ◦ Φt(F ), (2.5)

is a family of graded algebra morphisms, defined in a neighborhood of x. By construction,
they commute with Q. Hence, Φt is a Lie ∞-algebroid morphism for all t ∈ I, defined in a
neighborhood of x.

Moreover, for every function f ∈ O:

Vt[f ] = ∂et ◦ ρ∗(ddRf) = ρ(et) [f ] = Xt [f ]. (2.6)

Said differently, the derivation Vt : E → E , being of degree 0, restricts to a derivation of
O, which is the derivation associated to the vector field Xt = ρ(et). As a consequence,
the 1-parameter family of strict Lie ∞-algebroid isomorphisms Φt is over the 1-parameter
family of diffeomorphisms (φt)t∈I of M which satisfies d

dt

(
φt(m)

)
= Xt|φt(m) for all m in a

sufficiently small neighborhood of x. By definition of Xt, we have φ1(x) = y so that Φ1 is a
strict isomorphism of the Lie ∞-algebroid (E,Q) to itself, defined in a neighborhood of x,
that maps x to y. This completes the proof.

As an immediate consequence of this result, Lemma 2.4 and Proposition 2.5, we have the
following result:

Corollary 2.12. Let F be a singular foliation that admits a universal Lie ∞-algebroid over
it in the neighborhood of every point. For any two points x and y in the same leaf of a
singular foliation F , the isotropy graded Lie algebras HF (x) and HF (y) are isomorphic as
graded Lie algebras and the isotropy Lie ∞-algebra structures at these points are isomorphic.

The codimension of the leaf also gives important restrictions about the possible degrees
of the isotropy Lie ∞-algebra.

Proposition 2.13. Let L be a leaf of a holomorphic or real analytic singular foliation
F . The isotropy graded Lie algebra HF (x) at a point x ∈ L is concentrated in degrees
−1, . . . ,−codim(L)− 1.

Proof. According to Proposition 1.12 in [1], every singular foliation is, in a neighborhood
of a point x in a leaf L, the trivial product of a singular foliation on a neighborhood of 0
in Rn−dim(L) (called the transverse foliation) with the foliation TB, with B an open ball of
dimension dim(L). A resolution of the singular foliation in a neighborhood of x is simply
given by adding TB (in degree −1) to a resolution of the transverse foliation. Its length is the
length of the resolution of the transverse foliation. In the real analytic or holomorphic cases,
the transverse foliation admits resolutions of length less or equal to codim(L)+1 (see item 1.
in Proposition 1.3) in the neighborhood of every point. Hence so does F in a neighborhood
of x and the result follows.

2.4 Examples of isotropy Lie ∞-algebras at a point

For regular foliations, the isotropy graded Lie algebra is trivial at all points. For Debord
foliations (i.e. foliations which are, locally, the image of a Lie algebroid whose anchor is
injective on a dense open subset) it is equal to the kernel of the anchor map.
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Example 21. Consider the singular foliation given by the action of sl2 on R2. According
to Example 18, at any point x ∈ R2\{0}, the resolution introduced in Example 18 is exact,
and there is no cohomology. On the contrary, at the origin 0 ∈ R3, both d and ρ vanish. The
following cohomologies then appear: H−1

F (0) ' R3 ' sl2 and H−2
F (0) ' R. The isotropy

L∞-algebra of the foliation is given by the graded vector space HF (0) ' R[2] ⊕ sl2[1]. It
admits on H1

F (0) ' sl2[1] the usual Lie algebra bracket, at and all k-ary brackets vanish for
k ≥ 3.

Example 22. Consider the singular foliation given by all vector fields on a vector space V
vanishing at the origin. According to Example 19, the isotropy L∞-algebra of the foliation at
any point which is not the origin is zero. The isotropy L∞-algebra at the origin is the graded
Lie algebra

⊕
i≥1 ∧iV ∗⊗ V equipped with the (graded symmetric) Lie bracket defined as in

(1.63). There is no k-ary bracket for k ≥ 3.

Example 23. In the conjectural Example 12, the result is very similar. Recall that we are
not able to prove that the sequence we construct in that example is a resolution. But we are
able to equip it with a Lie∞-algebroid structure that induces the singular foliation given by
the adjoint foliation of g on itself. At the origin 0, again, the L∞-algebra associated to that
Lie ∞-algebroid has all the brackets which are trivial except in degree −1 where we recover
the Lie algebra g. There is no k-ary bracket for k ≥ 3.

Example 24. We saw in Example 20 that the singular foliation Fϕ of all vector fields X
on M = Cn such that X[ϕ] = 0, with ϕ a weight homogeneous function on M = Cn with
isolated singularities, admits a universal Lie ∞-algebroid over it.

The origin 0 of Cn is a leaf. Let us study the Lie ∞-algebra at this point. Since all
partial derivatives of ϕ vanish at the origin 0, the Koszul resolution (see Example 14) is a

minimal resolution at 0, so that H
Fϕ

−k (0) ' ∧k+1Cn. For k-ary brackets of the universal Lie
∞-algebroid over Fϕ given by Equation (1.64), their restrictions at 0 are given by:

{∂I1 , . . . , ∂Ik}k :=
∑

i1∈I1,...,ik∈Ik

ε(i1, . . . , ik)ϕi1,...,ik(0) ∂ I1
{i1}
∪···∪ Ik

{ik}
(2.7)

where:

1. for all I = {i1, . . . , ik} a sub-list of elements in {1, . . . , n}, the set I
{ip} , where 1 ≤ p ≤ k

is the sub-sub-list {i1, . . . , ip−1, ip+1, . . . , ik}, and ∂I is a shorthand f or ∂
∂xi1
∧· · ·∧ ∂

∂xik
∈

H
Fϕ

−k (0) ' ∧k+1Cn,

2. ε(i1, . . . , ik) ∈ {−1, 1} is the signature of the permutation of the list I1, . . . , Ik which
consists in forcing i1, . . . , ik to come, in that order, in front of the list,

3. ϕi1,...,ik is a shorthand for ∂kϕ
∂xi1

...∂xik
.

The 3-ary bracket is in general not trivial in this case.

We conclude this section with a characterization of the singular foliations described by C.
Debord [13]. We call Debord foliation a singular foliation F which is a projective O-module,
i.e. which is covered by an anchored vector bundle (A, ρ) such that ρ : Γ(A) → F is an
isomorphism of O-modules, with ρ injective on a dense open subset of M .

Proposition 2.14. Let F be a singular foliation. For every x ∈ M the following are
equivalent:

(i) There is a neighborhood of x ∈M on which F is a Debord foliation.

(ii) There is a neighborhood of x ∈ M on which F admits resolutions and HF−i(y) = 0 for
all i ≥ 2 and all y in this neighborhood.

(iii) There is a neighborhood of x ∈M on which F admits resolutions and HF−2(x) = 0.

(iv) There is a neighborhood of x ∈ M on which F admits resolutions and the isotropy
graded Lie algebra at x is concentrated in degree −1, i.e. it is a Lie algebra.
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Proof. Every Debord foliation is given by a Lie algebroid A whose anchor is injective on
an open and dense subset. A resolution is therefore given by E−1 := A and E−i := 0
for all i ≥ 2. Since a resolution of length 1 exists in a neighborhood of any point x, the
cohomologies HF−i(y) are all trivial for all i ≥ 2 and any point y in the neighborhood of x.
Hence (i) implies (ii). It is obvious that (ii) implies (iii). Let us assume that (iii) holds. Let
E be a resolution of F with anchor ρ. Since the dimension of the image of d(3) : E−3 → E−2

around x is greater than or equal to its dimension at x ∈ M , while the dimension of the
kernel of d(2) : E−2 → E−1 is, around x, lower than or equal to its dimension at the point
x, we indeed have HF−2(y) = 0 in a neighborhood of x ∈ M . Moreover, it implies that

the dimension of the kernel of d(2) : E−2 → E−1 is constant in a neighborhood of x. This

implies that E′−1 := E−1

/
d(2)(E−2) is a vector bundle. The anchor goes to the quotient

to define a morphism of O-modules ρ : Γ(E′−1) → F that we still denote by ρ, and which
is, by construction, an isomorphism of O-modules. The equivalence between (iii) and (iv) is
obvious. This completes the proof.

2.5 Holonomy Lie groupoids

Let us consider a Lie ∞-algebroid (E,Q) over a singular foliation F on a manifold M . In
Section 2.2, the isotropy Lie∞-algebra of (E,Q) at a point x ∈M was defined on the vector
space Vx = Ker(ρx)⊕

⊕
i≥2 i

∗
xE−i. This construction can be enlarged: instead of restricting

(E,Q) to a point, we can restrict it to a leaf, and we therefore obtain a Lie∞-algebroid over
a leaf L of the singular foliation F .

Proposition 2.11 implies that for all i ≥ 2, the vector bundle morphism d(i) : E−i →
E−i+1 is of constant rank at all points of the leaf L. This allows to truncate the Lie ∞-
algebroid at a certain order i, to get a Lie∞-algebroid structure on the graded vector bundle:

i∗LE−i
/

d(i+1)
(
i∗LE−i−1

) −→ i∗LE−i+1 −→ · · · −→ i∗LE−1 −→ TL

Above, i∗L stands for the restriction to the leaf L of a vector bundle over M . This Lie ∞-
algebroid is a Lie i-algebroid, that we call the i-th truncation of E. For i = 1, we get a Lie
algebroid that we call the holonomy Lie algebroid of the leaf L.

Proposition 2.15. Let F be a singular foliation that admits a universal Lie ∞-algebroid
over it, and let L be a leaf of F . The 1-truncation of the Lie ∞-algebroid over L coincides
with the Lie algebroid of the fibers of the foliation over L defined by Androulidakis and
Skandalis in [1].

Proof. In [1], the holonomy Lie algebroid is defined by the vector bundle whose fiber over
x ∈ L is the germ at x of F/IxF , with Ix the ideal of functions vanishing at x:

AFL =
⋃
x∈L

F/IxF
The anchor map is defined by the evaluation at x of an element in F and the bracket is
induced from the Lie bracket of vector fields. Notice that the kernel of the anchor map is
the isotropy Lie algebra at x by construction.

To any Lie ∞-algebroid (E,Q) over a manifold M , one associates a topological groupoid
as follows. Let I = [0, 1]. Morphisms of Lie ∞-algebroids from the tangent Lie algebroid TI
to (E,Q) are in one-to-one correspondence with paths a : I → E−1 over a path γ : I → M
such that:

dγ(t)

dt
= ρ
(
a (t)

)
(2.8)

We call such a path a E-path. It is said to be trivial when γ(t) is a constant path equal to
some x ∈M and a(t) = 0x for all t ∈ I. A homotopy between two Lie∞-algebroid morphisms
a0, a1 from the tangent Lie algebroid TI to (E,Q) is a Lie ∞-algebroid morphism from the
tangent Lie algebroid TI2 to (E,Q) whose restrictions to {0} × I and {1} × I in I2 are a0

and a1 respectively, while the restrictions to I × {0} and I × {1} are trivial. The groupoid
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product is given by concatenation of paths, which makes sense if we assume them to be
trivial in neighborhoods of t = 0 and t = 1. To obtain a topology on this quotient, we
restrict ourselves to C1-paths and equip it with a Banach manifold topology, as in [10] or
[12]. We call this groupoid the 1-truncated groupoid of (E,Q).

Proposition 2.16. Let (E,Q) be a universal Lie ∞-algebroid over a singular foliation F .
The 1-truncated groupoid of (E,Q) is a universal cover of the connected component of the
manifold of units of the holonomy groupoid described by Androulidakis and Skandalis in [1].

Proof. Given a singular foliation F , the holonomy groupoid of F described in [1] is a topolog-
ical groupoid that induces the singular foliation F on M . Moreover, according to [1] again,
for any leaf L of F , its restriction to L is a groupoid integrating the holonomy Lie alge-
broid AL of the leaf L, which is shown in Proposition 2.15 to coincide with the 1-truncation
i∗LE−1

/
d(2)i∗LE−2 .

Let us check that the 1-truncated groupoid of (E,Q) satisfies the same property. It admits
F for induced foliation on M . Let us show that its restriction to any leaf L coincides with

the universal cover of the groupoid integrating the Lie algebroid AL := i∗LE−1

/
d(2)i∗LE−2

.

It is clear that any E-path over L (from now on, we shall speak of EL-paths) induces a AL-
path in the usual sense of Cattaneo-Felder [10] and Crainic-Fernandes [12]. It is also obvious
that if two such paths are homotopic as EL-paths, their induced AL-paths are homotopic
as AL-paths. Hence, the 1-truncated groupoid of (E,Q) maps to the source-1-connected Lie
groupoid integrating AL.

Let us check that this map is bijective. Surjectivity is obvious: any AL-path comes from
an EL-path that we call a lift. Now, in order to show that the map is injective, let us
check that homotopic AL-paths are induced from homotopic EL-paths, i.e. that any Lie ∞-
algebroid morphism from TI2 to AL lifts to a Lie∞-algebroid morphism from TI2 to (E,Q)
whose boundary values are arbitrary lifts of the initial A-paths. Let α be a Lie algebroid

morphism from TI2 → i∗LE−1

/
d(2)i∗LE−2

whose restriction to the boundaries satisfy the

usual requirements of homotopies relating two AL-paths a1 and a2. The vector bundle

morphism α : TI → i∗LE−1

/
d(2)i∗LE−2

can be lifted to a vector bundle morphism Φα valued

in i∗LE−1 that still satisfies the requirements of homotopies of EL-paths when restricted to
boundaries, and that relates to arbitrary lifts of a1 and a2. It is not a Lie ∞-algebroid
morphism a priori, i.e Ψ := Φα ◦Q− ddR ◦Φα may not be zero. By construction, Ψ is a Φα
derivation whose only term which may be non-vanishing is a vector bundle morphism from
Γ
(
i∗LE

∗
−1

)
to Ω2(I2).

Since Φα induces a Lie ∞-algebroid morphism (in fact, a Lie algebroid morphism) when
taking the quotient, Ψ is zero on the image of Γ(A∗L) → Γ

(
i∗LE

∗
−1

)
, i.e. the conormal of the

image of d(2) : E−2 → E−1. This allows us to modify Φα by adding a map Γ
(
i∗LE−2

)
to

Ω2(I2) so that the relation Φα ◦ Q = ddR ◦ Φα holds on Γ(E∗−1). This modified Φα is a
homotopy of EL-paths by construction. This completes the proof.

2.6 The 3-ary bracket of the isotropy Lie ∞-algebra of a singular
foliation

Let F be a singular foliation that admits a resolution of finite length and let x ∈ M be a
point. In the sequel, we shall assume that the foliation vanishes at x (i.e. all vector fields
in F are zero at x), so that {x} is a leaf of F . According to item 5. in Proposition 1.3, a
resolution which is minimal at x exists. According to Proposition 2.8, the graded Lie bracket
of the isotropy graded Lie algebra

⊕
i≥1H

F
−i(x) at x is part of a Lie ∞-algebra structure,

whose differential (= 1-ary bracket) is zero: the isotropy Lie ∞-algebra of F at x.
The following Lemma is trivial:

Lemma 2.17. Let F be a singular foliation that admits a resolution of finite length. Consider
a leaf that reduces to a point x.

1. The binary bracket makes HF−2(x) a module over the isotropy Lie algebra HF−1(x),
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2. The restriction to HF−1(x) of the 3-ary bracket is a 3-cocycle for the Chevalley-Eilenberg
cohomology of the isotropy Lie algebra HF−1(x), valued in the module HF−2(x),

3. The class of cohomology of this cocycle does not depend on the choices made in the
construction.

We refer to this class as the NMRLA 3-class.

Proof. Recall from Proposition 2.8 that the binary bracket of the isotropy Lie ∞-algebra
of F at x coincides with the graded Lie algebra bracket of the isotropy Lie algebra of F
at x. Now, for every graded Lie algebra g• :=

∑
i≥1 g−i (considered with the symmetric

conventions discussed in Remark 2), the vector space g−1 is a Lie algebra, and the graded
Lie bracket g−1 × g−k → g−k turns g−k into a g−1-module. The second item is a general
fact for a Lie ∞-algebra (V,QV ) with trivial differential: in such a case the Jacobi identity
implies that:

[Q
(1)
V , Q

(2)
V ] = 0 (2.9)

which means precisely that the 3-ary bracket is a Chevalley-Eilenberg cocycle when restricted
to HF−1(x). The third item can be obtained as follows: two different choices made in the
construction of the universal Lie ∞-algebroid give isotropy Lie ∞-algebra structures which
are strictly isomorphic by Proposition 2.8, through isomorphisms whose linear parts are
the identity. The quadratic part of this isomorphism has a component which is a map θ̃
from S2

(
HF−1(x)

)
to HF−2(x). Writing explicitly the definition of Lie ∞-algebra morphisms,

applied to three elements in HF−1(x), one obtains that {. , . , .}3 and {. , . , .}′3 differ by (a

multiple of) the Chevalley-Eilenberg differential of θ̃.

The name NMRLA stands for ‘no minimal rank Lie algebroid’. Let us explain this name.
According to [1], the rank r of the quotient F

/
IxF is the minimal number of generators of

the foliation F in a neighborhood of that point. Since the leaf of x reduces to {x} itself,
F/IxF = HF−1(x), and r = dim

(
HF−1(x)

)
.

Proposition 2.18. Let F be a singular foliation on a manifold M that admits a resolution
of finite length. Consider a leaf that reduces to a point x, and let r be the rank of F at the
point x.

If the NMRLA 3-class is not equal to 0, then it is not possible to find a Lie algebroid A
defined in a neighborhood Ux of x, that satisfies the two following conditions:

1. the rank of A is r, and

2. the Lie algebroid A induces the foliation F (i.e. ρ
(
Γ(A)

)
= F and the anchor map is

compatible with both brackets) on Ux.

Proof. Assume that a Lie algebroid A with anchor ρ satisfying that ρ
(
Γ(A)

)
= F exists. Let

(E,Q) be a universal Lie ∞-algebroid over F in a neighborhood of x, built on a resolution
minimal at x. By Theorem 1.8, a Lie ∞-algebroid morphism Φ (over the identity of M)
from A to (E,Q) exists. In that case, the linear, quadratic and cubic terms in the Taylor
coefficients of Φ satisfy for all a, b, c ∈ Γ(A):{

Φ1(a),Φ2(b, c)
}

2
− Φ2

(
[a, b], c

)
+ c.p. =

{
Φ1(a),Φ1(b),Φ1(c)

}
3
− d Φ3(a, b, c)

When the rank of A is r, we can assume that A := E−1 and that the first order Taylor
coefficient Φ1 : A → E−1 of the Taylor coefficient of Φ is the identity map. The previous
equation, evaluated at the point x gives then that {. , . , .}3 is a coboundary for the Chevalley-
Eilenberg complex of i∗xE−1 ' HF−1(x) valued in i∗xE−2 ' HF−2(x).

Example 25. For the singular foliation Fϕ on Cn, associated to the function ϕ(x1, . . . , xn) :=∑n
i=1 x

3
i as in Examples 14-20-24, it follows from Equation (2.7) that at the origin 0:

1. the binary bracket of the isotropy Lie ∞-algebra at 0 is zero,

2. in particular, the isotropy Lie algebra is Abelian, and its action on HF−2(0) is trivial,

3. the 3-ary bracket is not zero for n ≥ 4, since (with the conventions of Example 24):

{∂12, ∂13, ∂14}3 := ∂234.

42



This implies that the NMRLA 3-class of Fϕ at the origin 0 is not zero. This foliation,
therefore, is not induced by a Lie algebroid of rank n(n− 1)/2.

Example 25 proves the following proposition:

Proposition 2.19. There exist singular foliations of rank r that can not be the image a Lie
algebroid of rank r.

2.7 The Leibniz algebroid of a singular foliation

As already mentioned in the introduction, it is not easy to decide whether a singular foliation
is, locally, the image of a Lie algebroid under the anchor map. It is known not to be the
case globally, see [3], while in a neighborhood of a point the question is open. We are not
able to bring a positive or negative answer to decide this question, but a direct consequence
of Theorem 1.6 is that a Leibniz algebroid defining the singular foliation always exists in the
real analytic or holomorphic cases, in a neighborhood of a point. Although it can be easily
derived from Theorem 1.6, it is far from being obvious if we do not have such a theorem.

Definition 2.20. [26] Let L be a vector bundle over M . A Leibniz algebroid structure on
L is a bilinear assignment [ . , . ]L : Γ(L) ⊗ Γ(L) → Γ(L) and a vector bundle morphism
ρ : L→ TM , satisfying the Loday-Jacobi condition:[

x, [y, z]L
]
L

=
[
[x, y]L, z

]
L

+
[
y, [x, z]L

]
L

(2.10)

for all x, y, z ∈ Γ(L), and the Leibniz identity:

[x, fy]L = f [x, y]L + ρ(x)[f ] y (2.11)

for every x, y ∈ L and f ∈ O.

In fact, for every singular foliation arising from a Lie ∞-algebroid, a Leibniz algebroid
defining the foliation exists. This follows from Proposition 5.4 item 1 and Lemma 5.5 in [18]:
adapting this result to our case, this construction gives the following result.

Proposition 2.21. Let F be a singular foliation that admits a universal Lie ∞-algebroid
structure (E,Q) with anchor ρ. Assume that its associated resolution is of finite length. Then
L =

(
S(E∗) ⊗ E

)∣∣
−1

is a vector bundle of finite rank and comes with a Leibniz algebroid
structure, when equipped with:

1. the Leibniz bracket defined by:

[X,Y ]L :=
[
[Q,X], Y

]
for all X,Y ∈ Γ(L) (identified with vertical vector fields ∂X and ∂Y of degree −1 on
the graded manifold E),

2. the anchor given by the composition:

E−1 ⊕
(⊕

k≥1 S
k(E∗)⊗ E

)∣∣
−1

E−1 TM.
ρ

Proof. For every graded Lie algebra, g :=
∑
i∈Z gi and any homological element Q ∈ g

of degree +1, g−1 is a graded Leibniz algebra when equipped with the bracket (X,Y ) 7→[
[Q,X], Y

]
, see [25]. Applied to the graded Lie algebra of derivations of functions E on

the Lie ∞-algebroid (E,Q) (that is, vector fields on the N -manifold defined by the graded
vector space E) and to the vector field Q, the bracket given as above induces a Leibniz
algebra bracket on vector fields of degree −1. Now, vertical vector fields of degree −1 are
vertical (i.e. are O-linear derivations of E), and therefore can be identified with sections of
the vector bundle L =

(
S(E∗)⊗ E

)
|−1 (that is, the vector bundle of elements of degree −1

in S(E∗)⊗E). Also, since sections of Sk(E∗)⊗E are of non-negative degree for k ≥ n, L is
a vector bundle of finite rank over M . One checks directly that the anchor η is given as in
item 2. By construction, η

(
Γ(L)

)
= ρ
(
Γ(E−1)

)
= F . This proves the proposition.

The following proposition is an immediate consequence of Proposition 2.21 and Theo-
rem 1.6.

Proposition 2.22. Let F be a singular foliation that admits a resolution of finite length.
Then there exists a Leibniz algebroid structure whose induced singular foliation is F .
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